

APPLICATION SITE CONDITION REPORT

MERIDEN QUARRY WASTE TRANSFER STATION
CORNETS END LANE,
MERIDEN,
COVENTRY,
CV7 7LG

Document Reference: BF5066/06.R1

May 2022

Project Quality Assurance Information Sheet

APPLICATION SITE CONDITION REPORT MERIDEN WTS, CORNETS END LANE, MERIDEN, COVENTRY, CV7 7LG

Report Status : Final

Report Reference : BF5066/06.R1

Report Date : May 2022

Prepared for : Biffa Waste Services Limited

Prepared by : Sirius Environmental Limited

The Beacon Centre for Enterprise

Dafen Llanelli SA14 8LQ

Written by :

Rhiannon Chapple BSc (Hons) MSc

Environmental Consultant

RChapple

Reviewed by :

Dylan Thomas BSc (Hons) PGDip MCIWM

Principal Environmental Consultant

Approved by

Mark Griffiths BSc (Hons) MSc CGeol MCIWM

Environmental Director

Revision	Date	Amendment Details	Author	Reviewer
0	May 2022	First Issue	R Chapple	D Thomas
1	October 2022	Revisions to text in line with revised permit boundary	R Chapple	D Thomas

This report is written for the sole use of Biffa Waste Services Limited and their appointed agents. No other third party may rely on or reproduce the contents of this report without the written approval of Sirius. If any unauthorised third party comes into possession of this report, they rely upon it entirely at their own risk and the authors do not owe them any Duty of Care or Skill.

MERIDEN WASTE TRANSFER STATION CORNETS END LANE, MERIDEN, COVENTRY, CV7 7LG

APPLICATION SITE CONDITION REPORT

CONTENTS

EXEC	JTIVE SUMMA	ARY	
1.0	SITE CONDIT	ION REPORT CONTEXT1	
2.0	SITE DETAILS		
3.0	CONDITION	OF THE LAND AT PERMIT ISSUE	
4.0	EVIDENCE O	F HISTORIC CONTAMINATION10	
5.0	BASELINE S	OIL AND GROUNDWATER REFERENCE DATA10	
6.0	PROPOSED I	PERMITTED ACTIVITIES13	
7.0	SUMMARY S	TATEMENT OF THE SITE CONDITION17	
LIST C	F APPENDIC	ES	
Append Append Append Append	dix SCR1 dix SCR2 dix SCR3 dix SCR4 dix SCR5 dix SCR6	Envirocheck Report (2015) Historical Maps Phase 1 Desk Study & Preliminary Risk Assessment Report (2015) Phase 2 Ground Investigation Report (2015) Land at Meriden Quarry - Factual Report (2016) Site Walkover Survey Photographs (2022)	
LIST C	F DRAWINGS	3	
	6/12/01 6/12/02	Site Location Plan Site Boundary Plan	
LIST C	F TABLES		
Table 3 Table 3 Table 3 Table 3 Table 3 Table 3	SCR2: Surface SCR3: Active E SCR4: Recorde SCR5: Historic SCR6: Ground SCR7: Ground SCR8: Assessi	water Abstractions within 2km of the Site	

EXECUTIVE SUMMARY

	Executive Summary
Site Address:	Meriden Waste Transfer Station Cornets End Lane,
	Meriden,
	Coventry, CV7 7LG
Site National Grid Reference (NGR):	SP 23044 81103
Site Operator:	Biffa Waste Services Limited
Proposed Activity:	Operation of a Waste Transfer Facility for non-hazardous Industrial and Commercial waste streams for the principle purpose of bulking for onward transfer for recovery or disposal. Onsite treatment activities will be limited to manual and plant assisted sorting/separation. The proposed annual throughput at the site is 50,000 tonnes. This will broadly comprise general wastes, dry mixed recyclates and construction and demolition wastes
	Waste storage and treatment will be conducted within a fully enclosed building with roller shutter doors, fire detection systems, odour and fire suppression, impermeable surfaces and sealed drainage. The external areas of the site will also comprise impermeable surfaces and a drainage system which will direct surface water to an interceptor and subsequently the onsite surface water attenuation pond before being discharged to surface water off site (emission point S1).
Site History and Current Use:	The development history of the site includes agricultural use, sand extraction and landfilling around 1970, before returning to a field and subsequently the current development, for which construction commenced in 2017.
	Surrounding the site only one historic landfill was identified approximately 860m north-northwest on Somers Lane, in which inert household waste was deposited. There is one landfill currently situated 255m south-west of the site, CEMEX Berkswell Quarry and Landfill. There is also a quarry to the north-east, ~70m from the site which is to be restored within a combination of 'non-waste' overburden supplemented with suitable inert waste for recovery for part of the site, and suitable inert waste for the rest of the site.
Ground Conditions:	BGS maps show the local geology to comprise superficial Glaciofluvial Deposits comprising Sand and Gravel. Beneath the site and across the quarries areas to the north and south of the site, the sand and gravel deposits have or are in the process of being removed (in part or to the full depth). Beneath the site and many of the worked areas in the quarries to the north and south have been restored through the deposit of wastes.
	These superficial deposits are underlain by Bedrock of the Mercia Mudstone Group.
	The superficial deposits on site have been classed as having High Leaching Potential (H2). This is defined as deep, permeable, coarse textured soils which readily transmit a wide range of pollutants because of their rapid drainage and low attenuation potential. This classification does not account for the materials placed to restore the site and surrounding quarries, although the characteristic of these materials can be highly variable.
Environmental	The site surfaces comprise impermeable hardstanding (i.e. concrete paving). During the 2015 Ground Investigation it was proved the presence of made ground to depths in excess of 5.4m below ground level. It is suspected that Made Ground is present to a greater depth owing to the site's history as a landfill, although sand and gravel deposits have been proven to remain beneath the made ground beneath the site. Site-specific baseline data was gathered in 2015 during a Ground Investigation due to
Review:	the former land uses at the site, i.e. landfilling, therefore, the potential for ground contamination and landfill gas generation to be present was considered likely. It was found that a potential risk to groundwater was present and ground gas comprising CO2 was recorded within the boreholes on at least one occasion. Asbestos was found at 5 locations with a maximum of 0.003% asbestos within the overall mass.
	The baseline data gathered in 2015 has been used to establish the baseline condition of the site.

Executive Summary

Owing to the high level of containment at the site and the pollution prevention controls installed and maintained at the site, including impermeable surfacing, sealed drainage systems etc, the risk of contamination of the soil and groundwater underlying the site resulting from the proposed operations is considered to be very low.

This summary should be read in conjunction with the main report and reflects an assessment of the Site based on the information available at the time.

1.0 SITE CONDITION REPORT CONTEXT

- 1.1 Sirius Environmental Limited ('Sirius') has been commissioned by Biffa Waste Services Limited ('Biffa') to prepare and submit a Site Condition Report to support an Environmental Permit Application for the operation of a Waste Transfer Station at Cornets End Lane, Meriden, Coventry, CV7 7LG. The relevant documentation is submitted in accordance with the Environmental Permitting (England & Wales) Regulations 2016 (referred to hereafter as the EP Regulations).
- 1.2 Biffa Waste Services Limited are seeking to operate a new Non-Hazardous Waste Transfer Station located near Meriden. The site will broadly accept general waste, mixed dry recyclates and construction and demolition waste. Treatment of the waste at the site will be limited to manual and plant assisted sorting/separation only, to recover recyclates. All waste treatment and storage will occur within a fully enclosed building with roller shutter doors, ensuring a high level of containment at the site. The site will comprise an external drainage system whereby surface water is directed to an interceptor and later the on-site surface water attenuation pond. A Penstock Valve is present ensure that contaminated liquid, such as fire water or contaminated surface water resulting from a large spillage or leak, can be contained and will not enter the off-site surface water system. Within the building, a channel drain is present in the centre to ensure any leaks or spills are directed to a sump, the contents of which would then be pumped out, tankered and transferred to an appropriate facility for treatment and / or disposal.
- 1.3 This Site Condition Report (SCR) has been compiled in accordance with the EP Regulations and with Horizonal Guidance Note 5, Site Condition Reports Guidance and Templates (v2.0, 4th August 2008). Information has been gathered based on a desk study review of publicly available information, as well as an Envirocheck ® Report by Landmark (Report Reference: 70642001_1_1) produced in July 2015 (included within **Appendix SCR1**).
- 1.4 The purpose of an Application Site Condition Report is to provide a factual statement of the condition of the site at the time of the Environmental Permit Application. The Site Condition Report must describe the nature and distribution of potentially polluting substances in the ground and groundwater at the site prior to the commencement of operations under the Environmental Permit, and those handled during the course of activities on the site. The potentially polluting substances of interest are those which are to be handled at the site under the Permit.
- 1.5 Whilst the permitted activities will be restricted to within the green line boundary shown in **Drawing No. BF5066/12/02**, this SCR also extents to define the baseline condition of the eastern yard area that will be used to facilitate the parking of Refuse Collection Vehicles (RCVs) associated with Biffa's Industrial and Commercial waste collection services division.

2.0 SITE DETAILS

Site Setting

2.1 The proposed site to which the application will relate is an existing industrial site located on Cornets End Lane, Meriden, CV7 7LG. The National Grid Reference (NGR) for the site is SP 23044 81103. The site location has been depicted in **Drawing No. BF5066/12/01**.

- 2.1.1 The site was originally constructed to support other waste management activities that were regulated under two separate Environmental Permits. These activities included a Biomass Energy Plant (BEP) and Waste Water Treatment Facility (WWTF). Both companies to which the permits were issued have since been dissolved and the associated permits are to be cancelled by the Environment Agency. The existing site infrastructure will therefore be used and adapted to support the proposed waste collection services and transfer operations to be carried out by Biffa.
- 2.1.2 The site itself currently comprises two buildings; one of which will form the waste transfer station for the reception, storage and treatment of wastes, and another which will contain the site offices and welfare facilities. The associated external areas comprise the surface water attenuation pond, staff car and Refuse Collection Vehicles (RCVs) parking areas, staff welfare facilities, as well as rainwater tanks and sprinkler pumps for fire suppression. The yard area to the east of the environmental permit boundary will be used for the parking of RCVs associated with Biffa's Industrial and Commercial waste collection services fleet of vehicles (this activity is not required to be permitted). Entrance and egress to and from the site for heavy good vehicles is via a junction off a private road that provides access to the adjacent quarry, which junctions with Cornets End Lane to the southwest of the site. The site entrances are gated and will be locked outside of operational hours. Palisade fencing surrounds the site perimeter.
- 2.1.3 The proposed permitted boundary area is depicted in **Drawing No.**: **BF5066/12/02**. The site is bounded to the north by Cornets End Lane, beyond which lies an operational quarry and the associated mineral processing and product manufacturing plants and buildings. To the east lies undeveloped land and 'Midland Mix Concrete', a ready-mixed concrete producer. Cornets End Lane is located along the site's southern boundary, beyond which lies an operational and partially restored Berkswell Quarry and Landfill facility. The land to the west of the site is occupied by undeveloped land and trees, beyond which lies Cornets End Lane, a road-side café within a storage container named 'Rachel's Café' and a Pet Boarding Service (In The Doghouse (Solihull) Limited).
- 2.1.4 The village of Meriden is located approximately 1.6km to the north-east of the site, the outskirts of Coventry lie ~7.8km to the east, Solihull is located ~7.8km to the west and the junction of Cornets End Lane and the A452 is ~ 1km north-west of the site. The site lies within an area subject to extensive sand and gravel extraction (and associated restoration), together with agricultural land and Golf Courses, namely North Warwickshire Golf Club which is ~ 370m to the north of the site, as well as Stonebridge Golf Club and Midlands Golf Stonebridge, which lie approximately 1.2km and 1.7km to the north-northwest of the site respectively.
- 2.2 The closest residential properties are Keepers Cottage at a distance of approximately 115m to the east-southeast of the site, Cornets End Farm c.310m to the east and Hornbrook Farm c. 530m to the west. The remainder of the surrounding area is occupied predominantly by agricultural land.
- 2.2.1 The local topography is relatively flat with a gently undulating landscape.
- 2.3 The site does not lie within 2km of an Area of Outstanding Natural Beauty (AONB), Local Nature Reserve (LNR), National Nature Reserve (NNR), Ramsar site, Site of Special Scientific Interest (SSSI), Special Protected Area (SPA), Special Area of Conservation (SAC) or a Source Protection Zone (SPZ).

- 2.4 The site does lie within a Nitrate vulnerable Zone (NVZ). These are defined as areas designated as being at risk from agricultural nitrate pollution. The designations are made in accordance with the Nitrate Pollution Prevention Regulations 2015.
- 2.5 There are five ancient woodlands situated within 2km of the site. These include an The Somers woodland c. 880m north-northwest of the site, The Bogs woodland c. 1km south-east and 1.2km south, Siden Hill Wood c. 1.6km west-southwest and Garden Wood c. 1.6km south-southeast. Deciduous woodland is also present within 2km in all directions, the closest of which lies approximately 8m north-west of the site at the closest point and extends west and north of the site. Deciduous woodland is a protected priority habitat.

3.0 CONDITION OF THE LAND AT PERMIT ISSUE

Environmental Setting

Made Ground

3.1 During the 2015 Ground Investigation it was found that made ground extends over 5.4m below ground level. However, it is suspected that Made Ground is present to a greater depth owing to the site's history as a landfill. The site is currently surfaced with impermeable concrete hardstanding.

Natural Soils

- 3.2 Due to the quarrying history of the site it is unlikely that any natural soil profile currently exists across the site, although it is possible that natural topsoil and subsoil may have been used to support restoration of the application site.
- The natural soils previously present at the site would have originally been classed as having High Leaching Potential (H2). This is defined as deep, permeable, coarse textured soils which readily transmit a wide range of pollutants because if their rapid drainage and low attenuation potential.

Geology

- According to the British Geological Survey (BGS) Viewer, the site is directly underlain by superficial Glaciofluvial Deposits comprising sand and gravel. Intrusive investigations have shown that these deposits have been partially exploited beneath the site, with superficial sands and gravels present beneath the made ground. The superficial deposits are further underlain by Bedrock Geology of the Mercia Mudstone Group.
- 3.5 The BGS Lexicon of Named rock Units describes the Mercia Mudstone Group as:
 - "Dominantly red, less commonly green-grey, mudstone and subordinate siltstones with thick halite-bearing units in come basinal areas. Thin beds of gypsum / anhydrite widespread; sandstones are also present".
- 3.6 The site has been mined by opencast working to extract the mineral sand and gravel deposits. The site is not in an area which is affected by coal mining activity.
- 3.7 According to data issued by the National Radiological Protection Board (NRPB) in 2002 (now the Health Protection Agency), the site is located in an area that is a lower probability radon area, as less than 1% of homes are above the action level. No radon protection measures are considered necessary by the BGS.

<u>Hydrogeology</u>

- 3.8 The hydrological characteristic of the local geological strata identified are summarised below:
 - Superficial Glaciofluvial Deposits Secondary A permeable layers capable of supporting water supplies at a local rather than strategic scale and in some cases forming an important source of base flow to rivers.
 - Mercia Mudstone Group Secondary B predominantly lower permeability layers which may store and yield limited amounts of groundwater due to localised features such as fissures, thin permeable horizons and weathering. These are generally the water-bearing parts of former non-aquifers.
- 3.9 No overlying drift deposits are present on site.
- 3.10 The site is not located within any designated Groundwater Source Protection Zones (SPZ's).
- 3.11 There are three current groundwater abstractions within 2km of the site, the details of which are shown in **Table SCR1**, below. The closest of these is operated by 'Lafarge Tarmac Trading Ltd' (Licence number: 03/28/11/0123) for 'Extractive: Mineral Washing' and is located approximately 200m to the northeast of the site.

Table SCR1: Groundwater Abstractions within 2km of the Site

Name	Licence Number	Distance & Direction from Site	Location	Purpose
Lafarge Tarmac Trading Ltd	03/28/11/0123	~200m NE	Cornets End Quarry	Extractive: Mineral Washing
Cemex UK Materials Ltd	03/28/11/0133	~500m W	Berkswell Quarry, Solihull	Extractive Process Water
MR C Barber	03/28/11/0139	~1.4km E	Berryfields Farm, Meriden	General Farming and Domestic

The site is considered to be situated in an area of moderate to high sensitivity with respect to groundwater resources due to the underlying aquifers and the close proximity of groundwater abstraction (the closest abstraction being located c.200m to the north-east). This sensitivity is mitigated somewhat by the site not being directly located in a Groundwater Source Protection Zone.

Surface Waters

3.13 There are two surface water abstractions within 2km of the Site, the details of which are shown in **Table SCR2**, below. The closest of which is operated by 'North Warwickshire Golf Club Ltd' (Licence number: 03/28/11/0099) for 'Golf Courses: Spray Irrigation - Direct' and is located approximately 460m to the north-west of the site.

Table SCR2: Surface Water Abstractions within 2km of the Site

Name	Licence Number	Distance & Direction from Site	Location	Purpose
North Warwickshire	03/28/11/0099	460m NW	North Warks Golf course – Tributary	Golf Courses: Spray Irrigation –
Golf Club Ltd	00.20 0000		of the River Blythe	Direct

Name	Licence Number	Distance & Direction from Site	Location	Purpose
R S Beaty & Sons	03/28/11/0103	~1.45km W	Patricks Farm	General Agriculture: Spray Irrigation - Direct

- 3.14 The nearest surface water feature is located approximately 50m to the south of the site.
- 3.15 Horn Brook is located approximately 85m to the north-west and has been sampled for quality and is determined to have a "Good" classification.
- 3.16 The Environment Agency flood zone database indicates that the site lies entirely within Flood Zone 1 (low risk) and therefore is considered an area of low probability with regards to flooding (land assessed as having a less than 1 in 1,000 annual probability of flooding (<0.1%).
- 3.17 The site does not lie within a Surface Water Drinking Water Safeguard Zone.
- 3.18 Upon review of the Environment Agency's 'Environmental Permitting Regulations Discharges to Water and Groundwater' register¹, there are currently five active licenced discharge consents to surface water and groundwater within 1km of the site; none of which are associated with the site itself. The details of these consented discharges are summarised in **Table SCR3**, below. The Landmark Envirocheck ® Report (**Appendix SCR1**) lists 21 recorded discharge consents located within a 1km search radius of the site, this includes both active and revoked consents.

Table SCR3: Active Discharge Consents to Controlled Waters within 1km of the Site

Name	NRS Saredon Aggregates Ltd	
Site Type	Mineral / Gravel / Quarrying	
Permit Reference Number	EPR/EB3996NT	
Distance & Direction from Site	110m N	
Location	Meriden Quarry (NGR: SP2300481268)	
Local Authority	Solihull	
Receiving Water	Horn Brook (Freshwater River)	
Discharge Consent Issue Date	12/10/2016	
Name	NRS Saredon Aggregates Ltd	
Site Type	Mineral / Gravel / Quarrying	
Permit Reference Number	MI/T/11/35904/T/001	
Distance & Direction from Site 280m NNW		
Location	Meriden Quarry (NGR: SP2318081440)	
Local Authority	Solihull	
Receiving Water	Horn Brook	
Discharge Consent Issue Date	12/12/2003	
Name	NRS Waste Management Services Ltd	
Site Type	Mineral / Gravel / Quarrying	
Permit Reference Number	MI/T/11/35387/T/001	
Distance & Direction from Site	310 NW	
Location	Meriden Quarry (NGR: SP2335581355)	
Local Authority	Solihull	
Receiving Water	Tributary of Horn Brook	
Discharge Consent Issue Date 08/09/1999		
Name	Severn Trent Water Limited	

¹ https://environment.data.gov.uk/public-register/view/search-water-discharge-consents

.

Name	NRS Saredon Aggregates Ltd
Site Type	Wastewater Treatment Works / Sewage
One Type	Treatment Works (water company)
Permit Reference Number	MI/T/11/36164/R/005
Distance & Direction from Site	810m NW
Location	Meriden Wastewater Treatment Works (NGR: SP2365081750)
Local Authority	Solihull
Receiving Water	Horn Brook
Discharge Consent Issue Date	10/04/2014
Name	Cemex UK Materials Ltd
Site Type	Quarry
Permit Reference Number	MI/T/11/09245/T/001
Distance & Direction from Site	590m W
Location	Berkswell Quarry (NGR: SP2238080980)
Local Authority	Solihull
Receiving Water	Tributary of Horn Brook
Discharge Consent Issue Date	09/04/1984

Pollution History

- 3.19 The following information has been obtained from a search of a publicly available database of environmental information (Envirocheck ® Report, produced by Landmark Ltd).
- 3.20 The database contains records of information from public registers held by environmental regulatory authorities and can be used to assess the site's sensitivity, the potential for neighbouring activities to pose a risk to the site and to determine whether specific records of pollution relate to the subject site.

Pollution Incidents Which May Have Affected the Land

- 3.21 There have been no pollution incidents to controlled water relating to the site or within 1km of the site.
- There has been one entry in the substantiated pollution incident register. The details of in incident are shown in **Table SCR4**, below.

Table SCR4: Recorded Substantiated Pollution Incident Register within 500m of the Site

Incident Identification	Incident Date	Distance & Direction from Site	Pollutant	Details
17855	20/07/2001	785 NE	Contaminated Water; Suspended Solids	Water Impact: Category 2 (Significant Impact) Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)

There are no records of pollution incidents having occurred at the site or within 500m of the site according to the Environmental Pollution Incidents (Category 1 and 2) 2001 – 2020 Database².

-

Doc. Ref.: BF5066/06.R1

² Source: Environmental Pollution Incidents (category 1 and 2) (data.gov.uk)

Historical Land-Uses and Associated Contaminants

- 3.24 Publicly available historic maps have been analysed to determine the historical land uses for the site and surrounding areas. These have been reviewed to determine if there is the potential for contamination to be present on site associated with the site's historical land uses.
- 3.25 The historical maps are included in **Appendix SCR2** of this report. A summary of the historical development of the site and surroundings is included in **Table SCR5**, below.
- The site was in agricultural use until approximately 1937, from when a Sand Pit occupied the western sector. By 1954 the Sand Pit has extended to cover the entire site. By 1962, the Sand Pit was no longer present and the site was occupied by buildings, a tank, and a hopper in the western sector and a pond in the eastern sector. The site was identified as a landfill between 1962 to 1992, and by 2006 it was shown to be occupied by a field.
- There is one recorded historical landfill relating to the site. The Licence Holder was Tiling Construction Services Limited (provider reference: EAHLD23762) and the type of waste landfilled was inert, industrial, commercial, household, special waste and liquid sludge. The last input date was 31st July 1992.
- 3.28 Furthermore, there is one historic landfill site within 1km of the proposed site boundary. This site was a landfill for inert household waste and lies approximately 860m north-northwest of the site on Somers Lane and was operated by Caires and Packison Limited (provider reference: EAHLD23761) from the 16th May 1984, the last input date was 29th June 1993.
- 3.29 Meriden Quarry Landfill, operated by NRS Waste Management Services Limited from 24th November 2015 lies c. 845m north of the site. Meriden Quarry Landfill operates under the Environmental Permit Reference EPR/CB3805HC for an inert landfill and physical treatment.
- 3.30 CEMEX Berkswell Quarry and landfill also currently lies approximately 255m to the south-west of the site.

Table SCR5: Historical Land Use on Site

Date	Comments / Observations	Potential Contaminants
	Application Site: The site is agricultural as part of a larger field.	
1886 – 1887	Surrounding Site: The area is in agricultural use with a road immediately to the south. To the north of the site is Packington Racecourse within an undefined boundary. A stream is located to the north of the site, at a distance of approximately 50m, which flows generally in a westward direction. Cornet's End is located approximately 100m to the southeast.	None
1904 - 1905	Application Site: The application site remains undeveloped. Surrounding Site: The immediate vicinity is unchanged; however, Packington Racecourse is no longer present, and a Golf Course occupies the northern area.	None

Application Site: A sand extraction pit now occupies the western corner of the site.	
Surrounding Site: A smaller sand extraction pit is situated on the opposite side of Cornet's End Lane, to the south of the south-western corner of the site. No other changes are noted.	None
Application Site: The sand extraction pit now covers the entire site with a track on the north-western and north-eastern boundaries. Surrounding Site:	None
to the north of the site. The surrounding area remains predominantly in agricultural use. No major changes are noted.	
The sand extraction pit is no longer present, although the slopes along the southern and part of the north-western boundaries remain. There are buildings in the south-western corner and a tank and hopper to the northeast of the building. The eastern sector is occupied by a pond. Surrounding Site: There is a sand extraction pit, together with a pond and marshland alongside the northern	Potential Contaminants Associated with Landfills: Landfill gas Organic Compounds Ammonia Iron Inorganic compounds
immediately to the north-west and an extraction pit to the north-east. The smaller sand extraction pit to the south is no longer present.	 Asbestos
The application site remains unchanged. Other information suggests that the site was subject to landfilling at this time.	As above
Application Site: The application site remains undeveloped. Surrounding Site:	As above
The surrounding area remains undeveloped.	
The application site remains undeveloped.	As above
The surrounding area remains undeveloped.	
Application Site: The application site is occupied by a field.	As above
Surrounding Site: There are landfill sites to the north-west and north-east of the site, together with large ponds. Works and a track are immediately to the north-west. Part of the river is no longer present, possibly culverted as Sinks and Issues are shown. To the south of the site, on the opposite side of Cornet's End Lane, are Sand and Gravel Pits. There are other sand and gravel pits further to the north of	
	the opposite side of Cornet's End Lane, to the south of the south-western corner of the site. No other changes are noted. Application Site: The sand extraction pit now covers the entire site with a track on the north-western and north-eastern boundaries. Surrounding Site: A slope has appeared in the rectangular field to the north of the site. The surrounding area remains predominantly in agricultural use. No major changes are noted. Application Site: The sand extraction pit is no longer present, although the slopes along the southern and part of the north-western boundaries remain. There are buildings in the south-western corner and a tank and hopper to the northeast of the building. The eastern sector is occupied by a pond. Surrounding Site: There is a sand extraction pit, together with a pond and marshland alongside the northern bank of the river, tanks and hoppers immediately to the north-west and an extraction pit to the north-east. The smaller sand extraction pit to the south is no longer present. Application Site: The application site remains unchanged. Other information suggests that the site was subject to landfilling at this time. Surrounding Site: The surrounding area remains unchanged. Application Site: The surrounding area remains undeveloped. Application Site: The opposite side of Cornet's End Lane, are Sand and Gravel Pits. There are other

Date	Comments / Observations	Potential Contaminants
	Application Site: The application site remains undeveloped.	As above
2015	Surrounding Site: The surrounding area remains relatively unchanged. However, many of the ponds that were present in 2006 are no longer present.	
Present Day	Application Site: The application site comprises two large buildings which were constructed in 2017 for a Biomass Energy Plant (BEP) and a Wastewater Treatment Facility (WWTF) which are adjacent to one another. These buildings are situated in the western half of the site. There is a surface water attenuation pond in the far western site area. The remaining site areas comprise impermeable concrete hardstanding. Surrounding Site: The surrounding area remains unchanged.	As above

Visual / Olfactory Evidence of Existing Contamination

- 3.31 All areas of the site were inspected in 2015 at the time of the application for the Environmental Permits for the Biomass Energy Plant (BEP) and Wastewater Treatment Facility (WWTF). All areas of the site were newly constructed and found to be in good condition with no visual or olfactory evidence of contamination.
- 3.32 Whilst the BEP and WWTF were largely constructed, it is understood that neither activity commenced operation or received any wastes prior to the operators entering administration.
- 3.33 A walkover survey was completed by Biffa in February 2022. During this survey it was concluded that all current site surfaces are in excellent condition and of good quality and depth. This judgement was made based on excavations near to the proposed car park area. The main yard area was awaiting concrete and the proposed car park was also under construction at the time of site walkover visit. Owing to the fact that the site was built but never operational under the previous owners, the concrete surfaces within the WTS building were never used, hence their excellent condition. Photographs were taken of the site during the walkover survey (**Appendix SCR6**) and the photographs of the external areas of the site do not highlight any visual evidence of existing contamination at the site. Since the walkover visit the external area has been concreted and further photographs have been provided.

Evidence of Damage to Pollution Prevention Measures

All internal and external areas of the site will comprise engineered concrete pavement. Internal areas of buildings, which will be used for waste storage and treatment, are already constructed. From February and March 2022 the current site owner (NRS) began concreting and constructing the external site areas (on behalf of Biffa) which will be used for the depot activity (non-permitted) and vehicle circulation routes. Photographs of the site are included in **Appendix SCR6**, these show the site surfacing. At the time of the first applications for Environmental Permits on the site in 2017, all areas of the site were subject to a visual inspection by Sol Environmental Limited shortly after the site's construction. All aspects of the installation boundary were inspected, as well as

the physical condition and the internal and external hardstanding, condition and adequacy of containment bunds and the condition and adequacy of the underground drainage and containment systems. All aspects of the site were deemed to be in good condition and in working order.

Prior to commencing operations at the site, Biffa will ensure that the pollution prevention measures including the sealed drainage system, all areas of impermeable hardstanding, the Penstock Valve, roller shutter doors etc. have been thoroughly inspected and there is no evidence of damage which would impact on the effectiveness of these measures. In the event an issue is identified, it will be rectified as soon as possible and prior to the commencement of the proposed operations.

4.0 EVIDENCE OF HISTORIC CONTAMINATION

- 4.1 A desk-based review of the environmental setting and development history of the application site and immediately surrounding areas have identified that landfilling occurred at the site which could be a potential source of ground and water contamination. During the August 2015 Desk study and preliminary risk assessment, it was established that due to the presence of a landfill at the proposed site and the uncertainty of whether any landfill control measures were in place (e.g. groundwater / ground gas monitoring boreholes, landfill liner etc.) there is a potential for contaminants to be present in the ground. This could include metals, hydrocarbons and asbestos together with ground gas. Following this assessment, a ground investigation was recommended to establish the baseline conditions at the site.
- 4.2 Site investigations in 2015 and 2016 did not identify any significant contamination at the site. Since 2017, the majority of the site has been surfaced with fully engineered impermeable concrete pavement (this includes the WTS building). Once NRS have completed construction in the external site areas (i.e. the depot area, car park and vehicle access routes), the entire site will be fully engineered and comprise impermeable concrete paving.
- 4.3 There have been no significant potentially contaminating land uses within 250m of the site. Generally, the surrounding areas have been utilised for quarrying and agriculture.
- 4.3.1 Moreover, according to the Environmental Pollution Incidents (Category 1 and 2) 2001 2020 Database³, there have not been any Environmental Pollution Incidents to the air, land or water within 1km of the site boundary.

5.0 BASELINE SOIL AND GROUNDWATER REFERENCE DATA

- In support of the aforementioned BEP and WWTF, site investigations were conducted for the applications for planning permission as well as the Environmental Permits (for which Site Condition Reports were prepared). Due to the previous landfilling at the site, site investigations were completed to gather the baseline soil and groundwater conditions and identify any contamination.
- Previous site investigations have included a Phase 1 desk study and preliminary risk assessment report produced by TerraConsult in August 2015 (**Appendix SCR 3**). This report was completed as part of the planning application and concluded that due to the history of the site, it is considered likely that the past site activities have the potential to cause ground contamination. In order to fully

-

³ Source: Environmental Pollution Incidents (category 1 and 2) (data.gov.uk)

establish the sources and pathways for these significant pollutant linkages, a Phase 2 Ground Investigation was carried out by TerraConsult in October 2015 (**Appendix SCR4**). The scope of this investigation included:

- 8 x Trial pits
- 4 x Cable percussive boreholes
- Installation of gas / groundwater monitoring standpipes within the boreholes
- Sampling and testing of soils and groundwater for contamination and geotechnical analysis
- Gas and groundwater monitoring
- Provision of a geo-environmental report
- 5.3 The findings of this Ground Investigation were as follows:
 - Ground conditions comprise Made Ground to a maximum depth of 5.4m below ground level, overlying sands and gravels with Mercia Mudstone at a depth of at least 14.2m. It is anticipated that Made Ground is present to a greater depth as a result of the site's history as a landfill.
 - Solid samples were collected from all exploratory holes for chemical testing. None of the contaminants, except asbestos, were present at concentrations exceeding the relevant generic assessment criteria for an industrial end use. Asbestos fibres (Chrysotile) were identified in five locations with a maximum of 0.003% asbestos within the overall mass.
 - A potential risk to groundwater quality was identified. However, at this stage, the risk could not be quantified.
 - Ground gas comprising carbon dioxide was recorded within the boreholes on at least one occasion.
- 5.4 The geotechnical conclusions of the Ground Investigation Report are detailed below:
 - Ground conditions are very variable. The full depth of the landfilled material may not have been determined as it is possible that the boreholes were drilled at locations that may mark the edge of the landfills
 - Where clay was encountered, i.e within BH2, this was assessed to be soft to firm. Very loose to dense sandy Made Ground was encountered and the sand and gavels were also assessed to be loose to dense.
 - Moisture content ranges from 4% (clayey sand within BH2) and 25% (very sandy very clayey gravel in TP3). Sulphate and pH or the determination of design of concrete is also very variable.
- 5.5 Groundwater sampling was also recommended to be carried out in order to assess the risk to groundwater from contaminants in the ground. Consequently, a further Factual Report was produced by TerraConsult in January 2016 which outlined the subsequent site investigations and monitoring that had taken place and detailed the findings, including the results from laboratory analysis. This report also aimed to further define the ground conditions at the site to ensure the most appropriate construction design was reached. The report concluded that:
 - Topsoil varies between 0.20m and 0.30m thick and consists of soft dark brown slightly sandy gravelly clay;

- Made Ground varies between 4.90m and 5.80m and is generally firm dark brown mottles reddish brown and light grey slightly sandy slightly gravelly clay with frequent fragments of brick, ceramic, timber, sandstone mudstone, coal, concrete, plastic and ash.
- Drift Deposits loose locally medium dense light red to reddish brown slightly silty gravelly to very gravelly fine to coarse sand that was encountered between 5.20m to 6.10mbgl.
- 5.6 The groundwater and ground gas monitoring results are detailed in **Appendix SCR5** and have been summarised in **Tables SCR6** and **SCR7** below.

Table SCR6: Groundwater Strikes

BH Number	Date	Depth of Strike (m)	Depth of Groundwater after 20 mins (m)	Remarks
NBH05	10/12/2015	7	-	•
NBH06	10/12/2015	2.8	2.8	Borehole was cased at 2.9m and sealed at 4.8m.
NBH07	10/12/2015	7.8	-	-

- 5.7 Three rounds of ground gas monitoring were scheduled in addition to the previous two rounds carried out in September 2015. Methane was again recorded in BH1 with a maximum concentration of 3.5% v/v in the first round and 3.4% v/v in the second round. Carbon monoxide was present in all boreholes with concentrations varying from 7.0% v/v to 13.2% v/v.
- 5.8 A summary of the ground gas monitoring results is provided in **Table SCR7** below. The results shaded in grey relate to the results from the Site Investigation carried out in October 2015.

Table SCR7: Ground Gas Monitoring

BH Number	Date	Atmos Pressure (mb)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	Flow (I/hr)	Depth to Water (m bgl)
	11/09/2015	1003	1	8.6	7.7	<0.1	6.51
BH1	18/09/2015	998	2	13.1	2	<0.1	6.6
БПІ	21/12/2015	993	3.5	13.2	0.3	<0.1	6.37
	05/01/2016	976	3.4	12.8	0.1	<0.1	6.04
	11/09/2015	1002	<0.1	6.6	12.8	<0.1	7
BH2	18/09/2015	999	<0.1	0.6	19.1	<0.1	7.03
ВΠΖ	21/12/2015	993	<0.1	7	11.9	<0.1	6.77
	05/01/2016	976	<0.1	7.6	12.7	<0.1	6.66
	11/09/2015	1004	<0.1	10	6.7	<0.1	6.3
DHO	18/09/2015	1000	<0.1	0	20.4	<0.1	6.02
BH3	21/12/2015	993	<0.1	10.6	7.4	<0.1	5.76
	05/01/2015	976	<0.1	7.2	10.7	<0.1	5.65
	11/09/2015	1004	<0.1	6.8	9.8	<0.1	5.54
BH4	18/09/2015	1000	<0.1	0	20.4	<0.1	6.02
БП4	21/12/2015	993	<0.1	9.8	12.8	<0.1	5.33
	05/01/2015	976	<0.1	11.6	5.6	<0.1	5.24

5.9 It should be noted that the only contaminants found within the soils underlying the site to be in exceedance of the relevant generic assessment criteria for an industrial end use was asbestos. This material will not degrade or leach and therefore poses very little risk to further contamination at the site to the ground or water.

- 5.10 Furthermore, prior to the development of the site in 2017, the site was occupied by a field (c.1996 onwards). Satellite images from Google Earth show no visual evidence of ground contamination from the historic landfilling as the vegetation growth (which includes grass, trees and shrubs / hedges) is healthy and does not display yellow patches or other signs of contamination.
- 5.11 In the event any evidence of historic contamination is identified in the future, samples of soils will be taken and issued for laboratory analysis. In such circumstances, this SCR will be updated accordingly, in line with EA guidance.
- Owing to the high level of containment at the site and the operational procedures, it is unlikely that the proposed permitted activities will result in contamination to the underlying and surrounding soil, ground and surface water.

6.0 PROPOSED PERMITTED ACTIVITIES

Proposed Permitted Activities

- 6.1 Biffa Waste Services Limited are applying for a bespoke Environmental Permit to operate a non-hazardous Waste Transfer Station (WTS) for Industrial and Commercial waste streams for treatment, storage and / or transfer at the site in Meriden, Coventry. Where waste is treated at the site this will only comprise manual and plant assisted sorting to recover recyclables, such as metals. The proposed annual throughput at the site is 50,000 tonnes, which will broadly comprise general waste, dry mixed recyclates, and construction and demolition waste.
- Waste storage and treatment will be conducted within a fully enclosed building with roller shutter doors, fire detection systems, odour and dust suppression via an Air System which produces a fine mist, fire suppression, impermeable surfaces and sealed drainage. A 'closed door' policy will be employed to reduce the risk of fugitive emissions.
- 6.3 The external areas of the site will also comprise impermeable surfaces and a drainage system which will direct surface water to an interceptor and subsequently the onsite surface water attenuation pond. The site is fitted with a Penstock valve beyond the attenuation pond outlet to allow the system to be isolated in the event of a fire or major spillage / leak to prevent potentially contaminated water entering the offsite surface water system. Therefore, the risk to the surrounding environment will be limited.
- Raw materials storage will largely involve the storage of fuel for the operation of mobile plant. This fuel store will be located in the southern edge of the southern service yard to serve site plant and equipment. A separate fuel store will be located in the eastern yard area to support the RCV depot operations which do not form part of the permitted facility.
- The proposed non-hazardous Waste Transfer Station will operate according to Biffa's written Standard Operating Procedures which includes waste pre-acceptance, acceptance, storage, non-conformance and rejection, manual sorting and transfer off-site. Furthermore, all elements associated with the operation of the non-hazardous Waste Transfer Station will accord with the relevant appropriate measures for this industry sector.

Proposed Non-Permitted Activities

6.6 Ancillary operations to support the daily running of the site will include:

- The operation of a depot for Biffa's Industrial and Commercial division's refuse collection vehicles;
- The operation of site offices and welfare facilities;
- Staff car parking;

Pollution Potential

6.7 An assessment of the pollution potential of materials stored and handled at the site is presented in **Table SCR8**.

Table SCR8: Assessment of the pollution potential of materials proposed to be stored and handled at the site

Substance	Chemical Composition	Quantity	Environmental Behaviour & Fate	Potential Environmental Impact	Storage Arrangements	Assessment of Alternatives
Non-hazardous wastes (Industrial and Commercial – General waste, mixed dry recyclates, and construction and demolition waste)	Various	Up to 50,000 tonnes per annum	Contaminated land and water. Fugitive emissions of odour and dust.	Contamination of land and controlled waters and health risk to end users (i.e. humans, wildlife). Nuisance to site workers, visitors and neighbouring land users from odour and dust. Harm to human health via inhalation and/or contaminated runoff. Dust causing nuisance to site workers, visitors and neighbouring land users.	Waste deliveries to be undertaken by fully enclosed or sheeted vehicles. Waste will be unloaded within the site building with the roller shutter doors closed to ensure containment. All waste storage will occur within the site building which comprises roller shutter doors, impermeable concrete flooring and a sealed drainage system. A 'closed door' policy will be employed to reduce the risk of fugitive emissions from exiting the building. Waste treatment will be limited to manual sorting which will also occur internally within the building. Waste will also be loaded onto fully enclosed / sheeted vehicles for transfer off site within the building. Good housekeeping measures employed on site to limit dust accumulation. Daily inspections will ensure that waste storage areas are no giving rise to fugitive emissions or pollution of any kind.	None – waste material forms primary purpose of facility.
Diesel	Hydrocarbons	5,000 litres	Insoluble and floats on water. Low biodegradation in soil. Fate is ultimately 100% to air – low volatility	Contamination of land and controlled waters and health risk to end users (i.e. humans, wildlife)	To be stored within a bunded 5,000 litre tank	Essential for operation of mobile plant. Future to use electrically powered vehicles in the future

Substance	Chemical Composition	Quantity	Environmental Behaviour & Fate	Potential Environmental Impact	Storage Arrangements	Assessment of Alternatives
Engine oils	Hydrocarbons	40 litres	Insoluble and floats on water. Low biodegradation in soil. Fate is ultimately 100% to air – low volatility	Contamination of land and controlled waters and health risk to end users (i.e. humans, wildlife)	To be stored within 20 litre containers on a drip tray in a covered area or building	Essential for operation of mobile plant.
Hydraulic oils	Hydrocarbons	40 litres	Insoluble and floats on water. Low biodegradation in soil. Fate is ultimately 100% to air – low volatility	Contamination of land and controlled waters and health risk to end users (i.e. humans, wildlife)	To be stored within 20 litre containers on a drip tray in a covered area or building	Essential for operation of mobile plant.
Batteries	Lead acid	0.1 tonnes approx.	Contain toxic chemicals which can be absorbed by soil.	Contamination of land and controlled waters and health risk to end users (i.e. humans, wildlife)	To be stored in a battery box	Essential for operation of mobile plant.
Ad Blue (vehicle exhaust treatment additive)	Urea (~33%) and distilled water	<1000 litres (1 tonne)	Water Soluble. Readily Biodegradable. Product is not classed as hazardous or dangerous.	Contamination of land and controlled waters and health risk to end users (i.e. humans, wildlife)	To be stored in a 1,000 litre bunded tank in cool, dry location, over areas of impermeable pavement. Diesel exhaust fluid deployed to vehicles only upon areas of impermeable pavement. Spill kits to be located in strategic locations across the facility.	Essential for operation of vehicles transferring waste to/from site. No alternatives available

7.0 SUMMARY STATEMENT OF THE SITE CONDITION

- 7.1 A desk-based study of the application site setting and development history has identified a moderate to low risk from historic contamination sources having impacted the condition of the land, owing to previous landfilling at the site. However, site Ground Investigations did not identify significant levels of contamination. The existing site infrastructure was constructed in 2017 and comprises impermeable concrete surfacing within internal sealed drainage and an external drainage network consisting of an interceptor and Penstock Valve at the surface water attenuation pond.
- 7.2 During the operation of the proposed non-hazardous Waste Transfer Station, all wastes will be fully characterised prior to acceptance at the site, with appropriate inspections and compliance / verification tests carried out by the operator. Appropriate pollution control measures will also be implemented to reduce the pollution potential of the site as well as support the storage and handling of raw materials (e.g. oils and fuels) required to support the proposed activities.
- 7.3 During the site's operation, records of all environmental incidents on and off site which are likely to have an impact on the condition of the land will be maintained for the life of the Permit, with appropriate investigations implemented to determine the extent of any such incidents.
- 7.4 The development history of the application site includes quarrying for sand and gravels, landfilling, agriculture and, in recent years, commercial development. It is now proposed to utilise the existing site infrastructure for a non-hazardous WTS. The site itself underwent landfilling, however, site Ground Investigations in 2015 and 2016 did not find any significant contamination.
- 7.5 Due to the engineered containment measures to be present and maintained at the site and proposed storage arrangements, the risk from the waste operations contaminating the site is low.

APPENDICES

APPENDIX SCR1

Envirocheck Report (2015)

TerraConsult

Envirocheck® Report:

Datasheet

Order Details:

Order Number:

70642001_1_1

Customer Reference:

10122

National Grid Reference:

423070, 281110

Slice:

Α

Site Area (Ha):

3.11

Search Buffer (m):

1000

Site Details:

Cornets End Lane, Meriden Coventry CV7 7LG

Client Details:

Dr S Slaven
TerraConsult
TerraConsult (South) Ltd
Dugard House
Peartree Road
Colchester
Essex
CO3 0UL

Order Number: 70642001_1_1

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	13
Hazardous Substances	-
Geological	20
Industrial Land Use	40
Sensitive Land Use	41
Data Currency	42
Data Suppliers	47
Useful Contacts	48

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination. For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency/Natural Resources Wales and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client.

In the attached datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2015. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environment Agency/Natural Resources Wales and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer.

A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Ove Arup Copyright Notice

The Data provided in this report was obtained on Licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The information and data supplied in the product are derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Peter Brett Associates Copyright Notice

The cavity data presented has been extracted from the PBA enhanced version of the original DEFRA national cavity databases. PBA/DEFRA retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by PBA. In no event shall PBA/DEFRA or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Report Version v49.0

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 1		5	1	16
Enforcement and Prohibition Notices					
Integrated Pollution Controls					
Integrated Pollution Prevention And Control					
Local Authority Integrated Pollution Prevention And Control					
Local Authority Pollution Prevention and Controls	pg 6		3	1	
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature	pg 7		Yes		
Pollution Incidents to Controlled Waters					
Prosecutions Relating to Authorised Processes					
Prosecutions Relating to Controlled Waters					
Registered Radioactive Substances					
River Quality	pg 7		1		
River Quality Biology Sampling Points					
River Quality Chemistry Sampling Points					
Substantiated Pollution Incident Register	pg 7				1
Water Abstractions	pg 7		4	1	6 (*2)
Water Industry Act Referrals					
Groundwater Vulnerability	pg 10	Yes	n/a	n/a	n/a
Bedrock Aquifer Designations	pg 10	Yes	n/a	n/a	n/a
Superficial Aquifer Designations	pg 10	Yes	n/a	n/a	n/a
Source Protection Zones	pg 10				1
Extreme Flooding from Rivers or Sea without Defences				n/a	n/a
Flooding from Rivers or Sea without Defences				n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
Detailed River Network Lines	pg 11		Yes	Yes	n/a
Detailed River Network Offline Drainage	pg 12			Yes	n/a

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Waste					
BGS Recorded Landfill Sites					
Historical Landfill Sites	pg 13	1			1
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)					
Licensed Waste Management Facilities (Locations)	pg 13		2	4	7
Local Authority Recorded Landfill Sites	pg 16			2	
Registered Landfill Sites	pg 17		1		2
Registered Waste Transfer Sites					
Registered Waste Treatment or Disposal Sites	pg 19		1		
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)					
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents					
Planning Hazardous Substance Enforcements					
Geological					
BGS 1:625,000 Solid Geology	pg 20	Yes	n/a	n/a	n/a
BGS Estimated Soil Chemistry	pg 20	Yes	Yes	Yes	Yes
BGS Recorded Mineral Sites	pg 37	1	2	2	2
BGS Urban Soil Chemistry					
BGS Urban Soil Chemistry Averages					
Brine Compensation Area			n/a	n/a	n/a
Coal Mining Affected Areas	pg 38	Yes	n/a	n/a	n/a
Mining Instability	pg 38	Yes	n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities					
Non Coal Mining Areas of Great Britain				n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 38	Yes		n/a	n/a
Potential for Compressible Ground Stability Hazards	pg 39	Yes		n/a	n/a
Potential for Ground Dissolution Stability Hazards				n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 39	Yes		n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 39	Yes	Yes	n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 39		Yes	n/a	n/a
Radon Potential - Radon Affected Areas			n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Industrial Land Use					
Contemporary Trade Directory Entries	pg 40		4	2	1
Fuel Station Entries					
Sensitive Land Use					
Areas of Adopted Green Belt	pg 41	1			1
Areas of Unadopted Green Belt	pg 41	1			
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves					
Marine Nature Reserves					
National Nature Reserves					
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones	pg 41	1	1		
Ramsar Sites					
Sites of Special Scientific Interest					
Special Areas of Conservation					
Special Protection Areas					

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
1	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Tarmac Central Limited Undefined Or Other The Workshop Meriden Quarry, Cornets End Lane, Meriden, Warwickshire Environment Agency, Midlands Region Upper Blythe To Confluence With Cole Wq/72/29 1 23rd May 1975 23rd May 1975 19th June 2001 Sewage Discharges - Final/Treated Effluent - Not Water Company Land/Soakaway Underground Strata Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995)	A13SW (W)	28	2	422900 281100
2	Positional Accuracy: Discharge Consent Operator: Property Type:	Located by supplier to within 100m S Tarmac Central Limited Undefined Or Other	A13NW (W)	38	2	422950 281150
	Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	The Office Meriden Quarry, Cornets End Lane, Meriden, Warwickshire Environment Agency, Midlands Region Upper Blythe To Confluence With Cole Wq/72/30 1 23rd May 1975 23rd May 1975 19th June 2001 Sewage Discharges - Final/Treated Effluent - Not Water Company Land/Soakaway Underground Strata Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 100m				
3	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version:	Tarmac Central Limited Extraction Of Stone, Gravel Etc. Meriden Quarry, Cornets End Lane, Meriden, Warwickshire Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/07079/T	A13NE (N)	110	2	423120 281320
	Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	26th July 1983 26th July 1983 11th December 2003 Trade Effluent Discharge-Site Drainage Freshwater Stream/River Horn Brook Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995)				
	Positional Accuracy:	Located by supplier to within 100m				
4	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type:	Lafarge Tarmac Trading Limited Extraction Of Stone, Gravel Etc. Meriden Quarry, Cornets End Lane, Meriden, Warwickshire Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/35904/T 1 12th December 2003 12th December 2003 Not Supplied Trade Discharge - Process Water	A13NE (N)	223	2	423180 281440
	Discharge Environment: Receiving Water: Status:	Freshwater Stream/River Horn Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
5	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Coleman & Co (Plant Hire) Limited Extraction Of Stone, Gravel Etc. Meriden Quarry, Cornets End Lane, Meriden, Warwickshire Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/35387/T 1 8th September 1999 8th September 1999 Not Supplied Trade Discharge - Mineral Workings Freshwater Stream/River Trib Of Horn Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A13NE (NE)	226	2	423350 281350
6	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	J Dawson Domestic Property (Single) Cornets End Farm, Cornets End Lane, Meriden, Warwickshire Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/03275/S 1 12th July 1972 12th July 1972 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River River Blythe (Trib) Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 100m	A14SW (SE)	288	2	423400 280900
7	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Cemex Uk Materials Ltd Undefined Or Other Berkswell Quarry Cornets End Lane, Meriden, Coventry, Warwickshire Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/09245/T 1 9th April 1984 9th April 1984 Not Supplied Trade Discharge - Mineral Workings Freshwater Stream/River Tributary Of The Horn Brook Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 100m	A12SE (SW)	518	2	422460 280830
8	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	M T Davies Not Given Cornets End Cottage, Cornets End Lane, MERIDEN, Warwickshire Environment Agency, Midlands Region Not Given T/11/03273/S/1 Not Supplied Not Supplied 12th July 1972 Not Supplied Sewage Treatment Works - Final Effluent Freshwater Stream/River River Blythe Not Supplied Located by supplier to within 100m	A9NW (SE)	621	2	423600 280600

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
9	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	D L Williams Domestic Property (Single) Mercote Mill Farm, Kenilworth Road, Hampton In Arden, Solihull, O Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/03274/S 1 12th July 1972 12th July 1972 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River River Blythe (Trib) Pre National Rivers Authority Legislation where issue date < 01/09/1989	A7NE (SW)	649	2	422600 280500
		Located by supplier to within 100m				
10	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Severn Trent Water Limited Sewage Disposal Works - Water Company Meriden Sewage Treatment Works Hampton Lane, Hampton Lane, Meriden, Coventry, Cv7 7jr Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/36164/R 4 31st March 2010 24th March 2010 Not Supplied Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Horn Brook Modified (Water Resources Act 1991, Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A19SW (NE)	719	2	423650 281750
	Discharge Consents					
10	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Severn Trent Water Limited Sewage Disposal Works - Water Company Meriden Sewage Treatment Works Hampton Lane, Hampton Lane, Meriden, Coventry, Cv7 7jr Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/36164/R 3 1st January 2010 14th October 2008 30th March 2010 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Horn Brook Modified (Water Resources Act 1991, Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A19SW (NE)	719	2	423650 281750
4.5	Discharge Consent		4460111	7.0	6	4000=0
10	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Severn Trent Water Limited Sewage Disposal Works - Water Company Meriden Sewage Treatment Works Hampton Lane, Hampton Lane, Meriden, Coventry, Cv7 7jr Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/36164/R 1 28th October 2005 28th October 2005 30th December 2005 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Horn Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A19SW (NE)	719	2	423650 281750

Page 4 of 48

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consents	S				
10	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Severn Trent Water Limited Sewage Disposal Works - Water Company Meriden Sewage Treatment Works Hampton Lane, Hampton Lane, Meriden, Coventry, Cv7 7jr Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/36164/R 2 31st December 2005 28th October 2005 31st December 2009 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Horn Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A19SW (NE)	719	2	423650 281750
	Discharge Consents	S				
10	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Severn Trent Water Limited Sewage Disposal Works - Water Company Meriden Sewage Treatment Works Hampton Lane, Hampton Lane, Meriden, Coventry, Cv7 7jr Environment Agency, Midlands Region Upper Trent Catchment T/11/36164/R 2 31st December 2005 28th October 2005 Not Supplied Discharge Of Other Matter-Crude Effluent Freshwater Stream/River Horn Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A19SW (NE)	719	2	423650 281750
10	Operator:	s Severn Trent Water Limited	A19SW	719	2	400050
10	Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Sewage Disposal Works - Water Company Meriden Sewage Treatment Works Hampton Lane, Hampton Lane, Meriden, Coventry, Cv7 7jr Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/35533/R 1 9th April 2001 9th April 2001 27th October 2005 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Horn Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	(NE)	719	2	423650 281750
	Discharge Consents	S				
10	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Severn Trent Water Limited Sewage Disposal Works - Water Company Meriden Sewage Treatment Works Hampton Lane, Hampton Lane, Meriden, Coventry, Cv7 7jr Environment Agency, Midlands Region Upper Trent Catchment T/11/35533/R 2 31st December 2005 9th April 2001 Not Supplied Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Horn Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A19SW (NE)	719	2	423650 281750

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
10	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water:	Severn Trent Water Limited Sewage Disposal Works - Water Company Meriden Sewage Treatment Works Hampton Lane, Hampton Lane, Meriden, Coventry, Cv7 7jr Environment Agency, Midlands Region Upper Trent Catchment T/11/35533/R 2 31st December 2005 9th April 2001 Not Supplied Discharge Of Other Matter-Crude Effluent Freshwater Stream/River Horn Brook	A19SW (NE)	719	2	423650 281750
	Status:	New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m				
10	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Severn Trent Water Limited Sewage Disposal Works - Water Company Meriden Sewage Treatment Works Hampton Lane, Hampton Lane, Meriden, Coventry, Cv7 7jr Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/35076/R 1 29th July 1997 29th July 1997 29th April 2001 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Horn Brook Post National Rivers Authority Legislation where issue date > 31/08/1989	A19SW (NE)	719	2	423650 281750
10	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date:	Located by supplier to within 10m s Severn Trent Water Authority Not Given Environment Agency, Midlands Region Not Given T/11/08729/R/1 Not Supplied Not Supplied Not Supplied	A19SW (NE)	719	2	423650 281750
	-	26th September 1981 Not Supplied Sewage Effluent Discharge-Treated Effluent Freshwater Stream/River Meriden Brook(Blythe) Not Supplied Located by supplier to within 100m				
10	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Severn Trent Water Limited Sewage Disposal Works - Water Company Meriden Sewage Treatment Works Hampton Lane, Hampton Lane, Meriden, Coventry, Cv7 7jr Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/35076/R 1 29th July 1997 29th July 1997 3th April 2001 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Horn Brook Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 10m	A19SW (NE)	720	2	423650 281751

Page 6 of 48

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consents					
11	Operator: Property Type: Location:	Severn Trent Water Limited Sewage Disposal Works - Water Company Meriden Sewage Treatment Works Hampton Lane, Hampton Lane, Meriden, Coventry, Cv7 7jr	A19SW (NE)	792	2	423735 281769
	Authority: Catchment Area: Reference: Permit Version:	Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/36164/R 4				
	Effective Date: Issued Date: Revocation Date: Discharge Type:	31st March 2010 24th March 2010 Not Supplied Sewage Discharges - Final/Treated Effluent - Water Company				
	Discharge Environment: Receiving Water: Status:	Freshwater Stream/River Horn Brook Modified (Water Resources Act 1991, Schedule 10 as amended by				
	Positional Accuracy:	Environment Act 1995) Located by supplier to within 10m				
	Discharge Consent	s				
12	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version:	T Barnacle Domestic Property (Single) Marsh Farm House, Bradnoke Marsh, Berkswell, Nr Coventry Environment Agency, Midlands Region Upper Blythe To Confluence With Cole T/11/03631/S 1	A3NE (S)	913	2	423200 280100
	Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment:	14th November 1973 14th November 1973 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River				
	Receiving Water: Status:	River Blythe (Trib) Pre National Rivers Authority Legislation where issue date < 01/09/1989 Located by supplier to within 100m				
	Local Authority Pol	lution Prevention and Controls				
13	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Tarmac Building Products Cornets End Lane, Meriden, COVENTRY, West Midlands, CV7 7LG Solihull Metropolitan Borough Council, Environmental Health Department Me021/9999/2a 24th September 1993 Local Authority Air Pollution Control PG3/1Blending, packing, loading and use of bulk cement Authorised Manually positioned to the address or location	A13NE (N)	38	3	423123 281244
	1	**				
14	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Iution Prevention and Controls Tarmac Lafarge Cornets End Lane, Solihull, Coventry, West Midlands, Cv7 7lh Solihull Metropolitan Borough Council, Environmental Health Department Not Supplied Not Supplied Local Authority Pollution Prevention and Control PG3/1Blending, packing, loading and use of bulk cement Permitted	A13SW (W)	89	3	422831 281056
	Positional Accuracy:	Manually positioned to the road within the address or location				
14	Name: Location: Authority:	lution Prevention and Controls Hope Rmc Ltd Cornets End Lane, Solihull, Coventry, West Midlands, Cv7 7lh Solihull Metropolitan Borough Council, Environmental Health Department	A13SW (W)	89	3	422831 281056
	Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Not Supplied Not Supplied Local Authority Pollution Prevention and Control PG3/1Blending, packing, loading and use of bulk cement Permitted Manually positioned to the road within the address or location				
	Local Authority Pollution Prevention and Controls					
15	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Cemex Uk Operations Controls Cornets End Lane, Meriden, COVENTRY, West Midlands, CV7 7LH Solihull Metropolitan Borough Council, Environmental Health Department ME021/9999/2/000 17th September 1993 Local Authority Air Pollution Control PG3/1Blending, packing, loading and use of bulk cement Authorised	A12SE (W)	496	3	422450 280910

Map ID	Details Nearest Surface Water Feature		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact -	NGR 423080 280977
			A13SE (S)			
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Horn Bk River Quality B Meriden Stw To Conf. R. Blythe 3.1 Flow less than 0.31 cumecs River 2000	A13NW (NW)	84	2	422962 281231
16	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	Ition Incident Register Environment Agency - Midlands Region, Upper Trent Area 20th July 2001 17855 Category 2 - Significant Incident Category 4 - No Impact Category 4 - No Impact Located by supplier to within 10m Contaminated Water: Suspended Solids	A19SE (NE)	785	2	423770 281720
17	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Lafarge Tarmac Trading Limited 03/28/11/0123 104 Cornets End Quarry - Lagoon Environment Agency, Midlands Region Extractive: Mineral Washing Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Cornets End Quarry - Lagoon 01 April 31 March 26th September 2013 Not Supplied Located by supplier to within 10m	A13NE (NE)	203	2	423230 281410
17	Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date:	Tarmac Limited 03/28/11/0123 103 Cornets End Quarry - Lagoon Environment Agency, Midlands Region Extractive: Mineral Washing Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Cornets End Quarry - Lagoon 01 April 31 March 1st January 2008 Not Supplied Located by supplier to within 10m	A13NE (NE)	203	2	423230 281410
17	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date:		A13NE (NE)	203	2	423230 281410

Page 8 of 48

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
17	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Nash Rocks Limited 03/28/11/0123 101 Cornets End Quarry - Lagoon Environment Agency, Midlands Region Extractive: Mineral Washing Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Cornets End Quarry - Lagoon 01 April 31 March 1st July 1999 Not Supplied Located by supplier to within 100m	A13NE (NE)	203	2	423230 281410
18	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	North Warwickshire Golf Club Ltd 03/28/11/0099 100 North Warks Golf Course - Un-Named Trib R Blythe Environment Agency, Midlands Region Golf Courses: Spray Irrigation - Direct Water may be abstracted from a single point Surface Not Supplied Not Supplied North Warks Golf Course - Trib R Blythe 01 April 30 September 2nd May 2006 Not Supplied Located by supplier to within 100m	A18SW (NW)	461	2	422850 281580
19	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Cemex Uk Materials Limited 03/28/11/0133 102 Berkswell Quarry, Meriden - Lagoon Environment Agency, Midlands Region Extractive: Process water Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Berkswell Quarry, Solihull 01 April 31 March 1st April 2008 Not Supplied Located by supplier to within 10m	A12SE (W)	501	2	422460 280870
19	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Cemex Uk Materials Limited 03/28/11/0132 103 Berkswell Quarry, Meriden - Lagoon Environment Agency, Midlands Region Extractive: Mineral Washing Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Berkswell Quarry 01 April 31 March 1st March 2005 Not Supplied Located by supplier to within 10m	A12SE (W)	501	2	422460 280870

Page 9 of 48

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
19	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Rmc Aggregates (Western) Limited 03/28/11/0132 101 Berkswell Quarry, Meriden - Lagoon Environment Agency, Midlands Region Extractive: Mineral Washing Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Berkswell Quarry 01 April 31 March 29th April 1999 Not Supplied Located by supplier to within 10m	A12SE (W)	501	2	422460 280870
19	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Rmc Aggregates (Western) Limited 03/28/11/0133 101 Berkswell Quarry, Meriden - Lagoon Environment Agency, Midlands Region Extractive: Process water Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied Berkswell Quarry, Solihull 01 April 31 March 29th April 1999 Not Supplied Located by supplier to within 10m	A12SE (W)	501	2	422460 280870
19	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Western Aggregates Ltd 03/28/11/0133 100 Berkswell Quarry, Meriden - Lagoon Environment Agency, Midlands Region Extractive: Process water Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Berkswell Quarry, Solihull 01 April 31 March 16th June 1993 Not Supplied Located by supplier to within 10m	A12SE (W)	501	2	422460 280870
19	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Western Aggregates Ltd 03/28/11/0132 100 Berkswell Quarry, Meriden - Lagoon Environment Agency, Midlands Region Extractive: Mineral Washing Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Berkswell Quarry 01 April 31 March 16th June 1993 Not Supplied Located by supplier to within 10m	A12SE (W)	501	2	422460 280870

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions					
	Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Positional Accuracy:	Mr C Barber 03/28/11/0139 100 Berryfields Farm, Meriden - Borehole Environment Agency, Midlands Region General Farming And Domestic Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Berryfields Farm, Meriden 01 April 31 March 22nd December 1989 Not Supplied Located by supplier to within 10m	A20SE (E)	1394	2	424550 281500
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	R S Beaty & Sons 03/28/11/0103 100 Patricks Farm, Kenilworth Road - River Blythe Environment Agency, Midlands Region General Agriculture: Spray Irrigation - Direct Water may be abstracted from a river or stream reach, or a row of wellpoints Surface Not Supplied Not Supplied Patricks Farm 01 June 31 August 7th March 1992 Not Supplied Located by supplier to within 10m	A11SW (W)	1445	2	421500 280800
	Groundwater Vulne Soil Classification: Map Sheet: Scale:	rability Soils of High Leaching Potential (H2) - Deep, permeable, coarse textured soils which readily transmit a wide range of pollutants because of their rapid drainage and low attenuation potential Sheet 23 Leicestershire 1:100,000	A13SE (NE)	0	2	423072 281108
	Groundwater Vulne Soil Classification: Map Sheet: Scale:	rability Not classified Sheet 23 Leicestershire 1:100,000	A13NE (NE)	0	2	423089 281124
	Drift Deposits None					
	Bedrock Aquifer De Aquifer Designation:	signations Secondary Aquifer - B	A13SE (NE)	0	4	423072 281108
	Superficial Aquifer Aquifer Designation:	Designations Secondary Aquifer - A	A13SW (SW)	0	4	423056 281100
20	Source Protection 2 Name: Source: Reference: Type:	Various Environment Agency, Head Office Not Supplied Zone III (Total Catchment): The total area needed to support the discharge from the protected groundwater source.	A14SE (E)	757	2	423951 281026
	Extreme Flooding fi	rom Rivers or Sea without Defences				
	Flooding from River None	rs or Sea without Defences				
	Areas Benefiting from	om Flood Defences				
	Flood Water Storag None	e Areas				
	Flood Defences None					

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
21	Detailed River Network Lines River Type: Secondary River River Name: Not Supplied Hydrographic Area: D004 River Flow Type: Primary Flow Path River Surface Level: Surface Drain Feature: Not a Drain Flood Risk Other Rivers Management Status: Water Course Not Supplied Name: Water Course Not Supplied Reference:	A13NW (NW)	55	2	423020 281211
22	Detailed River Network Lines River Type: Extended Culvert (greater than 50m) River Name: Not Supplied Hydrographic Area: D004 River Flow Type: Primary Flow Path River Surface Level: Below Surface Drain Feature: Not a Drain Flood Risk Other Rivers Management Status: Water Course Not Supplied Reference:	A13NE (N)	75	2	423063 281267
23	Detailed River Network Lines River Type: Secondary River River Name: Not Supplied Hydrographic Area: D004 River Flow Type: Primary Flow Path River Surface Level: Surface Drain Feature: Not a Drain Flood Risk Other Rivers Management Status: Water Course Not Supplied Name: Water Course Not Supplied Reference:	A13NW (N)	84	2	423059 281267
24	Detailed River Network Lines River Type: Secondary River River Name: Not Supplied Hydrographic Area: D004 River Flow Type: Primary Flow Path River Surface Level: Surface Drain Feature: Not a Drain Flood Risk Other Rivers Management Status: Water Course Not Supplied Name: Water Course Not Supplied Reference:	A13NW (N)	86	2	423059 281267
25	Detailed River Network Lines River Type: Secondary River River Name: Not Supplied Hydrographic Area: D004 River Flow Type: Primary Flow Path River Surface Level: Surface Drain Feature: Not a Drain Flood Risk Other Rivers Management Status: Water Course Not Supplied Name: Water Course Not Supplied Reference:	A13NE (NE)	179	2	423300 281338
26	Detailed River Network Lines River Type: Tertiary River River Name: Drain Hydrographic Area: D004 River Flow Type: Primary Flow Path River Surface Level: Surface Drain Feature: Drain (ditch, Reen, Rhyne, Drain) Flood Risk Other Rivers Management Status: Water Course Not Supplied Name: Water Course Not Supplied Reference:	A13NW (NW)	291	2	422804 281357

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
27	River Type: River Type: River Name: Hydrographic Area: Not Supplied D004 River Flow Type: Primary Flow Path River Surface Level: Drain Feature: Flood Risk Management Status: Water Course Not Supplied Name: Water Course Reference: Retarany River Not Supplied Not Supplied Reference:		A18SW (N)	431	2	422942 281608
28	River Type: Tertiary River River Name: Not Supplied Hydrographic Area: D004 River Flow Type: Primary Flow Path River Surface Level: Surface Drain Feature: Not a Drain Flood Risk Other Rivers Management Status: Water Course Not Supplied Name: Water Course Not Supplied Reference:		A12NE (NW)	432	2	422585 281356
29	River Type: Tertiary River River Name: Not Supplied Hydrographic Area: D004 River Flow Type: Primary Flow Path River Surface Level: Surface Drain Feature: Not a Drain Flood Risk Other Rivers Management Status: Water Course Not Supplied Name: Water Course Not Supplied Reference:		A12NE (W)	438	2	422553 281320
30	Detailed River Network Lines River Type: Tertiary River River Name: Drain Hydrographic Area: D004 River Flow Type: Primary Flow Path River Surface Level: Surface Drain Feature: Drain (ditch, Reen, Rhy Flood Risk Other Rivers Management Status: Water Course Not Supplied Name: Water Course Not Supplied Reference:	ne, Drain)	A18SE (N)	440	2	423143 281658
31	Detailed River Network Lines River Type: Tertiary River River Name: Not Supplied Hydrographic Area: D004 River Flow Type: Primary Flow Path River Surface Level: Surface Drain Feature: Not a Drain Flood Risk Other Rivers Management Status: Water Course Not Supplied Name: Water Course Not Supplied Reference:		A18SE (N)	440	2	423143 281658
32	Detailed River Network Offline Drainage River Type: Tertiary River Hydrographic Area: D004		A12SE (W)	348	2	422599 280934
33	Detailed River Network Offline Drainage River Type: Tertiary River Hydrographic Area: D004		A8NW (SW)	409	2	422768 280684

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Historical Landfill S	ites				
34	Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:		A13SE (NE)	0	2	423072 281108
	Historical Landfill S	lites				
35	Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:		A18NW (N)	819	2	422736 281926
	Licensed Waste Ma	nagement Facilities (Locations)				
36	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	102016 Meriden Quarry, Cornets End Lane, Meriden, Coventry, West Midlands, CV7 7LG N R S Waste Care Ltd Not Supplied Environment Agency - Midlands Region, Central Area Use of waste for reclamation etc <50,000 tps Issued 11th November 2010 Not Supplied Located by supplier to within 10m	A13NE (N)	42	2	423121 281247
37	Licensed Waste Ma	nagement Facilities (Locations) 42811	A14NW	205	2	423400
	Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	Meriden Quarry, Cornets End Lane, Meriden, Solihull, West Midlands, CV7 7LH Coleman & Company Ltd Not Supplied Environment Agency - Midlands Region, Central Area Physical Treatment Facilities Modified 16th December 1998 19th January 2009 Not Supplied Located by supplier to within 100m	(E)	250	-	281200

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Licensed Waste Ma	nagement Facilities (Locations)				
38	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	400960 Meriden Quarry, Cornets End Lane, Meriden, Warickshire, CV7 7LG N R S Waste Care Limited Not Supplied Environment Agency - Midlands Region, Central Area Use of waste for reclamation etc <100,000 tps Issued 6th February 2014 Not Supplied Located by supplier to within 10m	A14NW (NE)	302	2	423456 281328
	Licensed Waste Ma	nagement Facilities (Locations)				
39	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	103211 Berkswell Quarry, Cornets End Lane, Meriden, Warwickshire, CV7 7LH Cemex U K Materials Ltd Not Supplied Environment Agency - Midlands Region, Central Area Other Landfill Sites Taking Special Waste Issued 2nd April 2012 Not Supplied Located by supplier to within 10m	A8NW (SW)	302	2	422909 280758
		nagement Facilities (Locations)				
40	-	102753 Berkswell Quarry, Cornets Ends Lane, Meriden, Coventry, Warwickshire, CV7 7LH Cemex U K Materials Ltd Not Supplied Environment Agency - Midlands Region, Central Area Management of inert or extractive waste at mine Issued 13th July 2011 Not Supplied Located by supplier to within 100m	A12SE (SW)	344	2	422700 280800
	Licensed Waste Ma	nagement Facilities (Locations)				
41	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	400769 Meriden Quarry, Cornets End Lane, Meriden, Warwickshire, CV7 7LG A & A Recycling Services Ltd Not Supplied Environment Agency - Midlands Region, Central Area Treatment of waste wood <75000 tps Modified 23rd September 2013 19th December 2013 Not Supplied Located by supplier to within 10m	A14NW (NE)	360	2	423470 281413

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Licensed Waste Ma	nagement Facilities (Locations)				
42	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	102788 Meriden Quarry, Cornets End Lane, Meriden, Warwickshire, CV7 7LG U K Coal Operations Limited Not Supplied Environment Agency - Midlands Region, Central Area Mining Waste Operations Expired 17th December 2012 Not Supplied Located by supplier to within 100m	A19SW (NE)	586	2	423500 281700
43	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	nagement Facilities (Locations) 104829 Meriden Quarry, Cornets End Lane, Meriden, Warwickshire, CV7 7LG N R S Waste Care Limited Not Supplied Environment Agency - Midlands Region, Central Area Other Landfill Sites Taking Special Waste Issued 10th March 2014 Not Supplied Located by supplier to within 10m	A18NE (N)	667	2	423374 281851
	Licensed Waste Ma	nagement Facilities (Locations)				
44	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	Meriden Quarry, Cornets End Lane, Meriden, Coventry, Warwickshire, CV7 7LG Lafarge Tarmac Trading Limited Not Supplied Environment Agency - Midlands Region, Central Area Management of inert or extractive waste at mine Modified 20th May 2011 14th April 2014 Not Supplied Located by supplier to within 100m	A18NE (N)	695	2	423300 281900
45	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	nagement Facilities (Locations) 100884 Cornets End Lane, Meriden, West Midlands, CV7 7LH Jack Moody Ltd Not Supplied Environment Agency - Midlands Region, Central Area Composting Modified 30th September 2009 12th December 2012 Not Supplied Located by supplier to within 10m	A8SW (S)	704	2	422806 280367

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Licensed Waste Ma	nagement Facilities (Locations)				
46	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	103860 Meriden Quarry, Cornet End Lane, Meriden, Warwickshire, CV7 7LG N R S Waste Care Ltd Not Supplied Environment Agency - Midlands Region, Central Area Other Landfill Sites Taking Special Waste Issued 11th June 2012 Not Supplied Located by supplier to within 10m	A19NW (NE)	784	2	423439 281953
	Licensed Waste Ma	nagement Facilities (Locations)				
46	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	104990 Meriden Quarry, Cornets Lane End, Meriden, Warwickshire, CV7 7LG N R S Waste Care Ltd Not Supplied Environment Agency - Midlands Region, Central Area Treatment of waste to produce soil <75,000 tpy Surrendered 22nd March 2013 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied 18th September 2013 Not Supplied Located by supplier to within 10m	A19NW (NE)	821	2	423442 281991
	Licensed Waste Ma	nagement Facilities (Locations)				
47	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	104725 Meriden Quarry, Cornets End Lane, Meriden, Warwickshire, CV7 7LG N R S Waste Care Ltd Not Supplied Environment Agency - Midlands Region, Central Area Other Landfill Sites Taking Special Waste Issued 2nd April 2013 Not Supplied Located by supplier to within 10m	A23SE (N)	945	2	423095 282160
	Local Authority Lan	ndfill Coverage				
	Name:	Solihull Metropolitan District Council - Has supplied landfill data		0	5	423072 281108
	Local Authority Lan Name:	idfill Coverage North Warwickshire Borough Council - Has supplied landfill data		872	11	422764 281997
	Local Authority Lan					
	Name:	Warwickshire County Council - Had landfill data but passed it to the relevant environment agency		872	12	422764 281997
	Local Authority Rec	corded Landfill Sites				
48	Location: Reference: Authority: Last Reported Status: Types of Waste: Date of Closure:	Meriden Quarry N Solihull Metropolitan Borough Council Unknown Not Supplied Not Supplied Positioned by the supplier Moderate	A18SE (NE)	410	5	423310 281602
49	Location: Reference: Authority: Last Reported Status: Types of Waste: Date of Closure:	Corded Landfill Sites Meriden Quarry, Cornets End Lane, Meriden, Solihull SL286 Solihull Metropolitan Borough Council Unknown Not Supplied Not Supplied Positioned by the supplier Moderate	A18SE (NE)	410	5	423310 281602

rpr_ec_datasheet v49.0

A Landmark Information Group Service

Map ID		Details		Estimated Distance From Site	Contact	NGR
	Registered Landfill	Sites				
50	Boundary Accuracy:	Berkswell Quarry, Cornets End Lane, Meriden, COVENTRY, West Midlands, CV7 7LH 423300 281500 RMC House, High Street, FELTHAM, Middlesex, TW13 4HD Environment Agency - Midlands Region, Upper Trent Area Landfill Undefined No known restriction on source of waste Licence never issuedUnder Review Not Supplied Not Given Approximate location provided by supplier	A13NE (NE)	62	2	423175 281283

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Registered Landfill	Sites				
	Licence Holder: Licence Reference: Site Location: Licence Easting: Licence Northing: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Status: Dated: Preceded By Licence: Superseded By Licence:	Sites Tilling Construction Services SL 286 Meriden Quarry, Cornets End Lane, Solihull, West Midlands 423500 281900 Conyngham Hall, KNARESBOROUGH, North Yorkshire, HG5 9AY Environment Agency - Midlands Region, Upper Trent Area Landfill Very Large (Equal to or greater than 250,000 tonnes per year) No known restriction on source of waste Licence lapsed/cancelled/defunct/not applicable/surrenderedCancelled 1st June 1980 Not Given SL 2042 Manually positioned to the address or location	Reference (Compass	Distance	Contact	NGR 423500 281900
	Environment Agency must give specific authorisation for this waste to be acceptedWaste requires prior approval	Sodium/Potassium Oxides/Hydroxides Sodium/Potassium Carbonates Tar, Pitch, Bitumen, Asphalts Used Filter Materials \$ Waste Treated Timber Zinc Compounds Carcinogenic Wastes Controlled Wastes Explosive Waste				
		Explosive Waste Medical (Misuse Of Drugs Act) Medical, Surgical, Veterinary Wastes Radioactive Wastes Sludge Wastes Waste Flammable Solvents				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Registered Landfill	Sites				
52	Licence Holder: Licence Reference: Site Location: Licence Easting: Licence Northing: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Status: Dated: Preceded By Licence: Superseded By Licence: Positional Accuracy: Boundary Accuracy: Authorised Waste Prohibited Waste	Packington Estate Enterprises SL 456 The Somers, Somers Road, Meriden, Coventry, West Midlands 422500 282000 Packington Hall, Meriden, COVENTRY, West Midlands, CV7 7HF Environment Agency - Midlands Region, Upper Trent Area Landfill Undefined No known restriction on source of waste Licence lapsed/cancelled/defunct/not applicable/surrenderedCancelled 1st May 1984 Not Given Manually positioned to the address or location Not Applicable Sub/Top Soil Asbestos Poisonous, Noxious, Polluting Wastes	A17NE (NW)	1000	2	422500 282000
53	Licence Holder: Licence Reference: Site Location: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Licence Status: Dated: Preceded By Licence: Superseded By Licence:	reatment or Disposal Sites Coleman & Co (Plant Hire) Ltd SL 2042 Meriden Quarry, Cornets End Lane, Meriden, Coventry, West Midlands 43 Station Road, Stetchford, BIRMINGHAM, West Midlands, B33 9AX Environment Agency - Midlands Region, Upper Trent Area Transfer - with treatment Medium (Equal to or greater than 25,000 and less than 75,000 tonnes per year) No known restriction on source of waste Operational as far as is knownOperational 16th December 1998 Not Given Manually positioned to the address or location Not Supplied Excavated Tarmacadam Hardcore Inert Excavation Materials Max.Waste Permitted By Licence Biodegradable Waste Liquid Wastes Sludge Wastes Spec.Waste (Epa'90:S62/1996 Regs) Waste N.O.S.	A13SE (E)	200	2	423350 281000

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Solid	d Geology				
	Description:	Triassic Rocks (Undifferentiated)	A13SE (NE)	0	4	423072 281108
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 20 - 40 mg/kg <150 mg/kg <15 mg/kg	A13SW (SW)	0	4	423056 281100
	Concentration:					
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 20 - 40 mg/kg	A13SW (W)	0	4	423000 281108
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 20 - 40 mg/kg <150 mg/kg <15 mg/kg	A13SW (W)	0	4	422942 281102
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 40 - 60 mg/kg	A13SE (NE)	0	4	423072 281108
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 20 - 40 mg/kg <150 mg/kg <15 mg/kg	A13SE (S)	10	4	423072 281000
_	BGS Estimated Soil	•				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A13NW (NW)	37	4	423000 281176

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13SW (SW)	50	4	423000 281000
	Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	<1.8 mg/kg 20 - 40 mg/kg <150 mg/kg <15 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13SW (SW)	58	4	422947 281000
	Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	<1.8 mg/kg 20 - 40 mg/kg <150 mg/kg <15 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13NW (NW)	64	4	422939 281173
	Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	<1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 40 - 60 mg/kg <150 mg/kg <15 mg/kg	A13NW (W)	76	4	422894 281161
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 20 - 40 mg/kg	A13SE (SE)	76	4	423215 281000
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 20 - 40 mg/kg	A13SE (SE)	78	4	423228 281022

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13SE (E)	82	4	423239 281042
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A13SE (E)	83	4	423271 281101
	Arsenic Concentration:	<15 mg/kg				
	Cadmium Concentration: Chromium	<1.8 mg/kg 40 - 60 mg/kg				
	Concentration: Lead Concentration:	<150 mg/kg				
	Nickel Concentration:	<15 mg/kg				
	BGS Estimated Soil	-				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13SW (SW)	140	4	422934 280909
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13SE (SE)	143	4	423286 281000
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13SE (SE)	156	4	423301 281000
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel	<150 mg/kg 15 - 30 mg/kg				
	Concentration:					
	BGS Estimated Soil	•	4.00=	4=0	_	40000
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13SE (SE)	173	4	423309 280979
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				

/lap ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13NW (NW)	180	4	422849 281255
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14SW (E)	235	4	423412 281034
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13SE (SE)	235	4	423315 280860
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14SW (E)	239	4	423408 281019
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13SE (SE)	254	4	423364 280901
	Cadmium Concentration: Chromium	<1.8 mg/kg 40 - 60 mg/kg				
	Concentration: Lead Concentration:					
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A14SW (E)	272	4	423431 281000
	Arsenic Concentration: Cadmium	<15 mg/kg <1.8 mg/kg				
	Concentration: Chromium	20 - 40 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NW (E)	280	4	423480 281176
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A18SE (N)	325	4	423081 281535
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13NW (NW)	334	4	422830 281421
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NW (E)	335	4	423514 281270
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel	<150 mg/kg <15 mg/kg				
	Concentration:					
	BGS Estimated Soil Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13NW (NW)	380	4	422787 281450
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A18SW (N)	382	4	423046 281583
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8NW (S)	383	4	423000 280652
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A14NW (E)	388	4	423561 281295
	Arsenic Concentration:	<15 mg/kg				
	Cadmium Concentration: Chromium	<1.8 mg/kg 20 - 40 mg/kg				
	Concentration: Lead Concentration: Nickel	<150 mg/kg				
	Concentration:	<15 mg/kg				
	BGS Estimated Soil	•				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A12SE (SW)	408	4	422604 280792
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NW (E)	420	4	423624 281130
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8NE (S)	436	4	423273 280597
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium	20 - 40 mg/kg				
	Concentration: Lead Concentration: Nickel	<150 mg/kg <15 mg/kg				
	Concentration:					
	BGS Estimated Soil	•	A 4 45 11 44	400	_	400000
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NW (E)	439	4	423623 281269
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NW (NE)	456	4	423603 281377
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	20 - 40 mg/kg				
	Nickel Concentration:	<15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A18SW (N)	457	4	423000 281646
	Arsenic Concentration: Cadmium	<15 mg/kg <1.8 mg/kg				
	Concentration: Chromium	20 - 40 mg/kg				
	Concentration: Lead Concentration: Nickel	<150 mg/kg <15 mg/kg				
	Concentration:					
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A18SW (N)	457	4	422953 281631
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A12NE (NW)	472	4	422607 281444
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<15 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A12SE (W)	514	4	422444 280874
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	40 - 60 mg/kg				
	Nickel Concentration:	<15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A18SE (N)	539	4	423312 281736
	Arsenic Concentration: Cadmium	<15 mg/kg <1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				

Page 27 of 48

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A19SW (NE)	631	4	423557 281714
	Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	<1.8 mg/kg 20 - 40 mg/kg				
		Ol collection				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 20 - 40 mg/kg	A18NW (N)	634	4	423000 281839
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg	A18NW (N)	641	4	422968 281832
	Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	20 - 40 mg/kg <150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg	A19SW (NE)	653	4	423566 281735
	Chromium Concentration: Lead Concentration: Nickel Concentration:	40 - 60 mg/kg <150 mg/kg <15 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg	A19SW (NE)	657	4	423568 281738
	Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	40 - 60 mg/kg <150 mg/kg 15 - 30 mg/kg				
		Chamistry				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 40 - 60 mg/kg <150 mg/kg	A19SW (NE)	659	4	423573 281736
	Nickel Concentration:	15 - 30 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A19SW (NE)	678	4	423554 281774
	Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	<1.8 mg/kg 20 - 40 mg/kg <150 mg/kg <15 mg/kg				
		Chamista				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 40 - 60 mg/kg	A14NE (E)	685	4	423886 281171
		Ol and the				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NE (E)	691	4	423892 281182
	Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	<1.8 mg/kg 40 - 60 mg/kg <150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 40 - 60 mg/kg	A14NE (E)	693	4	423894 281156
	Lead Concentration: Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chamistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 20 - 40 mg/kg	A19SW (NE)	705	4	423589 281782
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chamistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg	A12NW (W)	705	4	422269 281346
	Nickel Concentration:	15 - 30 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A19NW (NE)	732	4	423601 281807
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A19NW (NE)	736	4	423603 281811
	Arsenic Concentration:	<15 mg/kg	(142)			201011
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A19NW (NE)	754	4	423622 281819
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14SE (E)	758	4	423952 281026
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chamistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14SE (E)	762	4	423961 281098
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium	40 - 60 mg/kg				
	Concentration: Lead Concentration: Nickel	<150 mg/kg <15 mg/kg				
	Concentration:	··· ··· ·· ·· ·· ·· · · · · · · · · ·				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14SE (E)	762	4	423962 281100
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14SE (E)	764	4	423951 281000
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chamietry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A14NE (E)	773	4	423975 281144
	Arsenic Concentration:	<15 mg/kg	(=)			201111
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	40 - 60 mg/kg <150 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A19NW (NE)	775	4	423641 281831
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SE (S)	779	4	423223 280236
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chamistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A18NE (N)	782	4	423072 282000
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium	20 - 40 mg/kg				
	Concentration: Lead Concentration: Nickel	<150 mg/kg <15 mg/kg				
	Concentration:					
	BGS Estimated Soil	•	A 4 4 1 1 -	700	4	400000
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NE (E)	786	4	423988 281134
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NE (E)	792	4	423992 281192
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A14NE (E)	798	4	424000 281119
	Arsenic Concentration:	<15 mg/kg	(-)			201110
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	40 - 60 mg/kg <150 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NE (E)	799	4	424000 281188
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NE (E)	799	4	424000 281150
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14SE (E)	799	4	424000 281108
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium	40 - 60 mg/kg				
	Concentration: Lead Concentration: Nickel	<150 mg/kg <15 mg/kg				
	Concentration:					
	BGS Estimated Soil	•				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A18NW (N)	799	4	423000 282000
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				

/lap ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NE (E)	801	4	424000 281212
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NE (E)	810	4	424000 281283
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14SE (E)	812	4	424000 281000
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A17SW (NW)	818	4	422242 281555
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NE (E)	831	4	424023 281278
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	20 - 40 mg/kg <150 mg/kg				
	Nickel Concentration:	<15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A19NW (NE)	839	4	423468 282000
	Arsenic Concentration: Cadmium	<15 mg/kg <1.8 mg/kg				
	Concentration: Chromium	40 - 60 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A18NW (N)	843	4	422846 282000
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A9NE (SE)	857	4	423897 280620
	Arsenic Concentration:	<15 mg/kg	(OL)			200020
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	40 - 60 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14SE (E)	871	4	424016 280841
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A11SE (W)	886	4	422036 281000
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium	20 - 40 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
		Chamister.				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A11SE (W)	886	4	422036 281000
	Concentration:	<1.8 mg/kg				
	Concentration: Chromium	20 - 40 mg/kg				
	Concentration: Lead Concentration: Nickel	<150 mg/kg <15 mg/kg				
	Concentration:					
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A19SE (NE)	888	4	424000 281547
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A19NW (NE)	890	4	423645 281968
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chamistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A15NW (E)	896	4	424087 281288
	Arsenic Concentration:	<15 mg/kg				
	Cadmium Concentration: Chromium	<1.8 mg/kg 20 - 40 mg/kg				
	Concentration: Lead Concentration: Nickel					
	Concentration:					
	BGS Estimated Soil	-		0.5-		
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A19NW (NE)	906	4	423679 281965
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A9NE (SE)	907	4	424000 280718
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A9NE (SE)	911	4	423941 280586
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A17SW (NW)	912	4	422322 281775
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A19SE (NE)	914	4	424000 281608
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A11SE (W)	919	4	422000 281108
	Arsenic Concentration:	<15 mg/kg				
	Cadmium Concentration: Chromium	<1.8 mg/kg 20 - 40 mg/kg				
	Concentration: Lead Concentration:	<150 mg/kg				
	Nickel Concentration:	<15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A11SE (W)	920	4	422000 281111
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A11SE (W)	922	4	422000 281000
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A11SE (W)	930	4	422000 280932
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium	40 - 60 mg/kg				
	Concentration: Lead Concentration: Nickel	<150 mg/kg <15 mg/kg				
	Concentration:					
	BGS Estimated Soil	-				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A15SW (E)	939	4	424112 280917
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A9NE (SE)	941	4	424000 280642
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A11NE (W)	943	4	421979 281137
	Arsenic Concentration:	<15 mg/kg	(,			201107
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg <150 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A19NW (NE)	945	4	423697 282000
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A20SW (NE)	957	4	424082 281530
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	20 - 40 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A11NE (W)	960	4	422000 281347
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium	60 - 90 mg/kg				
	Concentration: Lead Concentration: Nickel	<150 mg/kg 15 - 30 mg/kg				
	Concentration:					
	BGS Estimated Soil	•	4.000144	000	4	40.400.4
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A20SW (NE)	963	4	424084 281540
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				

Page 37 of 48

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A6NE (W)	972	4	422000 280753
	Concentration: Cadmium Concentration: Chromium	<1.8 mg/kg 20 - 40 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:					
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A15SW (E)	975	4	424175 281095
	Cadmium Concentration: Chromium	<1.8 mg/kg 40 - 60 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:					
	BGS Estimated Soil	Chamistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A19NE (NE)	998	4	423874 281922
	Concentration: Cadmium Concentration: Chromium	<1.8 mg/kg 40 - 60 mg/kg				
	Concentration: Lead Concentration: Nickel					
	Concentration:					
54	BGS Recorded Mine Site Name: Location: Source:	Cornet'S End Sand Pit , Cornet'S End, Meriden, Coventry, West Midlands British Geological Survey, National Geoscience Information Service	A13NW (W)	0	4	423030 281115
	Reference: Type: Status: Operator:	39240 Opencast Ceased Unknown Operator				
	Operator Location: Periodic Type: Geology: Commodity:	Unknown Operator Quaternary Glaciofluvial Deposits, Mid Pleistocene Sand				
		Located by supplier to within 10m				
55	BGS Recorded Mine Site Name:	eral Sites Cornet'S End Sand Pit	A13NE	139	4	423340
33	Location: Source: Reference: Type:	Cornet's End, Meriden, Coventry, West Midlands British Geological Survey, National Geoscience Information Service 39808 Opencast	(E)	139	4	281155
	Status: Operator: Operator Location: Periodic Type:	Ceased Unknown Operator Unknown Operator Quaternary				
	Geology: Commodity:	Glaciofluvial Deposits, Mid Pleistocene Sand and Gravel Located by supplier to within 10m				
	BGS Recorded Mine	eral Sites				
56	Site Name: Location: Source: Reference:	Berkswell A , Cornets End Lane, Meriden, Coventry, West Midlands, Cv7 7lh British Geological Survey, National Geoscience Information Service 3968	A13SE (S)	213	4	423100 280800
	Type: Status: Operator:	Opencast Ceased Rmc Aggregates (Western) Ltd				
	Operator Location: Periodic Type: Geology: Commodity:	Rmc Aggregates (Western) Ltd, Wolverhampton Road, Oldbury, Warley, West Midlands, B69 4rj Quaternary River Blyth Gravel				
	Commodity: Positional Accuracy:	Sand and Gravel Unknown				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
57	BGS Recorded Mine Site Name: Location: Source:	eral Sites Cornet'S End Sand Pit , Cornet'S End, Meriden, Coventry, West Midlands British Geological Survey, National Geoscience Information Service	A13NW (N)	256	4	422995 281425
	Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	39807 Opencast Ceased Unknown Operator Unknown Operator Quaternary Glaciofluvial Deposits, Mid Pleistocene Sand and Gravel Located by supplier to within 10m				
58	BGS Recorded Minister Name: Location: Source: Reference: Type: Status: Operator: Operator: Operator Location: Periodic Type: Geology: Commodity:		A19SW (NE)	464	4	423475 281565
59	BGS Recorded Min Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location:	Berkswell Quarry , Cornets End Lane, Meriden, Coventry, West Midlands, Cv7 7lh British Geological Survey, National Geoscience Information Service 3967 Opencast Active Cemex Uk Materials Ltd Cemex Uk Materials Ltd, Cemex House, Coldharbour Lane, Thorpe, Egham,	A12SE (SW)	585	4	422400 280800
	Periodic Type: Geology: Commodity: Positional Accuracy:	Surrey, Tw20 8td Quaternary Glaciofluvial Deposits, Mid Pleistocene Sand and Gravel Unknown				
60	BGS Recorded Min Site Name: Location: Source: Reference: Type: Status: Operator: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Meriden Quarry Cornets End Lane, Meriden, Coventry, West Midlands, Cv7 7lg British Geological Survey, National Geoscience Information Service 3971 Opencast Active Lafarge-Tarmac Lafarge-Tarmac, Portland House, Bickenhill Lane, Solihull, Birmingham, B37 7bq Quaternary Glaciofluvial Terrace Deposits, Mid Pleistocene Sand and Gravel Located by supplier to within 10m	A19NW (NE)	741	4	423455 281900
	BGS Measured Urb No data available	·				
	No data available					
	Coal Mining Affects Description:	In an area which may be affected by coal mining activity. It is recommended that a coal mining report is obtained from the Coal Authority. Contact details are included in the Useful Contacts section of this report.	A13SE (NE)	0	6	423072 281108
	Mining Instability Mining Evidence: Source: Boundary Quality:	Inconclusive Coal Mining Ove Arup & Partners As Supplied	A13SE (NE)	0	-	423072 281108
	Non Coal Mining Ar No Hazard	eas of Great Britain				
	Potential for Collap Hazard Potential: Source:	sible Ground Stability Hazards Very Low British Geological Survey, National Geoscience Information Service	A13SE (NE)	0	4	423072 281108

Order Number: 70642001_1_1 Date: 29-Jul-2015 rpr_ec_datasheet v49.0 A Landmark Information Group Service

Potential for Collaps Hazard Potential: Source:		Direction)	From Site	Contact	NGR
	sible Ground Stability Hazards				
Source.	No Hazard British Geological Survey, National Geoscience Information Service	A13NW (W)	76	4	422894 281161
Potential for Collaps	sible Ground Stability Hazards				
Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (SW)	140	4	422934 280909
Potential for Compr	essible Ground Stability Hazards				
Hazard Potential: Source:	Moderate British Geological Survey, National Geoscience Information Service	A13SE (NE)	0	4	423072 281108
Potential for Compr	essible Ground Stability Hazards				
Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	4	423056 281100
Potential for Ground	Dissolution Stability Hazards				
Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SE (NE)	0	4	423072 281108
Potential for Landsl	ide Ground Stability Hazards				
Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SE (NE)	0	4	423072 281108
Potential for Runnir	g Sand Ground Stability Hazards				
Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SE (NE)	0	4	423072 281108
Potential for Runnir	ng Sand Ground Stability Hazards				
Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A13NW (W)	76	4	422894 281161
Potential for Runnir	g Sand Ground Stability Hazards				
Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A13SW (SW)	140	4	422934 280909
Potential for Runnir	g Sand Ground Stability Hazards				
Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NW (NW)	157	4	422876 281244
Potential for Runnir	g Sand Ground Stability Hazards				
Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SE (SE)	235	4	423315 280860
Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SE (NE)	0	4	423072 281108
Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (W)	76	4	422894 281161
Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SW (SW)	140	4	422934 280909
Radon Potential - R	adon Protection Measures				
	dwellings or extensions	A13SE (NE)	0	4	423072 281108
Radon Potential - Radon Potent	The property is in a lower probability radon area, as less than 1% of homes	A13SE (NE)	0	4	423072 281108
+3 F+3 F+3 F+3 F+3 F+3 F+3 F+3 F+3 F+3 F	Hazard Potential: Source: Potential for Compr Hazard Potential: Source: Potential for Ground Hazard Potential: Source: Potential for Landsl Hazard Potential: Source: Potential for Runnin Hazard Potential: Source: Potential for Shrinki Hazard Potential: Source: Radon Potential - Ra Protection Measure: Source: Radon Potential - Ra	Potential for Compressible Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service Potential for Ground Dissolution Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service Potential for Landslide Ground Stability Hazards Hazard Potential: Very Low British Geological Survey, National Geoscience Information Service Potential for Running Sand Ground Stability Hazards Hazard Potential: Very Low British Geological Survey, National Geoscience Information Service Potential for Running Sand Ground Stability Hazards Hazard Potential: Very Low British Geological Survey, National Geoscience Information Service Potential for Running Sand Ground Stability Hazards Hazard Potential: Low British Geological Survey, National Geoscience Information Service Potential for Running Sand Ground Stability Hazards Hazard Potential: Cource: British Geological Survey, National Geoscience Information Service Potential for Running Sand Ground Stability Hazards Hazard Potential: No Hazard Potential for Running Sand Ground Stability Hazards Hazard Potential: No Hazard Potential for Running Sand Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service Potential for Shrinking or Swelling Clay Ground Stability Hazards Hazard Potential: No Hazard Potential: Very Low British Geological Survey, National Geoscience Information Service Potential for Shrinking or Swelling Clay Ground Stability Hazards Hazard Potential: Very Low British Geological Survey, National Geoscience Information Service Potential for Shrinking or Swelling Clay Ground Stability Hazards Hazard Potential: Very Low British Geological Survey, National Geoscience Information Service Potential For Shrinking or Swelling Clay Ground Stability Hazards Hazard Potential: Very Low British Geological Survey, National Geoscience Information Service Potential For Shrinking or Swelling Clay	Hazard Potential: British Geological Survey, National Geoscience Information Service (NE) Potential for Compressible Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service (SW) Potential for Ground Dissolution Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Ground Dissolution Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Running Sand Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Running Sand Ground Stability Hazards Hazard Potential: Low British Geological Survey, National Geoscience Information Service (NE) Potential for Running Sand Ground Stability Hazards Hazard Potential: Low British Geological Survey, National Geoscience Information Service (NE) Potential for Running Sand Ground Stability Hazards Hazard Potential: Low Ground Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service (SW) Potential for Running Sand Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service (SE) Potential for Running Sand Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service (SE) Potential for Shrinking or Swelling Clay Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service (SE) Potential for Shrinking or Swelling Clay Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Shrinking or Swelling Clay Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, Natio	Hazard Potential: Moderate Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Compressible Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service (SW) Potential for Ground Dissolution Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Canual Dissolution Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Running Sand Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Running Sand Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Running Sand Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service (NV) Potential for Running Sand Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service (SW) Potential for Running Sand Ground Stability Hazards Hazard Potential: No Hazard H	- Hazard Potential: Moderate Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Compressible Ground Stability Hazards - Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service (SW) Potential for Ground Dissolution Stability Hazards - Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Landslide Ground Stability Hazards - Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Running Sand Ground Stability Hazards - Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Running Sand Ground Stability Hazards - Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service (NE) Potential for Running Sand Ground Stability Hazards - Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service (W) Potential for Running Sand Ground Stability Hazards - Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service (W) Potential for Running Sand Ground Stability Hazards - Hazard Potential: No Hazard - Hazard Potential:

Order Number: 70642001_1_1 Date: 29-Jul-2015 rpr_ec_datasheet v49.0 A Landmark Information Group Service Page 39 of 48

Industrial Land Use

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
61	Contemporary Trade Directory Entries Name: Tilcon Ltd Location: Cornets End Lane, Meriden, Coventry, CV7 7LG Classification: Concrete & Mortar Ready Mixed Status: Inactive Positional Accuracy: Automatically positioned in the proximity of the address	A13NE (NE)	33	-	423139 281245
61	Contemporary Trade Directory Entries Name: Tarmac Central Location: Cornets End Lane, Meriden, Coventry, CV7 7LG Classification: Sand, Gravel & Other Aggregates Status: Inactive Positional Accuracy: Automatically positioned in the proximity of the address	A13NE (NE)	33	-	423139 281245
61	Contemporary Trade Directory Entries Name: Lafarge Tarmac Location: Meriden, Meriden Depot, Meriden, Coventry, West Midlands, CV7 Classification: Quarries Status: Active Positional Accuracy: Manually positioned within the geographical locality	7LG A13NE (N)	37	-	423124 281243
61	Contemporary Trade Directory Entries Name: Hope Construction Location: Cornets End Lane, Meriden, Coventry, CV7 7LG Classification: Concrete & Mortar Ready Mixed Status: Active Positional Accuracy: Automatically positioned to the address	A13NE (N)	37	-	423124 281243
62	Contemporary Trade Directory Entries Name: Berkswell Forgework Location: Cornets End Lane, Meriden, Coventry, CV7 7LH Classification: Wrought Ironwork Status: Inactive Positional Accuracy: Automatically positioned to the address	A12NE (W)	488	-	422444 281176
62	Contemporary Trade Directory Entries Name: Farm & Industrial Cladding Ltd Location: Hornbrook Farm, Cornets End Lane, Meriden, Coventry, CV7 7LH Classification: Cladding Suppliers & Installers Status: Inactive Positional Accuracy: Automatically positioned to the address	A12NE (W)	488	-	422444 281176
63	Contemporary Trade Directory Entries Name: Ready Mixed Concrete (West Midlands) Ltd Location: Cornets End La, Meriden, Coventry, West Midlands, CV7 7LH Classification: Concrete & Mortar Ready Mixed Status: Inactive Positional Accuracy: Manually positioned to the road within the address or location	A12NE (W)	574	-	422407 281336

Order Number: 70642001_1_1 Date: 29-Jul-2015 rpr_ec_datasheet v49.0 A Landmark Information Group Service Page 40 of 48

Sensitive Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Areas of Adopt	ed Green Belt				
64	Authority: Plan Name: Status: Plan Date:	Solihull Metropolitan Borough Council Solihull Unitary Development Plan 2006 Adopted 28th February 2006	A13SE (NE)	0	5	423072 281108
	Areas of Adopt	ed Green Belt				
65	Authority: Plan Name: Status: Plan Date:	North Warwickshire Borough Council, Planning Administration North Warwickshire Local Plan Adopted 4th July 2006	A18NW (N)	867	7	422760 281990
	Areas of Unado	pted Green Belt				
66	Authority: Plan Name: Status: Plan Date:	Solihull Metropolitan Borough Council Solihull Local Plan Submission Draft 30th September 2012	A13SE (NE)	0	5	423072 281108
	Nitrate Vulnera	ble Zones				
67	Name: Description: Source:	Not Supplied Surface Water Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	A13SE (NE)	0	8	423072 281108
	Nitrate Vulnera	ble Zones				
68	Name: Description: Source:	Not Supplied Groundwater Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	A13SE (SE)	76	8	423228 281022

Order Number: 70642001_1_1 Date: 29-Jul-2015 rpr_ec_datasheet v49.0 A Landmark Information Group Service Page 41 of 48

Data Currency

Agency & Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices		
Solihull Metropolitan Borough Council - Environmental Health Department	March 2015	Annual Rolling Update
North Warwickshire Borough Council - Environmental Health Department	October 2014	Annual Rolling Update
Coventry City Council - Environmental Health Department	September 2014	Annual Rolling Update
Discharge Consents		
Environment Agency - Midlands Region	April 2015	Quarterly
Enforcement and Prohibition Notices Environment Agency - Midlands Region	March 2013	As notified
ntegrated Pollution Controls		
Environment Agency - Midlands Region	October 2008	Not Applicable
ntegrated Pollution Prevention And Control		
Environment Agency - Midlands Region	April 2015	Quarterly
Local Authority Integrated Pollution Prevention And Control		,
Coventry City Council - Environmental Health Department	August 2014	Annual Rolling Update
Solihull Metropolitan Borough Council - Environmental Health Department	August 2014	Annual Rolling Update
North Warwickshire Borough Council - Environmental Health Department	September 2014	Annual Rolling Updat
Local Authority Pollution Prevention and Controls		
Coventry City Council - Environmental Health Department	August 2014	Annual Rolling Update
Solihull Metropolitan Borough Council - Environmental Health Department	August 2014 August 2014	Annual Rolling Update
North Warwickshire Borough Council - Environmental Health Department	September 2014	Annual Rolling Updat
	September 2014	Ailidai Roiling Opdati
Local Authority Pollution Prevention and Control Enforcements		
Coventry City Council - Environmental Health Department	August 2014	Annual Rolling Update
Solihull Metropolitan Borough Council - Environmental Health Department	August 2014	Annual Rolling Update
North Warwickshire Borough Council - Environmental Health Department	September 2014	Annual Rolling Update
Nearest Surface Water Feature		
Ordnance Survey	July 2012	Quarterly
Pollution Incidents to Controlled Waters Environment Agency - Midlands Region	December 1999	Not Applicable
	December 1999	Not Applicable
Prosecutions Relating to Authorised Processes	Marris 0040	A = va = CC = vl
Environment Agency - Midlands Region	March 2013	As notified
Prosecutions Relating to Controlled Waters		
Environment Agency - Midlands Region	March 2013	As notified
River Quality		
Environment Agency - Head Office	November 2001	Not Applicable
River Quality Biology Sampling Points		
Environment Agency - Head Office	July 2012	Annually
River Quality Chemistry Sampling Points		
Environment Agency - Head Office	July 2012	Annually
Substantiated Pollution Incident Register		,
Environment Agency - Midlands Region - Central Area	April 2015	Quarterly
Environment Agency - Midlands Region - Central Area Environment Agency - Midlands Region - Lower Severn Area	April 2015	Quarterly
Environment Agency - Midlands Region - Upper Trent Area	April 2015 April 2015	Quarterly
	April 2013	Quarterly
Water Abstractions	A "1 00.7	
Environment Agency - Midlands Region	April 2015	Quarterly
Water Industry Act Referrals		
Environment Agency - Midlands Region	April 2015	Quarterly
Groundwater Vulnerability		
Environment Agency - Head Office	April 2015	Not Applicable
Drift Deposits		
Environment Agency - Head Office	January 1999	Not Applicable
Bedrock Aquifer Designations		
British Geological Survey - National Geoscience Information Service	October 2012	As notified

Order Number: 70642001_1_1 Date: 29-Jul-2015 rpr_ec_datasheet v49.0 A Landmark Information Group Service Page 42 of 48

Data Currency

Agency & Hydrological	Version	Update Cycle
Superficial Aquifer Designations		
British Geological Survey - National Geoscience Information Service	January 2015	As notified
Source Protection Zones		
Environment Agency - Head Office	April 2015	Quarterly
Extreme Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	May 2015	Quarterly
Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	May 2015	Quarterly
Areas Benefiting from Flood Defences		
Environment Agency - Head Office	May 2015	Quarterly
Flood Water Storage Areas		
Environment Agency - Head Office	May 2015	Quarterly
Flood Defences		
Environment Agency - Head Office	May 2015	Quarterly
Detailed River Network Lines		
Environment Agency - Head Office	March 2012	Annually
Detailed River Network Offline Drainage		
Environment Agency - Head Office	March 2012	Annually
Surface Water 1 in 30 year Flood Extent		
Environment Agency - Head Office	October 2013	As notified
Surface Water 1 in 100 year Flood Extent		
Environment Agency - Head Office	October 2013	As notified
Surface Water 1 in 1000 year Flood Extent		
Environment Agency - Head Office	October 2013	As notified
Surface Water Suitability		
Environment Agency - Head Office	October 2013	As notified

Order Number: 70642001_1_1 Date: 29-Jul-2015 rpr_ec_datasheet v49.0 A Landmark Information Group Service Page 43 of 48

Data Currency

Waste	Version	Update Cycle
BGS Recorded Landfill Sites		
British Geological Survey - National Geoscience Information Service	June 1996	Not Applicable
Historical Landfill Sites		
Environment Agency - Midlands Region - Central Area	May 2015	Quarterly
Environment Agency - Midlands Region - Lower Severn Area	May 2015	Quarterly
Environment Agency - Midlands Region - Upper Trent Area	May 2015	Quarterly
Integrated Pollution Control Registered Waste Sites		
Environment Agency - Midlands Region	October 2008	Not Applicable
Licensed Waste Management Facilities (Landfill Boundaries)		
Environment Agency - Midlands Region - Central Area	August 2014	Quarterly
Environment Agency - Midlands Region - Lower Severn Area	August 2014 August 2014	Quarterly
Environment Agency - Midlands Region - Upper Trent Area	August 2014 August 2014	Quarterly
	August 2014	Quarterly
Licensed Waste Management Facilities (Locations)	A	O constant
Environment Agency - Midlands Region - Central Area	April 2015	Quarterly
Environment Agency - Midlands Region - Lower Severn Area	April 2015	Quarterly
Environment Agency - Midlands Region - Upper Trent Area	April 2015	Quarterly
Local Authority Landfill Coverage		
Coventry City Council - Planning Department	May 2000	Not Applicable
North Warwickshire Borough Council - Environmental Health Department	May 2000	Not Applicable
Solihull Metropolitan Borough Council	May 2000	Not Applicable
Warwickshire County Council	May 2000	Not Applicable
Local Authority Recorded Landfill Sites		
Coventry City Council - Planning Department	May 2000	Not Applicable
North Warwickshire Borough Council - Environmental Health Department	May 2000	Not Applicable
Solihull Metropolitan Borough Council	May 2000	Not Applicable
Warwickshire County Council	May 2000	Not Applicable
Registered Landfill Sites	-	
Environment Agency - Midlands Region - Lower Severn Area	March 2003	Not Applicable
Environment Agency - Midlands Region - Upper Trent Area	March 2003	Not Applicable
		. retrippioasie
Registered Waste Transfer Sites	March 2003	Not Applicable
Environment Agency - Midlands Region - Lower Severn Area Environment Agency - Midlands Region - Upper Trent Area	March 2003	Not Applicable Not Applicable
	IVIAICII 2003	Not Applicable
Registered Waste Treatment or Disposal Sites		
Environment Agency - Midlands Region - Lower Severn Area	March 2003	Not Applicable
Environment Agency - Midlands Region - Upper Trent Area	March 2003	Not Applicable
Hazardous Substances	Version	Update Cycle
Control of Major Accident Hazards Sites (COMAH)		
Health and Safety Executive	June 2015	Bi-Annually
Explosive Sites		
Health and Safety Executive	June 2015	Bi-Annually
•	Julie 2013	Di-Allitually
Notification of Installations Handling Hazardous Substances (NIHHS)		
Health and Safety Executive	November 2000	Not Applicable
Planning Hazardous Substance Enforcements		
North Warwickshire Borough Council - Planning Administration	December 2014	Annual Rolling Update
Solihull Metropolitan Borough Council	January 2015	Annual Rolling Update
Warwickshire County Council	July 2007	Annual Rolling Update
Coventry City Council - Planning Department	September 2014	Annual Rolling Update
Planning Hazardous Substance Consents		
North Warwickshire Borough Council - Planning Administration	December 2014	Annual Rolling Update
Solihull Metropolitan Borough Council	January 2015	Annual Rolling Update
Warwickshire County Council	July 2007	Annual Rolling Update

rpr_ec_datasheet v49.0 A Landmark Information Group Service

Data Currency

Geological	Version	Update Cycle
BGS 1:625,000 Solid Geology		
British Geological Survey - National Geoscience Information Service	January 2009	Not Applicable
BGS Estimated Soil Chemistry		
British Geological Survey - National Geoscience Information Service	January 2010	Annually
BGS Recorded Mineral Sites		
British Geological Survey - National Geoscience Information Service	May 2015	Bi-Annually
Brine Compensation Area		
Cheshire Brine Subsidence Compensation Board	August 2011	Not Applicable
Coal Mining Affected Areas		
The Coal Authority - Mining Report Service	March 2014	As notified
Mining Instability		
Ove Arup & Partners	October 2000	Not Applicable
Non Coal Mining Areas of Great Britain		
British Geological Survey - National Geoscience Information Service	July 2014	Not Applicable
Potential for Collapsible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Compressible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Ground Dissolution Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Landslide Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Running Sand Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Shrinking or Swelling Clay Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Radon Potential - Radon Affected Areas		
British Geological Survey - National Geoscience Information Service	July 2011	As notified
Radon Potential - Radon Protection Measures		
British Geological Survey - National Geoscience Information Service	July 2011	As notified
Industrial Land Use	Version	Update Cycle
Contemporary Trade Directory Entries		_
Thomson Directories	May 2015	Quarterly
Fuel Station Entries		_
Catalist Ltd - Experian	May 2015	Quarterly

Order Number: 70642001_1_1 Date: 29-Jul-2015 rpr_ec_datasheet v49.0 A Landmark Information Group Service Page 45 of 48

Data Currency

		Update Cycle
Areas of Adopted Green Belt		
Coventry City Council	May 2015	As notified
North Warwickshire Borough Council - Planning Administration	May 2015	As notified
Solihull Metropolitan Borough Council	May 2015	As notified
Areas of Unadopted Green Belt		
Coventry City Council	May 2015	As notified
North Warwickshire Borough Council - Planning Administration	May 2015	As notified
Solihull Metropolitan Borough Council	May 2015	As notified
Areas of Outstanding Natural Beauty		
Natural England	February 2015	Bi-Annually
Environmentally Sensitive Areas		
Natural England	August 2014	Annually
Forest Parks		
Forestry Commission	April 1997	Not Applicable
Local Nature Reserves		
Natural England	April 2015	Bi-Annually
Marine Nature Reserves		
Natural England	July 2013	Bi-Annually
National Nature Reserves		
Natural England	March 2015	Bi-Annually
National Parks		
Natural England	February 2015	Bi-Annually
Nitrate Sensitive Areas		
Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	February 2012	Not Applicable
Nitrate Vulnerable Zones		
Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	July 2014	Annually
Ramsar Sites		
Natural England	March 2014	Bi-Annually
Sites of Special Scientific Interest		
Natural England	April 2015	Bi-Annually
Special Areas of Conservation		
Natural England	March 2014	Bi-Annually
Special Protection Areas		

Order Number: 70642001_1_1 Date: 29-Jul-2015 rpr_ec_datasheet v49.0 A Landmark Information Group Service Page 46 of 48

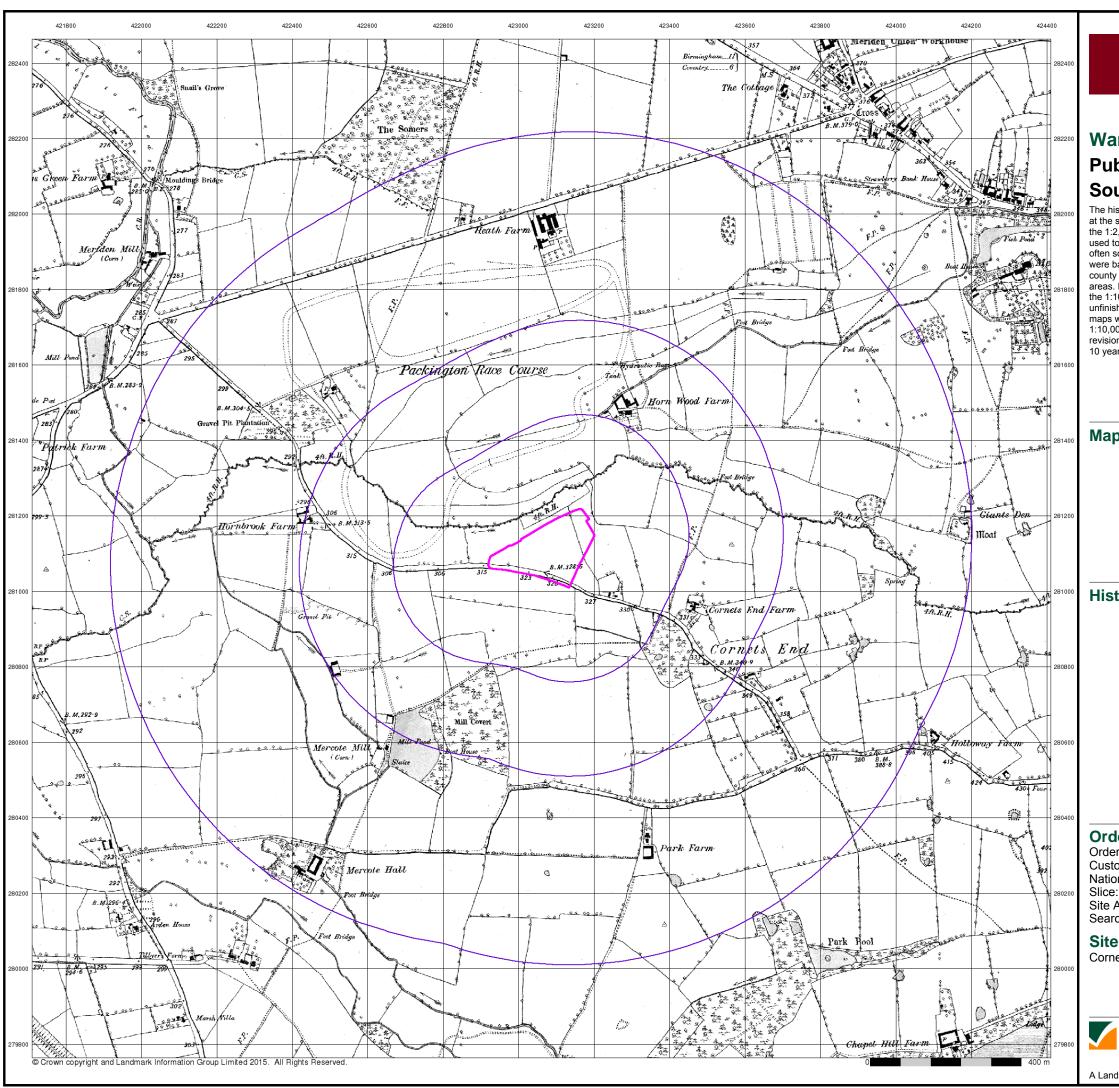
Data Suppliers

A selection of organisations who provide data within this report

Data Supplier	Data Supplier Logo
Ordnance Survey	Ordnance Survey®
Environment Agency	Environment Agency
Scottish Environment Protection Agency	SEPA Scottish Environment Protection Agency
The Coal Authority	THE COAL AUTHORITY
British Geological Survey	British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL
Natural Resources Wales	Cyfoeth Naturiol Cymru Natural Resources Wales
Scottish Natural Heritage	SCOTTISH NATURAL HERITAGE WATA
Natural England	NATURAL ENGLAND
Public Health England	Public Health England
Ove Arup	ARUP
Peter Brett Associates	peterbrett

Useful Contacts

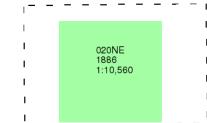
Contact	Name and Address	Contact Details
2	Environment Agency - National Customer Contact Centre (NCCC)	Telephone: 08708 506 506 Email: enquiries@environment-agency.gov.uk
	PO Box 544, Templeborough, Rotherham, S60 1BY	
3	Solihull Metropolitan Borough Council - Environmental Health Department	Telephone: 0121 704 8086 Fax: 0121 704 6404 Website: www.solihull.gov.uk
	P O Box 24, Council House, Solihull, West Midlands, B91 3QT	
4	British Geological Survey - Enquiry Service British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
5	Solihull Metropolitan Borough Council P O Box 19, Council House, Solihull, West Midlands, B91 3QT	Telephone: 0121 704 6000 Fax: 0121 704 6404 Website: www.solihull.gov.uk
6	The Coal Authority - Mining Report Service 200 Lichfield Lane, Mansfield, Nottinghamshire, NG18 4RG	Telephone: 0845 7626848 Email: thecoalauthority@coal.gov.uk
7	North Warwickshire Borough Council - Planning Administration	Telephone: 01827 715341 Fax: 01827 719225 Website: www.northwarks.gov.uk
	Po Box 6, Council House, South Street, Atherstone, Warwickshire, CV9 1BG	
8	Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	Telephone: 0113 2613333 Fax: 0113 230 0879
	Government Buildings, Otley Road, Lawnswood, Leeds, West Yorkshire, LS16 5QT	
9	Natural England	Telephone: 0845 600 3078 Email: enquiries@naturalengland.org.uk
	Suite D, Unex House, Bourges Boulevard, Peterborough, Cambridgeshire, PE1 1NG	Website: www.naturalengland.org.uk
10	Environment Agency - Head Office	Telephone: 01454 624400 Fax: 01454 624409
	Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, Avon, BS32 4UD	1 42. 01404 024403
11	North Warwickshire Borough Council - Environmental Health Department	Telephone: 01827 715341 Fax: 01827 719399 Website: www.northwarks.gov.uk
	P O Box 6, Old Bank House, 129 Long Street, Atherstone, North Warwickshire, CV9 1BG	Č
12	Warwickshire County Council	Telephone: 01926 410410
	PO Box 43, Shire Hall, Warwick, Warwickshire, CV34 4SX	Website: www.warwickshire.gov.uk
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards	Telephone: 01235 822622 Fax: 01235 833891 Email: radon@phe.gov.uk
	Chilton, Didcot, Oxfordshire, OX11 0RQ	Website: www.ukradon.org
-	Landmark Information Group Limited	Telephone: 0844 844 9952 Fax: 0844 844 9951
	Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk


Please note that the Environment Agency / Natural Resources Wales / SEPA have a charging policy in place for enquiries.

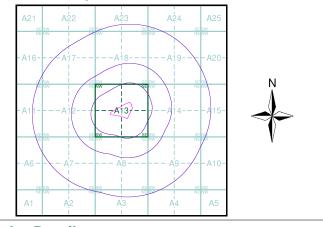
Order Number: 70642001_1_1 Date: 29-Jul-2015 rpr_ec_datasheet v49.0 A Landmark Information Group Service Page 48 of 48

APPENDIX SCR2

Historical Maps


Warwickshire

Published 1886


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

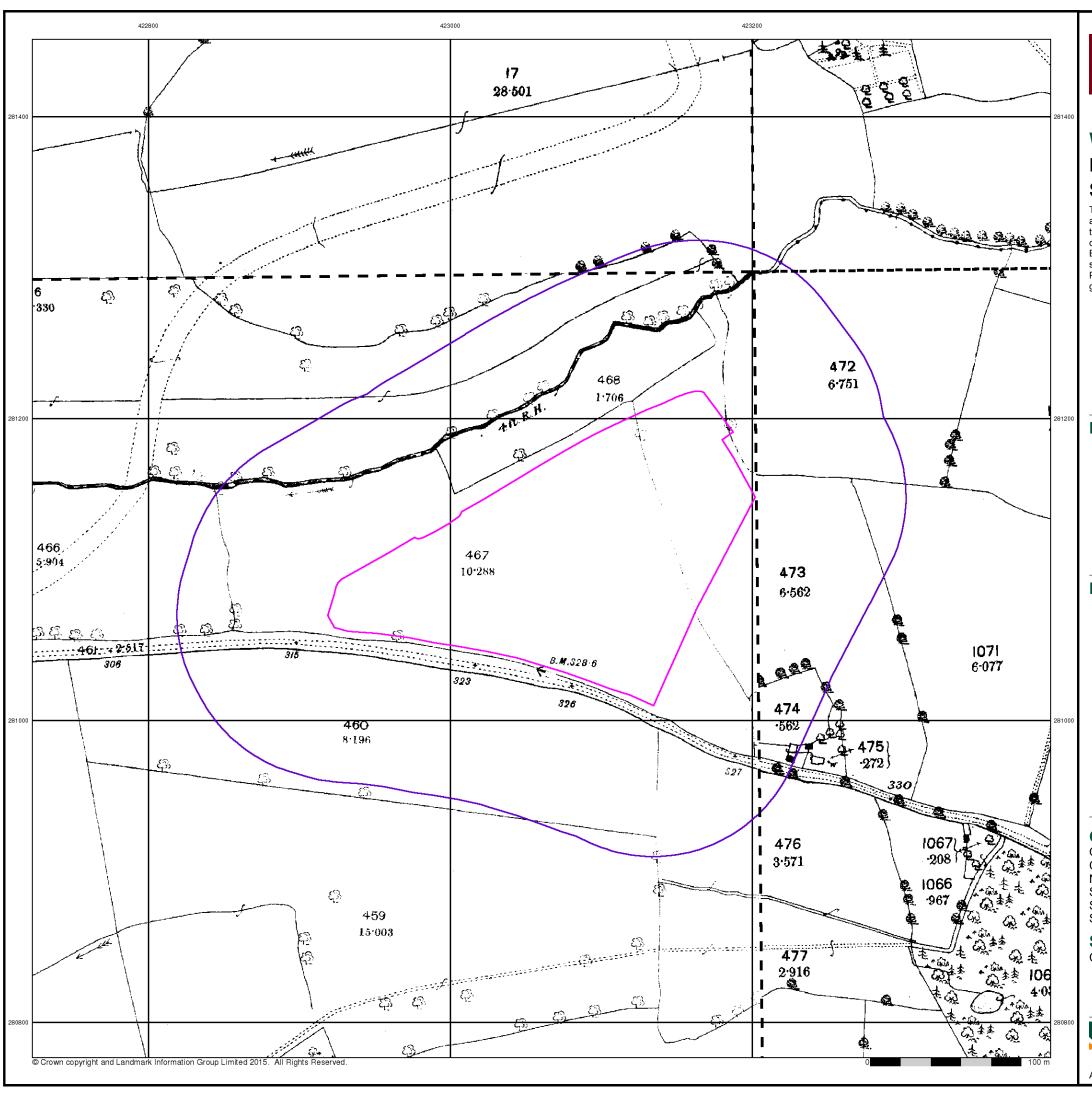
Historical Map - Slice A

Order Details

Order Number: 70642001_1_1 Customer Ref: 10122 National Grid Reference: 423070, 281110

Site Area (Ha):

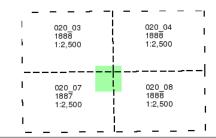
3.11 Search Buffer (m): 1000


Site Details

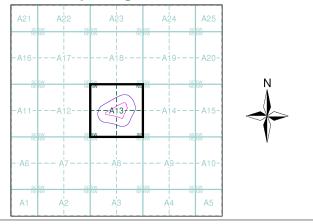
Cornets End Lane, Meriden, Coventry, CV7 7LG

0844 844 9952

A Landmark Information Group Service v47.0 29-Jul-2015 Page 2 of 11



Warwickshire


Published 1887 - 1888 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

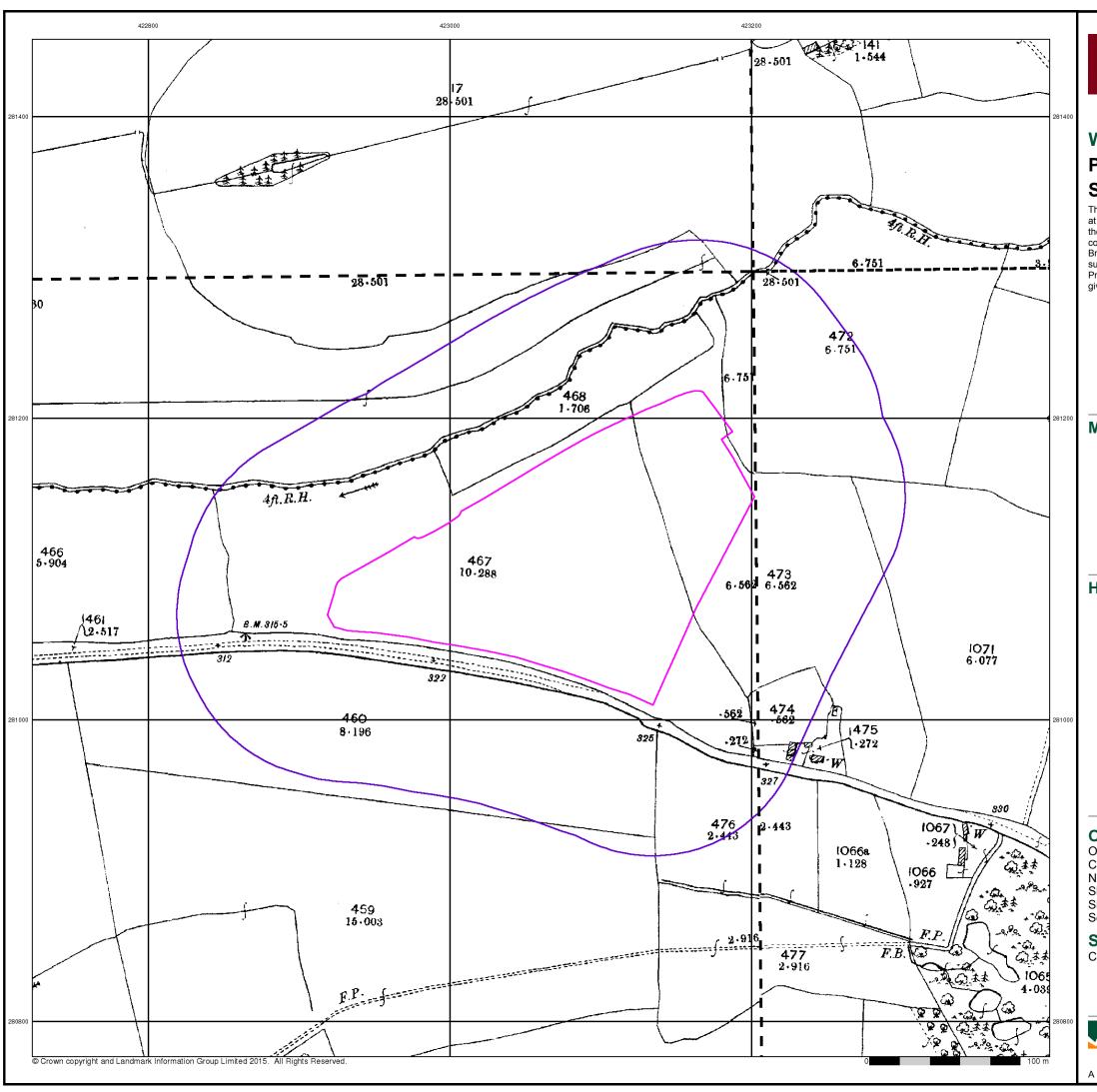
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number: 70642001_1_1 Customer Ref: National Grid Reference: 423070, 281110 Slice:

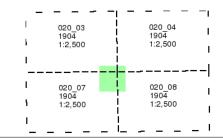
Site Area (Ha): Search Buffer (m): 3.11


Site Details

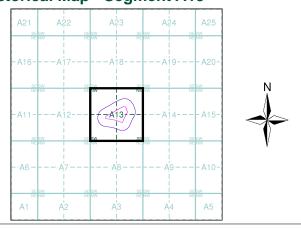
Cornets End Lane, Meriden, Coventry, CV7 7LG

0844 844 9952 Tel: Fax: 0844 844 9951

A Landmark Information Group Service v47.0 29-Jul-2015



Warwickshire


Published 1904 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

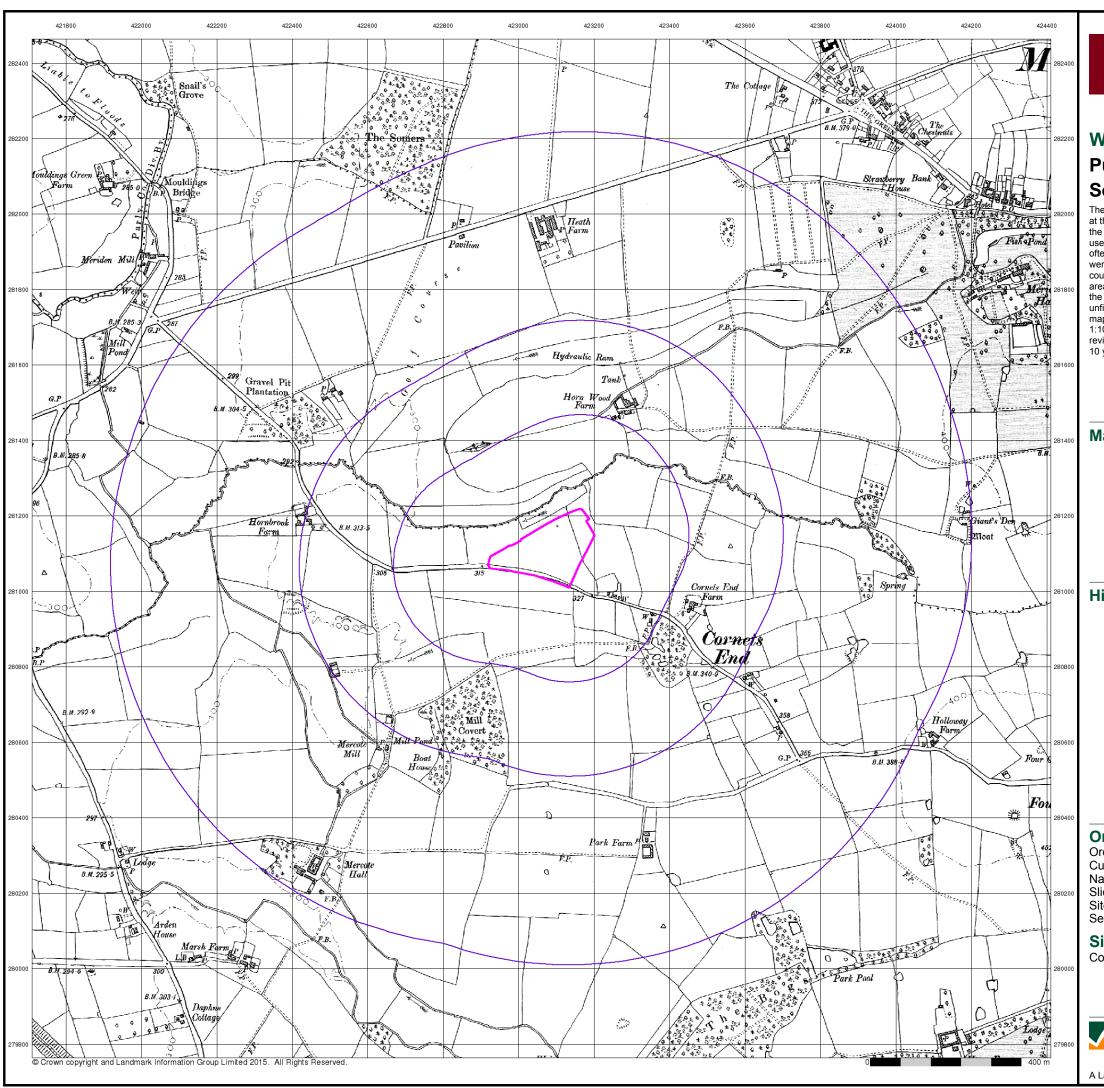
Historical Map - Segment A13

Order Details

Order Number: 70642001_1_1
Customer Ref: 10122
National Grid Reference: 423070, 281110

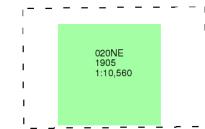
Slice:

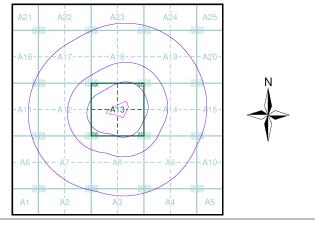
Site Area (Ha): 3.11 Search Buffer (m): 100


Site Details

Cornets End Lane, Meriden, Coventry, CV7 7LG

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.c


A Landmark Information Group Service v47.0 29-Jul-2015 Pa


Warwickshire Published 1905 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

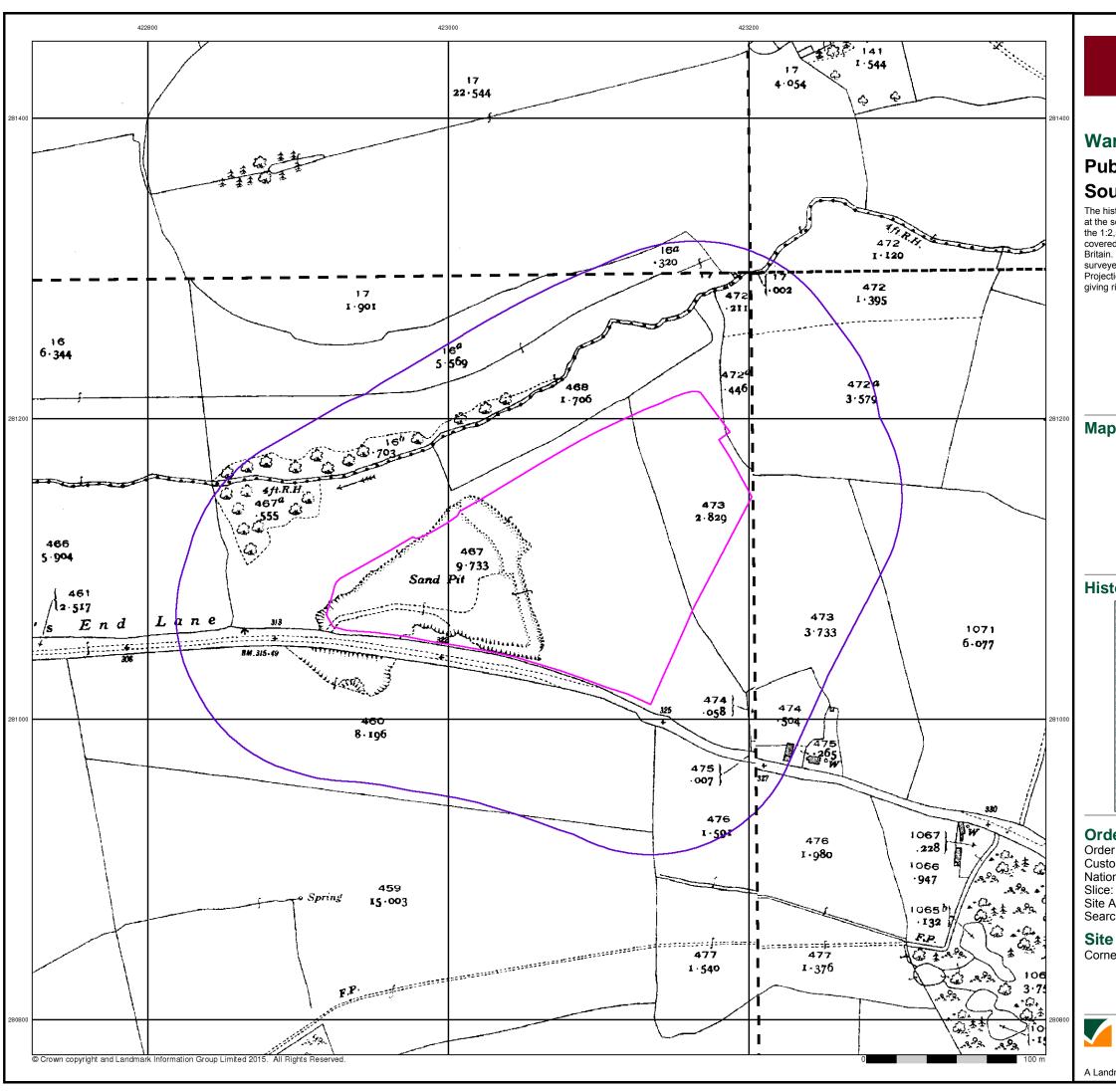
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 70642001_1_1
Customer Ref: 10122
National Grid Reference: 423070, 281110
Slice: A

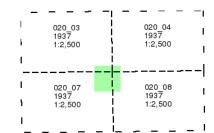
Site Area (Ha): 3.11 Search Buffer (m): 1000


Site Details

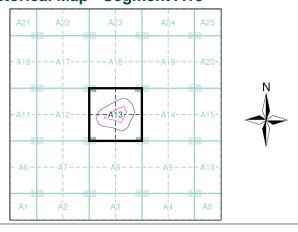
Cornets End Lane, Meriden, Coventry, CV7 7LG

li: 0844 844 9952 x: 0844 844 9951 eb: www.envirocheck.

A Landmark Information Group Service v47.0 29-Jul-2015 Page 3 of 11


Warwickshire

Published 1937


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

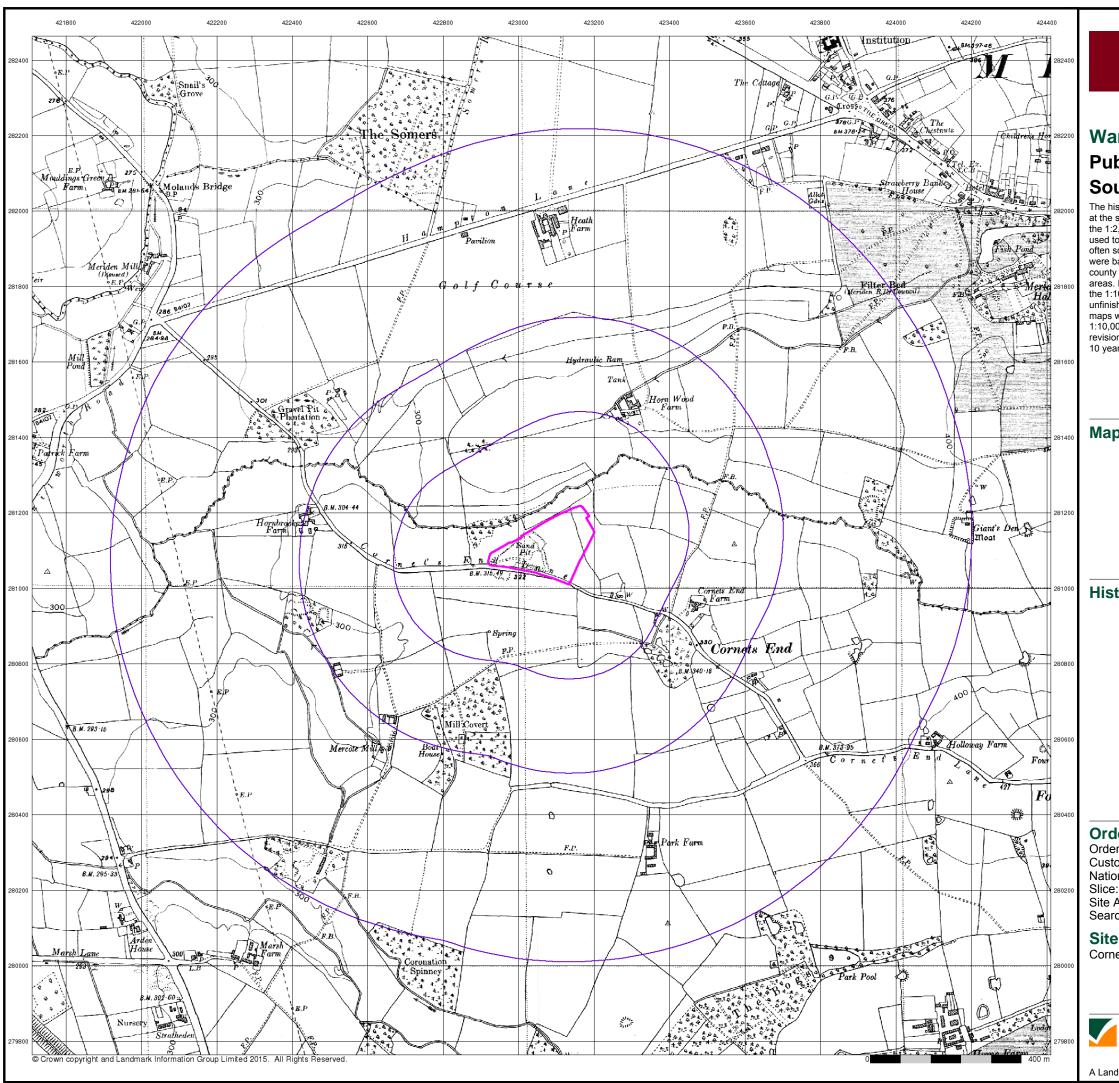
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

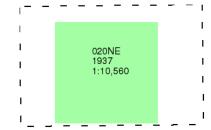
Order Number: 70642001_1_1 Customer Ref: 10122 National Grid Reference: 423070, 281110 Α

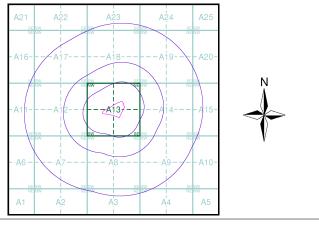
Site Area (Ha): Search Buffer (m): 3.11 100


Site Details

Cornets End Lane, Meriden, Coventry, CV7 7LG

0844 844 9952 Tel: Fax: 0844 844 9951


A Landmark Information Group Service v47.0 29-Jul-2015


Warwickshire Published 1937 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

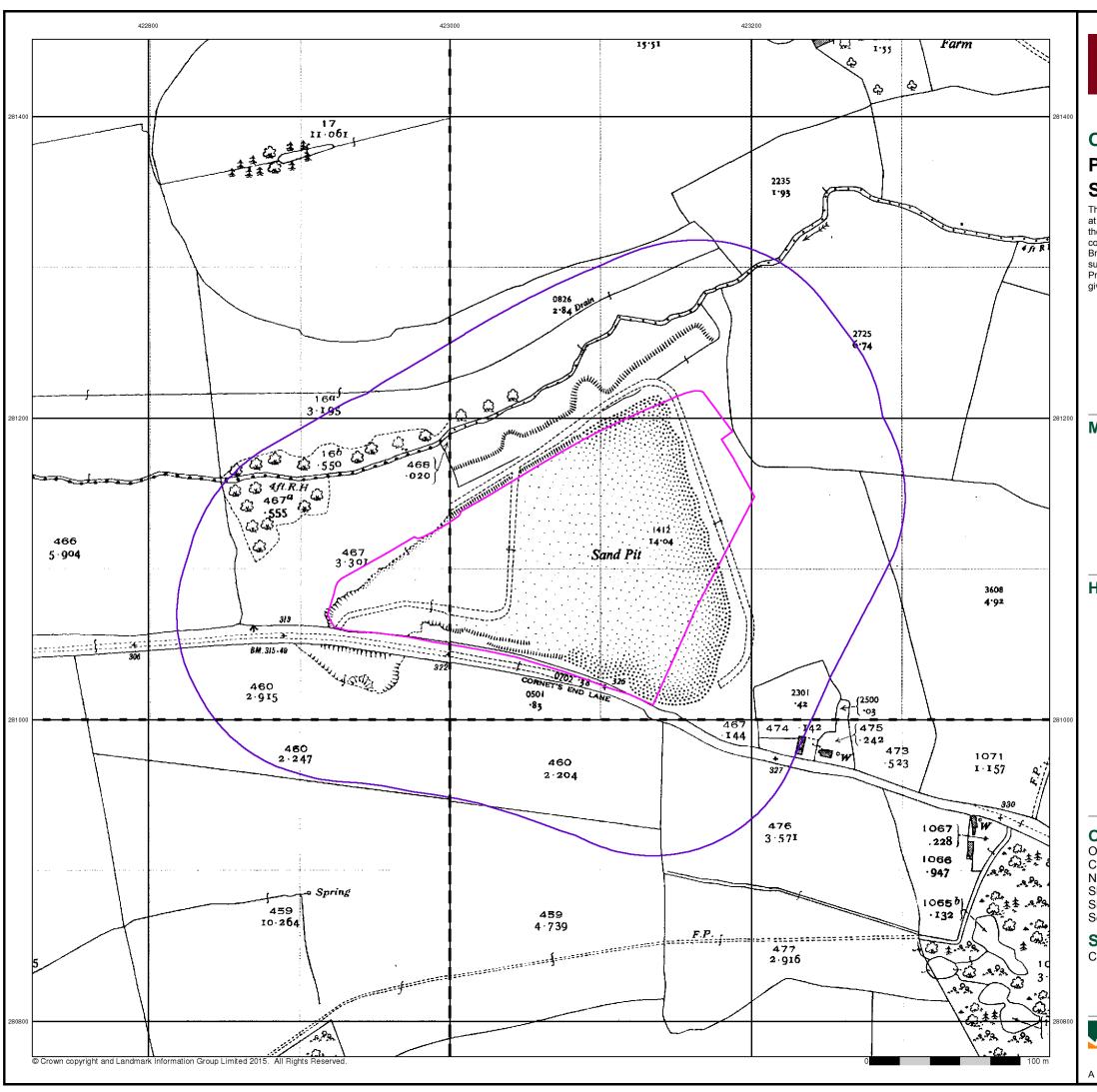
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 70642001_1_1
Customer Ref: 10122
National Grid Reference: 423070, 281110

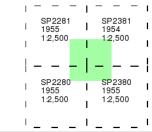
Site Area (Ha): 3.11 Search Buffer (m): 1000


Site Details

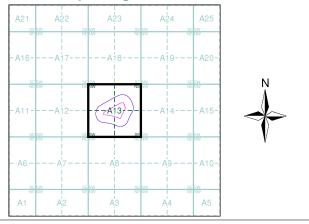
Cornets End Lane, Meriden, Coventry, CV7 7LG

el: 0844 844 9952 ax: 0844 844 9951 (eb: www.envirocheck.c

A Landmark Information Group Service v47.0 29-Jul-2015 Page 5 of 11



Ordnance Survey Plan Published 1954 - 1955


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

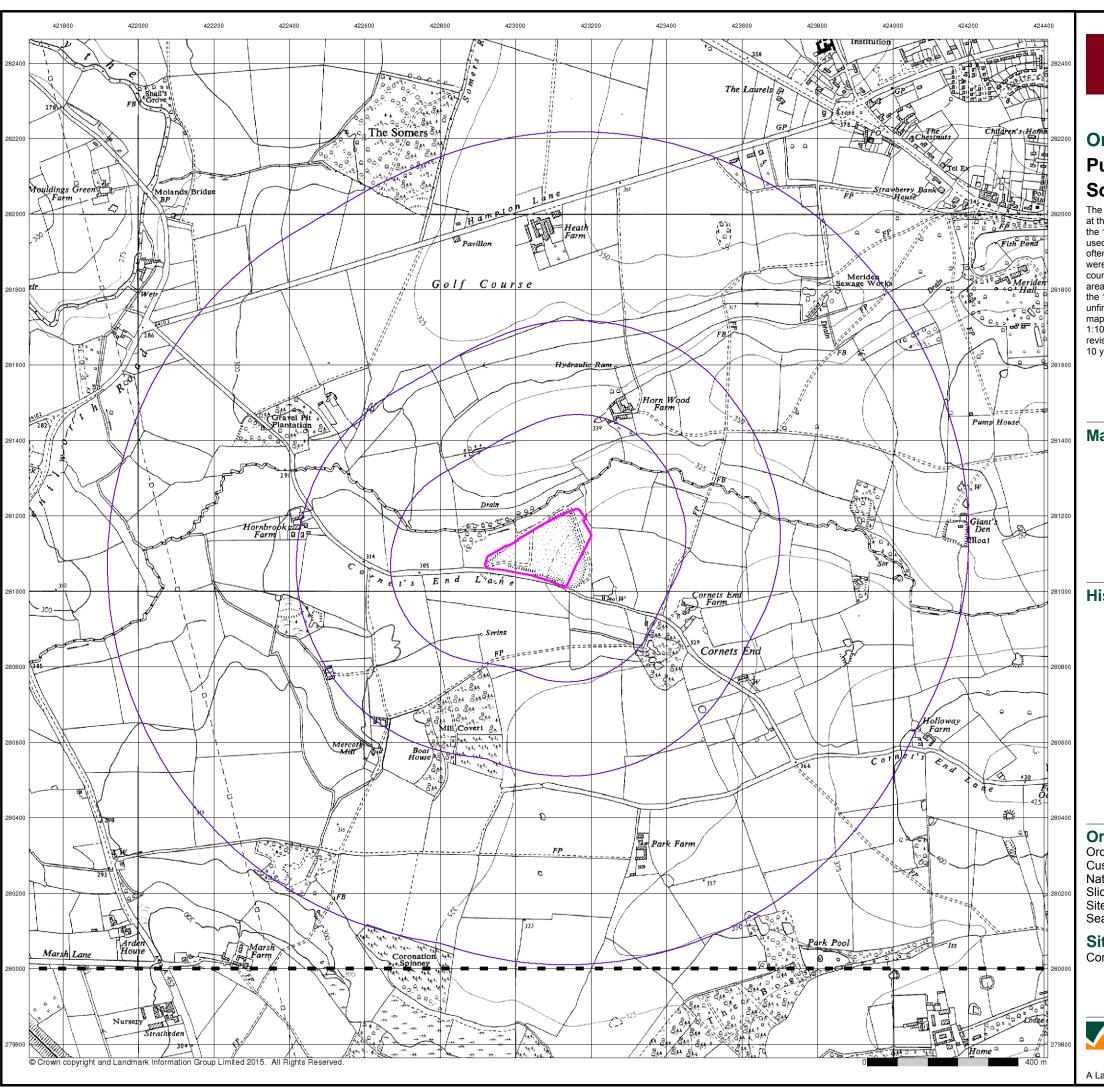
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

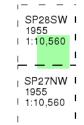
Order Number: 70642001_1_1 Customer Ref: 10122 National Grid Reference: 423070, 281110 Slice: Α

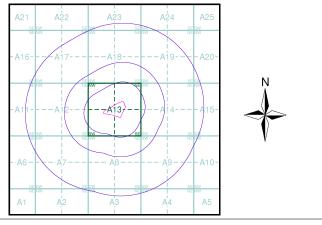
Site Area (Ha): Search Buffer (m): 3.11 100


Site Details

Cornets End Lane, Meriden, Coventry, CV7 7LG

0844 844 9952 Tel: Fax: 0844 844 9951


A Landmark Information Group Service v47.0 29-Jul-2015


Ordnance Survey Plan Published 1955 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

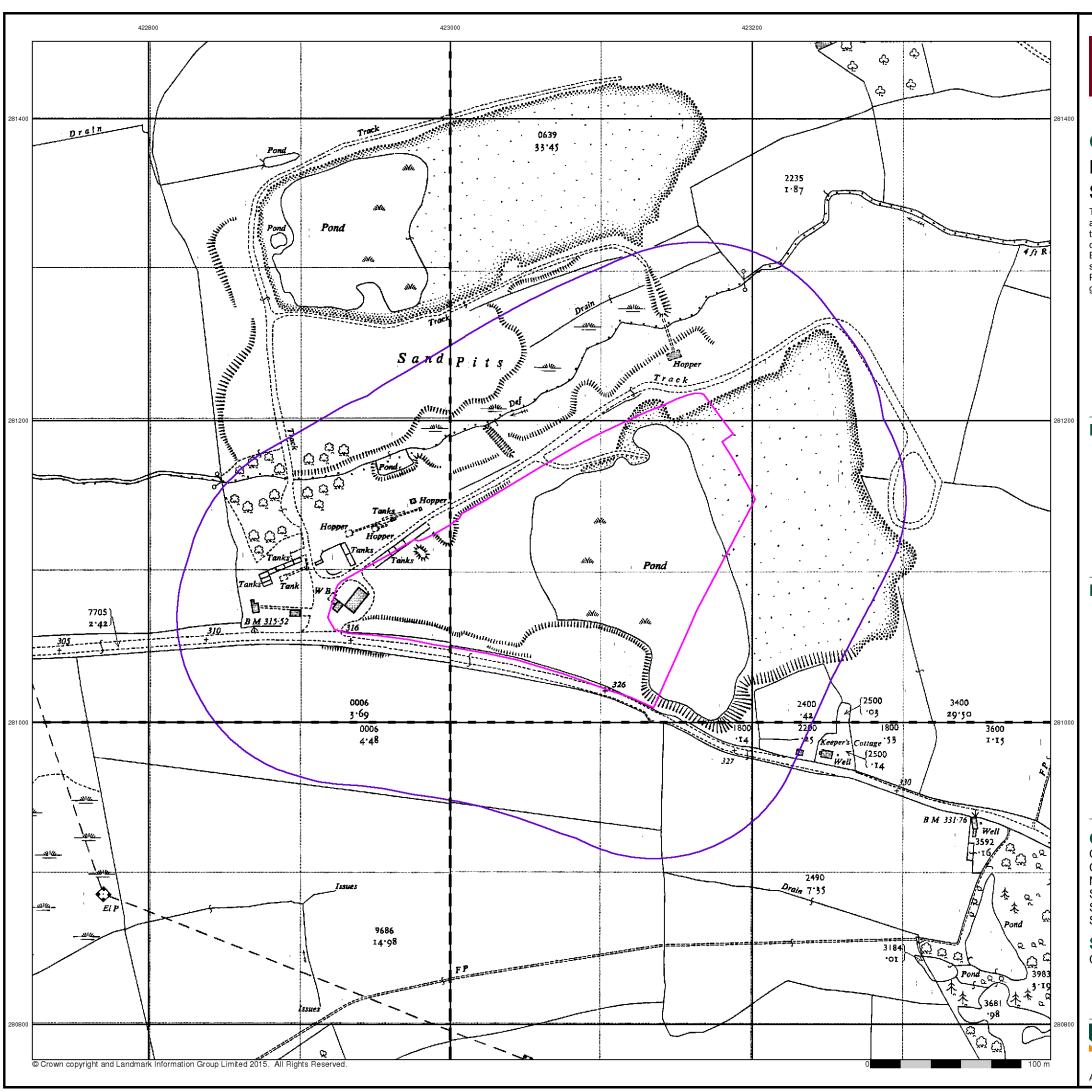
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 70642001_1_1 Customer Ref: 10122 National Grid Reference: 423070, 281110 Slice: Α

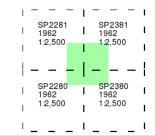
Site Area (Ha): 3.11 Search Buffer (m): 1000


Site Details

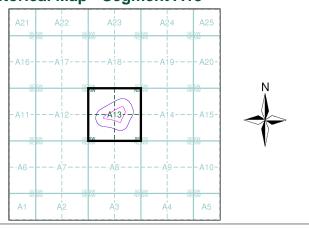
Cornets End Lane, Meriden, Coventry, CV7 7LG

0844 844 9952

A Landmark Information Group Service v47.0 29-Jul-2015 Page 6 of 11



Ordnance Survey Plan Published 1962


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

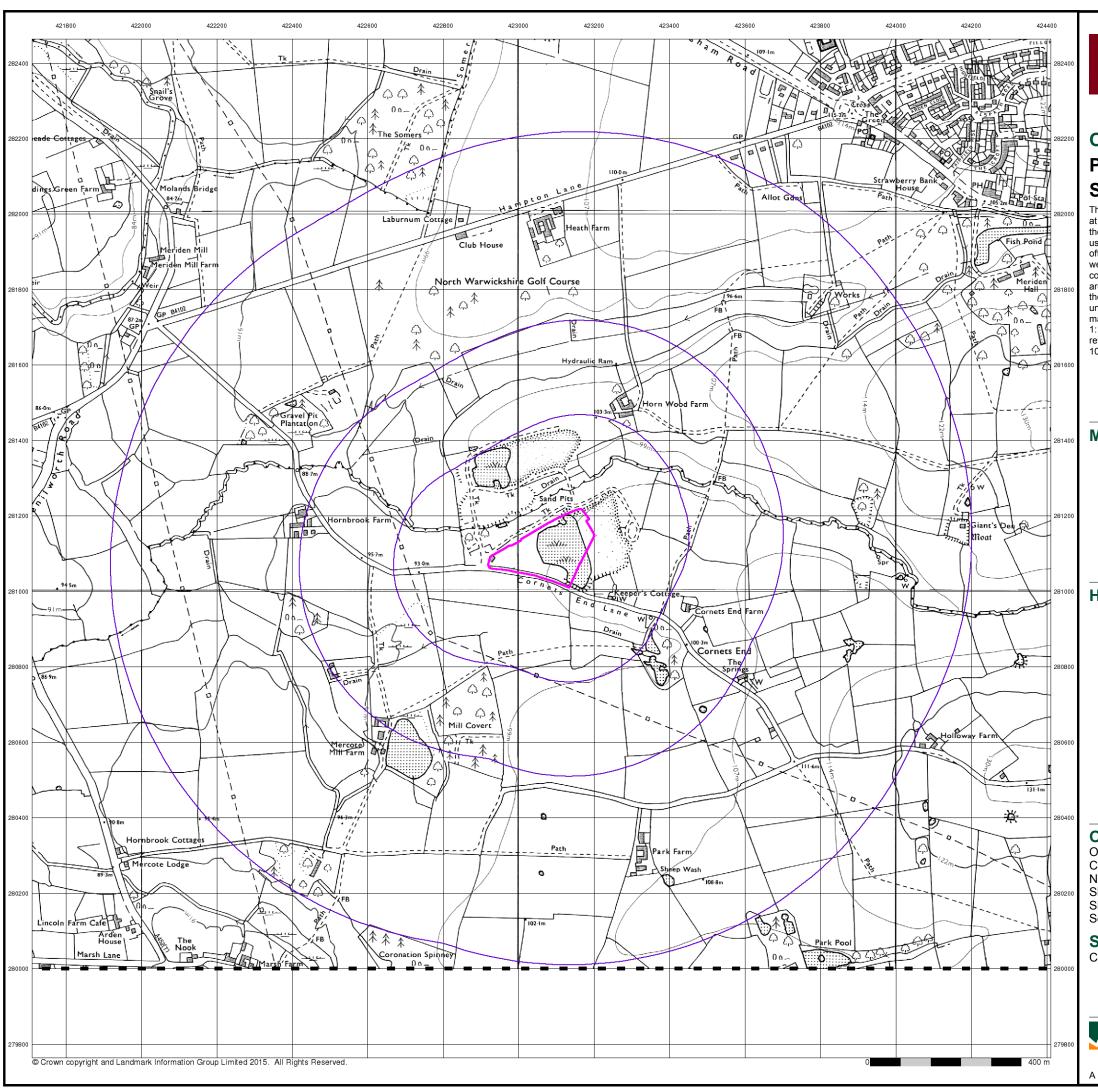
Historical Map - Segment A13

Order Details

Order Number: 70642001_1_1 Customer Ref: National Grid Reference: 423070, 281110

Slice:

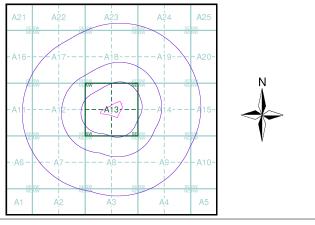
Site Area (Ha): Search Buffer (m): 3.11


Site Details

Cornets End Lane, Meriden, Coventry, CV7 7LG

0844 844 9952 0844 844 9951

A Landmark Information Group Service v47.0 29-Jul-2015


Ordnance Survey Plan Published 1970 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

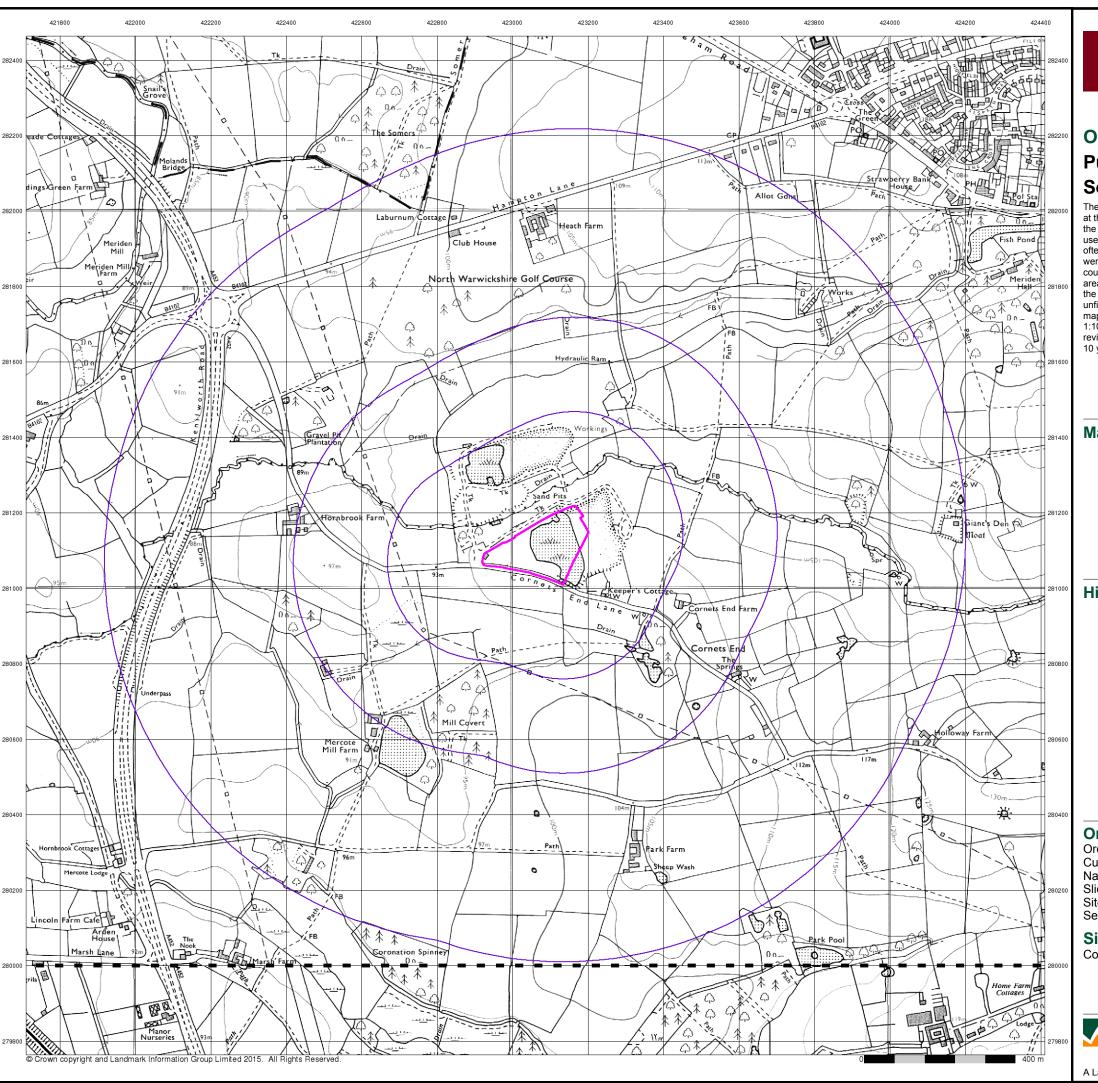
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

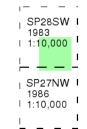
Order Number: 70642001_1_1 Customer Ref: 10122 National Grid Reference: 423070, 281110 Slice: Α

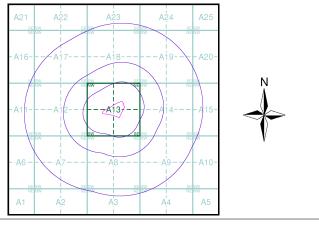
Site Area (Ha): 3.11 Search Buffer (m): 1000


Site Details

Cornets End Lane, Meriden, Coventry, CV7 7LG

0844 844 9952


A Landmark Information Group Service v47.0 29-Jul-2015 Page 8 of 11


Ordnance Survey Plan Published 1983 - 1986 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 70642001_1_1 Customer Ref: 10122 National Grid Reference: 423070, 281110 Slice: Α

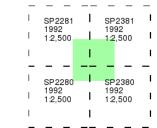
Site Area (Ha): Search Buffer (m): 3.11

Site Details

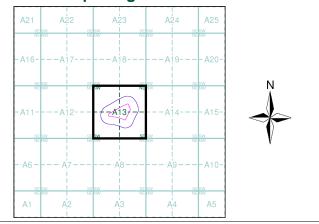
Cornets End Lane, Meriden, Coventry, CV7 7LG

0844 844 9952

A Landmark Information Group Service v47.0 29-Jul-2015 Page 9 of 11


Large-Scale National Grid Data

Published 1992


Source map scale - 1:2,500

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

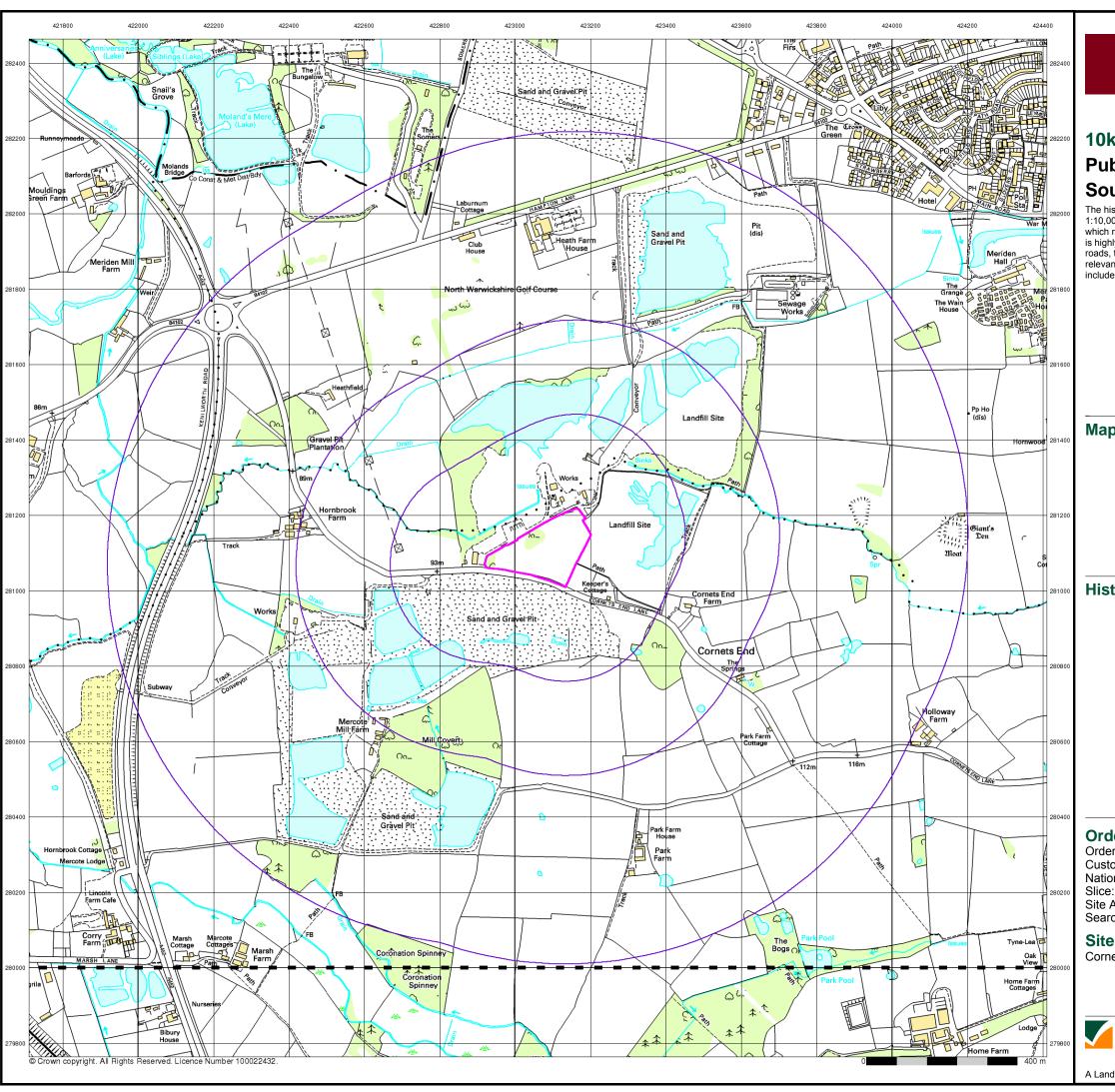
Historical Map - Segment A13

Order Details

Order Number: 70642001_1_1 Customer Ref: National Grid Reference: 423070, 281110

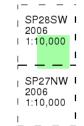
Slice:

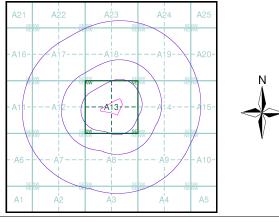
Site Area (Ha): Search Buffer (m): 3.11


Site Details

Cornets End Lane, Meriden, Coventry, CV7 7LG

0844 844 9952 0844 844 9951


A Landmark Information Group Service v47.0 29-Jul-2015


10k Raster Mapping **Published 2006** Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

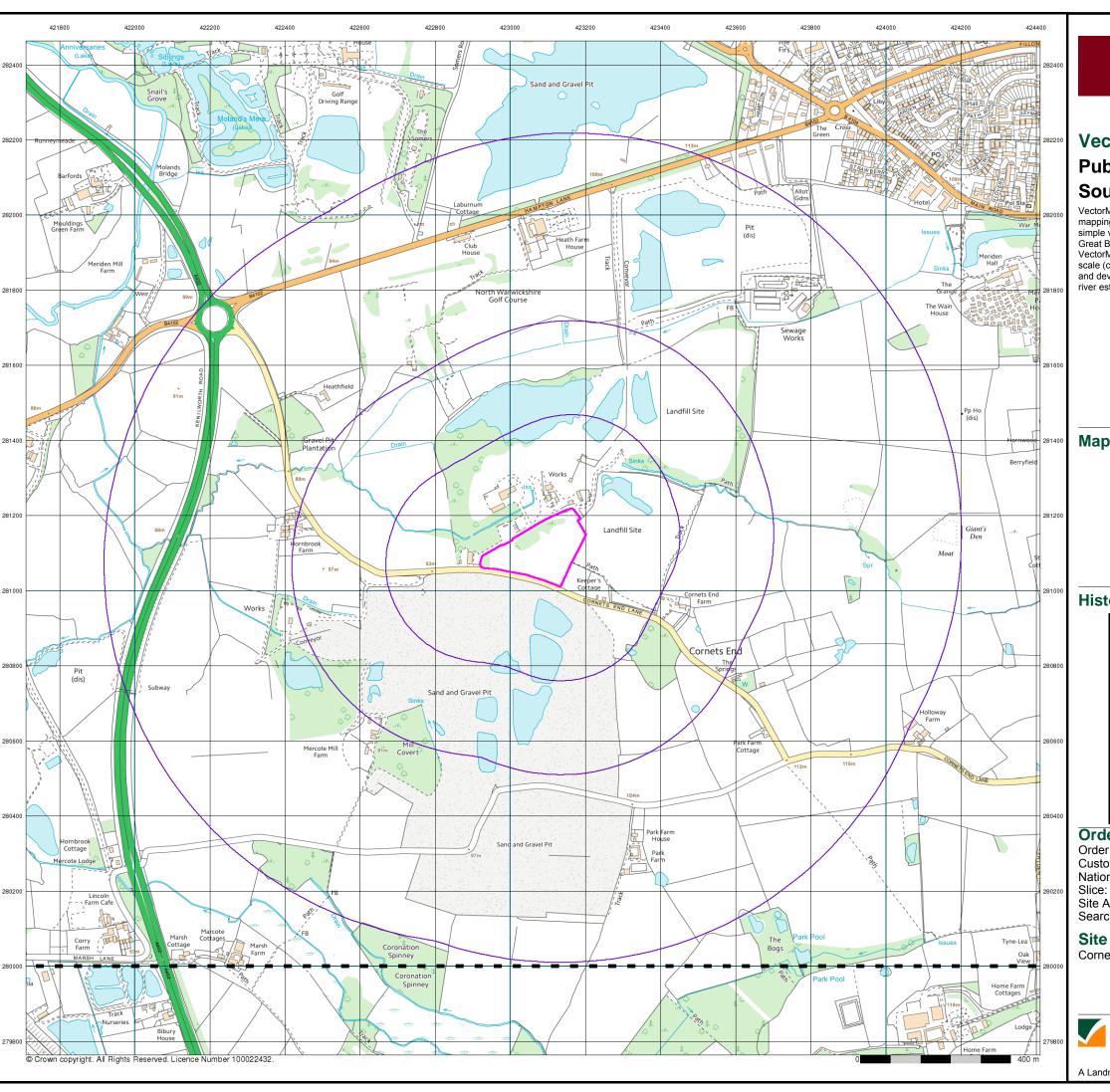
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

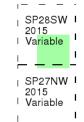
Order Number: 70642001_1_1 Customer Ref: National Grid Reference: 423070, 281110

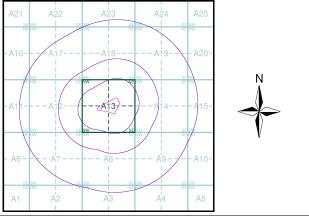
Site Area (Ha): Search Buffer (m): 3.11


Site Details

Cornets End Lane, Meriden, Coventry, CV7 7LG

0844 844 9952


A Landmark Information Group Service v47.0 29-Jul-2015 Page 10 of 11


VectorMap Local Published 2015 Source map scale - 1:10,000

VectorMap Local (Raster) is Ordnance Survey's highest detailed 'backdrop' mapping product. These maps are produced from OS's VectorMap Local, a simple vector dataset at a nominal scale of 1:10,000, covering the whole of Great Britain, that has been designed for creating graphical mapping. OS VectorMap Local is derived from large-scale information surveyed at 1:1250 scale (covering major towns and cities),1:2500 scale (smaller towns, villages and developed rural areas), and 1:10 000 scale (mountain, moorland and

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 70642001_1_1 Customer Ref: 10122 National Grid Reference: 423070, 281110 Α

Site Area (Ha): Search Buffer (m): 3.11 1000

Site Details

Cornets End Lane, Meriden, Coventry, CV7 7LG

0844 844 9952

A Landmark Information Group Service v47.0 29-Jul-2015 Page 11 of 11

APPENDIX SCR3

Phase 1 Desk Study & Risk Assessment (2015)

DRAINAGE STONE

August 2015 Report No 10122/R01 Issue 2

LAND AT MERIDEN QUARRY

PHASE 1 DESK STUDY AND PRELIMINARY RISK ASSESSMENT REPORT

Prepared for

Midlands Planning Services

LAND AT MERIDEN QUARRY

PHASE 1 DESK STUDY AND PRELIMINARY RISK ASSESSMENT REPORT

August 2015

Carried Out For:

Prepared By:

Midlands Planning Services

Browns Road Daventry Northamptonshire NN11 4NS TerraConsult (South) Ltd

Dugard House Peartree Road Colchester Essex CO3 0UL

Tel: 01206 585600

E-mail: mailbox@terraconsult.co.uk

DOCUMENT INFORMATION AND CONTROL SHEET

Document Status and Approval Schedule

Report No 10122/R01	Title	
Issue 2	LAND AT MERIDEN QUARRY	
	PHASE 1 DESK STUDY AND PRELIMINARY RISK	
	ASSESSMENT REPORT	

Issue History

Issue	Status	Date		Signature	Date
1	Final	4 August 2015	Prepared By: Sue Slaven MIEnvSc CEnv SiLC	Sue Slaven	03/08/15
			Checked By: Tim Slaven MRICS FIQ MCIWM CEnv	Tim Slaven	03/08/15
			Authorised By: Sue Slaven MIEnvSc CEnv SiLC	Sue Slaven	04/08/15
2	Draft for client comment incorporating detailed	19 August 2015	Prepared By: Sue Slaven MIEnvSc CEnv SiLC	Sue Slaven	19/08/15
	development proposals		Checked By: Mat Nicholson	Mat Nicholson	19/08/15
			Authorised By: Sue Slaven MIEnvSc CEnv SiLC	Sue Slaven	19/08/15
3	Final	27 August 2015	Prepared By: Sue Slaven MIEnvSc CEnv SiLC	Sue Slaven	27/08/15

DISCLAIMER

This report should be read with the Service Constraints Report Limitations & Planning Requirements set out in Appendix A.

EXECUTIVE SUMMARY

Item	Description		
Client	Midlands Planning Services		
The Site	Land at Meriden Quarry, Cornets End Lane, Meriden, Coventry, CV7 7LG		
Report Objective	This report presents the findings of a desk-based assessment and an environmental risk assessment relating to the site. This report is to accompany a planning application to redevelop the site to an industrial end-use.		
Land Use History	The site was in agricultural use until circa. 1937 when a Sand Pit occupied the western sector. By 1954 the Sand Pit had extended to cover the entire site. By 1962, the Sand Pit was no longer present and the site was occupied by buildings, a tank and a hopper in the western sector and a pond in the eastern sector. The site was a landfill between 1962 and 1992 and by 2006, it was occupied by a field.		
Development	It is proposed to develop the site to an industrial end-use comprising an In-Vessel Composting Facility, a Biomass Facility and Waste Water Treatment Plant.		
Geo- environmental Setting	Geology: The site has been mined by opencast working to extract the mineral sand and gravel deposits. The bedrock geology comprises the Mercia Mudstone Group. Hydrogeology: The bedrock geology is classified as a Secondary B aquifer. The site is not situated within a groundwater Source Protection Zone and the nearest groundwater abstraction point is 200m to the north of the site, which is used for mineral washing. Hydrology: Horn Brook is located approximately 85m to the north west. Flood Risk: The site is located in an area with a low risk of flooding (Flood Zone 1). Unexploded Ordnance: A high risk of UXO has been identified in the area. However, mining activities will have effectively cleared the land within the footprint of the site and immediate vicinity.		
Phase 1 Preliminary Risk Assessment	Based on the former land uses at the site, i.e. landfilling, the potential for ground contamination to be present is considered to be likely, together with the potential for the generation of landfill gas. The principal receptors of concern are neighbouring residents, future site occupiers, construction workers, controlled waters and buildings. Due to the potential presence of ground gas and in the absence of mitigation measures, the possible consequences on receptors (i.e. future site occupiers) are estimated to be SEVERE and the probability of the identified risks occurring is considered to be HIGH. A site investigation is therefore recommended to determine ground conditions and thus, the presence of landfill gas. Dependent upon the findings and if necessary, it is proposed that gas control measures will be incorporated into the design of the development. Thus reducing the potential consequences to LOW.		
Further Work	Phase 2 site investigation is required to address geo-environmental issues, and is to include: Trial pitting Installation of boreholes Sampling and testing of soils and groundwater; Gas and groundwater monitoring; Provision of a geoenvironmental report.		

This summary forms part of a Tier 1 Risk Assessment (Ground Condition) report prepared by TerraConsult and contains an overview of the key findings and conclusions. The summary should not be treated as an independent document.

LAND AT MERIDEN QUARRY

PHASE 1 DESK STUDY AND PRELIMINARY RISK ASSESSMENT REPORT

CONTENTS

			Page
1.	INTR	ODUCTION	1
	1.1	Background Information	1
	1.2	Development Proposals	1
	1.3	Scope of the Investigation	2
	1.4	Previous Investigations	3
2.	SITE	LOCATION AND DESCRIPTION	3
	2.1	Site Location	3
	2.2	Site Description	4
	2.3	Site Ownership	4
	2.4	History	4
	2.5	Planning and Other Constraints	5
	2.6	Services Search	8
3.	ENVI	RONMENTAL SETTING	8
	3.1	Data Summary	8
4.	HAZ	ARD ASSESSMENT & PRELIMINARY CONCEPTUAL SITE MODEL	11
	4.1	Hazards Identified with the Proposed Development	11
	4.2	Potential Sources of Contamination	11
	4.3	Potential Receptors of Contamination	11
	4.4	Identification of Pathways	13
	4.5	Contaminant Linkages	14
	4.6	Conceptual Site Model	15
	4.7	Preliminary Contamination Hazard Assessment	15
5.	CON	CLUSIONS	17
	5.1	Environmental Risk Assessment	17
	5.2	Recommendations	18

5.3	Health & Safety	20		
REFEREN	NCES	21		
TABLES				
IABLES				
Table 1	Summary of Description of the Site and its Enviro	ns 3		
Table 2	Summary of Reviewed Ordnance Survey Historica	al Maps 4		
Table 3	Planning Applications for Postcode CV7 7LG (Men	• •		
Table 4	Data Summary - Environmental Setting	9		
Table 5	Identified Potential Receptors	12		
Table 6	Matrix of Potential Contaminant Linkages	14		
Table 7	Preliminary Hazard Assessment	16		
FIGURES				
Figure 1	Proposed Site Plan (not to scale)	2		
Figure 2	Site Location (Not to Scale)	3		
Figure 3	Site Boundaries for Planning Applications relat	ing to Postcode: CV7 7LG		
(from Sol	ihull Metropolitan Borough Council website)	8		
Figure 4	Preliminary Conceptual Site Model (not to scale).	15		
APPEND	DICES			
Appendix	A Service Constraints and Report Limitati	ons		
Appendix	•	Environmental Risk Assessment Methodology and Terminology		
Appendix C Historical Maps				
Appendix	CD Envirocheck® Report			

LAND AT MERIDEN QUARRY

PHASE 1 DESK STUDY AND PRELIMINARY RISK ASSESSMENT REPORT

1. INTRODUCTION

1.1 Background Information

TerraConsult (South) Limited (TerraConsult) was commissioned by Midlands Planning Services to carry out a preliminary investigation for the site known as Land at Meriden Quarry, near Coventry. The purpose of the report is to provide a preliminary assessment of the site using published information with regards to the potential redevelopment of the site. It is understood that this report is to support a planning application to redevelop the site to an industrial end-use.

This report has been devised to comply with the relevant principles and requirements of a range of guidance with regards to potentially contaminated land, including (but not limited to):

- BS10175:2011+A1:2013: "Investigation of potentially contaminated sites -Code of practice";
- BS5930:1999+A2:2010: "Code of practice for site investigations";
- Contaminated Land (England) (Amendment) Regulations 2012 and Contaminated Land Statutory Guidance (Defra, April 2012):
- Defra/Environment Agency (2004) Report CLR11 "Model Procedures for the Management of Land Contamination";
- Environment Agency (2011) Report GPLC1 "Guiding Principles for Land Contamination":
- Environment Agency (2012) Report GP3 "Groundwater protection: Principles and Practice";
- National Planning Policy Framework (HCA, March 2012); and
- Part IIA of the Environmental Protection Act, 1990.

TerraConsult's service constraints and report limitations are presented in Appendix A and a description of environmental risk assessment methodology and terminology is presented in Appendix B.

In preparation of this report, it is assumed that any information provided to TerraConsult by the client in connection with the commission is accurate, complete and not misleading. TerraConsult cannot guarantee the accuracy or validity of this information.

1.2 Development Proposals

It is understood that the site is to be redeveloped to an industrial end-use comprising an In-Vessel Composting Facility, a Biomass Energy Facility and Waste Water Treatment Plant. The proposed facility will be designed to process up to 45,000 tonnes per annum of comingled green and food waste and wood waste. The green and food waste will be composted via an In-Vessel Composting system to produce 0-12mm grade compost which can be mixed with sand to manufacture topsoil to BS3883 certification. Oversized compost (10mm+) will be mixed with wood waste and treated in the Biomass Facility to produce renewable energy.

It is understood that the majority of the site will be covered with building and hardstanding with small areas of landscaping on the boundaries. This is indicated in Figure 1 below.

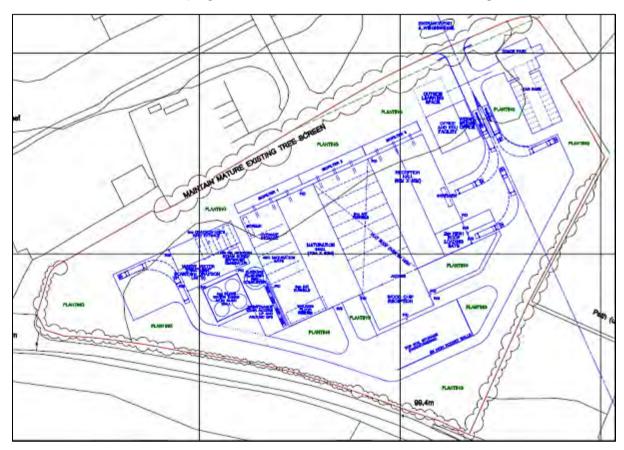


Figure 1 Proposed Site Plan (not to scale)
(Taken from Vagdia & Holmes; Drawing No. 16364-SK-003EC - Preliminary)

The foundation design of the development has not, at this stage, been determined as it will depend upon ground conditions as determined by intrusive investigation. However, if required, ground gas control remediation measures can be incorporated into the foundation design of new buildings, such as the installation of a gas protection membrane and a monolithic concrete plinth, if required.

1.3 Scope of the Investigation

The scope of the Phase I desk study is to meet the requirements to provide information for planning purposes and for the design of future development. The specific activities carried out are as follows:

- undertake a desk study of available information to include a review of the history of the site and geo-environmental data;
- develop a preliminary conceptual site model; and

• provide recommendations for a Phase 2 Ground Investigation, if this is required.

1.4 Previous Investigations

It is understood that the site has not been subject to any previous intrusive investigations.

2. SITE LOCATION AND DESCRIPTION

2.1 Site Location

The location of the site is indicated in Figure 1 below and a summary and a brief description is presented in Table 1.

Table 1 Summary of Description of the Site and its Environs

Location	The site is located approximately 1.6km to the south west of the village of Meriden, 5.3km west of the outskirts of Coventry, 7,8km to the east of Solihull and 1km south east of the junction with the A452. The site is situated within an area subject to sand and gravel extraction, together with agricultural land and a Golf Course.	
Grid Reference	423070, 281110	
Post Code	CV7 7LG	
Site Area	3.11ha	
Topography	The site is relatively flat in a gently undulating landscape.	

Figure 2 Site Location (Not to Scale)

2.2 Site Description

A site walkover survey has not been carried out. However, a review of an aerial photograph provided within GP Planning Limited's Pre-Application Advice Note indicates that the site is covered with vegetation comprising grass, trees and bushes. There is a hedge of small trees on the southern boundary adjacent to the road, trees mainly alongside the north western boundary. Overhead lines are also present in the southern sector and alongside the eastern boundary. There is a patch of bare ground in the northern sector and the north eastern sector may be defined by a wooden fence or brick wall.

The Surrounding Area

To the north and east of the site is an operational quarry that is accessed along a road immediately adjacent to the site's north western boundary. Quarry buildings are located to the north west of the site at distances of approximately 40m and 80m. A large one storey office building is located immediately to the west of the south western corner of the site. An operational quarry, together with man-made lakes, occupies the land to the south of the site, on the opposite side of Cornet's End Lane.

The nearest residential properties are Keepers Cottage at a distance of approximately 125m to the east, Cornets End Farm approximately 315m to the south east and Hornbrook Farm 530m to the west. The remainder of the surrounding area is occupied predominantly by agricultural land.

2.3 Site Ownership

The owners of the site are not known at the time of preparation of this report.

2.4 History

A summary of the historical development of the site and surrounding area is presented in Table 2. This has been based on historical Ordnance Survey (OS) maps obtained from Envirocheck®, which are included within Appendix D. The age and general activity/land use can often be determined from the layout of structures depicted on historical OS maps, however, specific elements of site operations may not be determined from these maps.

Table 2 Summary of Reviewed Ordnance Survey Historical Maps

OS Map Date and Scale	On-site Features	Off-site Features
1886 - 1:10,560 1887 - 1:2,500	The site is in agricultural as part of a larger field.	The area is in agricultural use with a road immediately to the south. To the north of the site is Packington Race Course within an undefined boundary. A stream is located to the north of the site, at a distance of approximately 50m, which flows generally in a westwards direction. Cornet's End is located approximately 100m to the south east.
1904 - 1:2,500 1905 - 1:10,560	The site remains unchanged.	The immediately vicinity remains unchanged. However, Packington Race Course is no longer present and a Golf Course occupies the northern area.

OS Map Date and Scale	On-site Features	Off-site Features	
1937 1:2,500 & 1:10,560	A Sand Pit occupies the western corner of the site.	A smaller sand pit is situated on the opposite side of Cornet's End Lane, to the south of the south western corner of the site.	
1954 - 1955 1:2,500 & 1:10,000	The Sand Pit covers the entire site with a track on the north western and north eastern boundaries.	A slope has appeared in the rectangular field to the north of the site. The surrounding area remains predominantly in agricultural use.	
1962 - 1:2,500	The Sand Pit is no longer present, although the slopes along the southern and part of the north western boundaries remain. There are buildings in the south western corner and a tank and hopper to the north east of the building. The eastern sector is occupied by a Pond.	There is a Sand Pit, together with a pond, marshland alongside the northern bank of the river, tanks and hoppers immediately to the north west and also a Sand Pit to the north east. The smaller Sand Pit to the south is no longer present.	
1970 - 1:10,000	The site remains unchanged. Other information suggests that the site was subject to landfilling at this time. The site remains unchanged. The surrounding area remains unchanged.		
1983 - 1:10,000	The site remains unchanged.	The surrounding area remains unchanged.	
1992 - 1:2,500	The site remains unchanged.	The surrounding area remains unchanged.	
2006 - 1:10,000	The site is occupied by a field.	There are landfill sites to the north west and north east of the site, together with large ponds. Works and a track are immediately to the north west. Part of the river is no longer present, possibly culverted as Sinks and Issues are shown. To the south of the site, on the opposite side of Cornet's End Lane, are Sand and Gravel Pits. There are other sand and gravel pits further to the north of the site.	
2015 - 1:10,000	The site remains unchanged.	The surrounding area remains relatively unchanged. However, many of the ponds that were present in 2006 are no longer present.	

2.5 Planning and Other Constraints

A review of Warwickshire County Council's planning website¹ did not identify any current planning applications relating to the site.

A review of the Solihull Metropolitan Borough Council planning website² indicates that there have been several planning applications relating to the site as part of the larger Meriden

_

¹ https://planning.warwickshire.gov.uk/swiftlg/apas/run/WPHAPPCRITERIA

Quarry, together with applications in the vicinity. These are briefly described in Table 3 and indicated on Figure 1 below.

Table 3 Planning Applications for Postcode CV7 7LG (Meriden Quarry)

Planning Application	Location	Ref. No.	Date	Status
Restoration of former quarry area to E to use as sports ground with two football pitches, cricket pitch, pavilion, car parking, new trees and hedgerows	Meriden Quarry, Cornets End Lane, Meriden, Solihull, CV7 7LG	PL/2015/50773	April 2015	Decided
Change of use from minerals extraction land to waste management, to allow for expanded waste wood treatment operation and associated operational development at Meriden Quarry recycling facility.	Meriden Quarry, Meriden, CV7 LG	PL/2014/00490/FULM	Jan 2015	Decided
Change for use from B1 to commercial dog boarding establishment to include the provision of dog day care.	Tarmac Construction Ltd, Cornets End Lane, Meriden, Coventry, CV7 LG	PL/2014/01297/CU	May 2014	Decided
Vary condition no. 7 on planning application 1987/2730 and 1997/525 to allow importation of inert soils instead of colliery spoil for land restoration in part of area C	Meriden Quarry, Cornets End Lane, Meriden, CV7 7LG	PL/2013/01640/FULL	Sept 2013	Decided
Expansion of activities at the Meriden Quarry recycling facility (in area C of the wider Meriden Quarry site) to allow for the treatment of waste wood.	Meriden CV7 7LG	PL/2013/01100/INV	Jul 2013	Unknown
Vary condition no. 7 on planning application 1987/2730 and 1997/525 to allow importation of inert soils instead of colliery spoil for land restoration in part of area C for 12 months	NRS Waste Care Ltd, Meriden Quarry, Cornets End Lane, Meriden, CV7 7LG	PL/2013/01176/FULL	Jul 2013	Decided
Vary condition no. 7 on planning application 1987/2730 and 1997/525 to enable the importation of inert construction for restoration purposes	Tarmac Construction Ltd, Cornets End Lane, Meriden, CV7 7LG	PL/2012/01917/FULL	Oct 2012	Decided

August 2015

 $^{^2\} http://publicaccess.solihull.gov.uk/online-applications/simpleSearchResults.do?action=firstPage$

Planning Application	Location	Ref. No.	Date	Status
Extend time limit on approved planning application 2006/2064 (sand and gravel extraction, inert waste disposal, restoration to agriculture and nature conservation)	Tarmac Construction Ltd, Meriden Quarry, Cornets End Lane, Meriden, CV7 7LG	PL/2012/00471/FULM	Jan 2012	Decided
Variation of condition no. 7 of planning application 87/2730 to enable the infilling of material	Tarmac Construction Ltd, Cornets End Lane, Meriden, CV7 7LG	PL/2011/01575/FULL	Sept 2011	Decided
Variation of condition no. 7 of planning application 1987/2730 and 97/535 to allow the importation of inert construction soil for restoration purposes	Tarmac Construction Ltd, Cornets End Lane, Meriden, CV7 7LG	PL/2010/00548/FULL	Mar 2010	Decided
Sand and gravel extraction, inert waste disposal, restoration to agriculture and nature conservation	Tarmac Construction Ltd, Cornets End Lane, Meriden, CV7 7LG	PL/2006/00391/FULL	Oct 2006	Decided
Variation of condition 03 and 08 of planning consent 1996/1563 to extend the working life of the site by 20 years	Cornets End Quarry, Cornets End Lane, Meriden, CV7 7LG	PL/2004/01258/FULL	Dec 2004	Decided
Erection of a dry silo mortar plant under condition 3 of planning consent 97/635 and part 19 of the gpdo 1995	Tilcon Ltd, Meriden Quarry, Cornets End Lane, Meriden, Coventry, CV7 7LF	PL/2002/02459/FULL	Oct 2002	Decided
Erection of building for a bagging plant, stock bays, hoppers for bagging aggregates and building for canteen facilities	Tilcon Ltd, Meriden Quarry, Cornets End Lane, Meriden, Coventry, CV7 7LF	PL/2002/02276/FULL	Oct 2002	Decided
Determination of planning conditions for mineral extraction	Meriden Quarry, Tilcon Ltd, Cornets End Lane, Meriden, CV7 7LG	PL/1997/00168/RM	Mar 1997	Unknown
Renewal of consent 83/1044 for sand processing plant	Meriden Quarry, Cornets End Lane, Meriden, CV7 7LG	PL/1994/00067/FULL	Mar 1994	Decided
Domestic refuse tip	Meriden Quarry, Cornets End Lane, Meriden, CV7 7LG	PL/1990/00300/FULL	Oct 1990	Decided
Mortar batching plant	Tilcon, Meriden Quarry, Cornets End Lane, Meriden, CV7 7LG	PL/1990/01761/FULL	Aug 1990	Unknown
Demolition of asbestos garage and workshops and erection of temporary offices and landscaping works	Meriden Quarry, Cornets End Lane, Meriden, CV7 7LG	PL/1989/00598/FULL	Mar 1989	Decided

Planning Application	Location	Ref. No.	Date	Status
Erection of silo	Meriden Quarry, Cornets End Lane, Meriden, CV7 7LG	PL/1987/00798/FULL	Apr 1987	Decided

Figure 3 Site Boundaries for Planning Applications relating to Postcode: CV7 7LG (from Solihull Metropolitan Borough Council website)

2.6 Services Search

A check for underground services has not been carried out for the site. However, this will be required prior to any intrusive investigation and/or groundworks. The search should, as a minimum, include for water, gas, electricity and telephone.

3. ENVIRONMENTAL SETTING

3.1 Data Summary

A summary of the environmental background information (geology, hydrology, hydrogeology, database information *etc.*) and regulator consultation information has been presented in Table 4. The Envirocheck Report is included within Appendix D of this report. This information, together with the site history, represents the base data used to formulate the conceptual ground model.

Table 4 Data Summary - Environmental Setting

	Data Source	Data Summary
Regional Geology	BGS Website - 29 July 2015 http://mapapps.bgs.ac.u	The site is not shown to be underlain by superficial deposits, however, the area has been worked by opencast mining for sand and gravel.
~ O	k/geologyofbritain/	The bedrock geology is the Mercia Mudstone Group.
Hydrogeology	Envirocheck® Report Environment Agency Website - What's in my Backyard - 30 July 2015 http://maps.environment -agency.gov.uk/wiyby/	The bedrock geology is classified as a Secondary B aquifer and the site does not lie within a Source Protection Zone (SPZ) for groundwater. However, Zone III of an SPZ is located approximately 760m to the east. The nearest abstraction for groundwater is a lagoon in Cornets End Quarry, located approximately 200m to the north east and is used for mineral washing. Groundwater for the purpose of general farming and domestic is abstracted by Mr Barber at Berryfields Farm, located approximately 1.4km to the east.
	Envirocheck® Report	The nearest surface water feature is located approximately 50m to the south of the site. Horn Brook at a location approximately 85m to the north west has
		been sampled for quality and is determined to be "Good". The site is not in an area at risk from flooding and is therefore within Flood Zone 1.
		There are no current surface water abstraction licences held within 250m of the site.
Hydrology		There have been no pollution incidents to controlled waters within 250m of the site.
Hydr		There is one discharge consent located approximately 40m to the west at The Office of Meriden Quarry. The consent is held by Tarmac Central Limited for the discharge of final/treated effluence to land/soakaway.
		Tarmac Central Limited held another consent at a location approximately 110m to the north of the site. This was for the discharge of site drainage into the Horn Brook.
	Drainage Plans	No drainage plans have been made available.
	Buried Culverts	There is no evidence that culverts exist on-site.
Radon Potential	Envirocheck® Report Building Research Establishment - BR211 'Radon: Guidance on protective measures for new buildings' 2007	The site is not situated in an area where radon protective measures are necessary in the construction of new buildings. However, it should be noted that the Health Protection Agency, now Public Health England (PHE) published advice in July 2010 recommending that all new buildings in the UK include minimum basic radon protective measures. Further advice is available on the PHE website. (http://www.ukradon.org/information/reducelevels)
Other Radiation	Envirocheck® Report	There are no reasonable grounds for believing the land to be radioactively contaminated (in accordance with the 2005 extension of Part IIA of The Environmental Protection Act 1990).

	Data Source	Data Summary
Ordnance	Zetica Bomb Risk Map - West Midlands	There is a high risk of unexploded ordnance in the area. However, the site was being quarried during the time of the 2 nd World War.
Industrial Processes	Envirocheck® Report Environment Agency Website - What's in my Backyard - 30 July 2015 http://maps.environment -agency.gov.uk/wiyby/	There are three sites subject to Local Authority Pollution Prevention and Controls within 250m of the site. One is located approximately 40m to the north for the blending, packing, loading and use of bulk cement by Tarmac Building Products. The other two are located approximately 90m to the west and are also for the blending, packing, loading and use of bulk cement by Tarmac Lafarge and Hope RMC Ltd. There have been no major or significant pollution incidents in the area.
Waste	Envirocheck® Report Environment Agency Website - What's in my Backyard - 30 July 2015 http://maps.environment -agency.gov.uk/wiyby/	The site is part of a former landfill site, named Meriden Quarry and operated by Tilling Construction Services Limited (Tilcon). The site received inert, industrial, commercial, household, special waste and liquid sludge in the period between 1 January 1962 and 31 July 1992. There are two licensed waste management facilities within 250m both at Meriden Quarry. One located approximately 40m to the north is operated by NRS Waste Care Limited for use of the waste for reclamation. The other is held by Coleman & Co Ltd at a location approximately 200m to the east for physical treatment facilities. Authorised waste includes tarmacadam, hardcore and inert excavation materials. Approximately 60m to the north east of the site is a registered landfill site operated by Ready Mixed Concrete (UK) Limited at Berkswell Quarry. There is no known restriction on the source of waste.
Mineral Extraction	Envirocheck® Report	The site was subject to the extraction of sand and gravel by opencast mining, which extended a further 140m to the east and at least 260m to the north. The site is named Cornet's End Sand Pit and the operator is unknown. Another sand and gravel pit, named Berkswell A, was located approximately 215m to the south, which was operated by RMC Aggregates (Western) Limited. The site is located in an area that may be affected by coal mining. However, a Coal Mining Report issued by the Coal Authority (included in Appendix D) indicates that the site is not within the zone of likely physical influence on the surface from past underground workings, nor in the likely zone of influence of any present underground coal workings.
Trade Directory	Envirocheck® Report	There are two active trades within 250m of the site: both located approximately 40m to the north. Lafarge Tarmac operate quarries at Meriden Quarry and Hope Construction produce concrete and mortar ready mixed at Cornet's End Lane.

	Data Source	Data Summary		
Ecology	Envirocheck® Report MAGIC website - 31 July 2015 http://www.magic.gov.uk//magicMap.aspx	The site is located within an Area of Adopted Green Belt for Solihull Metropolitan Borough Council. There are no areas of ecological importance within the surrounding area, including Special Scientific Interest (SSSI), Special Protection Areas, Areas of Outstanding Natural Beauty or RAMSAR (wetlands).		
Archaeological & Building Heritage	English Heritage website - 31 July 2015 http://list.english- heritage.org.uk/mapsear ch.aspx	There are no archaeological or heritage features within 250m of the site.		
Regulatory Contact	Solihull Metropolitan Borough Council / North Warwickshire Borough Council	Contact with the Environmental health departments has not been made at this stage.		
ulatory	Warwickshire County Council	Contact with WCC has not been made at this stage.		
Reg	Environment Agency	Contact with the Environment Agency has not been made at this stage.		

4. HAZARD ASSESSMENT & PRELIMINARY CONCEPTUAL SITE MODEL

4.1 Hazards Identified with the Proposed Development

The hazard identification is based on the assumption that the site is to be developed to a commercial/industrial end-use, including soft landscaping on the perimeter and car parking, as shown in Figure 1. It is assumed that drinking water will be supplied by underground pipes.

4.2 Potential Sources of Contamination

The site was occupied by a sand and gravel pit in the period between 1937 and 1962, when it became a landfill site until 1992. The landfill site may have received inert, industrial, commercial, household, special and liquid sludge and was operated by Tilling Construction Services Limited. It is not known whether any landfill control measures are installed such as gas/groundwater monitoring boreholes, leachate monitoring points, landfill liner etc. Thus, it is considered that there is the potential for contaminants to be present in the ground and could include metals, hydrocarbons and asbestos, together with ground gas.

There were also landfill sites to the north west and north east and thus, these could also impact upon the site through migration of contaminants including ground gas.

4.3 Potential Receptors of Contamination

Based on the data previously discussed, the following potential receptors have been identified in Table 5.

Table 5 Identified Potential Receptors

Sensitive Receptors						
Α	Current site occupiers (possibly casual users of the field) and neighbouring residents					
В	Future site occupiers (those to be employed at the development)					
С	Construction workers (those involved with the redevelopment of the site)					
D	Controlled Waters - groundwater (Secondary B aquifer) and surface water (Horn Brook)					
E	Local flora and fauna.					
F	Building structures, hardstanding and services.					

The preliminary assessment of risks undertaken for the development considers potential risks to receptors identified in Table 4. The receptors A to F incorporate each of the receptors that may be required to be considered in planning conditions relating to land contamination:

- Human Health (A, B and C);
- Property (which includes buildings, crops, livestock, pets, service lines) (F);
- Adjoining land (A, B and E);
- Controlled waters (D);
- Ecological systems (E);
- Buildings and structures (F).

Archaeological sites and ancient monuments are considered not to be within the zone of influence of the site. Therefore, they have not been considered further in the risk assessment.

The closest of each of the above receptor categories to the site are considered to be;

On-site

- Site users casual
- Flora and fauna
- Secondary B Aquifer

Off-site

- Horn Brook (85m to the north west)
- Industrial/Commercial Meriden Quarry immediately to the north west with quarry buildings (40m and 80m to the north west)
- Office building (30m to the west)
- Residential property Keepers Cottage (125m to the east), Hornbrook Farm (520m to the west)
- Road Cornets End Lane (<10m south)
- Road quarry road (<10m north west)

The possible contaminant linkages are discussed below. It should be noted that not all may be formed between contaminant sources and receptors.

4.4 Identification of Pathways

4.4.1 Pathways to Human Health

There are various routes by which a potential contaminant may reach a receptor. For example, in areas where contaminated material is exposed, dermal contact with the material, inhalation or indigestion of soil and dust may occur.

Currently ground cover across the site is predominantly grass and trees. Therefore, with regards to any current site users, inhalation or ingestion of soil and dust could occur should the ground be disturbed. Pathways from dermal contact with soil may also arise.

Contact with contaminants during demolition and clearance is typically a short-term hazard, mainly concerning construction workers. Potential risks are repeated contact with contaminated ground containing substances that are skin irritants and may cause dermatitis. Therefore, with respect to site operatives, it would be prudent to exercise good hygiene practices, *e.g.* the use of gloves, the avoidance of any eating and smoking on-site, and the provision of washing facilities. In addition, any specific advice given by the Health & Safety Executive should be followed. Assuming good site practices are followed, such incidents should be considered a low risk, although a site investigation would be required to fully assess this risk.

Post construction, the surface of the development area is likely to be predominantly occupied with buildings and hardstanding, together with landscaping on the site boundaries. This is significant in that a number of potential pathways will be significantly reduced as the presence of hardstanding will act as a barrier between potential contaminants in the ground and identified receptors, with the exception of ground gas.

The entry of ground gas into future permanent buildings is considered to be a possible pathway. Ground gas can enter buildings through pathways including gaps around services pipes and ducts, fractures/cracks/gaps in subsurface walls and solid concrete slabs, construction joints and wall cavities. Ground gas can also accumulate in voids created by settlement beneath the floor slab, in drains and soakaways and confined spaces within buildings, such as cupboards and sub-floor voids. There is also a potential risk of ground gas migration though the ground to nearby residential and commercial buildings.

4.4.2 Pathways to Controlled Waters

The site overlies a Secondary B Aquifer which is capable of supporting water supplies at a local level and may form an important source of base flow to rivers. However, the site is not located within an SPZ and there are no recorded licensed abstractions for potable water within a radius of 1km of the site. Groundwater levels are unknown.

Lateral migration of potentially contaminated groundwater off-site (either via permeable waste or the underlying aquifer) must be considered. The vertical leaching of contaminants from any waste materials on-site into the groundwater is a potential pathway for contaminants to impact upon groundwater.

There is a surface watercourse (Horn Brook) located approximately 70m to the north west of the site. Thus surface water is considered a potential receptor to the migration of contaminants.

4.4.3 Other Pathways

Concrete foundations are at risk of attack from sulphate and other deleterious matter in the subsoil. The effect of sulphate on concrete can be very severe due to the reaction of sulphate with aluminium salts in the concrete. The product of this reaction has a larger volume than the original salt and so causes internal disruption.

Plastic water mains can be affected by contaminated soil through aggressive substances such as phenols, chlorides and sulphates producing acid conditions. Consideration should be given to an appropriate specification for drainage and other service pipes with particular attention paid to the suitability of the proposed pipe material.

Plants are also susceptible to the presence of contaminants in the ground, thus there is the potential for contaminant uptake through roots.

4.5 Contaminant Linkages

For each contamination source, there are potential contaminant linkages with all receptors. However, in the context of this site, not all of the contaminant linkages are plausible. The likelihood of the various pathways linking the contaminants to the receptors is presented in Table 5 below:

Table 6 Matrix of Potential Contaminant Linkages

		Receptor						
Source/ Contaminated Medium	Pathway	A - Current Site Occupiers	B - Future Site Occupiers	C - Construction Workers	D - Controlled Waters	E - Flora and fauna	F - Buildings and Services	
	Ingestion	U	U	Р	-	U	-	
	Dermal Contact/Direct Contact	U	U	Р	-	U	Р	
Soil/Waste Materials	Inhalation	Р	U	Р	-	U	-	
Materials	Infrastructure/Drainage	-	U	-	U	U	Р	
	Groundwater	U	U	U	Р	-	-	
	Surface water	-	-	-	Р	-	-	
	Ingestion	U	U	U	-	-	-	
	Inhalation	U	U	U	-	U	-	
Groundwater	Dermal Contact	U	U	U	-	U	-	
	Groundwater	U	U	U	Р	U	-	
	Surface Water	U	U	U	Р	U	-	
Gas (CH ₄ CO ₂)	Migration through ground	Р	Р	Р	-	-	Р	

Key to significance of contaminant linkages: S = Significant Pathway; P = Possible Pathway; U = Unlikely Pathway; - = Not Applicable

Table 6 has identified contaminant linkages which are considered to be Possible. These are considered further as part of the risk assessment.

4.6 Conceptual Site Model

In accordance with BS 10175, a general schematic section has been developed for the site based on the previously presented data and contaminant linkage assessment. This is shown in Figure 2.

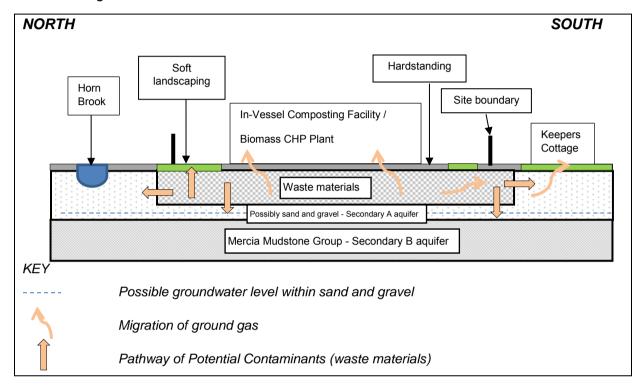


Figure 4 Preliminary Conceptual Site Model (not to scale).

The model for the site shows the anticipated geology, proposed site usage and potential sources of contamination. The information presented above represents the preliminary conceptual ground model that may need to be revised based on data obtained during any future investigation, either desk-based or intrusive. The conceptual site model and proposed end use described above should be considered very broadly representative of an industrial land use, as defined in SR3 "Updated Technical Model to the CLEA Model" (SC050021/SR3, 2011) for the purpose of this report.

4.7 Preliminary Contamination Hazard Assessment

The preliminary hazard assessment is based on current available guidance published by a number of sources and is summarised in Appendix B. A preliminary conceptual site model for this site has been established using the desk study information and has been used as a basis for the preliminary hazard assessment. The possible potential pathways are only considered for the hazard assessment.

The preliminary hazard assessment is a qualitative assessment of the risks posed by each viable contaminant link identified. The hazard assessment leads to a recommended subsequent activity that could be:

- Action Required (AR) in the short term to break existing contaminantpathway-receptor (CPR) link;
- · Site Investigation Required (SIR) with objectives for risk estimation, or
- No Action Required (NAR) at this stage.

The hazard assessment is summarised in Table 7.

Table 7 Preliminary Hazard Assessment

Hazard Identification				Hazard Assessment				
Link	Contaminant	Pathway	Receptor	Probability	Consequence	Risk	Hazard Assessment	
1	Possible waste materials (metals, hydrocarbons, asbestos etc.)	Soil/dust ingestion; dust/soil inhalation; and dermal contact.	A - Current Site Users	Negligible	Mild	Low	NAR - It is likely that any current site users will be on-site for a short period.	
2	Possible waste materials (metals, hydrocarbons, asbestos etc.)	Soil/dust ingestion; dust/soil inhalation; and dermal contact.	A - Neighbouring residents	Negligible	Mild	Low	NAR - Whilst the site remains in its current state i.e. undisturbed, there is unlikely to be a risk to neighbouring land. In addition, it is understood that no complaints have been received.	
3	Possible waste materials (metals, hydrocarbons, asbestos etc.)	Soil/dust ingestion; dust/soil inhalation; and dermal contact.	B - Future Site Occupiers	Negligible	Mild	Low	NAR - The proposed development is to comprise buildings and hardstanding which will act as a barrier between future site occupiers and the underlying ground.	
4	Possible waste materials (metals, hydrocarbons, asbestos etc.)	Soil/dust ingestion; dust/soil inhalation; and dermal contact.	C - Construction Workers	Low / Unlikely	Medium	Medium / Low	AR - Health and safety practices should be in place during construction works, as detailed above.	
5	Possible waste materials (metals, hydrocarbons, asbestos etc.)	Via underground service pipes	B - Future Site Occupiers. F - Building structures	Low / Unlikely	Mild	Low	AR - It is anticipated that services will be placed in trenches of "clean" material and appropriate pipe material used.	
6	Possible waste materials (metals, hydrocarbons, asbestos etc.)	Migration through the ground	D - Groundwater / Surface Water	Medium	Medium	Medium	SIR - A ground investigation to include groundwater monitoring boreholes will be required to quantify the risk to receptors.	
7	Possible waste materials (metals, hydrocarbons, asbestos etc.)	Uptake through roots; ingestion of soil/dust	E - Flora and fauna	Low / Unlikely	Mild	Low	NAR - Plants present on-site appear to be healthy.	

Hazard Identification				Hazard Assessment			
Link	Contaminant	Pathway	Receptor	Probability	Consequence	Risk	Hazard Assessment
8	Ground gas	Inhalation; explosion	A - Neighbouring residents B - Future Site Occupiers; C - Construction Workers; F - Building structures	Medium	Severe	High	SIR - A ground investigation to include installation of boreholes and subsequent gas monitoring will be required to determine the risks to receptors. The proposed development may include gas control measures in its design. Foundation design may be required to incorporate additional measures to prevent the risk of contamination by creating new pathways. Thus consideration of the method will be required to minimise the risk of groundwater pollution and gas migration.

From Table 6 a range of risk ranking from low to high was established. Potentially moderate and high risks require quantification and consideration prior to development. The site investigation objectives described above should represent part of a detailed main stage investigation that should include overall characterisation of the ground in association with obtaining and analysing the information described above. A high risk to neighbouring residents, future site occupiers, construction workers and buildings has been identified due to the potential presence of ground gas and a medium risk also to construction workers and controlled waters has been identified due to the potential presence of contaminants within waste materials in the ground.

The proposed development is to include gas control measures in its design, the precise nature of the measures will be dependent upon the results of the intrusive investigation and the subsequent gas monitoring programme. In addition, depending upon the foundation design, it may also be necessary to introduce further controls to prevent creation of new pathways to minimise the risk of groundwater pollution and ground gas migration.

5. CONCLUSIONS

5.1 Environmental Risk Assessment

A preliminary risk assessment has been made based on the contaminant - pathway - receptor model, as defined in Part IIA of the Environmental Protection Act 1990 and in accordance with BS 10175:2011+A1:2013 "Investigation of potentially contaminated sites - code of practice". A preliminary conceptual site model has been produced to set out the characteristic ground conditions and elements of the surrounding environment and has assisted with identifying potential sources of contamination, potential receptors of the contamination and potential pathways between them.

From the site history and information obtained from the Envirocheck® Report, the identified sources of contaminants are:

 Potential contaminants associated with the presence of a landfill site that operated between 1962 and 1992 and accepted inert, industrial, commercial, household, special waste and liquid sludge. Contaminants could include metals, hydrocarbons, asbestos, together with the potential for the generation of ground gas.

Given the history of the site, it is considered likely that these activities have the potential to cause ground contamination. The principal receptors have been identified as future site occupiers, neighbouring residents, controlled waters and buildings.

In order to fully establish the sources and pathways for these significant pollutant linkages, it would be necessary to undertake an intrusive investigation. The site investigation should provide information to enable revision of the conceptual model and risk assessment. In particular, the investigation should aim to:

- determine types and concentration of contamination;
- determine the ground conditions, including the presence of ground gas and groundwater;
- determine the lateral and vertical extent of contamination; and
- provide sufficient data points to plan remedial measures if necessary.

Potential risks to site workers can be mitigated provided that appropriate health and safety precautions are taken by all site workers in accordance with guidance from the Health & Safety Executive. However, site workers should be made aware of the nature of the hazards present, the importance of personal hygiene and washing and changing procedures and should undergo induction training before commencing groundworks. The site investigation will further quantify the risk.

5.2 Recommendations

It is recommended that an intrusive investigation is undertaken to quantify the potential risk to identified receptors, including future site occupiers, neighbouring residents, controlled waters and buildings. In order to make a quantitative assessment of the potential risks and allow for any required remedial measures to be designed; a ground investigation is recommended in accordance with BS 10175: 2011+A1 2013 with a suitably qualified geologist or engineer supervising all works. This could be combined with a geotechnical investigation carried out in accordance with BS 5930:2015.

It is recommended that the investigation comprises:

- Trial pits using a wheeled/tracked hydraulic excavator to ascertain the nature of the upper profile of the ground;
- Cable percussive boreholes to a depth of 15m using 150mm diameter casing and tools with SPTs;
- Installation of 4 No. gas and groundwater monitoring wells (51mm internal diameter HDPE with slotted sections having a 250µm geotextile filter wrap);
- Sampling and chemical testing of soils and groundwater;
- Description of the ground encountered in accordance with BS5930:2015;
- Gas and groundwater monitoring 6 visits over three months;
- Interpretative geoenvironmental report.

If required, the following geotechnical laboratory testing can also be carried out:

- natural moisture contents;
- liquid and plastic (Atterberg) limits;
- analyses for sulphate and aggressive chemical environment classification for buried concrete (the full BRE SD1 suite, Building Research Establishment 2005);
- particle size distribution wet sieve analyses, with pipette analyses;
- quick undrained triaxial shear strength tests; and
- remoulded CBR tests.

Proposed Locations of Exploratory Holes

The scope of the investigation should include exploratory holes across the entire site to provide suitable coverage with boreholes near to the site boundary and/or in the footprint of the proposed buildings.

Gas Monitoring Strategy

Ground gas monitoring should be carried out on six separate occasions over a period of three months. This monitoring period is in accordance with Table 5.5 of CIRIA C665 (2007) based on a Moderate Generation Potential of Source and a Low Sensitivity of Development.

Analytical Chemical Testing

Chemical testing should be carried out by a laboratory which is UKAS accredited in accordance with ISO17025 and are also MCERTS accredited for soil analysis in accordance with the Environment Agency's scheme. The laboratory should also carry out Quality Assurance and Quality Control in accordance with BS ISO 17025 and participate in external laboratory comparison and quality control schemes.

The selection of samples for laboratory testing and proposed scope of testing suites is based on the Phase 1 assessment, although during the intrusive investigation, this can be amended as required based on the exploratory hole records and other observations during the investigations. The sample selection rationale should include:

- gaining a good coverage across the site and of the various material types and strata encountered;
- to characterise samples which had visual or olfactory evidence of contamination;
- to characterise samples from the interface of permeable and less permeable horizons within the ground;
- to characterise soil samples located at groundwater level;
- to characterise the groundwater.

The recommended suites of analysis for soil, leachate and water are as follows:

- Metals and non-metals: arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium and zinc
- Organic substances: phenols, polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons (aliphatic and aromatic), soil organic matter, organic carbon

Inorganic substances: water soluble sulphate, cyanide, pH, asbestos.

It is possible that additional analyses will be required, such as VOCs/SVOCs and/or leachate testing and these analyses can be dependent upon the ground conditions encountered.

5.3 Health & Safety

As outlined within the HSE publication "Successful Health and Safety Management – HSG65" this report should inform your development of safe systems of work and the information used as an input to the safety management system. The contents of this report may be used to supplement the contents of the Health and Safety File as required under the Construction Design and Management (CDM) Regulations 2015.

In accordance with the Construction Design and Management (CDM) Regulations 2015, TerraConsult has acted in the role of Principal Contractor and as Principal Designer for the works as described in this report. With issue of this report, TerraConsult has discharged and completed all contractual and legal requirements for these positions and has no further involvement with the project. It is the developer's duty, as required by the CDM Regulations, to appoint others to fill these roles for the further development of the site.

REFERENCES

British Drilling Association. 2008. Guidance for Safe Intrusive Activities on contaminated or Potentially Contaminated Land.

BS 10175:2011+A1:2013. Investigation of potentially contaminated sites - Code of practice. British Standards Institution

BS 5930:2015. Code of practice for ground investigation. British Standards Institution.

BS 8576 : 2013 : Guidance on investigation for ground gas – Permanent gases and Volatile Organic Compounds (VOCs). British Standards Institution

Building Research Establishment & Environment Agency: 2001: Report No BR414, Protective Measures for Housing on Gas Contaminated Land. Author Johnson, R.

Building Research Establishment : 1991 : Report No BR212, Construction of New Buildings on Gas-Contaminated Land.

Building Research Establishment : 1994 : Performance of building materials in contaminated land. Author Paul, V

Building Research Establishment. 2005. Concrete in aggressive ground. Special Digest 1. Third Edition.

Building Research Establishment. 2007. Report No BR211, Radon: guidance on protection measures for new dwellings.

CIRIA. 2007. C665: Assessing Risks Posed by Hazardous Ground Gases for Buildings. London.

CIRIA: 2009: C682: The VOCs Handbook. Investigating, assessing and managing risks from inhalation of Volatile Organic Compounds (VOCs) at land affected by contamination.

Department for Communities and Local Government. 2012. National Planning Policy Framework.

Department for Environment, Food and Rural Affairs / Environment Agency. 2002. Toxicological Reports for Individual Soil Contaminants, Reports TOX 1-10.

Department for Environment, Food and Rural Affairs / Environment Agency. 2004. Contaminated Land Report 11 (CLR11): Model Procedures for the Management of Land Contamination.

Department for Environment, Food and Rural Affairs : 2012: Contaminated Land Statutory Guidance, April 2012

Department for Environment, Food and Rural Affairs: 2013: Development of Category 4 Screening Levels for assessment of land affected by contamination - SP1010 (December 2013).

Department for Environment, Food and Rural Affairs. 2012. Contaminated Land Statutory Guidance.

Department of the Environment Transport and the Regions. 2000. A Guide to Risk Assessment and Risk Management for Environmental Protection. (Also known as Greenleaves II)

Environment Agency: 2005: Environment Agency Guidance on Requirements for Land Contamination Reports. Version 1, July 2005.

Environment Agency. 2009. Petroleum Hydrocarbons in Groundwater. Supplementary Guidance for Hydrogeological Risk Assessment.

Environment Agency. 2010. GPLC1 – Guiding principles for land contamination. GPLC2 – FAQs, technical information and references. GPLC3 – Reporting checklists.

Environment Agency. 2012. Report GP3 "Groundwater protection: Principles and Practice. LIT7562, November 2012, Version 1.

Health & Safety Executive: 2013: Approved Code of Practice: Managing & working with asbestos. Control of Asbestos Regulations 2012.

Health & Safety Executive. 1991. Protection of Workers and the General Public during Development of Contaminated Land. HMSO.

HMSO. 1995. Part 2A of the Environmental Protection Act 1990, as inserted by Section 57 of the Environment Act 1995

LQM/CIEH. 2009. The LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment (2nd edition). Land Quality Press, Nottingham.

NHBC & RSK Group. 2007. Guidance on the Evaluation of Development Proposals on Sites where Methane and Carbon Dioxide are Present. Report No 10627-R01 (04).

Statutory Instruments: 2012: Environmental Protection, England. Contaminated Land (England) (Amendment) Regulations 2012 No. 263 coming into force 6th April 2012.

Statutory Instruments: 2012: Health and Safety. The Control of Asbestos Regulations 2012. No. 262 coming into force 6th April 2012.

Water Regulations Advisory Scheme. 2002. Information and Guidance Note No. 9-04-03.

APPENDICES

Appendix A Service Constraints, Report Limitations and Planning Requirements

Appendix B Environmental Risk Assessment Methodology and Terminology

Appendix C Historical Maps

Appendix D Envirocheck® Report

TerraConsult

Leaders in waste management environmental & ground engineering consultancy

TerraConsult (South) Limited
Dugard House
Peartree Road
Colchester, Essex
CO3 0UL

Tel: +44 (0) 1206 585600

TerraConsult Limited Bold Business Centre Bold Lane, Sutton St. Helens WA9 4TX

Tel: +44 (0) 1925 291111 Fax: +44 (0) 1925 291191

Email: mailbox@terraconsult.co.uk Website: www.terraconsult.co.uk

APPENDIX SCR4

Phase 2 Ground Investigation Report (2015)

DRAINAGE STONE

October 2015 Report No 10122/R02 Issue 2

LAND AT MERIDEN QUARRY

PHASE 2 GROUND INVESTIGATION REPORT

Prepared for

Midlands Planning Services

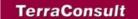
TerraConsult

LAND AT MERIDEN QUARRY PHASE 2 GROUND INVESTIGATION REPORT October 2015

Carried Out For: Prepared By:

Midlands Planning Services TerraConsult (South) Ltd

Browns Road Daventry Northamptonshire NN11 4NS


Tel: 01327 705801

Dugard House

Dugard House Peartree Road Colchester Essex CO3 0UL

Tel: 01206 585600

E-mail: mailbox@terraconsult.co.uk

DOCUMENT INFORMATION AND CONTROL SHEET

Document Status and Approval Schedule

Report No 10122/R02	Title
Issue 2	LAND AT MERIDEN QUARRY
	PHASE 2 GROUND INVESTIGATION REPORT

Issue History

Issue	Status	Date		Signature	Date
1	Draft for client comment	23 September 2015	Prepared By: Sue Slaven MIEnvSc CEnv SiLC	Maa	23/9/15
2	Final	15 October 2015	Prepared By: Sue Slaven MIEnvSc CEnv SiLC	Maa	15/10/15
			Checked By: Tim Slaven MRICS FIQ MCIWM CEnv	T Slaven	16/10/15
			Authorised By: Sue Slaven MIEnvSc CEnv SiLC	Dlan	16/10/15

DISCLAIMER

This report should be read with the Service Constraints Report Limitations & Planning Requirements set out in Appendix A.

EXECUTIVE SUMMARY

Item	Description
Client	Midlands Planning Services
The Site	Land at Meriden Quarry, Cornets End Lane, Meriden, Coventry, CV7 7LG
Report Objective	This report presents the findings of the ground investigation, the environmental risk assessment and geotechnical assessment relating to the proposed development.
Land Use History	The site was in agricultural use until circa. 1937 when a Sand Pit occupied the western sector. By 1954 the Sand Pit had extended to cover the entire site. By 1962, the Sand Pit was no longer present and the site was occupied by buildings, a tank and a hopper in the western sector and a pond in the eastern sector. The site was a landfill between 1962 and 1992 and by 2006, it was occupied by a field.
Development	It is proposed to develop the site to an industrial end-use comprising an In- Vessel Composting Facility, a Biomass Facility and a Waste Water Treatment Plant.
	Geology: The site has been mined by opencast working to extract the mineral sand and gravel deposits. The bedrock geology comprises the Mercia Mudstone Group.
Geoenvironmental	Hydrogeology: The bedrock geology is classified as a Secondary B aquifer. The site is not situated within a groundwater Source Protection Zone and the nearest groundwater abstraction point is 200m to the north of the site, which is used for mineral washing.
Setting	Hydrology: Horn Brook is located approximately 85m to the north west.
	Flood Risk: The site is located in an area with a low risk of flooding (Flood Zone 1).
	Unexploded Ordnance: A high risk of UXO has been identified in the area. However, mining activities will have effectively cleared the land within the footprint of the site and immediate vicinity.
	Based on the former land uses at the site, i.e. landfilling, the potential for ground contamination to be present is considered to be likely, together with the potential for the generation of landfill gas. The principal receptors of concern are neighbouring residents, future site occupiers, construction workers, controlled waters and buildings.
Phase 1 Preliminary Risk Assessment	Due to the potential presence of ground gas and in the absence of mitigation measures, the possible consequences on receptors (i.e. future site occupiers) are estimated to be SEVERE and the probability of the identified risks occurring is considered to be HIGH. A site investigation is therefore recommended to determine ground conditions and thus, the presence of landfill gas. Dependent upon the findings and if necessary, it is proposed that gas control measures will be incorporated into the design of the development. Thus reducing the potential consequences to LOW.
	The scope of ground investigation works carried out at the site by
	TerraConsult comprised:
Soons of Dhase 2	8 No. trial pits4 No. cable percussive boreholes
Scope of Phase 2 Ground	 Installation of gas/groundwater monitoring standpipes within the boreholes
Investigation	Sampling and testing of soils and groundwater for contamination and geotechnical analyses;
	Gas and groundwater monitoring;
	Provision of a geo-environmental report.

Findings of the Phase 2 Ground Investigation	 Ground conditions comprise Made Ground to a maximum depth of 5.4m below ground level, overlying sands and gravels, with Mercia Mudstone at a depth of at least 14.2m. It is anticipated that Made Ground is present to a greater depth as a result of the site's history as a landfill. Solid samples were collected from all exploratory holes for chemical testing. None of the contaminants, except asbestos, was present at concentrations exceeding the relevant generic assessment criteria for an industrial end use. Asbestos fibres (Chrysotile) have been identified at five locations with a maximum of 0.003% asbestos within the overall
	mass.
	A potential risk to groundwater quality has been identified. However, at this stage, the risk cannot be quantified.
	Ground gas comprising carbon dioxide was recorded within the boreholes on at least one occasion.
Phase 2 Conclusions -	It is recommended that further ground gas monitoring be continued in accordance with guidance.
Geo- environmental	• It is recommended that groundwater sampling be carried out in order to assess the risk to groundwater from contaminants in the ground.
	Ground conditions are very variable. The full depth of the landfilled material may not have been determined as it is possible that the boreholes were drilled at locations that may mark the edge of the landfill.
Phase 2 Conclusions - Geotechnical	Where clay was encountered, i.e. within BH2, this was assessed to be soft to firm. Very loose to dense sandy Made Ground was encountered and the sands and gravels were also assessed to loose to dense.
	 Moisture content ranges from 4% (clayey sand within BH2) and 25% (very sandy very clayey gravel in TP3). Sulphate and pH for the determination of design of concrete is also very variable.
	•

This summary forms part of a Tier 2 Risk Assessment (Ground Condition) report prepared by TerraConsult and contains an overview of the key findings and conclusions. The summary should not be treated as an independent document.

LAND AT MERIDEN QUARRY

PHASE 2 GROUND INVESTIGATION REPORT

CONTENTS

		Page
INTRO	DDUCTION	1
1.1	Background Information	1
1.2	Previous Investigations	1
SITE	LOCATION AND DESCRIPTION	2
2.1	Site Location	2
2.2	Development Proposals	2
ENVI	RONMENTAL SETTING	3
3.1	Data Summary	3
FIELD	OWORK	4
4.1	Investigation Strategy	4
4.2	General Observations	5
4.3	Trial Pits	6
4.4	Boreholes	6
4.5	Ground Gas Monitoring	7
4.6	Chemical and Geotechnical Testing Strategy	7
4.7	Topographical Survey	8
LABC	PRATORY TESTING	9
5.1	Chemical Laboratory Testing	9
5.2	Geotechnical Laboratory Testing	9
GROU	JND CONDITIONS	9
6.1	General	9
6.2	Ground Surface	10
6.3	Made Ground	10
6.4	Superficial Deposits	10
6.5	Bedrock Geology	10
6.6	Groundwater	11
6.7	Live root depth	11
	1.1 1.2 SITE 1 2.1 2.2 ENVIE 3.1 FIELD 4.1 4.2 4.3 4.4 4.5 4.6 4.7 LABO 5.1 5.2 GROU 6.1 6.2 6.3 6.4 6.5 6.6	1.2 Previous Investigations SITE LOCATION AND DESCRIPTION 2.1 Site Location 2.2 Development Proposals ENVIRONMENTAL SETTING 3.1 Data Summary FIELDWORK 4.1 Investigation Strategy 4.2 General Observations 4.3 Trial Pits 4.4 Boreholes 4.5 Ground Gas Monitoring 4.6 Chemical and Geotechnical Testing Strategy 4.7 Topographical Survey LABORATORY TESTING 5.1 Chemical Laboratory Testing 5.2 Geotechnical Laboratory Testing GROUND CONDITIONS 6.1 General 6.2 Ground Surface 6.3 Made Ground 6.4 Superficial Deposits 6.5 Bedrock Geology 6.6 Groundwater

7.	GENE	ERIC QUANTITATIVE RISK ASSESSMENT	11
	7.1	Introduction	11
	7.2	Assessment for the Protection of Human Health	11
	7.3	Risk to Plant Life	14
	7.4	Assessment for the Protection of Controlled Waters	15
	7.5	Water Supply Pipe Material	15
	7.6	Chemical Attack on Below Ground Concrete	15
	7.7	Ground Gas Assessment	16
8.	GEO ⁻	TECHNICAL ASSESSMENT	17
	8.1	Fieldwork Data Review	17
	8.2	Laboratory Data Review	19
9.	CON	CLUSIONS	20
	9.1	Environmental Risk Assessment	20
	9.2	Geotechnical Assessment	21
	9.3	Recommendations for Further Works	21
	9.4	Health and Safety	21
RE	FEREN	NCES	23
TA	BLES		
Tal Tal Tal	ole 1 ole 2 ole 3 ole 4 ole 5	Summary of Description of the Site and its Environs Sample Strategy for Chemical Analysis Sample Strategy Taken For Geotechnical Sampling Phytotoxic Risk Results of Ground Gas Monitoring	2 7 8 14 16
	ole 6	Characteristic Gas Situations	16
Tal	ole 7	Summary of SPTs	17
FIG	URES		
Fig	ure 1 ure 2 ure 3	Site Location (Not to Scale) Proposed Site Plan (not to scale) Trial Pit and Borehole Location Plan (Not to Scale)	2 3 5

APPENDICES

Appendix A	Service Constraints, Report Limitations and Planning
Appendix B	Environmental Risk Assessment Methodology and Terminology
Appendix C	Exploratory Hole Records
Appendix D	Chemical Testing Laboratory Certificates
Appendix E	Geotechnical Testing Laboratory Certificates

LAND AT MERIDEN QUARRY PHASE 2 GROUND INVESTIGATION REPORT

1. INTRODUCTION

1.1 Background Information

TerraConsult (South) Limited (TerraConsult) was commissioned by Midlands Planning Services to carry out an intrusive ground investigation for the site known as Land at Meriden Quarry, near Coventry. The purpose of the report is to provide a preliminary assessment of the site using published information and information obtained during the intrusive investigation with regards to the potential redevelopment of the site. It is understood that this report is to support an outline planning application to redevelop the site to an industrial end-use and to assist in the design of the development. A Phase 1 Desk Study and Preliminary Risk Assessment Report (Report No. 10122-R02-Issue 1, August 2015) has been carried out for this site and thus, should be read in conjunction with this report.

This report has been devised to comply with the relevant principles and requirements of a range of guidance with regards to potentially contaminated land, including (but not limited to):

- BS 10175:2011+A1:2013: "Investigation of potentially contaminated sites -Code of practice";
- BS 5930:2015: "Code of practice for ground investigations";
- Contaminated Land (England) (Amendment) Regulations 2012 and Contaminated Land Statutory Guidance (Defra, April 2012);
- Defra/Environment Agency (2004) Report CLR11 "Model Procedures for the Management of Land Contamination";
- Environment Agency (2011) Report GPLC1 "Guiding Principles for Land Contamination";
- Environment Agency (2012) Report GP3 "Groundwater protection: Principles and Practice";
- National Planning Policy Framework (HCA, March 2012); and
- Part IIA of the Environmental Protection Act, 1990.

TerraConsult's service constraints and report limitations are presented in Appendix A and a description of environmental risk assessment methodology and terminology is presented in Appendix B.

In preparation of this report, it is assumed that any information provided to TerraConsult by the client in connection with the commission is accurate, complete and not misleading. TerraConsult cannot guarantee the accuracy or validity of this information.

1.2 Previous Investigations

It is understood that the site has not been subject to any previous intrusive investigations.

2. SITE LOCATION AND DESCRIPTION

2.1 Site Location

The location of the site is indicated in Figure 1 below and a summary and a brief description is presented in Table 1.

Figure 1 Site Location (Not to Scale)

Table 1 Summary of Description of the Site and its Environs

Location	The site is located approximately 1.6km to the south west of the village of Meriden, 5.3km west of the outskirts of Coventry, 7,8km to the east of Solihull and 1km south east of the junction with the A452. The site is situated within an area subject to sand and gravel extraction, together with agricultural land and a Golf Course in the vicinity.	
Grid Reference	423070, 281110	
Post Code	CV7 7LG	
Site Area	3.11ha	
Topography	The site is relatively flat in a gently undulating landscape.	

2.2 Development Proposals

It is understood that the site is to be redeveloped to an industrial end-use comprising an In-Vessel Composting Facility, a Biomass Energy Facility and Waste Water Treatment Plant. The proposed facility will be designed to process up to 45,000 tonnes per annum of comingled green and food waste and wood waste. The green and food waste will be composted via an In-Vessel Composting system to produce 0-12mm grade compost which can be mixed with sand to manufacture topsoil to BS 3883 certification. Oversized compost (10mm+) will be mixed with wood waste and treated in the Biomass Facility to produce renewable energy.

It is understood that the majority of the site will be covered with building and hardstanding with small areas of landscaping on the boundaries. This is indicated in Figure 2 below.

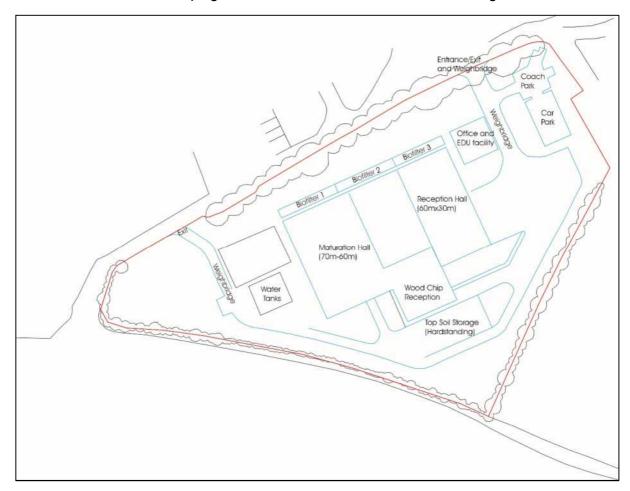


Figure 2 Proposed Site Plan (not to scale)
(Adapted from the original drawing by Vagdia & Holmes; No. 16364-SK-003EC - dated June 2015)

The foundation design of the development has not, at this stage, been determined as it will depend upon ground conditions as determined by the intrusive investigation. However, if required, ground gas control remediation measures can be incorporated into the foundation design of new buildings, such as the installation of a gas protection membrane and a monolithic concrete plinth, if required.

3. ENVIRONMENTAL SETTING

3.1 Data Summary

A full description of the environmental background information (geology, hydrology, hydrogeology *etc.*) is provided in TerraConsult's Phase 1 Desk Study and Preliminary Risk

Assessment Report¹. Therefore, a brief overview of the main details of the site environmental setting is presented as follows:

- Geological maps show that the site is not underlain by superficial deposits, although the site has been quarried for its sand and gravel deposits. The bedrock geology is the Mercia Mudstone Group. The bedrock geology is classified as a Secondary B aquifer and the site does not lie within a Source Protection Zone (SPZ) for groundwater. The nearest abstraction for groundwater is a lagoon in Cornets End Quarry, located approximately 200m to the north east and is used for mineral washing. Groundwater for the purpose of general farming and domestic is abstracted by Mr Barber at Berryfields Farm, located approximately 1.4km to the east.
- The nearest surface water feature is located approximately 50m to the south of the site. Horn Brook at a location approximately 85m to the north west is classified as "Good" quality, as a result of water sampling.
- The site is currently occupied by vacant land situated within a predominantly agricultural area, although quarrying for sand and gravel is being carried out to the north and south west of the site.
- Historically, the site was subject to the extraction of sand and gravel by opencast mining, which extended a further 140m to the east and at least 260m to the north. The site is named Cornet's End Sand Pit and the operator is unknown. The site then became part of a former landfill site, named Meriden Quarry and operated by Tilling Construction Services Limited (Tilcon). The site received inert, industrial, commercial, household, special waste and liquid sludge in the period between 1 January 1962 and 31 July 1992.
- Another sand and gravel pit, named Berkswell A, was located approximately 215m to the south, which was operated by RMC Aggregates (Western) Limited. There are two licensed waste management facilities within 250m, both at Meriden Quarry. One located approximately 40m to the north is operated by NRS Waste Care Limited for use of waste for reclamation. The other is held by Coleman & Co Ltd at a location approximately 200m to the east for physical treatment facilities. Approximately 60m to the north east of the site is a registered landfill site operated by Ready Mixed Concrete (UK) Limited at Berkswell Quarry. There is no known restriction on the source of waste.
- The site is located in an area that may be affected by coal mining. However, a Coal Mining Report indicates that the site is not within the zone of likely physical influence on the surface from past underground workings, nor in the likely zone of influence of any present underground coal workings.

4. FIELDWORK

4.1 Investigation Strategy

The fieldwork was carried out between 26 August and 4 September 2015. An engineer from TerraConsult was present to supervise the fieldwork, which was carried out under subcontract by DANBAR Drilling Services Limited, and describe the ground encountered. Underground services were previously confirmed to not underlie the site.

¹ Land at Meriden Quarry. Phase 1 Desk Study and Preliminary Risk Assessment Report. Date August 2015. Prepared for Midlands Planning Services by TerraConsult. Report No. 10122/R01/Issue 2.

In order to achieve the objectives, the specific site investigation carried out was as follows:

- 1 day of trial pitting involving eight exploratory holes excavated across the site to a minimum depth of 3.4m below ground level (bgl);
- 7 days of cable percussive drilling involving four boreholes situated at the approximate corners of the proposed building. Gas/groundwater monitoring standpipes were installed within the boreholes;
- Description of the ground encountered in accordance with BS 5930:2015 "Code of practice for ground investigations"; and
- Collection of solid samples for contamination and geotechnical testing;
- A programme of ground gas and groundwater monitoring;
- Assess the general nature of contamination at the site and carry out a contaminated land risk assessment to determine if the site poses a risk to potential receptors.

4.2 General Observations

A total of eight trial pits were carried out using a CAT 428 excavator provided by the client and four boreholes were also undertaken by Danbar Drilling Services using a Dando cable percussive rig. All fieldwork was supervised by an engineer from TerraConsult. The site investigation locations are shown on Figure 3.

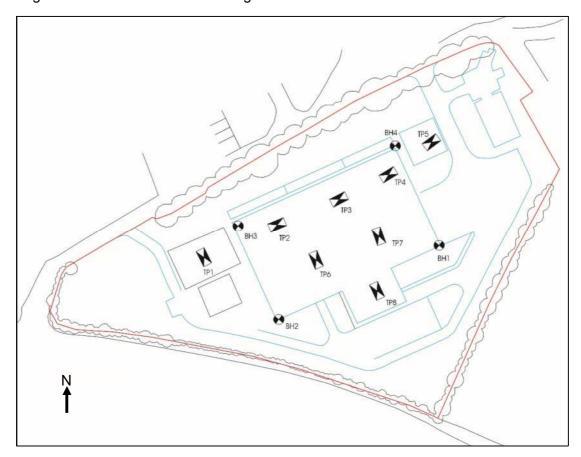


Figure 3 Trial Pit and Borehole Location Plan (Not to Scale)
(Adapted from the original drawing REF: 1636-SK-003E by Vagdia and Holmes dated June 2015.)

4.3 Trial Pits

A total of eight trial pits were excavated using the CAT 248 excavator. These were positioned within the proposed building's footprint, as shown on Figure 3, in a general pattern to ensure that the ground beneath the building's footprint was investigated. The trial pits were excavated to depths ranging from 3.4m bgl (TP3) in the north and 3.9m bgl (TP8) in the south of the proposed footprint.

As part of the investigation, a number of soil samples were taken to aid the characterisation of the material. From each trial pit, this included:

- A sample from various depths within the trial pits for collection in a 250g amber glass jar, a 60g amber glass jar as environmental samples for chemical analysis and asbestos screening.
- A bulk sample of approximately 25kg for geotechnical testing from two trial pits (TP3 and TP8) located in the centre of the site to characterise the materials.

A record of the strata encountered in the trial pits, samples collected and other observations are presented in Appendix C, together with a selection of photographs. All trial pits were backfilled with arisings on completion of inspection and sampling.

4.4 Boreholes

Four boreholes were drilled at locations that had been previously marked out on site by the client to represent the corners of the proposed building, as shown in Figure 3. The purpose of the locations was to obtain information with regards to the ground conditions and also information with regards to the ground gas regime. The boreholes were drilled to depths of 15m in BH1 and BH2, 14.8m in BH3 and 14.5m in BH4. At each location, the arisings were logged by an engineer from TerraConsult.

A number of soil samples were obtained and *in-situ* tests carried out to characterise the ground conditions, including:

- Collection of material from a depth of 0.9m 1.0m as bulk samples for geotechnical testing;
- Collection of material from a depth of 0.5m 0.6m bgl for contamination testing; and
- Standard penetration tests (SPTs) were undertaken at approximately 1.5m intervals throughout each borehole.

A standard 50mm diameter gas/groundwater standpipe was installed within each borehole, which comprised approximately 13m of slotted pipe and then a 2m plain pipe to the surface. The standpipes were surrounded by pea-gravel and completed with a bentonite seal and concrete at ground level.

Two of the four boreholes, BH3 and BH4, were terminated before reaching the intended depth of 15.0m bgl. This was due to encountering a cobble in BH4 at a depth of 14.5m, which caused bouncing and thus preventing further penetration into the ground. Borehole BH5 was terminated at a depth of 14.8m bgl as the Mercia Mudstone was encountered and further penetration was considered unnecessary.

A record of the strata encountered in the boreholes, samples collected, installation details and other observations are presented in Appendix C.

4.5 Ground Gas Monitoring

In order to assess the ground gas regime, an initial programme of gas monitoring took place. It is noted that in order to carry out a comprehensive ground gas risk assessment in accordance with CIRIA C665, ground gas monitoring should be carried out on six separate occasions over a period of three months. Monitoring for ground gas should also be carried out in a range of weather conditions is achieved, such as falling atmospheric pressure, wet and dry weather and frost.

Ground gas monitoring was carried out on two separate occasions in September 2015 using a GFM435 Series Gas Analyser (GFM 435-1). This instrument has been calibrated in accordance with the manufacturer's instructions prior to use. On each occasion, concentrations of landfill gases (*i.e.* carbon dioxide and methane) and other associated gases (oxygen, carbon monoxide and hydrogen sulphide) were recorded, together with atmospheric pressure and the depth to groundwater.

4.6 Chemical and Geotechnical Testing Strategy

4.6.1 Chemical Testing Strategy

Soil samples for chemical analysis of the Anthropogenic Ground were collected from between 0.5m (TP1, TP2, TP4 and TP5) to 2m (TP8) in the trial pits and at 0.5m in the boreholes. Each sample comprised two separate containers: a 250g amber glass jar for metals and inorganics and a 60g amber glass jar for organic analysis. Soil samples were labelled and stored in a cool box with ice packs for transportation to the analytical laboratory. The rationale for the selection of samples is detailed in Table 2.

Table 2 Sample Strategy for Chemical Analysis

Location	Depth	Strata	Rationale
BH1	0.5m	Gravelly sandy Made Ground with brick fragments, metal and concrete.	Targeting the near surface contamination.
BH2	0.5m	Silty gravelly sandy Made Ground with brick fragments.	Targeting the near surface contamination.
BH3	0.5m	Clayey gravelly sandy Made Ground with brick fragments and metal.	Targeting the near surface contamination.
BH4	0.5m	Clayey gravelly sandy Made Ground with brick fragments and metal.	Targeting the near surface contamination.
TP1	0.5m	Clayey gravelly sandy Made Ground with brick fragments.	Targeting the near surface contamination.
TP2	0.5m	Sandy gravelly clayey Made Ground with brick, plastic and wood.	Targeting the odorous black clay.
TP3	1.5m	Clayey gravelly sandy Made Ground with brick fragments, wood fragments, plastic, glass, concrete and metal.	Targeting the Made Ground overlying odorous blackish brown sand (at 1.8m).
TP4	0.5m	Silty gravelly sandy Made Ground with brick fragments, wood and concrete.	Targeting the near surface contamination.
TP5	0.5m	Silty gravelly sandy Made Ground with brick fragments and concrete.	Targeting the near surface contamination.

Location	Depth	Strata	Rationale
TP6	1.10m	Boundary between orangey brown silty gravelly sandy Made Ground and reddish brown clayey gravelly sandy Made Ground.	Targeting the boundary between the two types of Made Ground.
TP7	0.9m	Boundary between orangey brown silty gravelly sandy Made Ground and the blackish brown odorous clayey gravelly sandy Made Ground.	Targeting the strata overlying odorous blackish brown Made Ground.
TP8	2.0m	Blackish brown silty gravelly sandy Made Ground with bricks, concrete and plastic.	Targeting the odorous blackish brown sand.

4.6.2 Geotechnical Testing Strategy

Bulk samples of approximately 25kg were collected from two trial pits (TP3 and TP8) excavated in the centre of the site and each borehole for geotechnical testing to characterise the ground conditions across the site. All samples were prepared in accordance with BS 1377 Pt 1:1990 for transportation to the laboratory. The sample selection rationale is detailed in Table 3.

Table 3 Sample Strategy Taken For Geotechnical Sampling

Location	Depth	Strata	Rationale
BH1	0.9m	Clayey gravelly sandy Made Ground with brick fragments, metal, plastic and concrete.	Obtain information on the properties of the Made Ground within the south eastern corner of the proposed footprint.
BH2	0.9m	Silty gravelly sandy Made Ground with brick fragments.	Obtain information on the properties of the Made Ground within the south western corner of the proposed footprint.
вн3	0.9m	Silty gravelly sandy Made Ground with brick fragments and metal.	Obtain information on the properties of the Made Ground within the north western corner of the proposed footprint.
BH4	0.9m	Clayey sandy Made Ground.	Obtain information on the Made Ground within the north eastern corner of the proposed footprint.
TP3	1.5m	Clayey gravelly sandy Made Ground with brick fragments, wood fragments, plastic, glass, concrete and metal.	Obtain information on the Made Ground within the central northern sector of the proposed footprint.
TP8	2.0m	Clayey gravelly sandy Made Ground with brick fragments and concrete.	Obtain information on the Made Ground within the central southern sector of the proposed footprint.

4.7 Topographical Survey

No topographical surveys were completed during the fieldwork.

5. LABORATORY TESTING

5.1 Chemical Laboratory Testing

Samples selected for laboratory testing and the analyses to be undertaken were made following observations noted during the intrusive investigation. The sample selection rationale was to gain general coverage across the site.

The chemical testing strategy was based on the following:

- a range of contaminants that may be associated with the site's history as a former landfill site, and their potential to cause harm to human health or the environment, and
- to characterise shallow samples for a range of determinands where exposure to contaminants will be most likely.

Soil samples were submitted to Scientific Analytical Laboratories Limited (SAL) in Braintree, which is UKAS accredited in accordance with BS EN ISO/IEC 17025:2005² and also MCERTS accredited for soil analysis in accordance with the Environment Agency's scheme. Details of the accreditation and methods of analysis are provided on SAL's test reports included within Appendix D and the testing suites for soil analyses were as follows:

- Metals: arsenic, cadmium, chromium, copper, mercury, nickel, selenium, zinc.
- Inorganics: total cyanide, water soluble sulphate, sulphide and pH.
- Organics: soil organic matter, total organic carbon, total phenols, speciated TPH, speciated PAHs.
- Asbestos screen

5.2 Geotechnical Laboratory Testing

Bulk samples were collected from each borehole and two trial pits (TP3 and TP8) for geotechnical testing as follows:

- Particle size distribution:
- Moisture content; and
- pH, water soluble sulphate, magnesium, chloride and nitrate (known as BRE SD1 short suite).

All samples were prepared in accordance with BS1377 Part I:1990 for transportation to the laboratory. All samples were transported to Professional Soils Laboratory (PSL), Doncaster, South Yorkshire. Details of the accreditation and methods of analysis are provided on PSL's test reports included within Appendix E.

6. GROUND CONDITIONS

6.1 General

Ground conditions were relatively consistent across the site comprising Made Ground overlying sands and gravels, which, in turn, overlies the bedrock geology of the Mercia Mudstone.

October 2015

² BS EN ISO/IEC:2005. "General requirements for the competence of testing and calibration laboratories.

It was known that the site was occupied by a former landfill site with the accepted waste assumed to be inert. The boreholes were positioned at each corner of the proposed building footprint in order to assess the ground conditions for foundation design and also the ground gas regime. These all encountered the landfilled material to a relatively shallow depth, which was assumed to be edge of the former landfill.

6.2 Ground Surface

Ground cover across the majority of the site consisted of grass, with discrete areas of shrubs and brambles. Beneath the ground cover was a thin layer (of between 0.1m-0.3m in thickness) of soil.

6.3 Made Ground

Beneath the soil, Made Ground was encountered to various depths within the trial pits (maximum depth of 3.9m in TP8) and in all four boreholes to a maximum depth of 5.4m bgl (BH1). The minimum depth at which Made Ground was encountered within the boreholes was 4.2m bgl at BH4.

Composition of the Made Ground varied at each trial pit location, from dark orangey brown/reddish brown slightly silty/clayey gravelly/very gravelly sand with rubble and concrete blocks to black stained, odorous, slightly sandy, slightly gravelly clay. Reworked brown clays were identified in TP5. The material typically included whole and fragmented bricks, concrete rubble, paving slabs, plastic and glass bottles, rubber tubes, various metal and asphalt. Individual locations also included reworked clay, ash, electrical cables and black bag waste.

The only exception was TP1, excavated in the western sector of the site, which encountered light orangey brown mottled yellowish brown slightly silty gravelly sand from 0.7m to the base of the trial pit at 3.6m bgl. This was interpreted to be Made Ground as the nearest borehole, BH3, encountered Made Ground to a greater depth than the base of the trial pit (at a depth of 4.8m).

The Made Ground encountered in the boreholes also varied from light to dark orangey brown or greyish mottled blackish brown silty/clayey, gravelly/very gravelly sands to dark orangey brown mottled light orangey brown slightly sandy/sandy, slightly gravelly/gravelly clay. Anthropogenically derived materials typically included brick, concrete, plastic, metal, ash and asphalt.

6.4 Superficial Deposits

Sands and gravels, interpreted as Glaciofluvial deposits, were encountered underlying the Made Ground. These were generally described as typically dark orangey brown slightly silty/clayey sand with varying proportions of gravels, with several fining upwards sequences observed. The colour of the sands and gravels darkened to a reddish/greyish brown towards the base of the boreholes, which was interpreted as the base of the superficial deposits overlying the Mercia Mudstone.

6.5 Bedrock Geology

Bedrock geology of the Mercia Mudstone was encountered at one location, BH3 in the western sector of the site, at a depth of 14.2m bgl (the base of the borehole). It is described

as a dark orangey brown/reddish brown slightly clayey sandy gravel of red mudstone and marl.

6.6 Groundwater

Groundwater was encountered in BH1 at 7.2m and three trial pits: TP1 at 3.6m, TP6 at 3.4m and TP8 at 3.9m.

Groundwater was encountered in BH1 at 7.2m and subsequently rose to 6.2m. It was not possible to ascertain whether groundwater was encountered within the other three boreholes due to the addition of water to aid drilling.

Groundwater was encountered within three trial pits: TP1 noted as very slow ingress with a slight sheen at the base of the trial pit, at a depth of 3.6m bgl; TP6 noted as medium ingress from the sidewalls upon encountering grey gravels at a depth of 3.4m bgl; and TP8 noted as medium ingress at the base of the trial pit at 3.9m, which then rose to 3.8m.

6.7 Live root depth

Live root depth of the vegetation over the area typically reached between 0.2m and 0.3m bgl.

7. GENERIC QUANTITATIVE RISK ASSESSMENT

7.1 Introduction

The assessment of contamination of this stage of the site investigation has been carried out in accordance with the overall guidance presented in CLR11 Model Procedures for the Management of Land Contamination, together with the procedures as indicated in the following sections in accordance with current relevant guidance and legislation.

Generic risk assessment is a two stage process. Firstly, in the Risk Estimation stage, the measured contaminant concentrations are compared with the relevant GACs or C4SLs/S4ULs, if published. Where there is a suitable dataset, this is undertaken after carrying out statistical analysis to determine the upper confidence limit on the true mean. Otherwise, maximum or specific data points are compared directly. The second stage, Risk Evaluation, comprises an authoritative review of the findings with other pertinent information, in cases where C4SLs or GACs are exceeded, in order to consider if exceedances may be acceptable in the particular circumstances.

The aspects of risk from substances in the ground considered below are as follows:

- Human health;
- Plant life;
- Pollution of controlled waters;
- Water supply pipes;
- Below ground concrete; and
- Ground gases.

7.2 Assessment for the Protection of Human Health

The Generic Qualitative Risk Assessment (GQRA), based on a soil with a Soil Organic Matter of 1%, was carried out in accordance with the methodology set out in Appendix B for

assessing soil samples based on a residential end-use. A summary of the chemical testing results is presented in Appendix D and discussed below.

Metals

A total of 12 soil samples were tested for a range of metals within the analysis suite. Arsenic cadmium, copper, lead, nickel and zinc were present at concentrations in excess of one or more of the assessment criteria for land use as residential and/or allotments, as follows:

- Arsenic was identified at concentrations in excess of the SGV/GAC and the pC4SL/S4UL for a residential end-use with and without private gardens in one sample - TP3 at 0.5m.
- Cadmium was identified at a concentration in excess of the pC4SL/S4UL for allotments in one sample - TP3 at 0.5m.
- Copper was identified at concentrations in excess of the pC4SL/S4UL for allotments in four samples - TP2 at 0.5m, TP3 at 0.5m, TP5 at 0.5m, TP8 at 0.5m.
- Lead was identified at concentrations in excess of the pC4SL/S4UL for residential with private garden in one sample - TP3 at 0.5m; and for allotments in eight samples - TP1 at 0.5m, TP2 at 0.5m, TP3 at 0.5m, TP4 at 0.5m, TP5 at 0.5m, TP7 at 0.5m, TP8 at 0.5m, BH1 at 0.5m.
- Nickel was identified at concentrations in excess of the pC4SL/S4UL for residential with/without home grown produce and allotments and public open space in a residential setting in one sample - TP3 at 0.5m.
- Zinc was identified at concentrations in excess of the >pC4SL/S4UL for allotments in four samples - TP3 at 0.5m, TP4 at 0.5m, TP8 at 2m, BH1 at 0.5m.

None of the 12 samples contained metals at concentrations in excess of the guideline values for an industrial end-use.

PAHs

Polycyclic aromatic hydrocarbons (PAHs) are a wide range of over 200 different compounds normally associated with combustion or processing of hydrocarbons and coal. Elevated levels of PAHs can also be found in tarmac. Sixteen PAHs (usually known as the USEPA 16) comprise the more common individual carcinogenic PAH compounds with a 17th (Coronene) included in the assessment of soil for waste disposal at landfill sites. Each of the PAH compounds have different toxicity.

Of the 12 soil samples tested, three PAHs were identified at concentrations in excess of the relevant GAC / screening value at three locations:

- Benzo(b)fluoranthene was identified at a concentration in excess of the pC4L/S4UL for allotments in one sample - BH3 at 0.5m.
- Benzo(a)pyrene was identified at concentrations in excess of the SGV/GAC for a residential end-use with and without private garden in one sample -TP3 at 0.5m.
- Dibenzo(a,h)anthracene was identified at concentrations in excess of the PC4L/S4UL for allotments in two samples TP3 at 0.5m and BH4 at 05m.

None of the PAHs were present in the 12 samples at concentrations in excess of the guideline values for an industrial end-use.

Hydrocarbons

The toxicity of the various compounds which form petroleum hydrocarbons varies decreasing from petrol range C_6 to C_{10} (often referred to as Gasoline Range Organics, GRO) to the diesel range (C_{10} to C_{25}), with the lower toxicity again for the longer chain, heavier oils and greases (C_{25} to C_{40}). Additionally the toxicity of hydrocarbons varies depending on the relative proportion of aliphatic (straight chain hydrocarbons) and aromatic (hydrocarbons formed from carbon rings).

A total of 16 soil samples were tested to determine total and speciated petroleum hydrocarbons (TPH) levels. However, all were identified at concentrations significantly lower than the relevant GAC / screening values, with the majority being below the laboratory detection limit. It should be noted, however, that the limit of detection for benzene is 1mg/kg whereas a number of assessment criteria are set at <1mg/kg. No other hydrocarbons, including in the lightest fractions, are present at concentrations that could present significant harm, therefore, it is expected benzene is also not present at elevated concentrations.

Asbestos

Asbestos can be found in soil as fragments of bulk Asbestos Containing Materials (ACMs), e.g. asbestos cement sheeting and also as discrete asbestos fibres within the soil matrix. This investigation has carried out assessments to determine whether both bulk fragments of asbestos and/or asbestos fibres are present in the soil at the site. The asbestos assessment commenced on-site with an inspection of the Made Ground by TerraConsult's engineer for the presence of bulk ACMs. During the fieldwork, no ACMs were identified.

Two different laboratory assessments were carried out in order to confirm the site assessment that ACMs were absent:

- All 12 samples were assessed by the laboratory to determine whether asbestos fibres or ACMs were present. Asbestos fibres, as Chrysotile, were found to be present in five samples: TP3 at 0.5m, TP5 at 0.5m, TP7 at 0.9m, TP8 at 2.0m, BH1 at 0.5m.
- Where asbestos was found to be present in a sample, a second stage of assessment was then carried out to determine full asbestos quantification and composition analysis. The results of the second stage are as follows:

TP3 - 0.002% of asbestos within the overall mass

TP5 - 0.003% of asbestos within the overall mass

TP7 - <0.001% (detection limit)

TP8 - 0.003% of asbestos within the overall mass

BH1 - 0.001% of asbestos within the overall mass

Risks to Human Health (Construction Phase)

During the development works, there will be a risk from dust (that may include asbestos fibres) to on-site workers and people occupying adjacent properties. Appropriate risk assessments should be carried out by the contractor to allow appropriate controls for the mitigation of risk to the health of construction workers to be in place. This risk can be controlled to within acceptable limits by:

- Control of dust generation;
- Workers wear suitable Personal Protective Equipment (PPE);
- · Having adequate site hygiene facilities allowing staff to keep a good level of

personal hygiene;

- All groundworkers should have been trained in asbestos awareness and should be aware for this being encountered during excavations. The earthworks contractor should have a contingency plan in place before any works commence in case the presence of asbestos is suspected in groundworks;
- Only permitting smoking or eating on-site in appropriate pre-designated areas.

7.3 Risk to Plant Life

Concentrations of the phytotoxic metals copper, chromium, nickel and zinc have been detected in the Made Ground in excess of the guideline values for the protection of plants as presented in the MAFF document "Code of good agricultural practice for the protection of soil". The results of the phytotoxic screening are presented in Table 4. It is, however, acknowledged that MAFF guidelines are based on the averaging area pH value, and that pH at the site ranged between 6.6 and 8.2.

Table 4 Phytotoxic Risk

Determinand	No. of Samples	Trigger Value* (mg/kg)	Results exceeding Trigger Value (mg/kg)	Exceeds Tier 1 Screening (Y/N)
Copper	12	200	5 samples: TP2 - 540 TP3 - 1500 TP5 - 940 TP7 - 290 TP8 - 720	Y
Chromium	12	400	None	N
Nickel	12	110	1 sample: TP3 - 260	Y
Zinc	12	300	7 samples: TP2 - 490 TP3 - 980 TP4 - 900 TP5 - 540 TP7 - 530 TP8 - 730 BH1 - 2300	Y

^{*} Trigger value from MAFF "Code of good agricultural practice for the protection of soil" October 1998 at average pH 7.0.

This would indicate that there are contaminants in the ground that could potentially present a risk to plant health. However, the vegetation present on-site during the fieldwork appeared healthy, with no signs of stress or die-back.

7.4 Assessment for the Protection of Controlled Waters

The risk posed to controlled waters from total soil concentrations cannot be directly assessed. The risk is assessed either by comparison of results of leachability tests carried out on soil samples, or from the direct testing of samples of groundwater to screening criteria. However, no leachability tests were carried out.

The site overlies a Secondary A aquifer and Horn Brook is located approximately 85m to the north. Thus, as the ground conditions comprise sand which would allow for the migration of contaminants through the strata, controlled waters can be considered as potential receptors to the presence of potential on-site contamination. Groundwater monitoring carried out indicates that groundwater levels are between 5.5m bgl (BH4) and 7.0m (BH2).

7.5 Water Supply Pipe Material

Plastic pipe materials are potentially vulnerable to attack from elevated levels of hydrocarbons, which can potentially lead to contamination of potable water supplies and water supply companies also require the risk to their workers from other contaminants in the ground to be assessed. The assessment has been completed in accordance with the current UK Guidance for the Specification of Water Supply Pipes to be used in Brownfield Sites (UK Water Industry Research Limited - UKWIR - 2014). This guidance provides threshold concentrations for different pipe material for various chemical groups.

The pipeline materials considered by the guidance are PE, PVC, wrapped steel, wrapped ductile iron or copper pipe and barrier pipe. PE is assessed using threshold concentrations for various chemical groups including volatile organic compounds (VOCs) with tentatively identified compounds (TICs), semi-volatile organic compounds (SVOCs) with TICs, and mineral oils. Wrapped steel, wrapped ductile iron and copper pipe ae assessed using corrosive properties. The default recommendation for water supply pipes is to use PE with other types of pipework only used if the limits for PE pipes are exceeded.

The available data indicate no exceedances for the PE water supply pipe are present with regards to hydrocarbons. However, metals are present at elevated concentrations with regards to a residential end-use and it is recommended that discussions are held with the relevant water utility company relating to pipeline materials.

7.6 Chemical Attack on Below Ground Concrete

Below ground concrete structures are potentially at risk in areas of elevated sulphates and low pH. An assessment of the soil (following the guidance published in BRE Special Digest 1, 2005) indicates that the Design Sulphate Class (DS) 1 - 3 could be applicable as sulphate (2:1) ranged between 10mg/l (TP1 and BH2) to 1900mg/1 (TP3) with pH ranging between 6.6 (BH2) and 8.2 TP5). Therefore, special precautions will be required at the site for the design of concrete in terms of the durability and structural performance.

Gross hydrocarbon contamination can also have an adverse impact on the setting of concrete, which may affect foundation construction and piling. Based on the measured concentrations of hydrocarbons at the site, there is no risk of these affecting the setting of concrete.

7.7 Ground Gas Assessment

Two rounds of ground gas monitoring were carried out by TerraConsult in September 2015 and the results are presented in Table 5. Methane was recorded only in BH1 with a maximum concentration of 2%v/v. Carbon dioxide was present in all boreholes on the first monitoring occasion with a maximum concentration of 10%v/v in BH3. However, carbon dioxide was absent in two of the boreholes (BH3 and BH4) on the second occasion and at a low concentration in another borehole (BH2). In BH1, carbon dioxide was present at a much higher concentration than on the first monitoring occasion.

Table 5 Results of Ground Gas Monitoring

Location	Date	Atmos Pressure (mb)	CH₄ (% v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	Flow (l/hr)	Depth to Water (m bgl)	Weather Conditions
	11/09/15	1003	1.0	8.6	7.7	0	6.51	Sunny
BH1	18/09/15	998	2.0	13.1	2.0	0	6.60	Overcast, sunny spells
	11/09/15	1002	0.0	6.6	12.8	0	7.00	Sunny
BH2	18/09/15	999	0.0	0.6	19.1	0	7.03	Overcast, sunny spells
	11/09/15	1004	0.0	10.0	6.7	0	6.30	Sunny
BH3	18/09/15	1000	0.0	0.0	20.4	0	6.02	Overcast, sunny spells
	11/09/15	1003	0.0	6.8	9.8	0	5.54	Sunny
BH4	18/09/15	999	0.0	0.0	20.4	0	6.02	Overcast, sunny spells

Background information relating to the origin and production of ground gases are presented in Appendix B, together with current guidance on the assessment of ground gases. In accordance with this approach and the above measured ground gas levels, it is considered that the worst case temporal conditions may not have been measured during the monitoring period. The gas flow rates measured across the whole of the site at all of the monitoring visits was less than the instrument detection limit of 0.1 l/hr. From Table 8.5 of CIRIA C665, the worst case Characteristic Situation for the site is presented in Table 6.

Table 6 Characteristic Gas Situations

	Flow Rate	CH	H ₄	CC	O ₂		
Borehole Number	I/h	% v/v	GSV (l/hr)	% v/v	GSV (l/hr)	Characteristic Situation	
BH1	0	2.0	0	13.1	0	1 - Consider CS2	
BH2	0	0	0	6.6	0	1 - Consider CS2	
BH3	0	0	0	10.0	0	1 - Consider CS2	
BH4	0	0	0	7.1	0	1 - Consider CS2	

Based on the Ground Gas Assessment, the carbon dioxide conditions at the site are the main risk driver regarding the ground gas conditions. It is therefore recommended that Characteristic Situation 2 gas protection measures are adopted for the development in line with BS 8485:2015:

- well-constructed suspended ground floor slab;
- gas membrane (recommend 2000g DPM) sealed along joints and around service penetrations, membrane to extend across wall cavities;
- passively cross vented under floor sub-space and wall cavities.

The gas protection measures should be designed and installed in accordance with BRE 414 (2001). In addition to the above standard protection measures, it is recommended the subfloor void and air vents of each building be inspected prior to laying the membrane to ensure no building debris is left within the sub-floor void to allowing un-restricted circulation and ventilation of air in the cavity. The Principal Contractor must ensure that the gas membrane is suitably protected from damage by follow on trades.

Due to the measured concentrations of carbon dioxide, the continuation of ground gas monitoring is recommended to provide data for input to a more detailed risk assessment as described in Section 9 of this report.

8. GEOTECHNICAL ASSESSMENT

8.1 Fieldwork Data Review

Standard penetration tests (SPTs) were carried out within the four boreholes, and the results are summarised in Table 7.

Table 7 Summary of SPTs

				TING IVE		TEST	DRIVE			Cohesive	
Borehole No.	Stratum	Depth (m)	each penet of st	rs for 75mm ration tated ration	_	Blows for each 75mm penetration of stated penetration			SPT N Value	Undrained Shear Strength (kPa)	Density
BH1	AG - sand	1.5	2	1	2	8	8	8	26		Medium Dense
BH1	AG - sand	3	2	1	1	1	1	1	4		Loose
BH1	AG - sand	4.5	8	12	14	12	12	8	46		Dense
BH1	AG - sand	6	2	4	4	4	4	5	17		Medium Dense
BH1	Sand	7.5	4	3	5	6	7	9	27		Medium Dense
BH1	Sand	9	3	5	7	7	6	8	28		Medium Dense
BH1	Sand	10.5	4	5	5	6	7	8	26		Medium Dense
BH1	Sand	12	3	5	6	7	7	9	29		Medium Dense

			SEA: DRI			TEST	DRIVE			Cohesive	
□orehole No□	Stratum	Depth (m)	each in penetic penetic penetic	ration ated	□lo□s for each □mm penetration of stated penetration				SPT N Value	Undrained Shear Strength (kPa)	Density
BH1	Sand	13.5	5	6	7	7	9	11	34		Dense
BH2	AG - clay	1.5	4	3	3	3	2	1	9	50	Firm
BH2	AG - clay	3	2	1	2	1	1	1	5	28	Soft
BH2	AG - clay	4.5	2	1	2	3	2	3	10	55	Firm
BH2	Sand	6	4	5	5	5	9	12	31		Dense
BH2	Sand	7.5	2	4	5	6	7	9	27		Medium Dense
BH2	Sand	9	1	1	1	1	2	2	6		Loose
BH2	Sand	10.5	3	3	3	5	7	11	26		Medium Dense
BH2	Sand	12	3	4		50/	210		>50		Very Dense*
BH2	Sand	13.5	3	5	7	7	7	7	28		Medium Dense
ВН3	AG - sand	1.5	1	1	1	1	-	1	3		Very Loose
ВН3	AG – sand	3	1	1	1	1	1	1	4		Loose
ВН3	AG - sand	4.5	3	2	3	3	7	9	22		Medium Dense
ВН3	Sand	6	1	2	2	4	5	4	15		Medium Dense
ВН3	Sand	7.5	1	3	5	5	6	7	23		Medium Dense
ВН3	Sand	9	1	1	2	3	4	5	14		Medium Dense
ВН3	Sand	10.5	2	4	5	4	5	7	21		Medium Dense
ВН3	Sand	12	2	4	6	7	8	7	28		Medium Dense
ВН3	Sand	13.5	4	5	5	6	7	8	26		Medium Dense
ВН3	Gravel	14.5	8	12		50/	129		>50		Very Dense
BH4	AG – sand	1.5	3	2	2	2	1	2	7		Loose
BH4	AG – sand	3	1	-	1	2	4	6	13		Medium Dense
BH4	AG – sand	4.5	5	4	4	4	4	4	16		Medium Dense

			SEA ⁻ DR			TEST DRIVE			Cohesive		
Borehole No.	Stratum	Depth (m)	Blow each i penet of st penet	75mm ration ated		Blows for each 75mm penetration of stated penetration			SPT N Value	Undrained Shear Strength (kPa)	Density
BH4	Sand	6	3	4	4	5	6	8	23		Medium Dense
BH4	Sand	7.5	1	1	2	4	5	6	17		Medium Dense
BH4	Sand	9	1	2	2	3	5	7	17		Medium Dense
BH4	Sand	10.5	1	2	3	5	7	9	24		Medium Dense
BH4	Sand	12	2	4	6	9	10	12	37		Dense
BH4	Sand	13.5	4	6	8	10	12	15	45		Dense

^{*}It was presumed that the cone became sand locked during the test and is therefore considered to be non-representative.

The N values for the reworked clay encountered in BH2 ranged from 28 to 55, indicating that the clay is soft to firm. Undrained shear strengths have been assessed from the SPT N-values using a correlation factor of 5.5.

The N values of the sandy Made Ground ranged from 3 in BH3 to 46 in BH1 and indicated that they varied in density from very loose to dense.

The N value for the sands and gravels underlying the Made Ground in all boreholes ranged from 6 to >50. This indicated that the sands and gravels are loose (at a depth of 9.0m in BH2) to very dense (BH2 and BH3).

It should be noted that due to the difficulty in removing the test equipment, and the medium density of the test above and below it, the 'very dense' reading in BH2 at 12m is presumed to have been caused by the cone becoming sand locked during the test. It is therefore considered to be non-representative.

8.2 Laboratory Data Review

Six bulk samples were collected from depths between 0.9m and 1.0m within the boreholes (BH1 - BH4), between 1.5m - 1.6m in TP3 and 2.0m - 2.1m in TP8 and submitted for testing. The tests commissioned included:

- Determination of moisture content (BS 1377 1990 Part 2 Clause 3.2)
- Determination of particle size distribution by wet/dry sieve (BS 1377 1990 Part 2 Clause 9.2)
- BRE SD1 "Short Suite" (pH, water soluble sulphate, magnesium, chloride, nitrate)

The results are included within Appendix E. The particle size distribution and moisture content results are summarised as follows:

 BH1: MADE GROUND - Very clayey sand and gravel - Moisture content of 21%

- BH2: Clayey SAND and GRAVEL Moisture content of 4%
- BH3: MADE GROUND Very gravelly very clayey sand with cobbles -Moisture content of 11%.
- BH4: Very sand very clayey GRAVEL Moisture content of 10%.
- TP3: Very sandy very clayey GRAVEL Moisture content of 25%
- TP8: Very sandy very clayey GRAVEL Moisture content of 18%

An assessment of the soil (following the guidance published in BRE Special Digest 1, 2005) indicates that the Design Sulphate Class (DS) is in the range of DS1 to DS3 and the ACEC Class as AC-2 as sulphate (2:1 water soil extraction test) ranged between 10mg/l to 1200mg/1 (BH1) with pH ranging between 7.2 (BH2) and 9.4 (TP8). Therefore, special precautions will be required at the site for the design of concrete in terms of the durability and structural performance.

9. CONCLUSIONS

9.1 Environmental Risk Assessment

A generic qualitative risk assessment (GQRA) has been made based on the contaminant - pathway - receptor model as defined in Part IIA of the Environment Protection Act 1990 and in accordance with BS 10175:2011+A2:2013 "Investigation of potentially contaminated sites - code of practice". TerraConsult carried out an intrusive investigation in August and September 2015 which involved the excavation of eight trial pits, and the installation of four boreholes within the footprint of the proposed building. Solid samples were collected from each exploratory hole at various depths and submitted for chemical testing.

Ground conditions comprised Made Ground which generally consisted of clayey gravelly sand with concrete, asphalt, brick, rubber, metal, wood and plastic. This is interpreted as the landfilled material and was present to maximum depths of 4.2m in BH4 and 6.8m in BH1. It is interpreted that the boreholes encountered the edge of the landfill site as Made Ground was encountered to a shallower depth than anticipated. It is possible that the full extent of the depth of the waste has not been determined.

Beneath the Made Ground was very gravelly sand. The Mercia Mudstone was encountered at a depth of 14.2m within one borehole in the western sector (BH3). Groundwater was encountered between depths of 5.5m in BH4 and 7.0m in BH2 on subsequent occasions.

Solid samples were analysed for a range of determinands including metals, inorganic and organic substances. Metals were present at elevated concentrations when compared with assessment criteria for a residential end-use. However, no determinands were present at elevated concentrations with regards to assessment criteria for an industrial end-use. Asbestos fibres were identified as Chrysotile within five samples. Thus, a potential risk to construction workers has been identified from the presence of asbestos fibres.

A potential risk from ground gases has been identified particularly with regards to carbon dioxide. Gas protection measures are thus recommended to be installed within new buildings.

A potential risk to groundwater has been identified from the presence of contaminants in the ground. However, the risk cannot be quantified at this stage.

9.2 Geotechnical Assessment

Ground conditions were relatively consistent across the site and were generally described to be Made Ground, overlying sands and gravels (Alluvium), which in turn overlies the Mercia Mudstone. The Made Ground was encountered to the base of the trial pits to a maximum depth of 3.9m (TP8) and was proven to depths in boreholes ranging between 1.7m (BH4) to 5.4m (BH1). The boreholes were drilled to a depth of 15.0m and due to the shallower depth of landfilled material than anticipated, it was assumed the boreholes were drilled at the edge of the former landfill.

Tests carried out in the field and in the laboratory would indicate that the material is very variable. Where clay was encountered, i.e. within BH2, this was assessed to be soft to firm. Very loose to dense sandy Made Ground and soft to firm clayey Made Ground was encountered and the sands and gravels were also assessed as loose to dense. Any foundation design based on the information gathered during the ground investigation would need to reflect the worst case bearing capacity of the ground encountered and to allow for very localised significant differences in load bearing capacity over short distances.

Moisture content ranges from 4% (clayey sand within BH2) and 25% (very sandy very clayey gravel in TP3). Sulphate and pH for the determination of design of concrete is also very variable.

9.3 Recommendations for Further Works

In order for an economic foundation design to be prepared, further geotechnical assessment will be required. This could involve further boreholes to assess the depth of the landfilled material and to assess the characteristics of the underlying Mercia Mudstone should piled foundations be proposed.

Carbon dioxide was recorded within all four boreholes on at least one occasion and methane in one borehole and thus in order to fully characterise the ground gas regime, it is recommended that ground gas monitoring be continued in accordance with guidance. It is noted that in order to carry out a comprehensive ground gas risk assessment in accordance with CIRIA C665, ground gas monitoring should be carried out on six separate occasions over a period of three months. Monitoring for ground gas should also be carried out in a range of weather conditions, such as falling atmospheric pressure, wet and dry weather and frost.

Contaminants have been identified in the Made Ground, albeit when assessed for the most sensitive use of the site, i.e. residential, and a potential risk to groundwater has been identified. Thus, in order to assess the risk to groundwater from contaminants in the ground, it is recommended that groundwater samples be collected from each of the four boreholes on-site on at least two occasions.

9.4 Health and Safety

As outlined within the HSE publication "Successful Health and Safety Management – HSG65" this report should inform the development of safe systems of work and information as an input into the safety management system. The contents of this report may be used to supplement the contents of the Health and Safety File as required under the Construction Design and Management (CDM) Regulations 2015.

When developing risk control systems, it is recommended that reference be made to the CIRIA report 132 "A guide for safe working on contaminated sites" and the HSE document "Protection of workers and the general public during the development of contaminated land – HSG66". All risk control measures should be in accordance with the guidelines laid down within the Management of Health and Safety at Work Regulations 1999.

REFERENCES

British Drilling Association. 2008. Guidance for Safe Intrusive Activities on contaminated or Potentially Contaminated Land.

BS 10175:2011+A1:2013. Investigation of potentially contaminated sites - Code of practice. British Standards Institution

BS 5930:2015. Code of practice for ground investigation. British Standards Institution.

BS 8576 : 2013 : Guidance on investigation for ground gas – Permanent gases and Volatile Organic Compounds (VOCs). British Standards Institution

Building Research Establishment & Environment Agency : 2001 : Report No BR414, Protective Measures for Housing on Gas Contaminated Land. Author Johnson, R.

Building Research Establishment : 1991 : Report No BR212, Construction of New Buildings on Gas-Contaminated Land.

Building Research Establishment : 1994 : Performance of building materials in contaminated land. Author Paul, V

Building Research Establishment. 2005. Concrete in aggressive ground. Special Digest 1. Third Edition.

Building Research Establishment. 2007. Report No BR211, Radon: guidance on protection measures for new dwellings.

CIRIA. 2007. C665: Assessing Risks Posed by Hazardous Ground Gases for Buildings. London.

CIRIA: 2009: C682: The VOCs Handbook. Investigating, assessing and managing risks from inhalation of Volatile Organic Compounds (VOCs) at land affected by contamination.

Department for Communities and Local Government. 2012. National Planning Policy Framework.

Department for Environment, Food and Rural Affairs / Environment Agency. 2002. Toxicological Reports for Individual Soil Contaminants, Reports TOX 1-10.

Department for Environment, Food and Rural Affairs / Environment Agency. 2004. Contaminated Land Report 11 (CLR11): Model Procedures for the Management of Land Contamination.

Department for Environment, Food and Rural Affairs : 2012: Contaminated Land Statutory Guidance, April 2012

Department for Environment, Food and Rural Affairs: 2013: Development of Category 4 Screening Levels for assessment of land affected by contamination - SP1010 (December 2013).

Department for Environment, Food and Rural Affairs. 2012. Contaminated Land Statutory Guidance.

Department of the Environment Transport and the Regions. 2000. A Guide to Risk Assessment and Risk Management for Environmental Protection. (Also known as Greenleaves II)

Environment Agency: 2005: Environment Agency Guidance on Requirements for Land Contamination Reports. Version 1, July 2005.

Environment Agency. 2009. Petroleum Hydrocarbons in Groundwater. Supplementary Guidance for Hydrogeological Risk Assessment.

Environment Agency. 2010. GPLC1 – Guiding principles for land contamination. GPLC2 – FAQs, technical information and references. GPLC3 – Reporting checklists.

Environment Agency. 2012. Report GP3 "Groundwater protection: Principles and Practice. LIT7562, November 2012, Version 1.

Health & Safety Executive: 2013: Approved Code of Practice: Managing & working with asbestos. Control of Asbestos Regulations 2012.

Health & Safety Executive. 1991. Protection of Workers and the General Public during Development of Contaminated Land. HMSO.

HMSO. 1995. Part 2A of the Environmental Protection Act 1990, as inserted by Section 57 of the Environment Act 1995

LQM/CIEH. 2009. The LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment (2nd edition). Land Quality Press, Nottingham.

NHBC & RSK Group. 2007. Guidance on the Evaluation of Development Proposals on Sites where Methane and Carbon Dioxide are Present. Report No 10627-R01 (04).

Statutory Instruments: 2012: Environmental Protection, England. Contaminated Land (England) (Amendment) Regulations 2012 No. 263 coming into force 6th April 2012.

Statutory Instruments: 2012: Health and Safety. The Control of Asbestos Regulations 2012. No. 262 coming into force 6th April 2012.

Water Regulations Advisory Scheme. 2002. Information and Guidance Note No. 9-04-03.

APPENDICES

Appendix A	Service Constraints, Report Limitations and Planning Requirements
Appendix B	Environmental Risk Assessment Methodology and Terminology
Appendix C	Exploratory Hole Records
Appendix D	Chemical Testing Laboratory Certificates
Appendix E	Geotechnical Testing Laboratory Certificates

Appendix A

Service Constraints, Report Limitations and Planning Requirements

Service Constraints, Report Limitations and Planning Requirements

This report (the "Services") was compiled and carried out by TerraConsult (South) Limited (TCSL) for the client named on the front of the report (the "client") in accordance with the terms of a contract between TCSL and the "client". The Services were performed by TCSL with the skill and care ordinarily exercised by a reasonable environmental consultant at the time the Services were performed. Further, and in particular, the Services were performed by TCSL taking into account the limits of the scope of works required by the client, the time scale involved and the resources, including financial and manpower resources, agreed between TCSL and the client.

Other than that expressly contained in the above paragraph, TCSL provides no other representation or warranty whether express or implied, is made in relation to the Services. Unless otherwise agreed, this report has been prepared exclusively for the use and reliance of the client in accordance with generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon, or transferred to, by any other party without the written agreement of a Director of TCSL. If a third party relies on this report, it does so wholly at its own and sole risk and TCSL disclaims any liability to such parties.

It is TCSL's understanding that this report is to be used for the purpose described in the introduction to the report. That purpose was a significant factor in determining the scope and level of the Services. Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of, or reliance upon, the report in those circumstances by the client without TCSL 's review and advice shall be at the client's sole and own risk.

The information contained in this report is protected by disclosure under Part 3 of the Environmental Information Regulations 2004 pursuant to the provisions of Regulation 12(5) without the consent in writing of a Director of TerraConsult (South) Limited.

The report has been prepared at the date shown on the front page and should be read in light of any subsequent changes in legislation, statutory requirements and industry practices. Ground conditions can also change over time and further investigations or assessment should be made if there is any significant delay in acting on the findings of this report. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should not be relied upon in the future without the written advice of TCSL. In the absence of such written advice of TCSL, reliance on the report in the future shall be at the client's own and sole risk. Should TCSL be requested to review the report in the future, TCSL shall be entitled to additional payment at the then existing rate or such other terms as may be agreed between TCSL and the client.

The observations and conclusions described in this report are based solely upon the Services that were provided pursuant to the agreement between the client and TCSL. TCSL has not performed any observations, investigations, studies or testing not specifically set out or mentioned within this report. TCSL is not liable for the existence of any condition, the discovery of which would require performance of services not otherwise contained in the Services. For the avoidance of doubt, unless otherwise expressly referred to in the introduction to this report, TCSL did not seek to evaluate the presence on or off the site of asbestos, electromagnetic fields, lead paint, radon gas or other radioactive or hazardous materials.

The Services are based upon TCSL's observations of existing physical conditions at the site gained from existing documents, together with TCSL's interpretation of information including documentation, obtained from third parties and from the client on the history and usage of the site. The findings and recommendations contained in this report are based in part upon information provided by third parties, and whilst TerraConsult (South) Limited has no reason to doubt the accuracy and that it has been provided in full from those it was requested from, the items relied on have not been verified. No responsibility can be accepted for errors within third party items presented in this report. Further, TCSL was not authorised and did not attempt to independently verify the accuracy or completeness of information, documentation or materials received from the client or third parties, including laboratories and information services, during the performance of the Services. TCSL is not liable for any inaccurate information or conclusions, the discovery of which inaccuracies required the doing of any act including the gathering of any information which was not reasonably available to TCSL and

including the doing of any independent investigation of the information provided to TCSL save as otherwise provided in the terms of the contract between the client and TCSL.

Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the work. Ground conditions can also be variable and as investigation excavations only allow examination of the ground at discrete locations. The potential exists for ground conditions to be encountered which are different to those considered in this report. The extent of the limited area depends on the soil and groundwater conditions, together with the position of any current structures and underground facilities and natural and other activities on site. In addition, chemical analysis was carried out for a limited number of parameters [as stipulated in the contract between the client and TCSL] based on an understanding of the available operational and historical information, and it should not be inferred that other chemical species are not present.

The groundwater conditions entered on the exploratory hole records are those observed at the time of investigation. The normal speed of investigation usually does not permit the recording of an equilibrium water level for any one water strike. Moreover, groundwater levels are subject to seasonal variation or changes in local drainage conditions and higher groundwater levels may occur at other times of the year than were recorded during this investigation.

Any site drawing(s) provided in this report is (are) not meant to be an accurate base plan, but is (are) used to present the general relative locations of features on, and surrounding, the site.

Throughout the report the term 'geotechnical' is used to describe aspects relating to the physical nature of the site (such as foundation requirements) and the term 'geoenvironmental' is used to describe aspects relating to ground-related environmental issues (such as potential contamination). However, it should be appreciated that this is an integrated investigation and these two main aspects are inter-related. The geoenvironmental sections are written in broad agreement with BS 10175:2011+A1 2013. For the geotechnical aspects of the report, the general requirements of Eurocode 7 (BS EN 1997-2:2007) providing a desk study assessment. This report shall not be considered as being a Ground Investigation Report (GIR).

Planning Requirements

The National Planning Policy Framework (NPPF, 2012) has twelve core land-use planning principles, two of which directly relate to the potential for pollution and contaminated land:

- Requirement to "contribute to conserving and enhancing the natural environment and reducing pollution" and setting out of a preference for developments to be on land of "lesser environmental value"; and
- "encourage the effective use of land by re-using land that has been previously developed (brownfield land), providing that it is not of high environmental value.".

In accordance with the core principles of NPPF, Paragraph 109 clarifies that enhancing the natural environment includes:

- "preventing both new and existing development from contributing to or being put at unacceptable risk from, or being adversely affected by unacceptable levels of soil, air, water or noise pollution or land instability; and
- remediating and mitigating despoiled, degraded, derelict, contaminated and unstable land, where appropriate.".

Paragraph 121 of NPPF states that planning policies and decisions for developments should also ensure that:

- "the site is suitable for its new use taking account of ground conditions and land instability, including from natural hazards or former activities such as mining, pollution arising from previous uses and any proposals for mitigation including land remediation or impacts on the natural environment arising from that remediation;
- after remediation, as a minimum, land should not be capable of being determined as contaminated land under Part IIA of the Environmental Protection Act 1990; and
- adequate site investigation information, prepared by a competent person, is

presented.".

This report has been prepared and authorised by staff that are competent as defined in the NPPF.

Unexploded Ordnance

Clients have a legal duty under the CDM 2015 Regulations to provide designers and contractors with project-specific health and safety information needed to identify hazards and risks. This includes the possibility of unexploded ordnance (UXO) being encountered on the site. Further details are given in CIRIA Report C681 (Stone et al 2009). A non-UXO specialist screening exercise has been carried out for the site by considering any evidence of UK defence activities on or near the site evident from the gathered desk study information and the unexploded aerial delivered bomb (UXB) regional risk maps produced by Zetica. Other data sources are available, but as a first stage screening exercise the freely available Zetica maps have been used. The level of risk stated is that determined by Zetica, a company experienced in the desk study, field investigation and clearance of UXO/UXB.

Appendix B

Environmental Risk Assessment

Methodology & Terminology

ENVIRONMENTAL RISK ASSESSMENT METHODOLOGY & TERMINOLOGY

LEGISLATION OVERVIEW

This report includes hazard identification and environmental risk assessment in line with the risk-based methods referred to in relevant UK legislation and guidance. Government environmental policy is based upon a "suitable for use approach," which is relevant to both the current use of land and also to any proposed future use. The contaminated land regime is the statutory regime for remediation of contaminated land that causes an unacceptable level of risk and is set out in Part 2A of the Environmental Protection Act 1990 ("EPA 1990"). The main objective of introducing the Part IIA regime is to provide an improved system for the identification and remediation of land where contamination is causing unacceptable risks to human health or the wider environment given the current use and circumstances of the land. Part IIA provides a statutory definition of contaminated land under Section 78A(2) as:

"any land which appears to the Local Authority in whose area it is situated to be in such a condition, by reason of substances in, on, or under the land, that:

(a) Significant harm is being caused or there is a significant possibility of such harm being caused;

or

(b) Pollution of controlled waters is being, or is likely to be, caused."

In order to assist in establishing if there is a "significant possibility of significant harm" there must be a "contaminant linkage" for potential harm to exist. That means there must be a source(s) of contamination, sensitive receptors present and a connection or pathway between the two. This combination of contaminant-pathway-receptor is termed a "contaminant linkage or CPR linkage."

Part IIA of The Environmental Protection Act 1990 is supported by a substantial quantity of guidance and other Regulations. Key implementing legislation of the Part 2A regime includes the Contaminated Land (England) Regulations 2006 (SI 2006/1380) as amended by the overarching legislation for the contaminated land regime, which implements the provisions of Part IIA of the Environmental Protection Act 1990 (as inserted by section 57 of the Environment Act 1995), came into force on 14th July 2000 together with recent amended regulations: Contaminated Land (England) (Amendment) Regulations 2012 (SI 2012/263). Revised Contaminated Land Statutory Guidance was published by DEFRA in April 2012. Part IIA defines the duties of Local Authorities in dealing with it. Part IIA places contaminated land responsibility as a part of planning and redevelopment process rather than Local Authority direct action except in situations of very high pollution risk.

In the planning process guidance is provided by National Planning Policy Framework (NPPF) of March 2012 which requires that a site which has been developed shall not be capable of being determined "contaminated land" under Part IIA. In practice, Planning Authorities require sites being developed to have a lower level of risk post development than the higher level of risk that is required in order to determine a site as being contaminated in accordance with Part IIA. This is to ensure that there is a suitable zone of safety below the level for Part IIA determination and prevent recently developed sites becoming reclassified as contaminated land if there are future legislative or technical changes (e.g. a substance is subsequently found to be more toxic than previously assessed this increases its hazard).

The criteria for assessing concentrations of contaminants and hence determining whether a site represents a hazard are based on a range of techniques, models and guidance. Within this context it is relevant to note that Government objectives are:

- (a) to identify and remove unacceptable risks to human health and the environment;
- (b) to seek to bring damaged land back into beneficial use;

(c) to seek to ensure that the cost burdens faced by individuals, companies and society as a whole are proportionate, manageable and economically sustainable.

These three objectives underlie the "suitable for use" approach to risk management and remediation of contaminated land. The "suitable for use" approach focuses on the risks caused by land contamination. The approach recognises that the risks presented by any given level of contamination will vary greatly according to the use of the land and a wide range of other factors, such as the underlying geology of the site. Risks therefore should be assessed on a site-by-site basis.

The "suitable for use" approach then consists of three elements:

- (a) ensuring that land is suitable for its current use in other words, identifying any land where contamination is causing unacceptable risks to human health and the environment, assessed on the basis of the current use and circumstances of the land, and returning such land to a condition where such risks no longer arise ("remediating" the land); the contaminated land regime provides the regulatory mechanisms to achieve this;
- (b) ensuring that land is made suitable for any new use, as planning permission is given for that new use in other words, assessing the potential risks from contamination, on the basis of the proposed future use and circumstances, before official permission is given for the development and, where necessary to avoid unacceptable risks to human health and the environment, remediating the land before the new use commences; this is the role of the town and country planning and building control regimes; and
- (c) limiting requirements for remediation to the work necessary to prevent unacceptable risks to human health or the environment in relation to the current use or future use of the land for which planning permission is being sought in other words, recognising that the risks from contaminated land can be satisfactory assessed only in the context of specific uses of the land (whether current or proposed), and that any attempt to guess what might be needed at some time in the future for other uses is likely to result either in premature work (thereby running the risk of distorting social, economic and environmental priorities) or in unnecessary work (thereby wasting resources).

The mere presence of contaminants does not therefore necessarily warrant action, and consideration must be given to the scale of risk involved for the use that the site has, and will have in the future.

OVERALL METHODOLOGY

The work presented in this report has been carried out in general accordance with recognised best practice as detailed in guidance documents such as in the CLR 11 Model Procedures for the Management of Land Contamination (Environment Agency, 2004), and BS10175:2011+A1 2013. Important aspects of the risk assessment process are transparency and justification. The particular rationale behind the risk assessments presented is given in this appendix.

The first stage of a two-staged investigation and assessment of a site is the Preliminary Investigation (BS 10175:2011), often referred to as the Phase 1 Study, comprising desk study and walk-over survey, which culminates in the Preliminary Risk Assessment. A preliminary conceptual site model (CSM) is developed which identifies potential geotechnical and geo-environmental hazards and the qualitative degree of risk associated with them. From the geo-environmental perspective, the Hazard Identification process uses professional judgement to evaluate all the hazards in terms of potential contaminant linkages (of contaminant source-pathway-receptor). Potential contaminant linkages are potentially unacceptable risks in terms of the current contaminated land regime legal framework and require either remediation or further assessment. These are normally addressed via intrusive ground investigation and generic risk assessment.

The second stage is the Ground Investigation, Generic Risk Assessment and Geotechnical Interpretation. This represents the further assessment mentioned above. The scope of the Ground Investigation is based on the findings of the Preliminary Risk Assessment and is designed to reduce uncertainty in the geotechnical and geoenvironmental hazard identification. The Ground Investigation comprises fieldwork, laboratory testing and usually also on-site monitoring. The Ground Investigation may include the Exploratory, Main and Supplementary Investigations described in BS 10175:2011+A1 2013. The results of the Ground Investigation reduce uncertainty in the geotechnical and geoenvironmental risks. Depending on the findings more detailed investigations or assessments may be required.

PRELIMINARY RISK ASSESSMENT

Current practice recommends that the determination of potential liabilities that could arise from land contamination be carried out using the process of risk assessment, whereby "risk" is defined as:

- "(a) The probability, or frequency, or occurrence of a defined hazard; and
- (b) The magnitude (including the seriousness) of the consequences."

The UK's approach to the assessment of environmental risk is set out in by the Department of the Environment Transport and the Regions (2000) publication "A Guide to Risk Assessment and Risk Management for Environmental Protection" (also called Greenleaves II). This established an iterative, systematic staged process which comprises:

- (a) Hazard identification;
- (b) Hazard assessment;
- (c) Risk estimation;
- (d) Risk evaluation;
- (e) Risk assessment;

At each stage during the development process, the above steps are repeated as more detailed information becomes available for the site.

For an environmental risk to be present, all three of the following elements must be present:

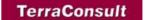
- Source/Contaminant: hazardous substance that has the potential to cause adverse impacts;
- Receptor: target that may be affected by contamination: examples include human occupants/users of site, water resources (rivers or groundwater), or structures;
- Pathway: a viable route whereby a hazardous substance may come into contact with the receptor.

The absence of one or more of each component (contaminant, pathway, receptor) would prevent a contaminant linkage being established and there would be no significant environmental risk.

The identification of potential contaminant linkages is based on a Conceptual Model of the site, which is subject to continual refinement as additional data becomes available. As part of a Preliminary Risk Assessment (Desk Study and site walk over) a Preliminary Conceptual Site Model (PCSM) is formed. Based on the PCSM, potential contaminant linkages can be assessed. If the PCSM and hazard assessment indicate that a contaminant linkage is not of significance then no further assessment or action is required for this linkage. For each significant and potential linkage a risk assessment is carried out. The linkages which potentially pose significant risks may require a variety of responses ranging from immediate remedial action or risk management or, more commonly, further investigation and risk assessment. This next stage is termed a Phase II Main Site Investigation and should provide additional data to allow refinement of the Conceptual Site Model and assess the level of risk from each contaminant linkage.

Definition of Risk Assessment Terminology

The criteria used for risk assessment are broadly based on those presented in DETR's "A Guide to Risk Assessment and Risk Management for Environmental Protection" (2000). The Severity of the risk is classified according to the criteria in Table B.1 below:


Table B.1 Severity/Cons	sequence of Risk			
	Acute risks to human health.			
Severe	Catastrophic damage to buildings/property (e.g. by explosion).			
	Direct pollution of sensitive water receptors or serious pollution of other controlled water (watercourses or groundwater) bodies.			
	Harm to human health from long-term exposure.			
Medium	Slight pollution of sensitive controlled waters (surface waters or aquifers) or pollutio of other water bodies.			
	Significant effects on sensitive ecosystems or species.			
	No significant harm to human health in either short or long term.			
Mild	No pollution of sensitive controlled waters, no more than slight pollution of non-sensitive waters.			
	Significant damage to buildings or structures.			
	Requirement for protective equipment during site works to mitigate health effects.			
	Damage to non-sensitive ecosystems or species.			
Negligible	Minor damage to buildings or structures.			
	No harm or pollution of water.			

The probability of the risk occurring is classified according to criteria given in Table B.2 below:

Table B.2: Probability	Table B.2: Probability of Risk Occurring				
High likelihood	Contaminant linkage may be present, and risk is almost certain to occur in the long term, or there is evidence of harm to the receptor.				
Medium/Reasonably Foreseeable	Contaminant linkage may be present, and it is probable that the risk will occur over the long term.				
Low/Unlikely	Contaminant linkage may be present and there is a possibility of the risk occurring, although there is no certainty that it will do so.				
Negligible/ Not credible	Contaminant linkage may be present but the circumstances under which harm would occur are improbable.				

An overall evaluation of the level of risk is gained from a comparison of the severity and probability, as shown in Table B.3 below:

Table B.3: C	Table B.3: Comparison of Severity and Probability								
			Sev	erity					
		Severe Medium Mild Negligible							
	High likelihood	Very High Risk	High Risk	Medium/Low Risk	Low Risk				
Probability	Medium/Reasonably Foreseeable	High Risk	Medium Risk	Low Risk	Near Zero				
Probability	Low/Unlikely	High/Medium Risk	Medium/Low Risk	Low Risk	Near Zero				
	Negligible/ Not credible	Medium/Low Risk	Low Risk	Low Risk	Near Zero				

The various risk rankings provide guidance for recommended actions, whether this is:

AR - Action Required, Remediation or mitigation or site investigation works required

SIR - Site Investigation Required, further assessment is required.

NAR - No Action Required.

A description of the evaluated risk is as follows:

Table B.4 - Description of	Table B.4 – Description of the Classified Risks and Likely Action Required						
Evaluated Risk	Recommended Actions						
Very High Risk	AR: There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.						
High Risk	AR: Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short term and are likely over the long term.						
Moderate Risk	SI: It is possible that harm could arise to a designated receptor from an identified hazard. However, it is relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.						
Low Risk	NAR: It is possible that harm could arise to a designated receptor from an identified hazard, but there is a low likelihood of this hazard occurring and if realised, harm would at worst normally be mild.						
Near Zero	NAR: There is a negligible possibility that harm could arise to a receptor. In the event of such harm being realised, it is not likely to be severe.						

GENERIC QUANTITATIVE RISK ASSESSMENT

In the following sections the current UK guidance on risks to the following receptors are discussed: human health, plant life and controlled waters

Human Health

The overall methodology for assessing the risk to human health from potential contaminants in soil is set out in the Environment Agency's guidance "Using Soil Guideline Values" SC050021/SGV Introduction, March 2009 and using the CLEA 1.06 model software. The generic assessment criteria are in accordance with the following:

- Science Report SC050021/SR2: Human health toxicological assessment of contaminants in soil;
- Science Report SC050021/SR3: Updated technical background to the CLEA model;
- Science Report SC050021/SR4: CLEA Software (Version) Handbook;
- Toxicological reports and SGV technical notes;
- Toxicological data published by LQM/CIEH (2009) and CL:AIRE/EIC/AGS (2009)
- DEFRA Development of Category 4 Screening Levels for assessment of land affected by contamination - SP1010 (December 2013).
- LQM/CIEH Suitable 4 Use Levels (S4ULs) for Human Health Risk Assessment

In March 2014 six 'proposed' Category 4 Screening Levels (pC4SL) were issued by Defra. These screening values are considered to be within Category 4 as defined in the Contaminated Land

Statutory Guidance and indicate safe levels for new developments passing through the planning system. The SGV for lead has been withdrawn, and the pC4SL for lead has been derived using current best practice. In January 2015 LQM/CIEH published S4ULs for 89 contaminants in accordance with the C4SL methodology.

Note that groundwater contamination may pose a risk to human health but that there are no relevant generic assessment criteria available for comparison. TerraConsult has derived our own assessment criteria for this.

Phytotoxic Risks

Generic assessment of phytotoxicity is by comparison with guideline values presented in the British Standard for Topsoil and the MAFF document "Code of Good agricultural practice for the protection of soil", October 1998. This is in accordance with CLR's reference to DEFRA notice CLAN 4/04.

Controlled Waters

Risks to controlled waters (groundwater and surface waters) from contaminants are assessed in accordance with the EA documents Groundwater Protection: Policy and Practice GP3 (2012) and Remedial Targets Methodology (RTM, 2006). Pollutant inputs from contaminated land sites are considered as passive inputs under the European Water Framework Directive (2000/60/EC) (WFD) and its daughter Directives, and as such are regulated under the Environment Agency's 'limit' pollution objective. Acceptable water quality targets (WQT) are defined for protection of human health (based on Drinking Water Standards (DWS)) and for protection of aquatic ecosystems (Environmental Quality Standards (EQS)). The risk posed to controlled waters from total soil concentrations cannot be directly assessed. The risk is assessed either by comparison of results of leachate tests carried out on soil samples, or from the direct testing of samples of groundwater to screening criteria. Leachate testing generally forms a conservative assessment and is not appropriate for organic contaminants.

CURRENT GUIDANCE ON INTERPRETATION OF CHEMICAL ANALYSIS OF SOILS

Contaminated land is defined under law through Part IIA of the Environmental Protection Act 1990, implemented through Section 57 of the Environment Act 1995. This supports a 'suitable for use' based approach to the risk assessment of potentially contaminated land. The site specific risk assessment is based upon assessment of plausible contaminant linkages, referred to as the contaminant-pathway- receptor model, based upon the current or proposed use of the site.

Before undertaking a risk assessment a conceptual site model is devised in order to identify the potential contaminants, pathways and receptors. The individual contaminants, pathways and receptors then need to be further investigated in order to refine the initial assessment and risk assessment undertaken.

In March 2002, the Department for Environment, Food and Rural Affairs (DEFRA) and the Environment Agency published the Contaminated Land Exposure Assessment (CLEA) Model and a series of related reports. These were designed to provide a scientifically based framework for the assessment of chronic risks to human health from contaminated land. These reports (CLR7-10) together with associated "SGV" documents were withdrawn and the following documents have been published as revised guidance to the CLEA assessment:

- Environment Agency : 2008: Using Soil Guideline Values SC050021/SGV Introduction, March 2008.
- Environment Agency: 2008: Science Report SC050021/SR2: Human health toxicological assessment of contaminants in soil.
- Environment Agency: 2008: Science Report SC050021/SR3: Updated technical background to the CLEA model.
- Environment Agency: 2008: Compilation of Data for Priority Organic Contaminants for Derivation of Soil Guideline Values Science report SC050021/SR7

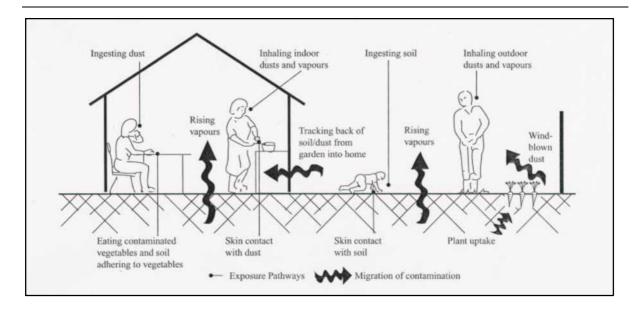
- Science Report SC050021/SR4: CLEA Software (Version) Handbook.
- DEFRA Development of Category 4 Screening Levels for assessment of land affected by contamination - SP1010 (December 2013).
- LQM/CIEH Suitable 4 Use Levels for Human Health Risk Assessment

Additional guidance on statistical assessment replacing CLR 7 is partly provided in:

• CL:AIRE: 2009: Guidance on Comparing Data With a Critical Concentration

A different approach to the statistical appraisal of data is required depending on whether the assessment of risk is to assess whether land is Contaminated Land in accordance with regulations, or whether the assessment is to assess whether the site is suitable for new development in according with Planning guidance. This is discussed further in CL:AIRE: 2009 "Guidance on Comparing Data With a Critical Concentration".

The introduction of the Contaminated Land (England) (Amendment) Regulations 2012 and Contaminated Land Statutory Guidance (DEFRA, 2012) reassessed the CLEA Model and the derived SGVs (and associated GACs calculated using the model). This re-assessment concluded that the SGVs/GACs were conservative screening criteria for determining the suitability of soil with regard to the risk to human health under the planning regime and defined a new upper limit for planning purposes which is the boundary between the new Category 3 and 4. In March and September 2014 DEFRA issued guidance on these new Category 4 Screening Levels (C4SL) and these are discussed further below.


Soil Guideline Values

A program for the derivation of SGVs based on the above guidance is provided by the Environment Agency and is entitled "CLEA Software Version 1.06". These reports, together with supporting toxicology reviews ("Tox" or Supplementary Information Reports) for individual substances (which will be gradually updated), Soil Guideline Value Reports and other guidance referred to in the above documents, provide guidance and the scientific basis for assessing the risk to human health from potential contaminants. Soil Guideline Value Reports (SGV Reports) have been published for a number of contaminants and these are published on the Environment Agency website. Eventually the reports will include SGVs for:

- heavy metals and other inorganic compounds: arsenic, cadmium, chromium, cyanide, lead (now withdrawn), mercury nickel, and selenium;
- benzene, ethylbenzene, toluene and xylenes;
- phenol;
- dioxins and dioxin-like polychlorinated biphenyls (PCBs);
- polycyclic aromatic hydrocarbons (PAHs) 11 substances.

In addition CIEH through LQM and the EIC have published generic assessment criteria (GACs) for a wide variety of other parameters including metals, hydrocarbons, chlorinated aliphatic compounds, PAHs and explosive substances for three standard land uses. These have been produced to supplement the Environment Agency guidance. These GACs will be replaced by SGVs when or if the Environment Agency publishes any more SGVs.

The CLEA model has been developed to calculate an estimated tolerable daily soil intake (TDSI) for site users given a set 'default' exposure pathways. Ten human exposure pathways are covered in the CLEA model as presented below:

Ingestion

- ingestion of outdoor soil;
- ingestion of indoor dust;
- ingestion of home grown vegetables;
- ingestion of soil attached to home grown vegetables.

Dermal Contact

- dermal contact with outdoor soil;
- dermal contact with indoor dust.

Inhalation

inhalation of outdoor dust;inhalation of indoor dust;

inhalation of outdoor soil vapour;inhalation of indoor soil vapour.

It should be noted that there are other potential exposure pathways on some sites not included in the CLEA model e.g. certain organic compounds can pass through plastic water pipes into drinking water supply.

The presence and/or significance of each of the above exposure pathways are dependent on the type of land use being considered and the nature of the contaminant under scrutiny. Accordingly, the CLEA model considers for principle 'default' land use types and makes a series of 'default' assumptions with regard to human exposure frequency, duration and critical human target groups for each land use considered:

- residential land use;
- allotments;
- commercial and industrial land use.

The land use categories defined in the CLEA are detailed below.

Residential: This land use category assumes that people live in a variety of dwellings including terraced, detached and semi-detached houses up to two storeys high. The structure of buildings varies. Default parameters for building materials and building design are included in CLEA documents to calculate the relevant multi-layer diffusion coefficients for vapour intrusion and to model indoor vapour intrusion. The CLEA model assumes that regardless of

the style of housing the residents will have access to either a private garden or community open space nearby, and that soil tracked into the home will form indoor dust. It allows for the ingestion pathways from home grown vegetables.

Allotments: The CLEA model incorporates an assessment of land provided by local authorities specifically for people to grow fruit and vegetables for their own consumption. Consumption of such fruit and vegetables present several exposure pathways; plants absorb contaminants mainly via water uptake through roots, the contaminants move to edible portions of plants via translocation and contaminated soil particles become trapped in the skin and between leaves. At present the model fails to account for exposure through the consumption of animals, and their products (e.g. eggs), which have been reared on contaminated land.

Commercial/Industrial:Although there are a wide variety of workplaces and work-related activities, the CLEA assessment of this land-use assumes that work occurs in a permanent, three-storey structure, where employees spend most time indoors, conducting office-based or light physical work. The model assumes employees sit outside during breaks for most of the year. Limitations in applying this land-use to different industries is detailed in EA publication "Updated technical background to the CLEA model" (2011). The generic model assumes that the site would not be covered by hard standing. Risk of exposure to contaminants would be clearly less where commercial land is essentially all buildings and hard standing.

Based on the assumptions of each land use and the associated applicable exposure pathways, a 'Soil Guideline Value' (SGV) may be calculated for each contaminant under consideration for a particular land use in order to determine whether certain contaminant soil concentrations pose a significant risk to human health. The primary purpose of the CLEA SGVs are as 'trigger values' – indicators to a risk assessor that soil concentrations below this level require no further assessment as it can be assumed that the soil is suitable for the proposed use. Where soil concentrations occur above the SGV then further assessment of the results is required. The Contaminated Land (England) (Amendment) Regulations 2012 and Contaminated Land Statutory Guidance (DEFRA, 2012) which came into force in early April 2012 provides new clarity on the assessment of risk where soil concentrations exceed the SGV. The guidance introduces a four stage classification system relating to concentration of contaminants and the assessed risk which indicates appropriate actions. Category 1 and 2 sites are classified as "Contaminated Land" as defined in Part IIA of The Environmental Protection Act (1990). Category 3 and 4 sites are not considered as "Contaminated Land" in accordance with the Act. This can be explained using the figure on the following page.

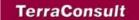
There are also difficulties in establishing soil concentrations of contaminants beyond which risks from exposure to these contaminants would be 'unacceptable' and that they would lead to "significant possibility of significant harm" as defined in Part IIA of The Environmental Protection Act (1990) and determine that the land is "contaminated." This ultimately requires detailed 'toxicological' information of the health effects of individual contaminants and also a scientific judgement on what constitutes an 'unacceptable' risk. It is for local authorities or the Environment Agency to determine whether a particular site is contaminated land and it is for local Planning Authorities to determine whether land affected by contamination can be redeveloped.

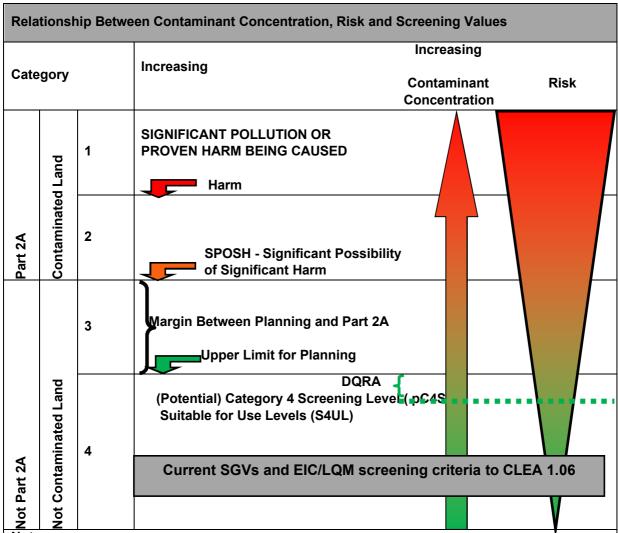
Given the SGVs have been derived only for a limited number of contaminants and there was little prospect of further SGVs being published, two professional groupings have produced Generic Assessment Criteria (GACs) in accordance with the CLEA model for a large number of additional contaminants. These GACs were recognised in the new Contaminated Land Statutory Guidance (DEFRA, 2012) and have been produced as follows:

LQM/CIEH: 2009 Nathaniel CP, McCaffrey C, Ashmore MH, Cheng NPS GROUP, Gillett A, Ogden R & Scott D: 2009. The LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment (2nd edition). Land Quality Press, Nottingham.

CL:AIRE/EIC/AGS: 2009: Soil Generic Assessment Criteria (GAC) for Human Health Risk Assessment. Contaminated Land: Applications in Real Environments, Environment Industries Commission & Association of Geotechnical and Environmental Specialists. December 2009.

Category 4 Screening Levels and LQM/CIEH Suitable 4 Use Levels


For new developments progressing through the planning regime, it is desirable that the soil concentrations are within Category 4 where there is a valid contaminant linkage. The upper boundary between Category 4 and 3 is not defined in the guidance. This boundary can also be better defined by carrying out a Detailed Quantified Risk Assessment (DQRA) and this is discussed later in this appendix.


In December 2013 Defra issued the findings of a research project undertaken by CL:AIRE to set out the framework by which potential Category 4 Screening Levels (pC4SL) may be derived. The report was not designed to produce 'final' C4SL as the steering group producing the report believes that final C4SL should be set by a 'relevant authority' (e.g. Defra), the toxicological framework proposed has not been reviewed by the Committee on Toxicity and the document has yet to be subject to peer review.

In March 2014, appendices to the main Defra report were published detailing the derivation of pC4SL for 6 contaminants and other appendices regarding a review of the CIEH/CL:AIRE statistics guidance and sensitivity analysis. For each contaminant, a range of pC4SL have been produced relating to modifying toxicological parameters only, modifying exposure parameters only or by modifying both. It should be noted that the pC4SL produced for lead (the SGV was withdrawn in 2011) has undertaken a relatively large toxicological review in relation to modelling blood lead concentrations. pC4SL have been produced for:

- Arsenic;
- Benzene;
- Benzo(a)pyrene (as a surrogate marker for PAHs);
- Cadmium;
- Chromium (VI); and
- Lead

As previously discussed the values were initially published as 'potential' C4SL but have become 'final' following DEFRA having issued a policy decision letter indicating that they are to be used in the planning regime (letter of 3rd September 2014). It is considered that the pC4SL provide a simple test for deciding whether land is suitable for use without any remediation. The pC4SL represent a new set of screening levels that are more pragmatic (but strongly precautionary) compared to the existing soil guideline values (SGVs and the other GACs calculate in accordance with the existing CLEA methodology). The pC4SL provide cautious estimates of contaminant concentrations in soil that are still considered to present an acceptable level of risk, within the context of Part 2A, by combining information on toxicology, exposure assessment and normal levels of exposure to these contaminants. pC4SL values should not be seen as 'SPOH values.' Exceeding a pC4SL means that further investigation is required, not that the land is necessarily contaminated. In January 2015, LQM published Suitable 4 Use Levels (S4ULs) for a further 89 contaminants using the Defra C4SL methodology. In a similar manner to the pC4SLs, no authoritative review has been undertaken although the approach and quality of the work undertaken is widely accepted as being of high quality.

Note:

The vertical scale should not be considered as being linear and will be site and contaminant specific.

- SPOSH concentrations could be 10 to 100 times the SGV/EIC/LQM screening concentration.
- C4SL were issued as 'potential' but have become 'final' following DEFRA having issued a policy decision letter indicating that they are to be used in the planning regime (letter of 3rd September 2014).

Lead

The SGV for lead was withdrawn in 2011 and is not used in this report. The pC4SL for lead provides a technically robust and conservative assessment tool using significantly updated toxicological modelling in line with current scientific understanding of lead toxicology.

Public Open Space

The Defra report (December 2013) has also introduced exposure scenarios for two other commonly occurring land uses which require assessment (under the planning and Part 2A regimes) on a relatively frequent basis. These exposure scenarios are:

- Public Open Space Space Near Residential Housing (POS_{resi}); and
- Public Open Space Public Park (POS_{park}).

Potential use of pC4SL relating to Public Open Space (POS) require care due to the significant variability in exposure characteristics. For example, POS may include:

- Children's play areas, public parks where children practise sport several times a week and teenagers only once a week;
- Grassed areas adjacent to residential properties which are rarely used;
- Dedicated sports grounds where exposure is only to players and groundworkers; and
- Nature reserves or open ground with low level activity (for example, dog walking).

Within the Defra report (December 2013) the following exposure scenarios have been modelled as these are considered the most important for potential exposure for the critical receptor i.e. young children:

- Green open space close to housing, including tracking back of soil (POS_{resi}); and
- Park-type scenario where distance is considered sufficient to discount tracking back of soil (POS_{park}).

Detailed Quantified Risk Assessment (DQRA)

SGVs, GACs, pC4SL and S4ULs are based on a number of basic assumptions. There are two main options for developing Site Specific Assessment Criteria (SSAC) by adjusting the CLEA model so that they have greater relevance to the site:

- **Simple adjustment of the generic SGV / C4SL model**. Such adjustment is restricted to the choice of exposure routes selected for the generic land use, building type, soil type and soil organic matter content within the CLEA software.
- Detailed adjustment. It may be relevant to make greater modifications to the model due to the specific use of the land in question. This can include modification to any parameter value, including exposure assumptions, building parameters, and the choice and application of fate and transport models. This is equally relevant to site-specific modifications of existing generic land uses, the development of new land uses, and the inclusion of additional exposure pathways. Much of this can be undertaken using the CLEA software. Depending on the complexity of the detailed adjustments required, it may be necessary to use other tools either alone or in conjunction with the CLEA software. Both options should follow established protocols for DQRA and require sufficient justification and supporting information for the adjustments made. Detailed adjustments are likely to require substantially greater technical justification and supporting documentation, especially if modifications are based on information not contained within the SGV framework documents.

The two choices present the risk assessor with three options/decisions:

- (1) Use a published SGV/GAC/pC4SL/S4UL if it can be demonstrated that the assumptions inherent in the value are appropriate to the site in question. If they are not, proceed to either option 2 or 3 below.
- (2) Make simple site-specific adjustments to the generic exposure model used to derive the SSAC. Three examples of when this could be appropriate are:
- a. High density residential development with no exposed contaminated soil at surface. It is appropriate in this case to consider the relevance of direct contact pathways and consumption of homegrown produce.

- b. Soil type is significantly different (specifically when soil type is likely to be less protective e.g. made ground) to that assumed in the SGV/GAC/pC4SL/S4UL.
- c. Soil organic matter content is significantly different to that assumed in the derivation of the SGV/GAC/pC4SL/S4UL.
- (3) If simple adjustments are not sufficient to reflect site conditions, undertake a DQRA. This may be undertaken using the CLEA software or by using an alternative risk assessment methodology that is relevant, appropriate, authoritative and scientifically based. Changes to toxicological end points may also be considered, although this should only be undertaken by an toxicology expert. In the context of this guidance, simple adjustments of a generic land use scenario for soil type or SOM content for example are not considered sufficient to be classed as a DQRA.

DQRAs should be conducted with the agreement of the local authority (or the Environment Agency) since it is the authority that determines whether land is Contaminated Land or whether Planning Permission for a new development may be granted.

Representative Data

The type, quantity and quality of the available soil data influence the method chosen to obtain a site representative soil concentration that is compared with a SGV/GAC/pC4SL/S4UL in the screening process. The soil data should be representative of the exposure scenario being considered. This can include factors such as:

- averaging area over which exposure occurs;
- sample depth;
- heterogeneity of soil

where the 'averaging area' is defined as:

That area (together with a consideration of depth) of soil to which a receptor is exposed or which otherwise contributes to the creation of hazardous conditions'.

Site investigations take discrete samples from a given area (and to a certain depth). It has to be assumed that these samples are to some degree representative of the contaminant concentration throughout that volume of soil. The critical soil volume (taking into account area and depth) which might be usefully compared with a SGV/GAC/pC4SL/S4UL is a site-specific decision, but a starting point is the generic land use scenarios used in the derivation of the SGV/GAC/pC4SL/S4UL. The critical soil volume depends on two factors:

- Contaminant distribution and vertical profile (bands of highly contaminated material or lateral hot spots should not necessarily be averaged out with more extensive cleaner areas of soil without justification)
- Contribution to average exposure underpinning the SGV. Direct contact exposure pathways depend on the adult or child coming into contact with near-surface soils and the area over which that exposure occurs is usually important (i.e. the averaging area). Vapour pathways are less dependent on surface area, for example vapour intrusion may result from a highly concentrated hot spot beneath a building leading to elevated average indoor air concentrations. For the three standard land uses for which SGVs are derived, relevant considerations are:
- For the standard **residential or allotment land use**, the critical soil volume is the area of an individual garden, communal play area or working plot from the surface to a depth of between 0.5m and 1.0m. This is the ground over which children are most

likely to come into contact with soil or from which vegetable and fruit produce will be harvested. In the case of volatile contaminants, it may also be appropriate to consider the volume of soil underneath the footprint of the building although vapour intrusion may be driven by a soil volume much smaller than this if the contaminant source is highly concentrated.

- For the standard commercial land use, the critical soil volume has to be decided on a case-by- case basis due to the wide range of possible site layouts. However, for non-volatile contaminants, landscaped and recreational areas around the perimeter of office buildings are likely to be most important. For volatile contaminants, the footprint occupied by the building itself should also be considered.
- For most exposure pathways, the contamination is assumed to be at or within one metre of the surface.

The use of averaging areas must be justified on the basis of relevance to the exposure scenario. SGVs are relevant only when the exposure assumptions inherent in them are appropriate for the identified exposure averaging area. Further guidance on critical soil volumes and the consideration of averaging exposure areas can be found in:

- Secondary model procedure for the development of appropriate soil sampling strategies for land contamination (Environment Agency, 2000);
- Guidance on comparing soil contamination data with a critical concentration (CIEH/CL:AIRE, 2009); and
- Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Appendix I (Defra December 2013, March 2014)

It is the mean soil concentration for the individual contaminant within an individual averaging area, which is compared to the SGV. However, as contaminant concentrations vary across a site, and sampling and analysis will introduce measurement errors, the comparison between measured mean concentration and the SGV must take this uncertainty into account.

There are two principal options available to obtain site representative soil concentrations from a site investigation dataset; statistical and non-statistical methods. Data objectives, quality and quantity are likely to determine which approach is most appropriate. If statistical methods such as those presented in CIEH/CL:AIRE (2011) are to be used, sufficient data need to be available or obtained. No one single statistical approach is applicable to all sites and circumstances. The wider range of robust statistical techniques developed by organisations including the US Environmental Protection Agency (USEPA) is also important tools. Risk assessors should choose an appropriate statistical approach on the basis of the specific site and the decision that is being made. For further guidance on the appropriate use of statistical approaches, refer to USEPA 2006 or good environmental monitoring statistics textbooks.

When statistical approaches are inappropriate (this will depend on the objectives of the site investigation), individual or composite samples should be compared directly to the SGV. Guidance on use of alternative data handling approaches such as the use of composite sampling can be found in documents such as:

- Verification of remediation of land contamination (Environment Agency, 2010);
- Sampling and testing of wastes to meet landfill Waste Acceptance Criteria (Environment Agency, 2005);
- Guidance on choosing a sampling design for environmental data collection (USEPA, 2002):
- Soil Quality Sampling, ISO 10381 series (ISO, 2002–2007).

The statistical tests should not be used as arbiters for decisions under Part 2A. They are an additional, useful line of evidence to assist in decision-making. The implications of the basis for the

derivation of the site representative soil concentration must be taken into account in any decision-making process and clearly documented.

Where the statistical tests are conducted in accordance with the method described in CL:AIRE 2009:

- For the Planning situation, it has to be demonstrated that the concentration of
 contaminants is low compared to the pC4SL/S4UL or SSAC. All of the test data
 should be below the screening criteria and no statistical analysis is required or if there
 are exceedances of the criteria then a statistical assessment is required. For the
 statistical assessment this decision is based on whether there is at least a 95%
 confidence level that the true mean of the dataset is lower than the screening criteria.
- For the Part 2A scenario the regulator needs to determine whether the concentration of contaminants is greater than the SGV/GAC/pC4SL/S4UL or SSAC. This decision is based on whether there is at least a 95% confidence level that the true mean of the dataset is higher than the SSAC. However, the regulator may proceed with determination if there is just a 51% probability, "on the balance of probabilities."

If the screening levels are exceeded then more sophisticated quantitative risk assessment can be undertaken or remedial action may be taken to break the contaminant linkages. The benefits of undertaking a quantitative risk assessment must be weighed against the likelihood that it will bring about cost savings in the proposed remediation. Further information about the use of soil guideline values is provided in Environment Agency: 2008: Using Soil Guideline Values SC050021/SGV Introduction, March 2008.

GENERIC RISK ASSESSMENT CRITERIA FOR RISK TO PLANTS

Soil contaminants, if present at sufficient concentrations, can have an adverse effect on the plant population. Phytotoxic effects can be manifested by a variety of responses, such as growth inhibition, interference with plant processes, contaminant-induced nutrient deficiencies and chlorosis (yellowing of leaves). All chemicals are probably capable of causing phytotoxic effects. Thus the phytotoxic potential of substances is dependent on the concentrations capable of having adverse effects on plants and the concentrations likely to be found at contaminated sites. Phytotoxicity is a difficult parameter to quantify given that experimental techniques vary widely and variations exist in plant tolerances, soil effects and synergistic/antagonistic reactions between chemicals. Contaminants may be taken up and accumulated by plants through a range of mechanisms. The principal pathways are active and/or passive uptake through the plant root, adsorption to root surfaces and volatilisation from the soil surface followed by foliar uptake. After plant uptake, contaminants may be metabolised or excreted, or they may be bioaccumulated and this is highly species dependant. Many of the substances capable of adversely affecting vegetation exert this effect because of their water solubility, a characteristic that could result in their transport from contaminated sites into adjacent locations where the chemical may generate a phytotoxic response. This could be important if, for example, the adjacent site has important conservation status.

The concentration in soil at which substances become phytotoxic depend on a range of factors including plant type, soil type, pH, the form and availability of the contaminant and other vegetation stress factors that may be present (such as drought). Some plants (including some rare plants will only grow in soils where there are relatively high concentrations which would be phytotoxic to other species. Whilst many contaminants may be phytotoxic, data are limited. Some heavy metals are essential as trace elements for plant growth but may become toxic at higher concentrations.

TerraConsult has carried out a review of a number of current and former guidance documents and other texts on phytotoxicity. It is not possible to produce a definitive list of phytotoxic substances on account of the variables mentioned above. However, a number of metals are repeatedly cited as commonly occurring priority pollutants. As a result, the following list is adopted by TerraConsult as

indicators of the potential for phytotoxicity: As, Cr, Cu, Ni and Zn (note that Boron has been excluded from this list because the more modern studies do not assess this).

As the CLEA framework is a risk based approach, applied to humans, an alternative strategy is required to assess the risk to plants from substances that are phytotoxic. Reference to published criteria and background concentrations can help put site data into context. Published assessment criteria for the protection of plant life from a number of countries are given in the following Table. The most authoritative source is the British Standard for topsoil, but this only lists three elements. CLR 11 states that the ICRCL Guidance Note 70/90 can be used for initial screening criteria. This approach has been adopted by TerraConsult where BS3882 is lacking, but where an ICRCL 70/90 criterion is lacking, the lowest criterion in Table below from, firstly UK, and, secondly, European and then other worldwide criteria. The adopted criteria are highlighted in the table 3.8. The MAFF value of 250 mg/kg has been chosen for As over the ICRCL value of 50 mg/kg as MAFF explains the 50 is applicable to vegetables and human health, whereas 250 is applicable to the plants themselves.

Table B.5: Published Ass	Table B.5: Published Assessment Criteria for Phytotoxic Elements (mg/kg)									
Reference	As	CR (Total)	Cr (III)	Cr (VI)	Cu	Ni	Zn			
British Standard for topsoil (BS3882:2007)	-	-	-	-	200 (pH >7) 135 (pH 6-7) 100 (pH 5.5- 6.0)	110 (pH >7) 75 (pH 6-7) 60 (pH 5.5- 6.0)	300 (pH >7) 200 (pH 6-7) 200 (pH 5.5- 6.0)			
MAFF Code of Good Agricultural Practice for the Protection of Soil (1998)	250	-	400 for sites containing sewage and sludge	-	500 (grass) but may fall to 250 for clover and sensitive species (at pH>6)	110 (pH>7) 75 (pH 6-7) 60 (pH 5.5- 6.0)	1000 (clover & grass at pH 6), may fall to 300 for sensitive species (at pH 6-7)			
ICRCL 59/83 (1987) now withdrawn for human health assessment	-	-	-	-	130	70	300			
ICRCL 70/90 (1990) threshold trigger value	50	-	-	25 *	250	-	1000			
Dutch ecotoxicological intervention value (Swartjes 1993 & 1994)	40	230	-	7	190	-	-			
Australian Guideline B(1) (1999), Interim Urban Ecological Investigation Level (EIL). Soils not generally considered phytotoxic below these EILs.	20	-	400	1	100	60	200			
New Zealand guidelines for timber treatment sites (1977), estimated based	_	-	-	-	500 - 1000 clay soils	-	-			

on Cu bioavailability *							
New Zealand guidelines for timber treatment sites (1977), soil criteria for protection of plant life (residential/ agricultural setting)	10-20	-	600	25	130	-	-

Note[* Cr (VI) is only likely to be present in as a significant proportion of total Cr where pH >12 so this does not routinely need to be tested for regarding plant health.

CURRENT GUIDANCE OR CONTROLLED WATERS RIS ASSESSMENT

Summary of Regulatory Conte ☐t

Government policy is based upon a "suitable for use approach," which is relevant to both the current use of land and also to any proposed future use. When considering the current use of land, Part IIA of the Environment Protection Act 1990 [4] (EPA 1990) provides the regulatory regime, which was introduced by Section 57 of the Environment Act 1995 [5], which came into force in England on 1 April 2000. The main objective of introducing the Part IIA regime is to provide an improved system for the identification and remediation of land where contamination is causing unacceptable risks to human health, controlled waters or the wider environment given the current use and circumstances of the land. Part IIA provides a statutory definition of contaminated land under Section 78A(2) as:

"any land which appears to the Local Authority in whose area it is situated to be in such a condition, by reason of substances in, on, or under the land, that:

- (a) Significant harm is being caused or there is a significant possibility of such harm being caused; or
- (b) Pollution of controlled waters is being, or is likely to be, caused."

Part IIA provides a statutory definition of the pollution of controlled waters under Section 78A(9) as:

"the entry into controlled waters of **any** poisonous, noxious or polluting matter or **any** solid waste matter"

Part IIA is supported by a substantial quantity of guidance and other Regulations, especially for England, The Contaminated Land (England) (Amendment) Regulations 2012 and Contaminated Land Statutory Guidance (DEFRA, 2012) which came into force in early April 2012. The document reconfirms the duties of Enforcing Authorities in dealing with contamination including the role of the Environment Agency which has powers under Part 7 of The Water Resources Act (1991) to take action to prevent or remedy the pollution of controlled waters, including circumstances where the pollution arises from contamination in the land.

Part IIA introduces the concept of a contaminant linkage; where for potential harm to exist there must be a connection between the source of the hazard and the receptor via a pathway. Risk assessment in contaminated land is therefore directed towards identifying the contaminants, pathways and receptors that can provide contaminant linkages. This is known as the contaminant-pathway-receptor link (CPR or contaminant linkage).

Part IIA places contaminated land responsibility as a part of the planning and redevelopment process rather than Local Authority or Environment Agency taking direct action except in situations of very high pollution risk or where harm is occurring. In the planning process guidance is provided by National Planning Policy Framework (NPPF) of March 2012. This requires that a site which has been

developed shall not be capable of being determined "contaminated land" under Part IIA. Therefore, appropriate risk-based investigation is required to identify the contaminant linkages that can then be assessed, and then mitigated using methods that can be readily agreed with the planners.

Environment Agency Guidance

Legislation and guidance surrounding the protection of controlled waters in the UK is numerous and can be complex. The Environment Agency's overall position on groundwater is "To protect and manage groundwater resources for present and future generation in ways that are appropriate for the risks that we identify" (Groundwater Protection: Policy and Practice GP3, 2012). In brief, the core objectives of the existing legislation serve to enforce this position.

In 1992, the National Rivers Authority published their Policy and Practice for the Protection of Groundwater (PPPG), this document was influential as it provided a focus for key developments such as Source Protection Zones (SPZs) and Groundwater Vulnerability Maps. The Policy was then revised in 1998, since which there have been substantial changes in legislation, driven by Europe. Key European Directives relating to groundwater include the Groundwater Directive (80/68/EEC) and the Water Framework Directive (2000/60/EC). Aspects of these directives are controlled by primary UK legislation such as the Water Resources Act 1991 as amended by the Water Act 2003. Further to legislative changes, gaps identified in the 1998 PPPG required addressing. These changes are reflected in the Environment Agency Policy document *Groundwater Protection: Policy and Practice (GP3), Version 1* of November 2012. The following diagram indicates the three main parts of GP3:

The Environment Agency follows a tiered, risk based approach to drinking water protection and this should be taken into account when carrying out controlled waters risk assessment:

Tools available for Risk Assessment of Controlled Waters

In order for a developer of a potentially contaminated site to fulfil their obligations under the legislation, a site assessment would be required to be undertaken in order to identify any potential risks to controlled waters and to derive suitable clean-up criteria if necessary to ensure the protection of controlled waters. A number of tools are available for this purpose and the general approach is detailed further in Part 3 of GP3.

Three main stages apply to any risk assessment of controlled waters, these are:

- (1) Risk Screening (devise Conceptual Site Model, making reference to groundwater vulnerability maps, site setting etc)
- (2) Generic Risk Assessment (using the EA Remedial Targets Methodology Tier 1 Comparison of groundwater data with relevant standards)
- (3) Detailed Quantitative Risk Assessment (Consideration of aquifer properties and site specific parameters, using the EA Remedial Targets Methodology Tiers 2 & 3)

The process is summarised below (Taken from the Environment Agency GP3 draft consultation document, 2006):

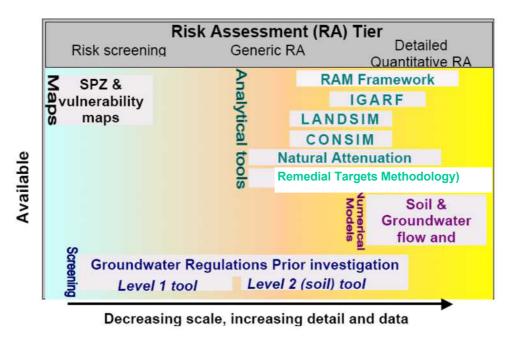


Figure 1-1 Environment Agency groundwater assessment tools, mapped against the different levels of risk assessment.

When assessing groundwater impact the Environment Agency advocate the application of their framework methodology "Remedial Targets Methodology — Hydrogeological Risk Assessment for Land Contamination" Environment Agency (2006). The methodology has four tiers of assessment:

Tier 1 utilises either a soil concentration (calculation of pore water concentrations based on partitioning calculations), leaching test or pore-water concentration of perched water as a source concentration input and these are contrasted directly to water quality standards. No dilution or attenuation is considered at Level 1.

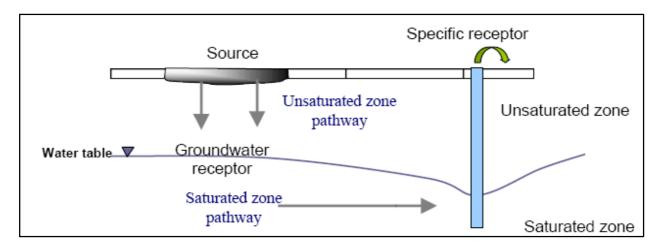
Tier 2 (groundwater) considers dilution of the contaminant within the underlying receiving groundwater or surface water body. To determine a dilution factor the infiltration rate of pore water and the discharge of groundwater beneath the source must be determined. Level 2

Assessment is comprises a comparison between measured groundwater concentrations with to water quality standards.

Tier □ considers natural attenuation in the form of dispersion, retardation and degradation of the contaminant. As the levels are progressed, the assessment becomes increasingly more detailed and less conservative as the data requirements are increased with each successive tier. The Environment Agency has released Excel Worksheets to carry out basic calculations using a conservative approach up to Tier 3. However, in this case the conceptual model is a simple one and assumes there is a simple migration of contaminants from the source zone into the aquifer receptor. Using these worksheets requires a sensitivity analysis showing how by varying each parameter, what effect it might have on the outcome of the assessment. Groundwater conceptual models are not always this simple.

Tier 4 is for more complex conceptual models where multiple sources, multiple pathways, multiple receptors and complex water balances can be assessed.

The Environment Agency developed a spreadsheet based code to support the Remedial Target Methodology, and the code is capable of undertaking assessments for Tiers 1 to 3. Tier 4 assessment is not supported by the spreadsheet based code.


A more advanced code, ConSim 2, developed on behalf of the Environment Agency to support the Remedial Targets Methodology, allows for the introduction of additional geological horizons and is used mainly to determine the concentrations reaching a receptor and the timescales over which this may happen.

The codes assess only the dissolved phase contaminants. There are many further codes commercially available for use in controlled waters risk assessment, particularly for more complex situations, however, these should be used with caution and only once agreement has been obtained from the Environment Agency. All have the overall aim of the estimation of risk from contaminant linkages and the protection of controlled waters.

General notes on each stage of the controlled □ aters risk assessment process

Risk Screening

The understanding of the Conceptual Site Model (CSM) is the key to assessing any site. Using a robust CSM, potential pathways or receptors may be screened out from any further assessment at an early stage. For example if the pathway through the unsaturated zone is blocked by the presence of a significant thickness of low permeability clay. A greater understanding of the CSM is achieved with each tier of risk assessment. An example of a basic Source-Pathway-Receptor concept is given below (taken from the Environment Agency GP3, 2012):

Generic Risk Assessment

When undertaking the Generic Hydrogeological Risk Assessment (EA Remedial Targets Methodology Tier 1), comparison of chemical analytical results is made with screening criteria. Published values of screening criteria with which chemical test results can be compared are published in the following guidance:

There is a hierarchy of screening criteria which is as follows:

- Updated Recommendations on Environmental Technical Standards, River Basin Management (2015-21), April 2012 by the UK Technical Advisory Group on the Water Framework Directive;
- Environmental Quality Standards (EQS) for freshwaters based on The EC Dangerous Substances Directive (76/464/EEC and Daughter Directives);
- Surface Waters (Abstraction for Drinking Water)(Classification) Regulations (1996)
- Surface Waters (Fishlife) (Classification) Regulations (1997)
- UK Drinking Water Standards (DWS) (Water Supply (Water Quality) Regulations 2000);
- Dutch Ministry of Housing, Spatial Planning and Environment (2001) Intervention Values and Target Values soil quality standards;
- World Health Organisation Guidelines for Drinking Water (2004)

Should the Level 1 or 2 assessments indicate threshold levels to be exceeded, then there are three alternative ways in which to proceed:

- To devise suitable remedial solutions;
- To carry out more investigation, sampling and analysis;
- To conduct a site-specific Detailed Quantitative Risk Assessment (DQRA) to whether
 or not the soil materials are suitable for their site-specific intended use or to devise a
 site-specific clean-up level.

Detailed Quantitative Risk Assessment (DQRA)

The decision to carry out a DQRA will be dependent on the extent and implications of the initial qualitative and generic assessment. The scope of any such assessment will be accurately defined by the outcomes of the former two stages. The CSM will be sufficiently refined by this stage that only certain contaminants of concern, certain pathways and certain receptors will require further assessment, the remainder having been screened out.

Additional site specific data is normally required for this stage of assessment, as explained above, more processes that are capable of affecting contaminant concentrations are considered (such as dilution and attenuation).

Remediation criteria derived will therefore be specific to each site and will be based on a detailed assessment of the potential impact at the identified receptor or *compliance point*. A greater level of confidence can be placed on the predicted impact on the compliance point following a DQRA.

Definition of Controlled Waters

The term 'controlled waters' is defined in Section 104 of the Water Resources Act 1991 as:

"Territorial Waters...which extend seawards for three miles..., coastal waters..., inland freshwaters, waters in any relevant lake or pond or of so much of any relevant river or

watercourse as is above the freshwater limit, and ground waters, that is to say, any waters contained in underground strata."

Note that the definition of groundwater under the Water Resources Act 1991 includes all water within underground strata (including soil / pore water in the unsaturated zone). The definition of groundwater under the Groundwater Directive however is limited to water in the saturated zone. For the purposes of Part IIA of the Environmental Protection Act 1990, the Environment Agency recommends that the groundwater within the saturated zone only is considered as the receptor (rather than soil / pore water).

Environment Agency's Aquifer Designations

The Environment Agency have classified different types of aquifer from which groundwater can be extracted. The aquifer designations reflect the importance of aquifers in terms of groundwater as a resource (drinking water supply) but also their role in supporting surface water flows and wetland ecosystems. The aquifer designation data is based on geological mapping provided by the British Geological Survey.

The maps are split into two different types of aquifer designation:

- Superficial (Drift) permeable unconsolidated (loose) deposits.
- \(\square \text{edrock (Solid)} \) solid permeable formations e.g. sandstone, chalk, limestone.

The aquifer designations displayed on the Environment Agency maps are as follows:

- Principal Aquifers (formerly termed Ma or Aquifers) 'These are layers of rock or drift deposits that have high intergranular and/or fracture permeability meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale. In most cases, principal aquifers are aquifers previously designated as a major aquifer.
- Secondary Aquifers (formerly termed Minor Aquifers) ' These include a wide range of rock layers or drift deposits with an equally wide range of water permeability and storage. Secondary aquifers are subdivided into two types:
 - Secondary A permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers;
 - **Secondary** □ predominantly lower permeability layers which may store and yield limited amounts of groundwater due to localised features such as fissures, thin permeable horizons and weathering. These are generally the water-bearing parts of the former non-aquifers.
 - Secondary Undifferentiated has been assigned in cases where it has not been possible to attribute either category A or B to a rock type. In most cases, this means that the layer in question has previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type.
- Unproductive Strata (formerly termed Non Aquifer) 'These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow.

Hazardous and Non Hazardous Substances

The Groundwater (England and Wales) Regulations 2009 control the disposal to the hydrogeological environment of potentially polluting substances which are divided into Hazardous Substances and Non-hazardous Contaminants (this roughly approximates to the former List 1 and List 2 substances).

Hazardous Substances are the most damaging and toxic and must be prevented from directly or indirectly entering the groundwater environment. Hazardous Substances include mineral oils and hydrocarbons, pesticides, biocides, herbicides, solvents and some metals. Discharge of Hazardous Substances to Controlled Waters must be prevented.

Non-hazardous Pollutants are any contaminants other than Hazardous Substances. Non-hazardous Pollutants are potentially toxic but are less harmful than Hazardous Substances, but their direct discharge to groundwater is generally not permitted and any indirect discharge to groundwater must be limited and be controlled by technical precautions in order to prevent pollution. Non-hazardous Pollutants include ammonia and nitrites, many metals and fluorides.

MANAGEMENT OF CONTAMINATED LAND

When risk assessment of the site has been completed and this indicates that remedial works are required, the main guidance in managing this process is set out in the DEFRA/EA publication CLR11 (2004) "Model Procedures for the Management of Land Contamination." The stages of managing remediation are as follows:

- (a) Options Appraisal and develop Remediation Strategy;
- (b) Develop Implementation Plan and Verification Plan;
- (c) Remediation, Verification and Monitoring.

The Remediation Strategy sets out the remediation targets, identifies technically feasible remedial solutions and presents an evaluation of the options so that these can be assessed enabling that the most suitable solution is adopted. An outline of the proposed remedial method should be presented. Agreement should be sought of the appropriate statutory bodies for the Remediation Strategy before proceeding to the next stage.

The Implementation Plan is a detailed method statement setting out how the remediation is to be carried out including stating how the site will be managed, welfare procedures, health and safety considerations together with practical measures such as details of temporary works, programme of works, waste management licences and regulatory consents required. Agreement should again be sought of the appropriate statutory bodies for this Plan.

The Verification Plan sets out the requirements for gathering data to demonstrate that the remediation has met the required remediation objectives and criteria. The Verification Plan presents the requirements for a wide range of issues including the level of supervision, sampling and testing regimes for treated materials, waste and imported materials, required monitoring works during and post remediation, how compliance with all licenses and consents will be checked etc. Agreement should again be sought of the appropriate statutory bodies for the Verification Plan. On completion of the remediation a Verification Report should be produced to provide a complete record of all remediation activities on site and the data collected as required in the Verification Plan. The Verification Report should demonstrate that the remediation has met the remedial targets to show that the site is suitable for the proposed use.

GLOSSARY

Terms

AST Above Ground Storage Tank
BGS British Geological Survey
BSI British Standards Institute

BTEX Benzene, Toluene, Ethylbenzene, Xylenes
CIEH Chartered Institute of Environmental Health
CIRIA Construction Industry Research Association

CLEA Contaminated Land Exposure Assessment

CSM Conceptual Site Model

DNAPL Dense Non-Aqueous Phase Liquid (chlorinated solvents, PCB)

DWS Drinking Water Standard EA Environment Agency

EQS Environmental Quality Standard GAC General Assessment Criteria

GL Ground Level

GSV Gas Screening Value HCV Health Criteria Value

LNAPL Light Non-Aqueous Phase Liquid (petrol, diesel)

ND Not Detected

LMRL Lower Method Reporting Limit

NR Not Recorded
OD Ordnance Datum

PAH Poly Aromatic Hydrocarbon PCB Poly-Chlorinated Biphenyl PID Photo Ionisation Detector

PCSM Preliminary Conceptual Site Model

SGV Soil Guideline Value

TPH (CWG) Total Petroleum Hydrocarbon (Criteria Working Group)

SPT Standard Penetration Test
SVOC Semi Volatile Organic Compound
UST Underground Storage Tank
VCCs Vibro Concrete Columns
VSCs Vibro Stone Columns
VOC Volatile Organic Compound

Units

m Metres km Kilometres % Percent

%v/v Percent volume in air

mb Milli Bars (atmospheric pressure)

l/hr Litres per hour ha Hectare (10,000 m²)

μg/l Micrograms per Litre (parts per billion)

ppb Parts Per Billion

mg/kg Milligrams per kilogram (parts per million)

ppm Parts Per Million

mg/m³ Milligram per metre cubed
Mg/m³ Megagram per metre cubed
µg/m³ Microgram per metre cubed
m bgl Metres Below Ground Level
m bcl Metre Below Cover Level

mOD Metres Above Ordnance Datum (sea level)

kN/m² Kilo Newtons per metre squared kPa Kilo Pascal – same as kN/m²

um Micro metre

Appendix C

Exploratory Hole Records

				Fi	0	Dimensioner	0	antan O Jawali	Detec	
Person				Equipment		Dimensions:		nates & level:	Dates:	07/00/0045
.ogged	-		VSS	Method:	Mechanically excavated	Width:	mE:		Start:	27/08/2015
Checke	a by	:	DD	Di	OAT 400	Length:	mN:		End:	27/08/2015
				Plant:	CAT 428	Orientation:	mAOD:		Logged:	27/08/2015
		1		Shoring:	None	Bearing =	Grid:	OSGB		
ackfill/ nstal'n	ater- trike	Legend	Level & Depth		Stratum Desc	ription		Sar	nples & In Situ Te	esting
iistai ii	≥ ∞	*///8//	(Thickness)					Depth	Type & No	Results
			_	MADE GROU	UND: Dark greyish brown slightly to rounded fine to medium quartz	silty gravelly SAND. Gra and quartzite. Occasion:	avel is of			
			0.20 -	aravel sized	brick fragments. Abundant roots.					
			-	MADE GROU	UND: Dark orangish brown mottle	d light orangish brown o	layey gravelly			
			-	guartz and al	Im SAND. Gravel is of angular to s bundant red brick fragments.	ubrounded line to coars	e muastone,			
			(0.50) _	,,				0.50 - 0.60	ES	
			=							
			0.70 -					1		
			=	Light orangis	sh brown mottled yellowish brown sith some coarse SAND. Gravel is	slightly silty gravelly pred of subangular to rounde	dominantly fine	!		
			=	coarse quart	z, quartzite and occasional mudsto	one. Pockets (300mm th	ick and of			
			_	varying width	ns) of dark grey mottled light grey of	clayey slightly gravelly S	AND.			
			_							
		*****	=							
			_							
			_							
			_							
			=							
			-							
			_							
			_							
			_							
		*******	-							
			(2.90) -							
			_							
			_							
			_							
			_							
			_							
			=							
			=							
			=							
			_							
		*****	=							
			_							
			_							
			=							
			2.00							
7277		XXXXXX	3.60 -		Trial pit terminated	at 3.60m				
			=							
			_							
			_							
			- -							
			_							
			_							
			-							
			_							
			_							
			_							
			_							
			-							
								Depth	Type & No	Results
round	lwate	er entrie	es:	Depth related	d remarks:			General remar	ks:	
Dept		Rose t		From to	: Remarks:			Weather:		
3.6	0	3.0	0 0					Stability:	Unstable	
								Remarks:	unstable in silty	sand materia
									,	
								Termination:	Target depth	
	Notes: F	or explanatio	n of symbols and Sheet.	Project:	Meriden Quarry				sition reference:	
100	All depth:	s and reduce	d levels are in meters.	Project No:	-				TP1	
og iss cale:	ue:		AFT	1	Earthworm				IFI	6
		1:2	5							Sheet 1 of

	u.	,	Log						acon	
erso i	nnel:		VSS	Equipment &	& methods: Mechanically excavated	Dimensions: Width:	Coordin mE:	ates & level:	Dates: Start:	27/08/2015
	ed by	:	DD			Length:	mN:		End:	27/08/2015
				Plant:	CAT 428	Orientation:	mAOD:		Logged:	27/08/2015
	_			Shoring:	None	Bearing =	Grid:	OSGB		
ickfill/ stal'n	ater- trike	Legend	Level & Depth		Stratum Desc	cription	•	Sam	ples & In Situ Te	esting
Jai II	≥ g		(Thickness)	MADE GROU	JND: Dark greyish brown slightly	•	ravel is of	Depth	Type & No	Results
			_	subrounded t	to rounded fine to medium quartz	, quartzite and occasion	al brick			
W			0.20	tragments. At	bundant roots. JND: Dark orangish brown claye	v verv gravelly SAND G	Gravel is of			
			_ _	subangular to	rounded fine to coarse quartz a	nd quartzite with some r	mudstone.			
			0.40		ken concrete of 200mm to 500mints, plastic bottles and 300mm lo					
S			_	MADE GROU	JND: Dark brown mottled blackis	sh brown and dark greyis	sh brown	0.50 - 0.60	ES	
			=	slightly sandy	very gravelly CLAY. Gravel and ber tubes, bricks, metal, glass bo	cobble sized material pr	redominantly			
			_	5mm-10mm v	wide plastic and plastic black bag					
			-	hydrocarbon	odour. Abundant shattered plastic of 5mm i	to 10mm diameter in a lav	ver 30mm thick			
			_	0.7077.	isandant chattered plactic or ch <u>im</u>	o romm diamotor in a ray	ior committee			
			_							
			-							
			-]						
>>			=							
			-	1						
			-	1						
			=							
			_	1						
			(3.30)]						
			_							
X			_							
W			-							
W			-							
			_							
		*******	=	-						
			=							
			_							
			_							
			-							
W			-							
W		***************************************	_							
S			-	-						
			3.70		h brown slightly silty slightly grave		m SAND.			
~*//		~~~~	3.80	Gravel is of s	ubangular to rounded quartz and Trial pit terminated	mudstone. d at 3.80m				
			-]	pr commute					
				1						
			=	-						
				1						
			-	1						
			_	-						
			-	1						
]						
			-	-						
				1				Depth	Type & No	Results
	d *			Don'th 1 1	d wa wa a wi ca .			·		Resuits
ound Dep		er entrie Rose to		Depth related From to:				General remark Weather:	.S.	
Deb		1 1000 11	. Romans.					vveatner: Stability:	Stable	
								Remarks:	Clavit	
								remarks.		
								Termination:	Target depth	
GS	Notes: Fabbreviat	or explanation	of symbols and Sheet. I levels are in meters.	-	Meriden Quarry			Exploratory pos		
-			AFT	Project No:	10122				TP2	
g iss	sue:	רוט		Client: I	Earthworm					

ersonnel:			Equipment & methods:	Dimensions:	Coordin	ates & level:	Dates:	
ogged by:		VSS	Method: Mechanically excavated	Width:	mE:		Start:	27/08/2015
hecked by:		DD		Length:	mN:		End:	27/08/2015
			Plant: CAT 428	Orientation:	mAOD:		Logged:	27/08/2015
<u> </u>			Shoring: None	Bearing =	Grid:	OSGB		
water water	Legend	Level & Depth (Thickness)	Stratum Desc	ription			ples & In Situ T	
	(///\\	, ,	MADE GROUND: Dark greyish brown slightly	clayey gravelly SAND. Grave	l is of	Depth	Type & No	Results
		_	rounded quartz, quartzite and subangular fine	gravel sized brick fragments.	Abundant			
		0.20	roots. MADE GROUND: Dark greyish brown occasio	nally mottled orangish brown	slightly			
		-	clayey gravelly SAND. Gravel is of subangular mudstone. Abundant broken concrete paving o					
		_	black plastic bags, glass bottles, wood fragmer with occasional old bike tyres and telephones.	its of 420mm length and vario	ous metal			
		=	with occasional old blike tyres and telephones.					
		-	-					
		=						
		_	-					
		-						
		_	-					
		-						
		_	-			1.50 - 1.60	В	
						1.50 - 1.60	ES	
		(3.20)	1.80 - 3.40m: Sand darkens to mottled bla	ackish brown with a hydrocarbo	n odour			
		_						
		-						
		=						
		-						
		=						
		-						
		=						
		-	-					
		_						
		=						
		=						
		2.40						
		3.40	Trial pit terminated	at 3.40m				
		-	-					
		=						
		-	-					
		_						
		- -						
		=						
		_						
		_						
		-						
		_ _ _						
+						Depth	Type & No	Results
oundwater			Depth related remarks:			General remark	is:	1
Depth:	Rose to	: Remarks:	From to: Remarks:			Weather:	Otable.	
						Stability: Remarks:	Stable	
						r vernidi Nə.		
						Termination:	Target depth	
abbreviation	ons see Key !	of symbols and Sheet. levels are in meters.	Project: Meriden Quarry			Exploratory pos		
j issue:		AFT	Project No: 10122 Client: Earthworm				TP3	
ale:	1:2	5	Olicit. Earthworth					Sheet 1 c

			9				South Comment			
Perso				Equipment & methods:	Dimensions:		nates & level:	Dates:		
Logge	-		VSS	Method: Mechanically excavated	Width:	mE:		Start:	27/08/2015	
Check	ed by	' :	DD		Length:	mN:		End:	27/08/2015	
				Plant: CAT 428	Orientation:	mAOD:		Logged:	27/08/2015	
				Shoring: None	Bearing =	Grid:	OSGB			
Backfill/ Instal'n	Vater- strike	Legend	Level & Depth (Thickness)	Stratum Desc	cription			mples & In Situ Te	_	
	> "	X//XX//	(************************	Dark greyish brown slightly clayey gravelly SA	ND. Gravel is of rounded o	uartz.	Depth	Type & No	Results	
				quartzite and subangular fine gravel sized brid	k fragments. Abundant roo	ts.				
			0.20	MADE GROUND: Dark orangish brown slight						
			-	cobble content. Gravel is of subangular to rou broken red and yellow brick, broken plastic sh						
				Cobbles are of concrete paving slabs and vari	ous metal.	_	0.50 - 0.60	ES		
			-	- -						
			(1.00)	_						
			-	-						
			-	- -						
			1.20							
			1.20	MADE GROUND: Blackish brown mottled dar fine to medium ashy SAND. Gravel is of subar			,			
			-	with frequent broken bricks, wood fragments (200mm-500mm long), meta	al wires and				
	1		_	cables and glass bottles. Occasional large cor 600mm).	ncrete paving slabs (500mn	n x				
			_600(iiii) .							
			_	1						
			-	- -						
			-	-						
			-							
			-							
			-	- -						
			(0.50)	1						
			(2.50)							
				-						
			-	- -						
			-	_						
			-							
				- -						
				_						
			=							
			-	-						
				1						
			3.70							
			5.70	Trial pit terminated	at 3.70m					
			=	-						
]						
			- -	1						
			_	-						
			_	1						
				1						
			 -	-						
			-]						
			- -	1						
			_	-				-		
	<u> </u>						Depth	Type & No	Results	
	dwate oth:	er entrie Rose to		Depth related remarks: From to: Remarks:			General remar	rks:		
ואס	ou 1.	1.000 11		Tomano.			Weather: Stability:	Unstable		
							Remarks:	unstable at app	rox. 1.2m at	
								change of strat		
							Termination:	Target depth		
AGS	abbrevia	tions see Key	n of symbols and Sheet. I levels are in meters.	Project: Meriden Quarry			Exploratory po	sition reference:		
og is			AFT	Project No: 10122				TP4		
Scale:		1:2	5	Client: Earthworm					Sheet 1 of	

	aı		Log					1611	aGun	Juit
erso					& methods:	Dimensions:	Coordin	ates & level:	Dates:	
ogge	d by:		VSS	Method:	Mechanically excavated	Width:	mE:		Start:	27/08/2015
heck	ed by	:	DD			Length:	mN:		End:	27/08/2015
				Plant:	CAT 428	Orientation:	mAOD:		Logged:	27/08/2015
				Shoring:	None	Bearing =	Grid:	OSGB		
ackfill/	Water- strike	Legend	Level & Depth		Stratum De	-		San	nples & In Situ Te	esting
stal'n	≫ ts	N//////	(Thickness)	MADE COO	UND: Dark greyish brown slight	•	royal is of	Depth	Type & No	Results
			-	rounded qua	artz, quartzite and subangular fin	e gravel sized brick fragme	ents. Abundant			
			0.20	roots.	UND: Dark orangish brown sligl	atherailte community CANI	O Canadia of			
			=		to rounded fine to coarse quartz,					
			=	Occasional r	ed bricks, concrete and fragmer	nts of paving slabs (300mm	x 500mm).			
			_					0.50 - 0.60	ES	
			(0.90)							
24			(0.50)							
			-							
W			-							
W			_							
			1.10	MADE GRO	UND: Dark greyish brown slight	ly silty gravelly SAND. Gra	vel is of			
			- -		to rounded fine to medium quart	z and quartzite with glass,	bricks, wires,			
			-	cables, plasi	tic and concrete.					
			- -							
			(0.80)	1						
W			-							
W			=							
S			1.90	1						
%			1.90		UND: Firm to stiff dark orangish					
					y gravelly CLAY. Gravel is of sub quartzite with some concrete and					
X			-		at 3.10m with some concrete ru					
X										
W			-							
S)			-							
W			(1.40)							
			(1.10)							
			- -							
			- -	-						
		******	_	-						
			-							
		XXXXX	3.30	Light orangi	sh brown mottled yellowish brow	n slightly clavey gravelly S	AND Gravel			
		************			ular to rounded fine to coarse qu					
			(0.40)							
			-	1						
X///		100000000	3.70		Trial pit terminat	ed at 3.70m				
			-	1						
			-	1						
			_	1						
			-	1						
			-	-						
			-							
			-							
			-							
			-	1						
			-	1						
			-							
				Denth	d sessessive.			Depth	Type & No	Results
oun Dep		er entrie Rose to		Depth relate				General remark Weather:	(8)	
201		500 1						Stability:	Unstable	
								Remarks:	unstable in dk	rev sandy
								remains.	strata	jiey sailuy
								Termination:	Target depth	
_	Notes: F	or explanation	n of symbols and	Project:	Meriden Quarry				sition reference:	
GS			n of symbols and Sheet. I levels are in meters.	Project No:	-					
-	sue:		AFT	Client:	Earthworm				TP5	
ale:		1:2	5	1						Sheet 1

ersonn	nel·			Equipment a	& mathods:	Dimensions:	Coordi	nates & level:	Dates:	
ogged l			VSS	Method:	Mechanically excavated	Width:	mE:	iiutes & ieveli	Start:	27/08/2015
hecked			DD	Wicarioa.	wice in incarry executated	Length:	mN:		End:	27/08/2015
riconco	a by.		55	Plant:	CAT 428	Orientation:	mAOD:		Logged:	
				Shoring:	None	Bearing =	Grid:	OSGB	oggou.	2770072010
ockfill/	<u>.</u> Φ		Level & Depth	cg.		,	0		nples & In Situ T	estina
ackfill/ stal'n	STIK	_egend	(Thickness)		Stratum D	escription		Depth	Type & No	Results
			=	Dark greyish	brown slightly clayey gravelly I subangular fine gravel sized	SAND. Gravel is of round	ded quartz/		71	
			0.20	1	-	_				
			- - - -	SAND. Grave	JND: Dark orangish brown mel is of subangular to rounded ne, red brick and concrete.					
			(0.90)							
			1.10	subrounded t	JND: Dark reddish brown slig to rounded fine to coarse quar m to stiff dark orangish brown Y.	tz and quartzite. Occasior	nal cobble sized	- 1.10 - 1.20	ES	
			- - - - - - - - - - - - - - - - - - -							
			(2.30)		2.70m: 50m <u>n</u>	n diameter rubber tube on s	side wall at 2.7m	J		
			3.40	Dark grey sli to subrounde	ghtly clayey slightly sandy fine ed fine to medium grey mudsto Trial pit termin	ne.	avel is of angular			
			- - - - - - - - - - - - - - - - - - -							
								Depth	Type & No	Results
roundw Depth 3.40	n: F	entries Rose to 3.4	: Remarks:	Depth related From to				General remar Weather: Stability: Remarks:	ks: Stable	
								Termination:	Target depth	
	obreviation	ns see Key S	of symbols and Sheet.	Project:	Meriden Quarry			Exploratory po	sition reference:	
LIS All	I depths a	ind reduced	levels are in meters.	Project No:					TP6	
g issu	e:		AFT		Earthworm				IFU	
ale:		1:25	5		-					Sheet 1

				F	9	Dimensional	0	ataa 8 Jawali	Detec	
Perso			V00	Equipment 8		Dimensions:		ates & level:	Dates:	07/00/0045
ogge	-		VSS	Method:	Mechanically excavated	Width:	mE:		Start:	27/08/2015
Check	ed by	' :	DD	Diant	CAT 400	Length:	mN:		End:	27/08/2015
				Plant:	CAT 428	Orientation:	mAOD:	OCCD	Logged:	27/08/2015
		I		Shoring:	None	Bearing =	Grid:	OSGB		
ackfill/ nstal'n	Water- strike	Legend	Level & Depth (Thickness)		Stratum Descrip	otion			nples & In Situ Te	
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		MADE GROU	JND: Dark grey brown slightly claye	ey gravelly SAND. Gravel is	of	Depth	Type & No	Results
			0.10 -	rounded quai	rtz and quartzité and subangular fin					
				Abundant roc MADE GROU	ots. JND: Dark orangish brown slightly:	silty very gravelly SAND. Gr	avel is of			
			_	subangular to	o rounded fine to coarse quartz, qua	irtzite and some grey mudst	one with			
		******	(0.80)		ed bricks and concrete rubble. Occa of 20mm thick and 600mm long.	isionai piastic bags, metai w	nie and			
			(0.00)							
))))			=							
			-							
			0.90	MADE GROU	JND: Blackish brown clayey gravell	y fine to coarse SAND. Gra	vel is fine	0.90 - 1.00	ES	
			_	to coarse sub	pangular to rounded quartz and grey ble sized pockets of soft greyish bro	mudstone. Occasional coa	irse			
>>			=	Loose electri	cal cables of varying lengths, 300m	m long wood fragments, two)			
			=	concrete cab	le piles 1500mm long and three larg 800mm in length. Bricks at the base	ge concrete slabs measuing of the pit	between			
			-	Sociali and C	occomm in longui. Drieks at the base	or the pit.				
			_							
			=							
			-							
			-							
			-							
			_							
			(2.60)							
			(2.60)							
			-							
			_							
			=							
			=							
			=							
			=							
			_							
			-							
			=							
			=							
200		*****	3.50 -		Trial pit terminated at	3.50m				
			-		mai pit terminated at	3.30111				
			-							
			_							
			_							
] =							
			-							
			_							
]							
			_							
			-							
			_					6 "	T. A.:	5
	d			Danth!	d na na andra.			Depth	Type & No	Results
round Dep		er entrie Rose t		Depth related				General remark Weather:	KS:	
Deh		1 1000 1	o. nomano.		·			vveatner: Stability:	Unstable	
								Remarks:	unstable rubble	at 2m
									3	
								Termination:	Target depth	
200	abbrevia	tions see Key	n of symbols and Sheet.	Project: I	Meriden Quarry				sition reference:	
IGS og iss	All depth	is and reduce	d levels are in meters.	Project No:	10122				TP7	
og iss cale:	uC.	1:2		Client: I	Earthworm					Sheet 1 of
Juic.		1.2		l						JIIGGE I U

ersor	nnel:			Equipment 8	k methods:	Dimensions:	Coordin	ates & level:	Dates:	
ogged	by:		VSS	Method:	Mechanically excavated	Width:	mE:		Start:	27/08/2015
hecke		:	DD			Length:	mN:		End:	27/08/2015
	. ,			Plant:	CAT 428	Orientation:	mAOD:			27/08/2015
				Shoring:	None	Bearing =	Grid:	OSGB		55,2015
П				ononing.	110110	Dodning -	10.10.			
ackfill/ istal'n	Water- strike	Legend	Level & Depth (Thickness)		Stratum Descrip	tion		Sam Depth	Type & No	Results
			=	MADE GROU rounded quar	IND: Dark grey brown slightly claye tz and quartzite and subangular fine	y gravelly SAND. Gravel is gravel brick. Abundant roo	of ots.	-		
\gg		******	0.20	MADE GROU	JND: Dark orangish brown slightly s	ilty very gravelly SAND. Gr	avel is of			
W		******		subangular to	rounded fine to coarse quartz and	quartzite and subangular fin				
			=	coarse brick a	and concrete. Occasional plastic an	d glass bottles.				
			_							
			_							
			_							
\gg			=							
			-							
			(1.70) -							
			-							
			-							
			_							
			_							
XX)			_							
			-							
			=							
			4.00							
			1.90 -	MADE GROU	IND: Dark blackish brown mottled g	reyish brown slightly clayey	gravelly	200 240	F0	
				SAND. Grave	I is of subangular to rounded fine to udstone. Occasional cobble sized p	medium quartz, quartzite a ockets of firm light grey mot	nd tled dark	2.00 - 2.10 2.00 - 22.10	ES B	
				orangish brov	vn slightly sandy slightly gravelly ĊL	AY. Occasional bike wheels	3,			
				concrete, bric	ks and plastic were encountered, w ydrocarbon odour.	ith small pockets of ash. Bla	ackish			
			-	sanu nau a n	yarooarbon odour.					
			_							
			=							
			_							
			(2.00)							
			_							
			-							
			-							
			_							
			_							
			=							
			_							
			=							
7///8	\leq	******	3.90		Trial pit terminated at	3.90m				
			_		pre torrimated at					
			=							
			=							
			=							
			_							
			_							
			=							
			_ 							
								Depth	Type & No	Results
		r entrie		Depth related				General remark	(S:	
Dep		Rose to		From to:	Remarks:			Weather:		
3.9)U	3.8	ου					Stability:	Stable	
								Remarks:		
								Tormin - +:	Toract denth	
	Notes: F	or explanation	n of symbols and	Project: N	Meriden Quarry			Termination: Exploratory pos	Target depth	
ūδ	All depths		l levels are in meters.	Project No: 1						
g iss	ue:	DR	AFT		Earthworm				TP8	
ale:		1:2	5					<u> </u>		Sheet 1

															Loc	ation details:
Typ		From: 0.00		Start date: 26-08-15	End date: 27-08-15	Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logger: VSS	Logged: 27-08-15	Rema	rks:		mE:	
															mN:	5
															mAO Grid:	
<u> </u>	Τ,	. 0	SS											Samples & I		
Backfill/ Instal'n	Water-	strike	Level Level	Depth			Stra	atum Descript	ion				I		1	
		- W			TOPSOIL	· Dark	greyish brown	sandy gravel	v CLAY G	ravel is s	ubangular	Water	Casing	Depth	Type & No	Results
			(0.3	0.30	to rounded MADE GF and medic	d fine a ROUND um SAN	and medium of one country in the cou	quartz and quah sh brown mott subangular to	artzite. Ab led greyish rounded fir	undant ro brown g ne and m	oots. ravelly fine edium of	-		0.50 - 0.60	ES	
				-	Occasiona Occasiona MADE GF Gravel is	al fine t al meta ROUND subang	o coarse grave Il wire, metal co D: Blackish bro Jular to rounded	el sized fragme ontainers, plas wn clayey gra d fine to coars	ents of brick stic and fabout stick welly fine to e of concre	k and cor ric fragmo coarse s ete, aspha	ncrete. ents. SAND.	<u>{</u> - - -		0.90 - 1.00	В	
				-			al fragments of our present tow		, wood and	plastic.	-	Dry	1.50	1.50	С	N=26 (3 for 75mm/26 for 225mm)
	•		(4.1	- 10) -							-	Dry	3.50	3.00	С	N=4 (3 for 75mm/4
				-							- -					for 225mm)
			(0.6	4.80 – 60)	clayey fine	e to coa): Dark greyish arse SAND. Gr	ravel is suban	gular to rou		Dry	4.50	4.50	С	N=46 (20 for 75mm/46 for 225mm)	
				5.40	Light oran	gish br	quartz and mud rown mottled gr s subagular to r	eyish brown o	clayey grav	elly fine t		-	0.00	6.00	С	N=47 (0 f==
			(1.4	-	-						-	Dry	6.00	6.00		N=17 (6 for 75mm/17 for 225mm)
		Z	(0.4	6.80 10) – 7.20	Gravel is and quarta	subang zite witl ense d	own slightly gra jular to rounded h occasional m ark orangish br s subrounded to	d fine and medudstone and income	dium of pre gneous ma gravelly fine	dominate aterial. and med	ely quartz -	Dry	7.50	7.50	S	N=27 (7 for 75mm/27 for
			(1.5	-							<u>-</u>	- - - - - - - -				225mm)
	•		(1.1	8.70 - 10) -		subang	ark orangish br jular to rounded					Dry	9.00	9.00	S	N=28 (8 for 75mm/28 for 225mm)
				9.80	1							1				
Str		Rose to	o: Casing:	Sealed:	Diameter Dia (mm):		ing:	n continues next Depth relate From to				Water	Casing Chise From	Depth Iling details: to: Du	Type & No	Results
AC	S iss	abbreviations s All depths and	elanation of symbol ee Key Sheet. reduced levels are		Project: Project No		iden Quarry 22						Explor	atory position	reference:	
Sca			1:50		Client:	Eart	hworm							-		Sheet 1 of 2

Bore	ehole formation details: e: From: To: Start date: End date: Crew: Plant: Barrel type: Drill bit: Logger: Logged															I	Loca	tion details:
Туре		rom: 0.00	To: 15.00	Start 6		End date: 27-08-15	Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logger: VSS	Logged: 27-08-15	Remar	ks:		ı	mE:	
0.		0.00	10.00	20 00	10	27 00 10		Dando rag	184	1,,,	100	27 00 10					mN:	
																	mAOE Grid:	osgb
		_		S S														
Backfill/ Instal'n	Water- strike	Legend	Level	Thickness	Depth			Strat	tum Descripti	on				T	Samples & I			
⊢ ⊢	> "	45.50		卢		Medium d	anco d	ark orangish bro	own cliabtly a	ravally fina	and mag	dium	Water	Casing	Depth	Type 8	& No	Results
<u>:</u> ::::					-	SAND. G	avel is	subangular to r	rounded fine	of quartz a	nd quartz	zite.						
::::::					1													
:::::					-							-	Dry	10.50	10.50	S		N=26 (9 for 75mm/26 for
·.:::	1]													225mm)
					-							_						
			,,	0.40\	-								-					
			(.	3.10)	-							- -						
													-					
					-							_	Dry	12.00	12.00	s		N=29 (8 for
]													75mm/29 for 225mm)
					-							-						
·Æ:					}													
		14 A		1	2.90	Medium d	ense d	ark orangish bro	own gravelly	fine and me	edium SA							
						Gravel is	ubang	ular to rounded	fine to coars	e of mixed	lithologie	es.						
					+								D=:	13.50	13.50	s		N=34 (11 for
]							-	Dry	13.50	13.50	5		75mm/34 for
÷Ξ÷			(*	2.10)	-													225mm)
: 🗆 :			(4	2.10)	7							_						
:::::::::::::::::::::::::::::::::::::::]													
::::::					-							-						
:::::::					1							-						
<u>.</u> :⊒•	SP			1	5.00			Borehole	terminated at 1	5.00m								
					1													
					-							- -						
					-													
					_							_						
]													
					-							-						
					1													
					_													
					1							-						
												-]					
					-													
					-								-					
					-								1					
					-							- -						
]													
					4							_	1					
]]					
					-							-						
					-							-	\\/at	Conin	Dont!-	Ture - 1	No.	Doguit-
Gro	l undv	vater e	entries:			Diameter	& casi	ing:	Depth relate	d remarks	:		Water	Casing Chise	Depth	Type 8	x INO	Results
			o: Casin	g: Sea		Dia (mm):		h: Casing:	From to					From		uration:	Too	ol:
								15.00										
	Note	es: For exp	lanation of sym	nbols and		Project:	Meri	den Quarry						Explor	atory position	referer	JCE.	
AGS			lanation of sym ee Key Sheet. reduced levels		s.									Lypioi		3H		
		e:				Client:										DП	I	Chart a -t a
Scal	e:	Project No: 10122 Ssue: DRAFT 2: 1:50 Project No: 40122 Client: Earthworm																Sheet 2 of 2

	hole form													Loc	ation details:
Type: CP	From: 0.00	To: 15.00	Start date 27-08-15		Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logger: VSS	Logged: 01-09-15	Rema	rks:		mE: mN: mAC	DD:
≥ c	D		SS										Samples &	Grid	
Backfill/ Instal'n	Water- strike Legend	Level	Thickness Depth	1		Stra	atum Descript	ion			Water	Casing	Depth	Type & No	
T 0	X			TOPSOIL	: Dark	greyish brown	slightly claye	y gravelly S	AND. G	ravel is		Casing	Бериі	Type & NO	Results
		(-	0.10 1.20)	rounded f subangula MADE GF	ine to c ar grave ROUND	coarse quartz a el size fragmen D: Light orangis gular to rounded	nd quartzite. ts of brick. Al sh brown sligh	Occasional bundant room	l medium ots. velly SAI	and corse	# - -		0.50 - 0.60	ES	
										-			0.90 - 1.00	В	
٥			1.30	∃sandv CL	AY. Gra s. Occa	D: Firm orangis avel is subangu asional angular	ular to rounde	d fine to co	arse of m	nixed -	Dry	1.50	1.50	С	N=9 (7 for 75mm/9 for 225mm)
										-	Dry	3.00	3.00	С	N=5 (3 for 75mm/5
		(3	3.90)							- - - -					for 225mm)
			5.20	Medium d	lense d	ark orangish br	rown mottled	yellowish b	rown very	- y gravelly	Dry	4.50	4.50	С	N=10 (3 for 75mm/10 for 225mm)
	× × × × × × × × × × × × × × × × × × ×	(2	2.20)	slightly sil	ty fine t	to coarse SANI lithologies.	D. Gravel is s	subangular	to rounde	ed fine to	Dry	6.00	6.00	С	N=31 (9 for 75mm/31 for 225mm)
	* * * * * * * * * * * * * * * * * * *		7.40	fine to coa	arse SA	ark orangish br ND. Rare grav and quartzite.	rown mottled y	yellowish b	rown slig nded fine	htly silty - and	Dry	7.50	7.50	С	N=27 (6 for 75mm/27 for 225mm)
	* * * * * * * * * * *	(2	2.90)							-					
	X X X X X X X X X X X X X X X X X X X			-						- - - -	Dry	9.00	9.00	С	N=6 (2 for 75mm/6 for 225mm)
	ndwater (k: Rose t		g: Sealed	Diameter : Dia (mm):		ing:	m continues next Depth relate From to				Water	Casing Chisel From	Depth Iling details: to: D	Type & No uration: T	1
AGS Log is Scale	abbreviations : All depths and	planation of symbol see Key Sheet. reduced levels DRAFT 1:50	are in meters.	Project: Project N Client:	o: 1012	iden Quarry 22 hworm						Explor	atory position	reference.	

		ole 1	form	ation det												Loc	ation details:
Typ CF			om: .00	To: 15.00	Start date 27-08-15	End date: 01-09-15	Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logger: VSS	Logged: 01-09-15	Remai	rks:		mE: mN: mA0 Grid	DD:
ے ≦		d)	Þ	o o	9										Samples &		
Backfill/ Instal'n	Water-	strike	Legend	Level 3	Depti	1		Stra	atum Descript	ion			Water	Casing	Depth	Type & No	
: 1			× ?													1,7,4 4	1100000
		No. 100 to 100 t	X		10.30	slightly sil	tv fine t	ark orangish br to coarse SANI lithologies.	rown mottled y	yellowish bi ubangular t	rown grav to rounde	velly -	Dry	10.50	10.50	С	N=26 (6 for 75mm/26 for 225mm)
		73 - 73 - 73 - 73 - 73 - 73 - 73 - 73		(3.	20)								Dry	12.00	12.00	С	55 (7 for 75mm/55 for 135mm)
		20 - 220 - 220 - 220 - 220 - 220 - 220 - 220 - 220		(1.	13.50 50)	Medium d Gravel is	lense d subang	ark orangish br Jular to rounded	rown slightly s	ilty slightly dium of mix	gravelly sed litholo	SAND. gies.	Dry	13.50	13.50	С	N=28 (8 for 75mm/28 for 225mm)
<u></u>	S	P	<u> </u>		15.00) 		Borehol	e terminated at 1	5.00m		-					
												- - - - - -					
												- - - - - -					
												- - - - -					
													Water	Casing	Depth	Type & No	Results
Groundwater entries: Struck: Rose to: Casing: Sealed						Diameter : Dia (mm):			Depth relate From to					Chisel From	lling details: to: D	uration: T	ool:
AG Log Sca	issi	abbrev All dep	viations s oths and	lanation of symbolee Key Sheet. reduced levels are DRAFT 1:50		Project: Project No Client:	o: 1012	iden Quarry 22 hworm						Explor	atory position	reference BH2	

Borehole formation details: Location details:													ation details:						
Type: From: To: Start date: CP 0.00 14.80 01-09-15					End date: Crew: Plant: Barrel type: Drill bit: Logger: Logged: VSS 02-09-15 O2-09-15								rks:		mN:	mE: mN: mAOD:			
_		. 7		s											0 1 0	Grid: OSGB mples & In Situ Testing			
Backfill/	nstal'r	strike Legend	Level	Thickness	epth			Stra	atum Descript	ion									
						TOPSOIL:	Dark	greyish brown	slightly clave	v gravelly S	AND. G	ravel is	Water	Casing	Depth	Type & No	Results		
	l		(*	0. 1.20)	10 -	rounded fi Abundant MADE GR	ne to c roots. OUND	coarse quartz and coarse properties of the coarse properties of the coarse of the coar	nd quartzite a	-		0.50 - 0.60	ES						
			`		-	mixed litho	ologies	. Rare pockets .AY. Rare whol	(up to 200mi	m diameter) of dark	brown	-		0.90 - 1.00	В			
				1.	30 -	SAND. G material.	MADE GROUND: Dark orangish brown gravelly clayey fine and medium SAND. Gravel is subangular to rounded of mudstone, quartz and igneous naterial. Occasional fragments of medium and coarse gravel sized ingular brick fragments.									С	3 (2 for 75mm/3 for 225mm)		
	*		(2	2.90)	-							-	- - - - -						
												-	Dry	3.00	3.00	С	N=4 (2 for 75mm/4 for 225mm)		
	*	-		4.	-	subrounde	ed to ro): Dark grey sli bunded fine of c	quartz and mu	idstone.		/	- - - - -	4.50	4.50	C	N=22 (5 for		
			((0.50) 4.	80 -	Gravel is s clods (up t sandy CLA Medium d	subroui to 100r AY. ense d	D: Dark orangis nded to rounde mm diameter) o ark orangish br Gravel is subar	d of quartz, m of dark orangis rown slightly g	nudstone ar sh brown sl gravelly clay	nd brick. ightly gra vey fine a	Rare ivelly ind	Dry	4.50			75mm/22 for 225mm)		
			(2	2.70)	-	mudstone						-	Dry	6.00	6.00	С	N=15 (3 for 75mm/15 for 225mm)		
					-							-	-						
		X X X X X X X X X X X X X X X X X X X		7.				ark orangish br ubangular to rou					Dry	7.50	7.50	С	N=23 (4 for 75mm/23 for 225mm)		
		× × × × × × × × × × × × × × × × × × ×	(3	3.30)	-							-	-	0.00	0.00		N-44 (0 for		
		× × × × × × × × ×			-							-	Dry	9.00	9.00	С	N=14 (2 for 75mm/14 for 225mm)		
	1.	1.800						Stratur	n continues nevt	nage			Water	Casing	Depth	Type & No	Results		
Groundwater entries: Struck: Rose to: Casing: Sealed:						Diameter Dia (mm):	& casi Dept	ing:	n continues next Depth relate From to	d remarks			1	_	lling details:	uration: T	1		
Lo	GS og is:	abbreviations s All depths and	planation of sym see Key Sheet. reduced levels a DRAFT 1:50	are in meters.		Project: Meriden Quarry Project No: 10122 Client: Earthworm								Exploratory position reference: BH3 Sheet 1 of 2					

Borehole formation details: Location details:													ation details:						
Type: From: CP 0.00		To: 14.80	Start date: 01-09-15	End date: 02-09-15	Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logger: VSS	Logged: 02-09-15	Remai	rks:		mAC	mN: mAOD:				
	\perp				v												Grid: OSGB		
Backfill/ Instal'n	Water-	strike	Legend	Level .	SSOUD Depth			Stra	tum Descripti	on					Samples &				
- B	>		200	i									Water	Casing	Depth	Type & No	Results		
		2			10.80	Medium d	ledium dense dark orangish brown slightly silty gravelly fine and mediumAND. Gravel is subangular to rounded of quartz, quartzite and mudstone.							10.50	10.50	С	N=21 (6 for 75mm/21 for 225mm)		
		22 - 22 - 22 - 22 - 22 - 22 - 22			.60)	subangula Occasiona slightly gra	ar to rou al pocke avelly s	ark greyish brov unded fine to co ets (up to 200m andy CLAY. Gr and red mudst	arse of quart m) of firm to avel is subar	z, quartzite stiff dark or igular to roi	and muc angish bi	Istone.	Dry	12.00	12.00	С	N=28 (6 for 75mm/28 for 225mm)		
		2	*	(1	.80)	- - - - - - - -						- - - - - -	Dry	13.50	13.50	С	N=26 (9 for 75mm/26 for 225mm)		
	S	P.		(0	14.20	and mediu		orangish brown		narl.	ar to rour	anded fine	Dry	14.50	14.50	С	58 (20 for 75mm/58 for 129mm)		
Groundwater entries: Struck: Rose to: Casing: Sealed: Notes: For explanation of symbols and abbreviations see Key Sheet. AGS All depths and recould levels are in meters.						Diameter Dia (mm): Project: Project No	Dept	h: Casing: 14.50	Depth relate From to				Water	From	atory position				
Log issue: DRAFT Scale: 1:50						Client: Earthworm								BH3 Sheet 2 of 2					

Bore	Borehole formation details: Location details: Location details:																				
·			t date: 09-15	End date: 04-09-15		Plant: Dando Rig	Barrel type: n/a		Logger: VSS	Logged: 04-09-15	Remai	ks:		mE:							
							100	04 03 13					mN: mAOD:								
																Grid:					
<u>,</u> ∈	<u>ا</u> د ه	p		sse											Samples & In Situ Testing						
Backfill/ Instal'n	Water- strike	Legend	Level	Thickness	Depth			Stra	tum Descripti	on			Water	Casing	Depth	Type & No	Results				
		****		_	0.10			greyish brown s					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ouog	Бориг	Турошно	rosans				
					0.10	MADE GF slightly sa to coarse	bunded fine and medium of quartz, quartzite and brick. Abundant roots. AlADE GROUND: Firm dark reddish brown occasionally mottled light grey lightly sandy slightly gravelly CLAY. Gravel is subangular to rounded fine coarse of mixed lithologies. Occasional cobble size fragments of tarmac hydrocarbon odour). Occasional red bricks. Occasional wood fragments									ES					
			(1.40)	- - -	(up to 10n MADE GF subangula	nm). ROUND ar to rou	our). Occasiona : Dark reddish unded fine to co e brick fragmen	brown clayey	gravelly S	AND. G	ravel is			0.90 - 1.00	В					
					1.70	Soft to firm	n dark r nm) of y	reddish brown s yellowish brown unded fin eto co	0.50m: Sa slightly gravell n fine and med	dium SANE	_AY with). Grave	pockets	Dry	1.50	1.50	С	N=7 (5 for 75mm/7 for 225mm)				
			(2	2.50)	- - - - -							- - - -	Dry	3.00	3.00	C	N=13 (1 for				
					- - - - -							- - - - -		3.00	3.00		75mm/13 for 225mm)				
					4.20	occasiona brown sar	I mediu Idy CL <i>A</i>	ark orangish bro ım and coarse ç AY. Gravel is su and mudstone.	gravel sized p	ockets of o	lark oran	gish	Dry	4.50	4.50	С	N=16 (9 for 75mm/16 for 225mm)				
		* * * * * * * * * * * * * * * * * * *	(1.90)	-								-								
		× × × × × × × × × × × × × × × × × × ×			6.10		r to sul	ark orangish bro brounded predo tone.				dium of	Dry	6.00	6.00	С	N=23 (7 for 75mm/23 for 225mm)				
		X X X X X X X X X X X X X X X X X X X			- - - - - -							- - -									
			(!	5.10)	- - - - -							- - - -	Dry	7.50	7.50	С	N=17 (2 for 75mm/17 for 225mm)				
		X			- - - - -							- - - - - -	Dry	9.00	9.00	С	N=17 (3 for 75mm/17 for 225mm)				
		XXXX							n continues next			- - -	Water	Casing	Depth	Type & No	Results				
Groundwater entries: Struck: Rose to: Casing: Sealed:					ealed:	Diameter Dia (mm):		ng:	Depth relate From to	d remarks				Chise From	lling details: to: Di	uration: To	ool:				
AGS Notes: For explanation of symbols and abbreviations see Key Sheet. All depths and reduced levels are in meters. Log issue: DRAFT						Project: Project No Client:	Project No: 10122							Exploratory position reference:							
Scal	e:		1:50														Sheet 1 of 2				

	Cocation details: Cocation details: Coc																
Type CP		From: 0.00	To: 14.50	Start da 03-09-		Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logger: VSS	Logged: 04-09-15	Rema	rks:			mE: mN: mAOD:	
															mA		
															Gri	d: OSGB	
Backfill/ Instal'n	Water- strike	Legend	Level	Thickness Del	oth		Stra	tum Descripti	on					Samples & I	& In Situ Testing		
® ≅	s, k			ig .								Water	Casing	Depth	Type & N	o Results	
		××			-						_	-					
		××			1							-					
: 🗆 :		××	2		-						-	Dry	10.50	10.50	С	N=24 (3 for	
: []:		××	?		-							-				75mm/24 for 225mm)	
: []:		××			4						_	-					
: 🗆 :		××		11.	Medium o	dense to	dense dark or	angish brown	slightly silt	v gravell	v SAND.]					
: 🗆 :		××			Gravel is	subroui	nded to rounde	d fine to medi	um of quar	tz, quartz	zite and						
: :		××			mudstone	.						1					
: []:		×××									_	Dry	12.00	12.00	С	N=37 (6 for	
: 🗆 :		××			-							= ',	12.00	12.00		N=37 (6 for 75mm/37 for 225mm)	
: []:		××]						_]				22011111)	
: [:		××	(:	3.00)	1							-					
: []:		××	`	,	1							-					
: [:		××	2		3						_]					
:T:		××			-							-					
: []:		××]							Dry	13.50	13.50	С	N=45 (10 for 75mm/45 for	
: []:		××			-											225mm)	
: 🗆 :		××									_	-					
: []:		* *	(14. 0.30)	4F11111 tO St	iff dark	reddish brown to rounded fine	slightly sandy	slightly gra	avelly CL	AY. Gravel]					
	SP			14.	greenish	marls. F	Rare cobbles.			quartzite	anu	4					
_]		Borehol	e terminated at 1	4.50m]					
_					-						_	-					
					1							1					
					-						-						
					1							-					
					-						_]					
					-						-	1					
]												
											_	1					
]												
					1						_	-					
					1							1					
											_	-					
					1							1					
					1						_]					
					1							-					
												1					
					3												
					1							-					
]						-						
		+										Water	Casing	Depth	Type & N	o Results	
			entries:			Diameter & casing: Depth related remarks:								lling details:			
Stru	ck:	Rose t	o: Casin	g: Seale	d: Dia (mm)	Dept	th: Casing: 14.20	From to	: Remarl	KS			From	to: D	uration:	Tool:	
AGS	Not abb	previations s	planation of sym see Key Sheet. reduced levels		Project:		iden Quarry						Explor	atory position			
	issue		DRAFT	a o m meters.	Project N									E	3 H 4	ļ.	
Scal			1:50		Client:	⊨art	hworm									Sheet 2 of 2	

Exploratory Hole Key Sheet

TerraConsult

SAMPLES:

Undisturbed:

Driven tube sample UT Thin wall driven tube sample TW Pushed thin wall tube sample Pushed piston sample

Liner sample (from windowless or similar sampler), full recovery unless otherwise stated

CBR CBR mould sample **BLK** Block sample

Core sample (from rotary core) taken for laboratory testing

Disturbed:

Small sample В Bulk sample AMAL Amalgamated sample

Environmental:

Environmental soil sample FS ΕW Environmental water sample

Comments:

Sample reference numbers are assigned to every sample taken. A sample reference of 'NR' indicates that an attempt was made

to take a tube sample; however, there was no recovery. Sample recovery is given as a percentage.

TESTS:

SPT S or SPT C Standard Penetration Test, open shoe (S) or solid cone (C)

> The Standard Penetration Test is defined in BS EN ISO 22476-3 (2005). The incremental blow counts are given in the Field Records column; each increment is 75mm unless stated otherwise and any penetration under self weight in mm (SW) is noted. Where the full 300mm test drive is achieved the total number of blows for the test drive is presented as N = ** in the Test column. Where the test drive blows reach 50 (either in total or for a single

increment) the total blow count beyond the seating drive is given (without the N = prefix).

ICBR In situ CBR

In situ vane shear strength, peak (p) and remoulded (r), kPa IV ΗV Hand vane shear strength, peak (p) and remoulded (r), kPa PP Pocket penetrometer test, converted to shear strength, kPa

KFH, KRH, KPI Variable head permeability tests (KFH = falling head test, KRH = rising head test, KPI = packer test), permeability value

Test results provided in Field Records column

DRILLING RECORDS:

The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930: 2015 and BS EN ISO 22575-1 (2006)

TCR Total Core Recovery, % SCR Solid Core Recovery, % RQD Rock Quality Designation, %

Fracture spacing, mm. Minimum, typical and maximum spacings are presented.

NI Non intact is used where the core is fragmented. CRF

Core recovered (length in m) in the following run **AZCL** Assessed zone of core loss

NR Not recovered

GROUNDWATER:

Groundwater strike

Groundwater level after standing period

INSTRUMENTATION:

Details of installations are given on the Record. Legend column shows installed instrument depths including slotted pipe section or tip depth, response zone filter material type and layers of backfill. The type of instrument installed is indicated by a code adjacent to the Legend column at the base of the instrument.

Standpipe

SPIE Standpipe piezometer PPIE Pneumatic piezometer **EPIE** Electronic piezometer **HPIE** Hydraulic piezometer **GMP** Gas monitoring standpipe

ICE Biaxial inclinometer

ICM Inclinometer tubing for use with probe SLIP

Slip indicator

ESET Electronic settlement cell/gauge **ETM** Magnetic extensometer settlement point

ETR Rod extensometer

> Project: Meriden Quarry

Project No: 10122 Client: Earthworm

EXPLORATORY HOLE TYPE:

CP Cable percussion DP Dynamic probe

Dynamic cone penetrometer DCP HA Hand auger

Inspection pit OP Observation pit/trench Rotary core Rotary open hole

RO SH Shaft

SNC Sonic (resonance) TP Trial pit/trench

TRAV Traverse

WLS Windowless (dynamic) sample WS Window (dynamic) sample

Reference

KEY SHEET

Sheet 1 of 1

Photograph 1: TP1 - The upper 0.7m of Made Ground.

Photograph 2: TP1 - Light orangey brown silty sand arisings from between 0.7m and 3.6m

Photograph 3: TP1 - Collapse of the silty sand at 2.4m

Photograph 4: TP2 - Shattered plastic layer at 0.4m at the change between the orangey brown sand and the organic blackish clay containing concrete, rubber, bricks and other material. The black clay had a hydrocarbon odour.

Photograph 5: TP2 - Close up of rubble, plastic and wood in the clay arisings.

Photograph 6: TP2 - Damp black organic material within the clay and had a hydrocarbon odour.

Photograph 7: TP2 - Orangey brown silty sand from 3.7m, smeared black from the above black clays.

Photograph 8: TP3

Photograph 9: TP3 - Blackish brown sand arisings containing concrete, plastic, metal, bricks and fabric. Black sand had a hydrocarbon odour.

Photograph 10: TP4 - Orangey brown sand of the upper 1.2m material with rubble of quartz and quartzite gravel, brick and concrete.

Photograph 11: TP4 - Base of trial pit and small collapse from the rubble in the blackish sand at 1.2m. Plastic bag at 0.5m.

Photograph 12: TP4 - Odorous blackish sand from 1.2m with gravel, concrete, bricks, metal, wood and plastic.

Photograph 13: TP4 - Piece of metal from within the blackish sand between 1.2m and 3.7m.

Photograph 14: TP4 - rope, wood and rubble within the sidewalls. Slightly unstable in the sand at 1.1m,.

Photograph 15: TP4 - Close up of the sandy clay arisings from 1.9m

Photograph 16: TP4 - One of two inner tyre tubes recovered from 3.1m within the sandy clay.

Photograph 17: TP4 - Yellow brown sand from 3.3m with gravel of quartz and quartzite.

Photograph 18: TP6 - Material from the upper 1.1m gravelly sand.

Photograph 19 TP6.

Photograph 20: TP6 - Reddish brown sand and clay from between 1.1m and 3.4m with the wet grey gravels from 3.4m on top.

Photograph 21: TP6 - Wet grey mudstone gravels from 3.4m.

Photograph 22: TP6 - Arisings from between 0.9m and 3.5m together with electrical cables.

Photograph 23: TP6 - One of two 1.5m concrete cable piles found within the trial pit between 1.0m and 3.0m.

Photograph 24: TP6 - One of three large concrete slabs measuring between 500mm and 800mm in length.

Photograph 25: TP6 after collapse of the blackish sand and rubble between 0.9m and 3.5m.

Photograph 26: TP8.

Photograph 27: TP8 - Blackish sand arisings from between 1.9m and 3.9m with quartz and quartzite gravel, brick and concrete together with glass bottles, a bike wheel and plastic.

Photograph 28: BH1 - Light orangey brown gravelly sand of the upper 0.7m excavated from the 1m hand pit.

Photograph 29: BH1 - Asphalt in the Made Ground encountered between 0.7m and 4.8m

Photograph 30: BH1 - Orangey brown clayey sand encountered between 5.4m and 6.8m.

Photograph 31: BH1 - Silty slightly gravelly sand of the natural ground, at 6.8m.

Photograph 32: BH2 - Light orangey brown gravelly sand from the 1m hand pit. Bricks and concrete fragments also present.

Photograph 33: BH2 - Made Ground as grey mottled orange brown clay between 1.3m and 5.2m

Photograph 34: BH2 - Sands and gravels encountered between 10.3m to 13.5m.

Photograph 35: BH3 - Brick and metal at 0.5m within the hand pit.

Photograph 36: BH3 - Orangey brown sand with brick fragments from between 1.3m and 4.2m.

Photograph 37: BH3 - Natural silty sands from between 7.5m and 10.8m.

Photograph 38: BH3 - Gravelly sand from between 12.4m and 14.2m.

Photograph 39: BH3 - Clayey sandy gravels at the base of the borehole, interpreted as Mercia Mudstone

Photograph 40: BH4 - Dark orangey brown clay from 1m hand pit.

Photograph 41: BH4 - Silty gravelly sands between 11.2m and 14.2m

Photograph 42: Reddish brown clay at the base of the borehole, overlying a cobble at 14.5m.

Appendix D

Chemical Testing Laboratory Certificates

Site: Land at Meriden Quarry CHEMICAL STATISTICAL ANALYSIS - based on CLEA v1.06 (Sandy Loam 1% SOM)

TerraConsult

																	Г	90	V / GAC		90	SV / GAC		91	GV / GAC	٠,	SGV / GAC	pC4SL/S4I		C4SL/S4		ISL/S4UL	pC4SL/	/e,,,,,,	pC4SL	/ealli	pC4SL/S	ealli	nC4	4SL/S4U
															Statistical	Δnalvsis			stical Results			istical Results	-		tistical Results		iteria Source	Screening Cri												eria Sourc
		Terraconsult	Terraconsult	Terraconquit	Terraconsul	it Terraconsu	ılt Terraconsu	ult Terraconsul	t Terraconsul	t Terraconquit	Terraconsult 1	Terraconquit Te	erraconsult		Otatiotical	Alialysis	$\overline{}$	Otati	stical Results		Otatio	istical results	$\overline{}$	Jiai	iisticai results		iteria source	Octobring Cit	terra oci	l l	teria ocree	Illing Criteria	Octobring	Criteria	OCTOOTHING	gontena	ocreening	Criteria	Critter	oria ooure
	Limit of	Sandy soil	Fill	Fill	Fill	Fill	Fill	Clay	Fill	Fill	Sandy Soil		Sandy Soil												Commercial &				Resi	dential	Reside	ntial								
Analyte	Detection	27/08/15	27/08/15	27/08/15							,		03/09/15	n Standard Deviation		Mean	Maximum		Residential With Veg. Uptake Tier Screening Criteria	I Pass/ N	Maximum	Residential Without Veg. Uptake Tier I Screening Criteria	Pass/ Fail	Maximum	Industrial Tier 1 Pa Screening F	Pass/ Sou Fail	urce of Screening Criteria	Commercial	Pass / with	Home own	Pass / without Fail Grov	Home Pass / rn Fail	Allotments	Pass / Fail	POS(resi)	Pass / Fail	POS(park)	Pass / Fail	Source of Screening Criteria	Toxio
		TP1	TP2	TP3	TP4	TP5	TP6	TP7	TP8	RH1	BH2	RH3	RH4												Threshold				Pro	duce	Produ	ice								
		0.5M	0.5M	0.5M	0.5M	0.5M	1 1m	0.9m	2m	0.5m	0.5m		0.5m																											
t	0.10%	0.1	0.1	0.1	0.1	0.1		0.1	0.1	0.1	0.1	0.1	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	
en	Positive / Negative	Neg	Neg	Chrysotile	Neg	Chrysotile	e Neg	Chrysotile	Chrysotile	Chrysotile	Neg	Neg	Neg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	
	2 mg/kg	7.0	17	42 4.4	14	9	5.4	13	16	16	4	2.9	8	12 10.42	2.9	12.9	42.0	42.0	32	Fail	42.00	35	Fail	42.00	635 P	Pass	SC050021*	640	Pass	37	Fail 40	Fail	49	Pass	79	Pass	170	Pass	CLEA v1.06	pC4S
0	0.1 mg/kg	0.6	17 2.4	4.4 230	14 2.5	9 0.9 26	0.2	1.7	0.5	1.4 45 170	0.1	0.1	0.2	12 1.31 12 59.85	0.1	1.3 46.3	4.4	4.4 230.0	10	Pass	4.40 230.00	17.7	Pass	4.40		Pass	SC050021* CLEA v1.06	420 8600	Pass	22	Pass 15	Pass	3.9	Fail	220	Pass	560	Pass	CLEA v1.06	pC4S
al) (III for S4ULs)	0.5 mg/kg 2 mg/kg	77		1500	41 190	940	24 92	49 290	720	170	9.1 12	9.4	37	12 463.48		381.4	1500.0	1500.0	3010 2330	Pass Pass	1500.00		Pass Pass	230.00 1500.00	30400 P 71700 P	Pass Pass	CLEA v1.06	68000	Pass 2	110 400	Pass 910 Pass 710	Pass Pass	18000 520	Pass Fail	1500 12000	Pass Pass	33000 44000	Pass Pass	CLEA v1.06 CLEA v1.06	LQ
	2 mg/kg	61.0					31	210			17	9	59	12 95.59	9.0	127.3	320.0	320.0	N/A 170	-	320.00	N/A	-	320.00	N/A	-	-	6000	Pass	10	Fail 33	Pass	84	Fail	760	Pass	1400	Pass	CLEA v1.06	pC4S
Inorganic)	1 mg/kg 0.5 mg/kg	21.0	1.8	1 200	55	1 21	1 26		1 00	1 65	8.1	1	18	12 0.23 12 70.25	1.0	1.1 62.0	1.8	1.8 260.0	170 N/A	Pass	1.80 260.00		Pass -	1.80 260.00	3640 P N/A	Pass	SC050021* SC050021*	1100 980	Pass Pass	80	Pass 56 Fail 18	Pass Fail	19 230	Pass	120 230	Pass	240 3400	Pass Pass	CLEA v1.06 CLEA v1.06	LQ
al)	3 mg/kg	3	3	3	3		3		3		3	3	3	12 0.00	3.0	3.0	3.0	3.0	350	Pass	3.00	595			13000 P	Pass	SC050021*	120000			Pass 43i			Fail Pass	1100	Fail Pass	1800	Pass	CLEA v1.06	LQ
	2 mg/kg	160	490	980	900	540	88	530	730	2300	54	25	100	12 638.80	25.0	574.8	2300.0	2300.0	3740	Pass	2300.00	40300	Pass	2300.00	662000 P	Pass	CLEA v1.06	730000		700	Pass 400i	0 Pass	620	Fail	81000	Pass	170000	Pass	CLEA v1.06	LQ
	oH I Inite	7.0		7.4	7.2	0.2	7.6	7.7	0.1	-	66	7.6	0.1	12 0.49		76		0.0		+	9.20		_	9.20		_		-	-	-		-	-	-	-		-	-		-
al)	pH Units 1 mg/kg	2	5	31	2	1	1.0	1.7	1	1	1	1.0	1	12 8.58		4.0	31.0	31.0	-		31.00	-		8.20 31.00		-		-		-			 	1 : 1					-	1
1)	0.01 g/l	0.01	0.04	1.9	0.97	0.03	0.02	0.66	0.26	0.1	0.01	0.02	0.02	12 0.58	0.0	0.3	1.9	1.9	-	-	1.90	-	-	1.90	-	-	-	-	-	-		-	-	-	-	-	-	-	-	
					4.5			11.9						12 8.95	0.1			0.0		\perp								-	-	-		-	-	-	-	-	-	-		
Matter	0.10%	0.9	8.5	17	2.6	0.7	0.7	11.9	8.7	1.6	0.1	0.6	0.7		0.1	3.6	17.0	17.0		+ : +	17.00	-	-	17.00	-	-	-	-		-			-	-	-		-	-	-	+
	0.1 mg/kg																	0.0	-		0.00	-	-	-		-	-	-	-	-		-	-	-	-	- 1	-	-	-	
Monohydric)	1 mg/kg	1		1	1	1	1	1	1	1	1	1	1	11 0.00	1.0	1.0	1.0	1.0	210	Pass	1.00	310	Pass	1.00	24200 P	Pass	CLEA v1.06	760	Pass	:80	Pass 75	Pass	66	Pass	760	Pass	760	Pass	CLEA v1.06	LQI
																		0.0																						
e	0.1 mg/kg 0.1 mg/kg	0.1	0.2	0.4	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	12 0.09	0.1	0.1	0.4	0.4	1.54		0.40		Pass Pass	0.40	200 P 84000 P 8500 P	Pass Pass	CLEA v1.06 CLEA v1.06	190 83000	Pass Pass	70	Pass 2.3 Pass 290	Pass Pass	4.1	Pass Pass	4900 15000	Pass Pass	1200		CLEA v1.06 CLEA v1.06	
~	0.1 mg/kg	0.1	0.1	0.5	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	12 0.12	0.1	0.1	0.5	0.5	205	Pass Pass	0.50	2020	Pass	0.60	8500 P	Pass	CLEA v1.06	84000	Pass	10	Pass 300) Pass	34	Pass	15000	Pass	29000 29000	Pass	CLEA v1.06	LQ
	0.1 mg/kg	0.1	0.1	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	12 0.12	0.1	0.1	0.5	0.5	163	Pass	0.50		Pass	0.50		Pass	CLEA v1.06	63000	Pass	70	Pass 280	D Pass	27	Pass	9900	Pass	20000	Pass	CLEA v1.06	
	0.1 mg/kg 0.1 mg/kg	0.2	0.7	1.2	0.8	0.4		0.3	0.4	0.9	0.1	0.2	0.8	12 0.79 12 0.32		0.7	1.2	3.0 1.2	2260	Pass Pass	1.20		Pass Pass	3.00 1.20	22000 P 530000 P	Pass Pass	CLEA v1.06 CLEA v1.06	22000 520000	Pass 2	95 400	Pass 130 Pass 310			Pass Pass	3100 74000	Pass Pass	6200 150000	Pass Pass	CLEA v1.06 CLEA v1.06	LC
	0.1 mg/kg	0.6	0.9	5.9	1.5	0.8	0.1	0.6	0.6	1.4	0.1	0.9	2.0	12 1.56	0.1	1.3	5.9	5.9	257	Pass Pass	5.90	972	Pass	5.90	23000 P	Pass	CLEA v1.06	23000	Pass	180	Pass 150) Pass	52	Pass	3100	Pass	6300 15000		CLEA v1.06 CLEA v1.06	LQ
acene	0.1 mg/kg	0.6	0.8	4.9	1.3	0.7	0.1	0.7	0.6	1.3	0.1	1 0 0	1.8	12 1.28	0.1	1.2	4.9	4.9 1.9	563	Pass	4.90	2330	Pass Pass	4.90		Pass Pass	CLEA v1.06 CLEA v1.06	54000	Pass Pass	20	Pass 370 Pass 11	Pass Pass	110	Pass Pass	7400	Pass Pass	15000	Pass Pass	CLEA v1.06 CLEA v1.06	LQ
	0.1 mg/kg 0.1 mg/kg	0.4	0.6	2	0.7	0.5	0.1	0.4	0.4	0.7	0.1	1	1	12 0.51	0.1	0.7	2.0	2.0	6	Pass	2.00		Pass	2.00		Pass	CLEA v1.06	350	Pass	15	Pass 30	Pass	4.1	Pass	57	Pass	93		CLEA v1.06	
ranthene	0.1 mg/kg	0.4	0.4	0.8	0.3	0.3	0.1	0.3	0.3	0.5	0.1	1.1	0.9	12 0.31	0.1	0.5	1.1	1.1	5.6	Pass Pass	1.10		Pass Pass	1.10	100 P	Pass Pass	CLEA v1.06	44	Pass Pass	2.6	Pass 3.9 Pass 110	Pass Pass	0.99	Fail	7.1	Pass	13	Pass	CLEA v1.06 CLEA v1.06	LQ
ranthene ene	0.1 mg/kg 0.1 mg/kg	0.4	0.4	1.1	0.2	0.4	0.1	0.3	0.2	0.4	0.1	0.5	0.7	12 0.28	0.1	0.4	1.1	1.1	8.5 0.83	Pass Fail	1.10		Pass Fail	1.10		Pass Pass	CLEA v1.06 CLEA v1.06	1200 77	Pass Pass	50	Pass 110 Pass 5.3	Pass Pass	5.7	Pass Pass		Pass Pass	370 21		CLEA v1.06 CLEA v1.06	
d)pyrene	0.1 mg/kg	0.3	0.3	0.6	0.2	0.3	0.1	0.2	0.2	0.3	0.1	0.5	0.6	12 0.17	0.1	0.3	0.6	0.6	3.2	Pass	0.60	4.17	Pass	0.60		Pass	CLEA v1.06	500	Pass	27	Pass 45 Pass 0.3	Pass	9.5	Pass	82	Pass	150		CLEA v1.06	
anthracene	0.1 mg/kg	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	12 0.04	0.1	0.1	0.2	0.2	0.76 44	Pass Pass	0.20	0.87 46.8	Pass	0.20	13 P	Pass	CLEA v1.06 CLEA v1.06	3.5		.24			0.14	Fail Pass	0.57 640	Pass Pass	1.1	Pass	CLEA v1.06 CLEA v1.06	LQI
PAHs	0.1 mg/kg 0.1 mg/kg	4.3		0.7 25			0.1	3.8		7.2	0.1		0.6		0.1	0.4 6.6	25.0	25.0	44	Pass	25.00	46.8	Pass	25.00	650 P	Pass	CLEA VI.U6	3900	Pass	20	Pass 36	Pass	290	Pass	640	Pass	1400	Pass	CLEA VI.U6	LQI
PAUS	U. Filigrag	4.3	3.3	23	0.1	4.0	0.1	3.6	-	1.2	0.3	1.5	-"-	12 0.51	0.1	0.0	20.0	23.0		-	23.00	-	-	23.00		-				-							-			+
	1 mg/kg	1	1	1	1	1	1	1	1	1	1	1	1	12 0.00	1.0	1.0	1.0	1.0	0.078	Fail	1.00	0.266	Fail	1.00		Pass	CLEA v1.06	100	Pass (.87	Fail 3.3	Pass	0.18	Fail	140	Pass	110	Pass	CLEA v1.06	
	1 mg/kg	1	1	1	1	1	1	1	1	1	1	1	1	12 0.00	1.0	1.0	1.0	1.0	119	Pass	1.00	607	Pass	1.00 3.00	86200 P	Pass	CLEA v1.06 CLEA v1.06	56000	Pass	30	Pass 88i	Pass	22	Pass	56000	Pass	87000 17000	Pass	CLEA v1.06	
ne	1 mg/kg 1 mg/kg	1	1	2	1	1	1	1	1	1	1	1	1	12 0.58	1.0	1.1	2.0	2.0	45.2	Pass Pass	2.00		Pass Pass		10,700 P	Pass Pass	CLEA V1.06 CLEA v1.06	5700 6600	Pass Pass	60	Pass 83 Pass 88	Pass Pass	28	Pass Pass	24000 41000	Pass Pass	17000		CLEA v1.06 CLEA v1.06	
)	1 mg/kg	1	1	5	1	1	1	1	1	1	1	1	1	12 1.15	1.0	1.3	5.0	5.0		Pass	5.00	55.4	Pass	5.00			CLEA v1.06	6200		59	Pass 82		31	Pass	41000	Pass	17000	Pass	CLEA v1.06	LQN
	1 mg/kg	1	1	1	1	1	1	1	1	1	1	1	1	12 0.00	1.0	1.0	1.0	1.0	-	-	1.00	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	_
Hydrocarbons	0.01 mg/kg	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	12 0.00	0.01	0.01	0.01	0.01	30	Pass	0.01	30	Pass	0.01	3400 P	Pass	CLEA v1.06	3200	Pass	42	Pass 42	Pacc	730	Pass	570000	Pass	95000	Pass	CLEA v1.06	LQM
s - Ca	0.01 mg/kg	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	12 0.00	0.01	0.01	0.01	0.01	73	Pass Pass	0.01		Pass	0.01		Pass	CLEA v1.06	7800	Pass Pass	00	Pass 42 Pass 10	Pass Pass	2300	Pass	600000	Pass Pass	150000	Pass	CLEA v1.06	LQN
- C ₁₀	0.01 mg/kg	0.01	0.01	0.3	0.01	0.01	0.01	0.012	0.01	0.01	0.01	0.01	0.01	12 0.08		0.03	0.30	0.3	19	Pass	0.30		Pass	0.30			CLEA v1.06	2000	Pass	27	Pass 27	Pass		Pass		Pass	14000		CLEA v1.06	
10 - C12 10 - C18	1 mg/kg 1 mg/kg	1	3	4	16	1	1	4	2	21	1	1	1	12 1.99 12 6.65	1.0	1.8 4.7	21.0	7.0 21.0	93 740	Pass Pass	21.00	93 745	Pass Pass	7.00		Pass Pass	CLEA v1.06 CLEA v1.06	9700 59000		100	Pass 130 Pass 110	Pass Pass	2200 11000	Pass Pass	13000 13000	Pass Pass	21000 25000	Pass Pass	CLEA v1.06 CLEA v1.06	
6 - C21	1 mg/kg	1	3	4 35	73	1	1	41	13	160	1	1	3	12 47.47	1.0	27.8	160.0	160.0	45000	Pass	160.00	45000	Pass	160.00	1600000 P	Pass	CLEA v1.06	160000		000	Pass 110 Pass 650	0 Pass	260000	Pass	250000	Pass	25000 450000	Pass	CLEA v1.06	LQI
11 - C ₃₅ 15 - C ₄₄	1 mg/kg 2 mg/kg	24	480	150	290	38	14	200	75	460	11	22	36 2	12 172.77 12 0.00	11.0	150.0	480.0	480.0 2.0	45000 45000	Pass	480.00	45000 45000	Pass Pass	480.00 2.00	1600000 P		CLEA v1.06 CLEA v1.06	160000 160000		000	Pass 6501 Pass 6501			Pass Pass	250000	Pass Pass	450000	Pass	CLEA v1.06 CLEA v1.06	
C ₇	2 mg/kg 0.01 mg/kg	0.01	0.01	0.01	0.04	0.04	0.01	0.04	0.01	0.01	0.01	0.01	0.01	12 0.00		2.0	0.0	0.0	65	Pass	0.01		Pass	0.01	28000 P		CLEA V1.06 CLEA v1.06	26000	Pass 6	70	Pass 5501		13	Pass	250000 56000		450000 76000	Pass	CLEA v1.06	
C ₈	0.01 mg/kg	0.01	0.01	0.01	0.01	0.01 0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	12 0.00		0.0	0.0	0.0	120	Pass	0.01		Pass	0.01	59000 P	Pass	CLEA v1.06	56000	Pass	30	Pass 86	Pass	22	Pass	56000	Pass	87000	Pass	CLEA v1.06	LQI
- C ₁₀	0.01 mg/kg	0.01	0.015	0.064	0.011	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	12 0.02	0.0	0.0	0.1	0.1	27	Pass Pass	0.06	33	Pass	0.06		Pass Pass	CLEA v1.06 CLEA v1.06	3500 16000	Pass	34	Pass 47 Pass 25	Pass	8.6	Pass	5000 5000	Pass	7200 9200	Pass	CLEA v1.06 CLEA v1.06	LQN
- C ₁₉ - C ₁₆	1 mg/kg 1 mg/kg	1	8	8	5	1	1	4	4	4	1	1	1	12 1.00	1.0	3.3	8.0	4.0 8.0	140	Pass	4.00 8.00		Pass Pass	4.00 8.00		Pass Pass	CLEA v1.06 CLEA v1.06	16000 36000	Pass Pass	40	Pass 251 Pass 180	Pass Pass	13 23	Pass Pass	5000 5100		10000	Pass Pass	CLEA v1.06 CLEA v1.06	
2 - C18 3 - C21	1 mg/kg	4.0		14	22	4	1	24	13	20	1	5	10	12 8.22	1.0	11.2	24.0	24.0	250	Pass	24.00	1290	Pass	24.00	28000 P	Pass	CLEA v1.06	28000	Pass	60	Pass 190) Pass	46	Pass Pass	3800	Pass	7600	Pass	CLEA v1.06	LQI
	1 mg/kg	15.0				17		34	23	28	2	63	35	12 21.85		28.7	76.0 2.0	76.0 2.0	890 890	Pass	76.00 2.00	1330	Pass	76.00	28000 P	Pass	CLEA v1.06 CLEA v1.06	28000	Pass 1	100	Pass 190) Pass	370	Pass	3800 3800	Pass	7800	Pass	CLEA v1.06 CLEA v1.06	LQI
C21 - C44 C44 - C44	2 mg/kg	2.0	2	2	2	2	2	2	2	2			2	12 0.00										2.00																

1. Generic Qualitative Assessment Chieria have been used where appropriate based on the current CLEA 1.06 Model (default values, sandy loam 1½SOM). Where no CLEA generic guideline value has been calculated no assessment has been made. The results presented show maximum and mean concentrations. This is to provide a reasonable prediction of the range of data rather than to provide any detailed statistical appraisal.

2. When the test result is recorded as being less than the detection limit, the result used for the analysis is the detection limit.

3. When the set result is recorded as being less than the detection limit, the result used for the analysis is the detection limit.

5. When the set result is recorded as being less than the detection limit, the result used for the analysis is the detection limit.

6. For the set of the control of the set of the se

Scientific Analysis Laboratories Ltd Certificate of Analysis

3 Crittall Drive Springwood Industrial Estate Braintree Essex CM7 2RT

Tel: 01376 560120 Fax: 01376 552923

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 507763-1

Date of Report: 21-Sep-2015

Customer: TerraConsult (South) Limited

Suite F17 Dugard House

Peartree Road Colchester Essex CO3 0UL

Customer Contact: Ms Sue Slaven

Customer Job Reference: 10122 Customer Purchase Order: PO-00018

Customer Site Reference: MERIDEN QUARRY

Date Job Received at SAL: 09-Sep-2015
Date Analysis Started: 10-Sep-2015
Date Analysis Completed: 21-Sep-2015

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

All results have been reviewed in accordance with Section 25 of the SAL Quality Manual

Report checked and authorised by : Simi Okanlami Project Manager Issued by : Simi Okanlami Project Manager

Project Site: MERIDEN QUARRY

Customer Reference: 10122

Soil

Analysed as Soil

Soil Suite 1

			SA	L Reference	507763 001	507763 002	507763 003	507763 004	507763 005	507763 006
		Custon	ner Samp	le Reference	TP1 @ 0.5m	TP2 @ 0.5m	TP3 @ 1.5m	TP4 @ 0.5m	TP5 @ 0.5m	TP6 @ 1.1m
			D	ate Sampled	27-AUG-2015	27-AUG-2015	27-AUG-2015	27-AUG-2015	27-AUG-2015	27-AUG-2015
				Туре	Sandy Soil	Fill	Fill	Fill	Fill	Fill
Determinand	Method	Test Sample	LOD	Units						
Arsenic	T257	A40	2	mg/kg	7	17	42	14	9.0	5.4
Cadmium	T257	A40	0.1	mg/kg	0.6	2.4	4.4	2.4	0.9	0.2
Chromium	T257	A40	0.5	mg/kg	17	48	230	41	26	24
Copper	T257	A40	2	mg/kg	77	540	1500	190	940	92
Lead	T257	A40	2	mg/kg	61	210	320	160	160	31
Mercury	T245	A40	1.0	mg/kg	<1.0	1.8	<1.0	<1.0	<1.0	<1.0
Nickel	T257	A40	0.5	mg/kg	21	82	260	55	21	26
Selenium	T257	A40	3	mg/kg	<3	<3	3	<3	<3	<3
Zinc	T257	A40	2	mg/kg	160	490	980	900	540	88
Asbestos ID	T27	A40	10		Asbestos not detected	Asbestos not detected	Chrysotile Detected	Asbestos not detected	Chrysotile Detected	Asbestos not detected
pH	T7	A40		71 - 1	7.0	8.0	7.4	7.3	8.2	7.6
Soil Organic Matter	T287	A40	0.1	%	0.9	15	29	4.5	1.2	1.2
(Water Soluble) SO4 expressed as SO4	T242	A40	0.01	g/l	<0.01	0.04	1.9	0.87	0.03	0.02
Sulphide	T4	A40	10	mg/kg	<10	<10	43	82	<10	<10
Total Organic Carbon	T21	A40	0.1	%	0.5	8.5	17	2.6	0.7	0.7
Cyanide(Total)	T4	AR	1	mg/kg	(64) 2	5	31	2	<1	<1
Phenols(Mono)	T221	AR	1.0	mg/kg	(64) < 1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Moisture @ 105 C	T162	AR	0.1	%	12	11	23	11	7.8	15
Retained on 2mm	T2	A40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SAL Reference: 507763

Project Site: MERIDEN QUARRY

Customer Reference: 10122

Soil Analysed as Soil

Soil Suite 1

			5-87 10				75.3C 6.6C	9.40		
			SA	L Reference	507763 007	507763 008	507763 009	507763 010	507763 011	507763 012
		Custon	ner Sampl	e Reference	TP7@ 0.9m	TP8 @ 2.0m	BH1 @ 0.5m	BH2 @ 0.5m	BH3 @ 0.5m	BH4 @ 0.5m
			D	ate Sampled	27-AUG-2015	27-AUG-2015	26-AUG-2015	27-AUG-2015	01-SEP-2015	03-SEP-2015
				Туре	Clay	Fill	Fill	Sandy Soil	Fill	Sandy Soil
Determinand	Method	Test Sample	LOD	Units	All					
Arsenic	T257	A40	2	mg/kg	13	16	16	4	2.9	8
Cadmium	T257	A40	0.1	mg/kg	1.7	0.5	1.4	<0.1	<0.1	0.2
Chromium	T257	A40	0.5	mg/kg	49	42	45	9.1	4.4	20
Copper	T257	A40	2	mg/kg	290	720	170	12	9	37
Lead	T257	A40	2	mg/kg	210	110	180	17	9	59
Mercury	T245	A40	1.0	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Nickel	T257	A40	0.5	mg/kg	85	98	65	8.1	4.6	18
Selenium	T257	A40	3	mg/kg	<3	<3	<3	<3	<3	<3
Zinc	T257	A40	2	mg/kg	530	730	2300	54	25	100
Asbestos ID	T27	A40			Chrysotile Detected	Chrysotile Detected	Chrysotile Detected	Asbestos not detected	Asbestos not detected	Asbestos not detected
pH	T7	A40			7.7	8.1	8.0	6.6	7.6	8.1
Soil Organic Matter	T287	A40	0.1	%	1.9	15	2.8	<0.1	1.0	1.2
(Water Soluble) SO4 expressed as SO4	T242	A40	0.01	g/l	0.66	0.26	0.10	0.01	0.02	0.02
Sulphide	T4	A40	10	mg/kg	<10	16	12	12	<10	<10
Total Organic Carbon	T21	A40	0.1	%	1.1	8.7	1.6	<0.1	0.6	0.7
Cyanide(Total)	T4	AR	1	mg/kg	⁽⁶⁴⁾ <1	1	<1	⁽⁶⁴⁾ <1	<1	⁽⁶⁴⁾ <1
Phenols(Mono)	T221	AR	1.0	mg/kg	⁽⁶⁴⁾ <1.0	<1.0	<1.0	⁽⁶⁴⁾ <1.0	<1.0	⁽⁶⁴⁾ <1.0
Moisture @ 105 C	T162	AR	0.1	%	16	13	9.9	4.6	8.5	7.2
Retained on 2mm	T2	A40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Project Site: MERIDEN QUARRY

Customer Reference: 10122

Analysed as Soil Total and Speciated USEPA16 PAH (SE) (MCERTS)

		Custon	ner Samni	e Reference	TP1 @ 0.5m	TP2 @ 0.5m	TP3 @ 1.5m	TP4 @ 0.5m	TP5 @ 0.5m	TP6 @ 1.1m
		Guaton			27-AUG-2015	27-AUG-2015	27-AUG-2015	27-AUG-2015	27-AUG-2015	27-AUG-201
				Туре	Sandy Soil	Fill	Fill	Fill	Fill	Fill
	1			Турс	Oandy Oon					1
Determinand	Method	Test Sample	LOD	Units						
Naphthalene	T16	AR	0.1	mg/kg	<0.1	0.2	0.4	0.1	<0.1	<0.1
Acenaphthylene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T16	AR	0.1	mg/kg	<0.1	<0.1	0.5	<0.1	<0.1	<0.1
Fluorene	T16	AR	0.1	mg/kg	<0.1	<0.1	0.5	0.1	<0.1	<0.1
Phenanthrene	T16	AR	0.1	mg/kg	0.2	0.7	3.0	0.8	0.4	<0.1
Anthracene	T16	AR	0.1	mg/kg	<0.1	0.1	1.2	0.1	0.1	<0.1
Fluoranthene	T16	AR	0.1	mg/kg	0.6	0.9	5.9	1.5	0.8	<0.1
Pyrene	T16	AR	0.1	mg/kg	0.6	0.8	4.9	1.3	0.7	<0.1
Benzo(a)Anthracene	T16	AR	0.1	mg/kg	0.4	0.3	1.9	0.4	0.4	<0.1
Chrysene	T16	AR	0.1	mg/kg	0.4	0.6	2.0	0.7	0.5	<0.1
Benzo(b)fluoranthene	T16	AR	0.1	mg/kg	0.4	0.4	0.8	0.3	0.3	<0.1
Benzo(k)fluoranthene	T16	AR	0.1	mg/kg	0.4	0.4	1.1	0.2	0.4	<0.1
Benzo(a)Pyrene	T16	AR	0.1	mg/kg	0.4	0.3	1.0	0.2	0.3	<0.1
Indeno(123-cd)Pyrene	T16	AR	0.1	mg/kg	0.3	0.3	0.6	0.2	0.3	<0.1
Dibenzo(ah)Anthracene	T16	AR	0.1	mg/kg	0.1	<0.1	0.2	<0.1	0.1	<0.1
Benzo(ghi)Perylene	T16	AR	0.1	mg/kg	0.5	0.4	0.7	0.2	0.4	<0.1
PAH(total)	T16	AR	0.1	mg/kg	4.3	5.5	25	6.1	4.6	<0.1

SAL Reference: 507763

Project Site: MERIDEN QUARRY

Customer Reference: 10122

Soil Analysed as Soil Total and Speciated USEPA16 PAH (SE) (MCERTS)

			SA	L Reference	507763 007	507763 008	507763 009	507763 010	507763 011	507763 012
		Custon	ner Samp	le Reference	TP7@ 0.9m	TP8 @ 2.0m	BH1 @ 0.5m	BH2 @ 0.5m	BH3 @ 0.5m	BH4 @ 0.5m
			D	ate Sampled	27-AUG-2015	27-AUG-2015	26-AUG-2015	27-AUG-2015	01-SEP-2015	03-SEP-2015
				Туре	Clay	Fill	Fill	Sandy Soil	Fill	Sandy Soil
Determinand	Method	Test Sample	LOD	Units			10		Cilyana.	
Naphthalene	T16	AR	0.1	mg/kg	<0.1	0.1	0.1	<0.1	<0.1	0.1
Acenaphthylene	T16	AR	0.1	mg/kg	<0.1	0.2	0.1	0.3	<0.1	0.6
Acenaphthene	T16	AR	0.1	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T16	AR	0.1	mg/kg	0.3	0.4	0.9	<0.1	0.2	0.8
Anthracene	T16	AR	0.1	mg/kg	<0.1	0.1	0.3	<0.1	<0.1	0.3
Fluoranthene	T16	AR	0.1	mg/kg	0.6	0.6	1.4	<0.1	0.9	2.0
Pyrene	T16	AR	0.1	mg/kg	0.7	0.6	1.3	<0.1	1.0	1.8
Benzo(a)Anthracene	T16	AR	0.1	mg/kg	0.3	0.4	0.6	<0.1	0.8	1.0
Chrysene	T16	AR	0.1	mg/kg	0.4	0.4	0.7	<0.1	1.0	1.0
Benzo(b)fluoranthene	T16	AR	0.1	mg/kg	0.3	0.3	0.5	<0.1	1.1	0.9
Benzo(k)fluoranthene	T16	AR	0.1	mg/kg	0.3	0.2	0.4	<0.1	0.5	0.7
Benzo(a)Pyrene	T16	AR	0.1	mg/kg	0.3	0.3	0.4	<0.1	0.8	0.9
Indeno(123-cd)Pyrene	T16	AR	0.1	mg/kg	0.2	0.2	0.3	<0.1	0.5	0.6
Dibenzo(ah)Anthracene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(ghi)Perylene	T16	AR	0.1	mg/kg	0.2	0.2	0.3	<0.1	0.7	0.6
PAH(total)	T16	AR	0.1	mg/kg	3.8	4.0	7.2	0.3	7.5	11

Project Site: MERIDEN QUARRY

Customer Reference: 10122

Soil Analysed as Soil

TPH (CWG)

						1	1	1		
			SA	L Reference	507763 001	507763 002	507763 003	507763 004	507763 005	507763 006
		Custor	ner Sampl	e Reference	TP1 @ 0.5m	TP2 @ 0.5m	TP3 @ 1.5m	TP4 @ 0.5m	TP5 @ 0.5m	TP6 @ 1.1m
			D	ate Sampled	27-AUG-2015	27-AUG-2015	27-AUG-2015	27-AUG-2015	27-AUG-2015	27-AUG-2015
				Туре	Sandy Soil	Fill	Fill	Fill	Fill	Fill
Determinand	Method	Test Sample	LOD	Units						
Benzene	T54	AR	1	μg/kg	<1	<1	<1	<1	<1	<1
EthylBenzene	T54	AR	1	μg/kg	<1	<1	3	<1	<1	<1
M/P Xylene	T54	AR	1	μg/kg	<1	<1	5	<1	<1	<1
O Xylene	T54	AR	1	μg/kg	<1	<1	2	<1	<1	<1
Toluene	T54	AR	1	μg/kg	<1	<1	<1	<1	<1	<1
Methyl tert-Butyl Ether	T54	AR	1	μg/kg	<1	<1	<1	<1	<1	<1
TPH (C5-C6 aliphatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
TPH (C6-C7 aromatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
TPH (C6-C8 aliphatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
TPH (C7-C8 aromatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
TPH (C8-C10 aliphatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	0.30	<0.010	<0.010	<0.010
TPH (C8-C10 aromatic)	T54	AR	0.010	mg/kg	<0.010	0.015	0.064	0.011	<0.010	<0.010
TPH (C10-C12 aliphatic)	T8	AR	1	mg/kg	<1	7	5	<1	<1	<1
TPH (C10-C12 aromatic)	T8	AR	1	mg/kg	<1	3	4	<1	<1	<1
TPH (C12-C16 aliphatic)	T8	AR	1	mg/kg	<1	3	4	16	<1	<1
TPH (C12-C16 aromatic)	T8	AR	1	mg/kg	<1	8	8	5	<1	<1
TPH (C16-C21 aliphatic)	T8	AR	1	mg/kg	<1	3	35	73	<1	<1
TPH (C16-C21 aromatic)	T8	AR	1	mg/kg	4	16	14	22	4	<1
TPH (C21-C35 aliphatic)	T8	AR	1	mg/kg	24	480	150	290	38	14
TPH (C21-C35 aromatic)	Т8	AR	1	mg/kg	15	76	17	29	17	5
TPH (C35-C44 aliphatic)	T219	AR	2	mg/kg	<2	<2	<2	<2	<2	<2
TPH (C35-C44 aromatic)	T219	AR	2	mg/kg	<2	<2	<2	<2	<2	<2

Project Site: MERIDEN QUARRY

Customer Reference: 10122

Soil TPH (CWG) Analysed as Soil

			SA	L Reference	507763 007	507763 008	507763 009	507763 010	507763 011	507763 012
		Custor	ner Sampl	e Reference	TP7@ 0.9m	TP8 @ 2.0m	BH1 @ 0.5m	BH2 @ 0.5m	BH3 @ 0.5m	BH4 @ 0.5m
			D	ate Sampled	27-AUG-2015	27-AUG-2015	26-AUG-2015	27-AUG-2015	01-SEP-2015	03-SEP-2015
				Туре	Clay	Fill	Fill	Sandy Soil	Fill	Sandy Soil
Determinand	Method	Test Sample	LOD	Units						
Benzene	T54	AR	1	μg/kg	<1	<1	<1	<1	<1	<1
EthylBenzene	T54	AR	1	μg/kg	<1	<1	<1	<1	<1	<1
M/P Xylene	T54	AR	1	μg/kg	<1	<1	<1	<1	<1	<1
O Xylene	T54	AR	1	μg/kg	<1	<1	<1	<1	<1	<1
Toluene	T54	AR	1	μg/kg	<1	<1	<1	<1	<1	<1
Methyl tert-Butyl Ether	T54	AR	1	μg/kg	<1	<1	<1	<1	<1	<1
TPH (C5-C6 aliphatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
TPH (C6-C7 aromatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
TPH (C6-C8 aliphatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
TPH (C7-C8 aromatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
TPH (C8-C10 aliphatic)	T54	AR	0.010	mg/kg	0.012	<0.010	<0.010	<0.010	<0.010	<0.010
TPH (C8-C10 aromatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
TPH (C10-C12 aliphatic)	T8	AR	1	mg/kg	<1	<1	<1	<1	<1	<1
TPH (C10-C12 aromatic)	Т8	AR	1	mg/kg	<1	<1	<1	<1	<1	<1
TPH (C12-C16 aliphatic)	Т8	AR	1	mg/kg	4	2	21	<1	<1	<1
TPH (C12-C16 aromatic)	Т8	AR	1	mg/kg	4	4	4	<1	<1	<1
TPH (C16-C21 aliphatic)	T8	AR	1	mg/kg	41	13	160	<1	<1	3
TPH (C16-C21 aromatic)	Т8	AR	1	mg/kg	24	13	20	<1	5	10
TPH (C21-C35 aliphatic)	T8	AR	1	mg/kg	200	75	460	11	22	36
TPH (C21-C35 aromatic)	T8	AR	1	mg/kg	34	23	28	2	63	35
TPH (C35-C44 aliphatic)	T219	AR	2	mg/kg	<2	<2	<2	<2	<2	<2
TPH (C35-C44 aromatic)	T219	AR	2	mg/kg	<2	<2	<2	<2	<2	<2

Index to symbols used in 507763-1

Value	Description
A40	Assisted dried < 40C
AR	As Received
64	Analysis was performed by an alternative technique
S	Analysis was subcontracted
М	Analysis is MCERTS accredited
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

Cyanide & Phenol - Analysis transferred to SAL Manchester
Asbestos subcontracted to REC Limited
Retained on 2mm is removed before analysis
PAH (009) - These samples have been analysed exceeding recommended holding times. It is possible therefore that the results provided may be compromised.
Reported results on as received samples are corrected to a 105 degree centigrade dry weight basis except TPH c5-c44 aro/ali solit

Method Index

Value	Description
T242	2:1 Extraction/ICP/OES (TRL 447 T1)
T2	Grav
T8	GC/FID
T54	GC/MS (Headspace)
T257	ICP/OES (SIM) (Aqua Regia Extraction)
T16	GC/MS
T21	OX/IR
T162	Grav (1 Dec) (105 C)
T221	Colorimetry (CE)
T287	Calc TOC/0.58

T245	ICP/OES(Aqua Regia Extraction)
T4	Colorimetry
T219	GC/FID (SE)
T27	PLM
T7	Probe

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Arsenic	T257	A40	2	mg/kg	М	001,007,010,012
Arsenic	T257	A40	2.0	mg/kg	U	002-006,008-009,011
Cadmium	T257	A40	0.1	mg/kg	М	001,007,010,012
Cadmium	T257	A40	0.1	mg/kg	U	002-006,008-009,011
Chromium	T257	A40	0.5	mg/kg	М	001,007,010,012
Chromium	T257	A40	0.5	mg/kg	U	002-006,008-009,011
Copper	T257	A40	2	mg/kg	М	001,007,010,012
Copper	T257	A40	2	mg/kg	U	002-006,008-009,011
Lead	T257	A40	2	mg/kg	М	001,007,010,012
Lead	T257	A40	2	mg/kg	U	002-006,008-009,011
Mercury	T245	A40	1.0	mg/kg	U	001-012
Nickel	T257	A40	0.5	mg/kg	М	001,007,010,012
Nickel	T257	A40	0.5	mg/kg	U	002-006,008-009,011
Selenium	T257	A40	3	mg/kg	U	001-012
Zinc	T257	A40	2	mg/kg	М	001,007,010,012
Zinc	T257	A40	2	mg/kg	U	002-006,008-009,011
Asbestos ID	T27	A40			SU	001-012
рН	T7	A40			М	001,007,010,012
pH	T7	A40			U	002-006,008-009,011
Soil Organic Matter	T287	A40	0.1	%	N	001-012
(Water Soluble) SO4 expressed as SO4	T242	A40	0.01	g/l	М	001,007,010,012
(Water Soluble) SO4 expressed as SO4	T242	A40	0.01	g/l	U	002-006,008-009,011
Sulphide	T4	A40	10	mg/kg	N	001-012
Total Organic Carbon	T21	A40	0.1	%	N	001-012
Cyanide(Total)	T4	AR	1	mg/kg	М	001,007,010,012
Cyanide(Total)	T4	AR	1	mg/kg	U	002-006,008-009,011
Phenols(Mono)	T221	AR	1.0	mg/kg	М	001,007,010,012
Phenols(Mono)	T221	AR	1.0	mg/kg	U	002-006,008-009,011
Moisture @ 105 C	T162	AR	0.1	%	N	001-012
Retained on 2mm	T2	A40	0.1	%	N	001-012
Naphthalene	T16	AR	0.1	mg/kg	U	001-012
Acenaphthylene	T16	AR	0.1	mg/kg	U	001-012
Acenaphthene	T16	AR	0.1	mg/kg	М	001,007,010,012
Acenaphthene	T16	AR	0.1	mg/kg	U	002-006,008-009,011
Fluorene	T16	AR	0.1	mg/kg	М	001,007,010,012
Fluorene	T16	AR	0.1	mg/kg	U	002-006,008-009,011
Phenanthrene	T16	AR	0.1	mg/kg	U	001-012
Anthracene	T16	AR	0.1	mg/kg	М	001,007,010,012
Anthracene	T16	AR	0.1	mg/kg	U	002-006,008-009,011
Fluoranthene	T16	AR	0.1	mg/kg	N	001-012
Pyrene	T16	AR	0.1	mg/kg	N	001-012
Benzo(a)Anthracene	T16	AR	0.1	mg/kg	М	001,007,010,012
Benzo(a)Anthracene	T16	AR	0.1	mg/kg	U	002-006,008-009,011
Chrysene	T16	AR	0.1	mg/kg	М	001,007,010,012
Chrysene	T16	AR	0.1	mg/kg	U	002-006,008-009,011
Benzo(b)fluoranthene	T16	AR	0.1	mg/kg	U	001-012
Benzo(k)fluoranthene	T16	AR	0.1	mg/kg	N	001-012
Benzo(a)Pyrene	T16	AR	0.1	mg/kg	М	001,007,010,012
Benzo(a)Pyrene	T16	AR	0.1	mg/kg	U	002-006,008-009,011
Indeno(123-cd)Pyrene	T16	AR	0.1	mg/kg	М	001,007,010,012
Indeno(123-cd)Pyrene	T16	AR	0.1	mg/kg	U	002-006,008-009,011
Dibenzo(ah)Anthracene	T16	AR	0.1	mg/kg	М	001,007,010,012
Dibenzo(ah)Anthracene	T16	AR	0.1	mg/kg	U	002-006,008-009,011
Benzo(ghi)Perylene	T16	AR	0.1	mg/kg	М	001,007,010,012
Benzo(ghi)Perylene	T16	AR	0.1	mg/kg	U	002-006,008-009,011
PAH(total)	T16	AR	0.1	mg/kg	U	001-012
Benzene	T54	AR	1	μg/kg	U	001-012
EthylBenzene	T54	AR	1	μg/kg	U	001-012
M/P Xylene	T54	AR	1	μg/kg	U	001-012
O Xylene	T54	AR	1	μg/kg μg/kg	U	001-012
Toluene	T54	AR	1	μg/kg μg/kg	U	001-012
. 5.3576	1 .54	7313	'	P9/N9		507 51 <u>E</u>

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Methyl tert-Butyl Ether	T54	AR	1	μg/kg	U	001-012
TPH (C5-C6 aliphatic)	T54	AR	0.010	mg/kg	N	001-012
TPH (C6-C7 aromatic)	T54	AR	0.010	mg/kg	N	001-012
TPH (C6-C8 aliphatic)	T54	AR	0.010	mg/kg	N	001-012
TPH (C7-C8 aromatic)	T54	AR	0.010	mg/kg	N	001-012
TPH (C8-C10 aliphatic)	T54	AR	0.010	mg/kg	N	001-012
TPH (C8-C10 aromatic)	T54	AR	0.010	mg/kg	N	001-012
TPH (C10-C12 aliphatic)	T8	AR	1	mg/kg	N	001-012
TPH (C10-C12 aromatic)	T8	AR	1	mg/kg	N	001-012
TPH (C12-C16 aliphatic)	Т8	AR	1	mg/kg	N	001-012
TPH (C12-C16 aromatic)	T8	AR	1	mg/kg	N	001-012
TPH (C16-C21 aliphatic)	T8	AR	1	mg/kg	N	001-012
TPH (C16-C21 aromatic)	Т8	AR	1	mg/kg	N	001-012
TPH (C21-C35 aliphatic)	T8	AR	1	mg/kg	N	001-012
TPH (C21-C35 aromatic)	T8	AR	1	mg/kg	N	001-012
TPH (C35-C44 aliphatic)	T219	AR	2	mg/kg	N	001-012
TPH (C35-C44 aromatic)	T219	AR	2	mg/kg	N	001-012

Scientific Analysis Laboratories Ltd Certificate of Analysis

3 Crittall Drive Springwood Industrial Estate Braintree Essex CM7 2RT

Tel: 01376 560120 Fax: 01376 552923

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 508960-1

Date of Report: 21-Sep-2015

Customer: TerraConsult (South) Limited

Suite F17 Dugard House

Peartree Road Colchester Essex CO3 0UL

Customer Contact: Ms Sue Slaven

Customer Job Reference: 10122 Customer Purchase Order: PO-00018

Customer Site Reference: Meridian Quarry
Date Job Received at SAL: 15-Sep-2015
Date Analysis Started: 16-Sep-2015
Date Analysis Completed: 21-Sep-2015

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs All results have been reviewed in accordance with Section 25 of the SAL Quality Manual

Report checked and authorised by : Simi Okanlami Project Manager Issued by : Simi Okanlami Project Manager

Project Site: Meridian Quarry

Customer Reference: 10122

Soil Analysed as Soil

Miscellaneous

			SA	L Reference	508960 001	508960 002	508960 003	508960 004	508960 005
Customer Sample Reference					TP3 @ 1.5m	TP5 @ 0.5m	TP7 @ 0.9m	TP8 @ 2.0m	BH1 @ 0.5m
Date Sampled				ate Sampled	27-AUG-2015	27-AUG-2015	27-AUG-2015	27-AUG-2015	27-AUG-2015
Determinand	Method	Test Sample	LOD	Units					
Asbestos Quantification	T27	A40	0.001	%	Chrysotile Detected				

Index to symbols used in 508960-1

Value Description				
A40	Assisted dried < 40C			
S	Analysis was subcontracted			
U	Analysis is UKAS accredited			

Notes

Asbestos subcontracted to REC Limited

Method Index

Value	Description
T27	PLM

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Asbestos Quantification	T27	A40	0.001	%	SU	001-005

0.001

Appendix E

Geotechnical Testing Laboratory Certificates

LABORATORY REPORT

4043

Contract Number: PSL15/4435

Client's Reference: Report Date: 18 September 2015

Client Name: Terra consult

Bold Business Centre Bold Lane, Sutton

St Helens Merseyside WA9 4TX

For the attention of: Victoria Smith

Contract Title: Meriden Quarry

Date Received: 10/9/2015
Date Commenced: 10/9/2015
Date Completed: 18/9/2015

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins M Beastall

(Director) (Director) (Laboratory Manager)

D Lambe S Royle

(Senior Technician) (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR

tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

Mh

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Depth m	Description of Sample
BH1				MADE GROUND Dark brownvery clayey sand and gravel.
BH2				Brown clayey SAND and GRAVEL.
вн3				MADE GROUND Dark brown mottled brown very gravelly very clayey sand with cobbles.
BH4				Brown very sandy very clayey GRAVEL.
TP3				MADE GROUND Dark brown very sandy very clayey gravel.
TP8				Brown mottled dark brown very sandy very clayey GRAVEL.
			_	

Compiled by	Date	Checked by	Date	Approved by	Date
W	18/09/15	M. Sus	18/09/15	M. Su	18/09/15
,	MERIDEN		Contract No:	PSL15/4435	
	WIEKIDEN	Client Ref:			

SUMMARY OF SOIL CLASSIFICATION TESTS

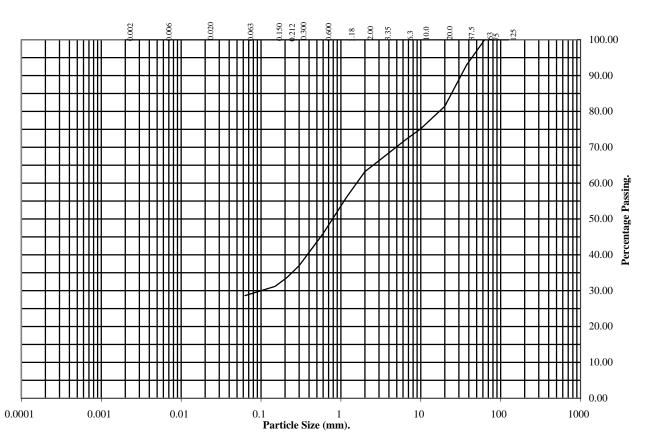
(B.S. 1377 : PART 2 : 1990)

Hole Number	Sample Number	Sample Type	Depth m	Moisture Content % Clause 3.2	Bulk Density Mg/m ³ Clause 7.2	Dry Density Mg/m ³ Clause 7.2	Particle Density Mg/m ³ Clause 8.2	Liquid Limit % Clause 4.3/4.4	Plastic Limit % Clause 5.3	Plasticity Index % Clause 5.4	% Passing .425mm	Remarks
BH1				21	Clause 712	Citation 712	Clause 012	Chause 4.5/4.4	Charles Sas	Citable 214		
BH2				4								
вн3				11								
BH4				10								
TP3				25								
TP8				18								

SYMBOLS: NP: Non Plastic

Jun 06

P	SL
Professional	Soils Laboratory


L	Compiled by	Date	Checked by	Date	Approved by	Date
	DVC_	18/09/15	M. bus	18/09/15	M. Sun	18/09/15
	1		Contract No: PSL15/4435			
	IV	MERIDEN		Client Ref:		

 $[\]ensuremath{^*}$: Liquid Limit and Plastic Limit Wet Sieved.

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1 Depth (m):

Sample Number: Sample Type:

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	93
20	81
10	75
6.3	72
3.35	67
2	63
1.18	56
0.6	46
0.3	37
0.212	34
0.15	31
0.063	29

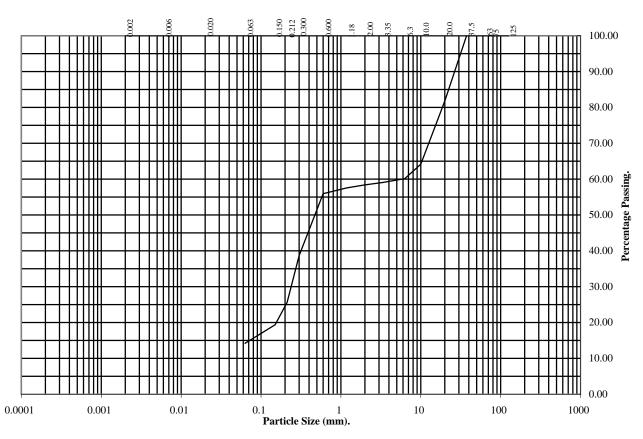
Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt / Clay	0 37 34 29

Remarks:

See summary of soil descriptions.

Checked By	Date	Approved By	Date		
M.bus	18/09/15	M.bus	18/09/15		

P	SL	
Professional	Soils Laboratory	


MERIDEN QUARRY

Contract No.: PSL15/4435

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH2 Depth (m):

Sample Number: Sample Type:

BS Test	Percentage		
Sieve	Passing		
125	100		
75	100		
63	100		
37.5	100		
20	82		
10	64		
6.3	60		
3.35	59		
2	58		
1.18	58		
0.6	56		
0.3	39		
0.212	26		
0.15	19		
0.063	14		

Soil	Total				
Fraction	Percentage				
Cobbles Gravel Sand Silt / Clay	0 42 44 14				

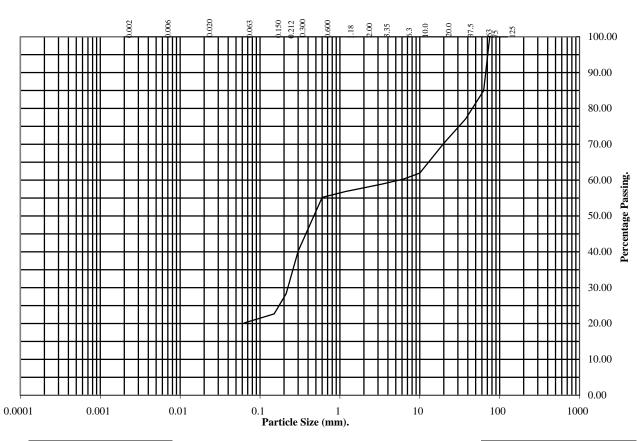
Remarks

See summary of soil descriptions.

Checked By	Date	Approved By	Date		
N.bus	18/09/15	M.bus	18/09/15		

PSLProfessional Soils Laboratory

MERIDEN QUARRY


Contract No.: PSL15/4435

of

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH3 Depth (m):

Sample Number: Sample Type:

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	85
37.5	77
20	70
10	62
6.3	60
3.35	59
2	58
1.18	57
0.6	55
0.3	40
0.212	28
0.15	23
0.063	20

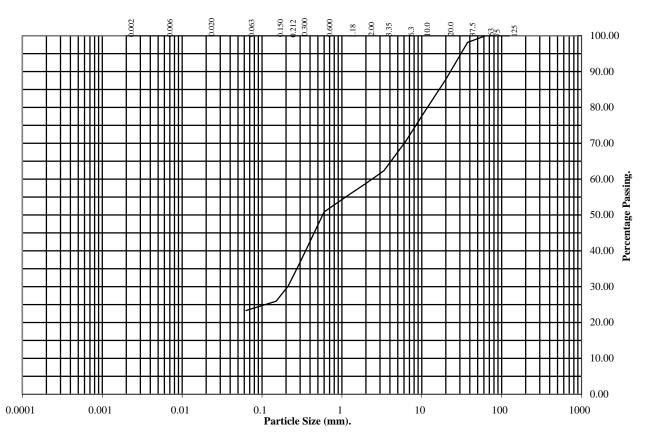
Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt / Clay	15 27 38 20

Remarks:

See summary of soil descriptions.

Checked By	Date	Approved By	Date		
M. Sus	18/09/15	M. ben	18/09/15		

MERIDEN QUARRY


Contract No.: PSL15/4435

of

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH4 Depth (m):

Sample Number: Sample Type:

BS Test	Percentage			
Sieve	Passing			
125	100			
75	100			
63	100			
37.5	98			
20	88			
10	78			
6.3	71			
3.35	62			
2	59			
1.18	55			
0.6	51			
0.3	37			
0.212	30			
0.15	26			
0.063	23			

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt / Clay	0 41 36 23

Remarks:

See summary of soil descriptions.

Checked By	Date	Approved By	Date		
N.bus	18/09/15	M.bus	18/09/15		

PSLProfessional Soils Laboratory

MERIDEN QUARRY

Contract No.: PSL15/4435

of

Final Report

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Report Number: 15-21271 Issue-1

Initial Date of Issue: 17-Sep-2015

Client: Professional Soils Laboratory

5/7 Hexthorpe Road

Client Address:

Doncaster
South Yorkshire

DN4 0AR

Anthony Watkins

Contact(s):

Mark Beastall

Russell Gunson Sean Royle

Project: PSL15/4435 - Meriden Quarry

Quotation No.: Date Received: 14-Sep-2015

Order No.: Date Instructed: 14-Sep-2015

No. of Samples: 6

Turnaround: (Wkdays) 5 Results Due Date: 18-Sep-2015

Date Approved: 17-Sep-2015

Approved By:

Details: Phil Hellier, Project Director

Results Summary - Soil

Project: PSL15/4435 - Meriden Quarry

Client: Professional Soils Laboratory		Chem	test Jo	b No.:	15-21271	15-21271	15-21271	15-21271	15-21271	15-21271
Quotation No.:	Chemtest Sample ID.:			191636	191637	191638	191639	191640	191641	
Order No.:		Clien	t Sample	e Ref.:						
		Clier	t Samp	le ID.:	BH1	BH2	BH3	BH4	TP3	TP8
			Sample	Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		T	op Dep	th (m):						
		Bottom Depth(m):								
		Date Sampled:		26-Aug-15	27-Aug-15	01-Sep-15	03-Sep-15	27-Aug-15	27-Aug-15	
Determinand	Accred.	SOP	Units	LOD						
Moisture	N	2030	%	0.02	17	3.0	9.0	8.1	23	13
pH (2.5:1)	N	2010			8.0	7.2	8.1	8.6	7.6	9.4
Magnesium (Water Soluble)	N	2120	g/l	0.01	0.048	< 0.010	< 0.010	< 0.010	0.031	< 0.010
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.01	1.2	< 0.010	< 0.010	< 0.010	1.0	0.30
Chloride (Extractable)	U	2220	g/l	0.01	0.095	0.016	< 0.010	0.010	0.027	0.026
Nitrate (Extractable)	N	2220	g/l	0.01	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 60 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

TerraConsult

Leaders in waste management environmental & ground engineering consultancy

TerraConsult (South) Limited
Dugard House
Peartree Road
Colchester, Essex
CO3 0UL

Tel: +44 (0) 1206 585600

TerraConsult Limited Bold Business Centre Bold Lane, Sutton St. Helens WA9 4TX

Tel: +44 (0) 1925 291111 Fax: +44 (0) 1925 291191

Email: mailbox@terraconsult.co.uk Website: www.terraconsult.co.uk

APPENDIX SCR5

Factual Report (2016)

DRAINAGE STONE

ipping Area

tor Unsuitable

8th January 2016

Report No 2646R001-1

LAND AT MERIDEN QUARRY
FACTUAL REPORT

Carried out for:

Beechwood Recycling Limited

TerraConsult

LAND AT MERIDEN QUARRY

FACTUAL REPORT

Date: 8th January 2016 Report No 2646R001-1

Prepared for:

Beechwood Recycling Limited

Browns Road Daventry Northamptonshire NN11 4NS Engineer:

Vagdia and Holmes

Chartered Architects

The Architect's Studio, 12A Coventry Canal Basin, St Nicholas St, Coventry, West Midlands CV1 4LY

> Tel: 02476 222393 Fax: 02476 550324 www.vagdiaholmes.com

By:

TerraConsult

Bold Business Centre Bold Lane, Sutton St. Helens, Merseyside WA9 4TX

Tel: 01925 291111 Fax: 01925 291191 www.terraconsult.co.uk

DOCUMENT INFORMATION AND CONTROL SHEET

Document Status and Approval Schedule

Report No.	Title	
2646R001-001	LAND AT MERIDEN QUARRY	
	FACTUAL REPORT	

Prepared by:	C Lima	
	BSc MSc MPhil FGS	
Approved by:	A Binns	
	BSc CEng FICE	
Date:	08/01/2015	

Issue:	Date:	Description:	Prepared by:

DISCLAIMER

This site investigation contract was completed by TerraConsult Ltd on the basis of a specification and scope of works and terms and conditions agreed with the client. This report was compiled with all reasonable skill and care, bearing in mind the project objectives, the agreed scope of works, the prevailing site conditions, the budget, the degree of manpower and resources allocated to the project as agreed.

TerraConsult Ltd cannot accept responsibility to any parties whatsoever, following the issue of this report, for any matters arising which may be considered outwith the agreed scope of works.

This report is issued solely to the client and TerraConsult cannot accept any responsibility to any third parties to whom this report will be circulated, in part or in full, and any such parties rely on the contents at their own risk.

08/01/2016 2646R001-01

LAND AT MERIDEN QUARRY

FACTUAL REPORT CONTENTS

1	INTRODUCTION		
2	SITE	E DESCRIPTION	2
	2.1 2.2	Location and Topography Published Geology	
3	FIEL	DWORK	3
	3.1 3.2 3.3 3.4 3.5	General Exploratory Holes Boreholes Sampling In Situ Testing	3 4 5
4	LAB	ORATORY TESTING	5
_	4.1 4.2	Geotechnical Testing	5
5	SUM	MARY OF GROUND CONDITIONS	
	5.1 5.2 5.3 5.4 5.5	Topsoil Made Ground (Landfill) Drift Deposits Groundwater Ground gas monitoring	6 6
6	LICE	ENCES	8

DRAWINGS

2646/1/001 Exploratory Hole Location Plan (also as a figure on page 1)

Cross Section 1 – NBH5-NBH7 Cross Section 2 – BH1 – BH3 Cross Section 3 – BH2 – BH4

APPENDICES

APPENDIX A Exploratory Hole Records

APPENDIX B Geotechnical Laboratory Test Results

APPENDIX C Geoenvironmental Laboratory Test Results

08/01/2016 2646R001-01

LAND AT MERIDEN QUARRY

FACTUAL REPORT

1 INTRODUCTION

TerraConsult Limited (TCL) was commissioned by Beechwood Recycling Ltd to carry out a ground investigation for the proposed development at Meriden Quarry, near Coventry. The quarry has been backfilled with inert waste. The site is to be redeveloped to an industrial enduse comprising and In-Vessel Composting Facility, a Biomass Energy Facility and Waste Water Treatment Plant.

An earlier investigation was carried out by TCL in 2015 (Report No 10122/R02 Issue 2 dated October 2015): this report presents the factual records of the fieldwork and laboratory testing and monitoring of the present investigation. The data is also presented separately in digital format following AGS4 (2011).

The scope of the investigation, which was specified by TerraConsult comprised:

- 3 No. Boreholes formed by cable percussion techniques;
- In situ testing comprising of;
 - Standard penetration tests in boreholes;
- o Geotechnical laboratory testing;
- o Gas and water level monitoring
- Geoenvironmental laboratory testing;
- Factual report and AGS data.

The investigation was carried out in accordance with the contract specification and relevant standards (see References). The fieldwork was carried on 10th December and 11th December 2015.

Whilst every attempt is made to record full details of the strata encountered in the exploratory holes, techniques of exploratory hole formation and sampling will inevitably lead to disturbance, mixing or loss of material in some soils and rocks.

All information given in this report is based on the ground conditions encountered during the site work and on the results of laboratory and field tests performed during the investigation. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations and water conditions between or below exploratory holes. It should be noted that groundwater levels, gas concentrations and gas flows usually vary due to seasonal, atmospheric and/or other effects and may at times differ from those measured during the investigation.

This report refers to the second stage of site investigation which comprised boreholes NBH05, NBH06 and NBH07 only. The results of the last round of gas and groundwater monitoring are presented in conjunction with the results of the previous two rounds of monitoring. A detailed description of boreholes BH1 to BH4 and trial pits TP1 to TP8 is available in report 10122-SI report issued in October 2015.

08/01/2015 2646R001-01

2 SITE DESCRIPTION

2.1 Location and Topography

The site is located approximately 1.6km to the south west of the village of Meriden, 5.3km west of the outskirts of Coventry. The approximate centre of the site is located at Ordnance Survey National Grid Reference SP 23124 81243. The site is roughly trapezoidal in shape, covers an area of approximately 3.11 hectares and is relatively flat in a gently undulating landscape.

2.2 Published Geology

Geological maps show that the site is not underlain by superficial deposits, although the site has been quarried for its sand and gravel deposits. The bedrock geology is the Triassic Mercia Mudstone Group.

08/01/2015 2646R001-01

3 FIELDWORK

3.1 General

Fieldwork was undertaken on 10th December and 11th December 2015 with gas and water level monitoring continuing into 2016.

The objective of the works was to establish the depth and characteristics of the materials contained in the landfill.

The exploratory hole locations were selected by TerraConsult. The locations were set out from local features. A plan of all borehole locations is presented in in this report and also as Figure 1 below.

Figure 1. Exploratory Hole Location Plan

The exploratory holes were logged by an engineer in accordance with the recommendations of BS5930:2015, which incorporates the requirements of BS EN ISO 14688-1, 14688-2 and 14689-1. Detailed descriptions, together with sample records, in situ test results and observations made during formation of the exploratory hole, are given in the logs presented in Appendix A and should be read in conjunction with the Key included therein.

3.2 Exploratory Holes

A summary of the exploratory holes formed is listed in Table 1.

08/01/2015 2646R001-01

Table 1: Summary of Exploratory Positions				
Exploratory hole reference:	Туре:	Final depth m bgl:	Base of landfill: M bgl	Waste material:
NBH05	Cable percussion	15.00m	5.20	Firm dark brown mottled reddish brown and light grey slightly sandy slightly gravelly clay
NBH06	Cable percussion	15.00m	5.40	Soft to firm dark brown mottled reddish brown and black slightly sandy gravelly clay
NBH07	Cable percussion	10.00m	6.10	Firm dark brown mottled reddish brown and light grey slightly sandy slightly gravelly clay

Prior to commencement, all exploratory positions were checked for services by reference to available plans, visual inspection and CAT/Genny survey. Inspection pits were excavated by hand and rechecked with a CAT at all borehole locations.

3.3 **Boreholes**

Three 150mm diameter cable percussive boreholes were drilled to maximum depth of 15.00 m bgl (NBH05 and NBH06). Borehole NBH 07 reached 10.00 m bgl. Their locations were surveyed in by the client.

Standard penetration tests (SPTs) were carried out, in accordance with BS EN ISO 22476-3:2005 (formerly BS 1377 Part 9:1990), within the granular strata and alternatively undisturbed samples within cohesive strata. Selected disturbed samples and bulk samples were also taken and together with the samples from the undisturbed samples and standard penetration tests returned to PSL's laboratory for inspection and testing as appropriate.

Detailed results of the strata encountered, depths and levels of changes, thickness of strata, samples taken, groundwater observations and SPTs are given on the exploratory hole records in Appendix A.

Soil samples for chemical analysis each comprised a pair of samples: a plastic tub for metals and inorganics, and an amber glass jar for organics. No installations were required by the client and all positions were backfilled with arisings upon completion.

08/01/2015 2646R001-01

3.4 Sampling

Samples for geotechnical testing and strata description were taken during the formation of the exploratory holes in general accordance with the specification and comprised: small and bulk disturbed samples and one U100 samples in a plastic liner. Soil samples for geochemical analysis were taken in accordance with the specification and stored in cool boxes for despatch directly to QTS Environmental of Lenham in Kent.

3.5 In Situ Testing

In situ testing was carried in accordance with BS 5930:2015 and BS 1377-9 (1990) unless otherwise stated. SPT results are presented on individual exploratory hole logs. Information relating to the identification and calibration of SPT hammers can also be found on the individual borehole logs.

4 LABORATORY TESTING

4.1 Geotechnical Testing

The testing was scheduled by TerraConsult and carried out by Professional Soils Laboratory (PSL), Doncaster, South Yorkshire in accordance with BS 1377 (1990) and BRE 365 unless otherwise stated. The testing is summarised in Table 2 below and the results are presented in Appendix B.

Table 2: Summary	Table 2: Summary of Geotechnical Laboratory Testing												
Number of tests	Test	Test Method											
16	Moisture content.	BS1377: Part 2.											
16	Liquid and plastic (Atterberg) limits.	BS1377: Part 2.											
16	Particle size distribution by sieving.	BS1377: Part 2.											
3	BRE SD1	-											

4.2 Geoenvironmental Testing

The testing was scheduled by TerraConsult and carried out by QTS Environmental of Lenham Heath in Kent. The testing is summarised in Table 3 below and the results are presented in Appendix C.

Table 3: Summary of Go	eoenvironmental Laboratory Testing
Number of tests	Test
5	Soil Suite 3
3	Asbestos Screen

08/01/2015 2646R001-01

5 SUMMARY OF GROUND CONDITIONS

5.1 Topsoil

Topsoil varies between 0.20m and 0.30m thick and consists of soft dark brown slightly sandy gravelly clay.

5.2 Made Ground (Landfill)

Made Ground varies between 4.90m and 5.80m and is generally firm dark brown mottled reddish brown and light grey slightly sandy slightly gravelly clay with frequent fragments of brick, ceramic, timber, sandstone mudstone, coal, concrete, plastic and ash.

5.3 Drift Deposits

Loose locally medium dense light red to reddish brown slightly silty to silty gravelly to very gravelly fine to coarse sand ranging from 5.20m to 6.10mbgl. SPT (N) values range from 0 to 19.

5.4 Groundwater

The observation of groundwater conditions are given in the following table.

Table 4: Groun	Table 4: Groundwater Strikes													
BH Number	Date	Depth of Strike (m)	Depth to Groundwater after 20mins (m)	Remarks										
NBH05	10/12/2015	7.00	-	-										
NBH06	10/12/2015	3.80	2.80	Borehole was cased at 2.90m and sealed at 4.80m										
NBH07	10/12/2015	7.80	-	-										

5.5 Ground gas monitoring

Three rounds of ground gas monitoring were scheduled in addition to the previous two rounds carried out in September 2015. Methane was again recorded in BH1 with a maximum concentration of 3.5% v/v in the first round and 3.4% v/v in the second round. Carbon monoxide was present in all boreholes with concentrations varying from 7.0% v/v to 13.2% v/v.

08/01/2015 2646R001-01

Table 5: 0	Table 5: Ground Gas Monitoring PH Date Atmos CH4 CO2 02 Flow Donth Weather														
BH Number	Date	Atmos Pressure (mb)	CH4 (% v/v)	CO2 (% v/v)	02 (% v/v)	Flow (l/hr)	Depth to Water	Weather conditions							
	11/09/2015	1003	1.0	8.6	7.7	<0.1	(m bgl) 6.51	Sunny							
	18/09/2015	998	2.0	13.1	2.0	<0.1	6.60	Overcast, sunny spells							
BH1	21/12/2015	993	3.5	13.2	0.3	<0.1	6.37	Overcast, showers							
	05/01/2016	976	3.4	12.8	0.1	<0.1	6.04	Overcast, dry							
	11/09/2015	1002	< 0.1	6.6	12.8	< 0.1	7.00	Sunny							
	18/09/2015	999	<0.1	0.6	19.1	<0.1	7.03	Overcast, sunny spells							
ВН2	21/12/2015	993	< 0.1	7.0	11.9	<0.1	6.77	Overcast, showers							
	05/01/2016	976	< 0.1	7.6	12.7	<0.1	6.66	Overcast, dry							
	11/09/2015	1004	< 0.1	10.0	6.7	< 0.1	6.30	Sunny							
	18/09/2015	1000	<0.1	0.0	20.4	<0.1	6.02	Overcast, sunny spells							
ВН3	21/12/2015	993	<0.1	10.6	7.4	<0.1	5.76	Overcast, showers							
	05/01/2015	976	< 0.1	7.2	10.7	<0.1	5.65	Overcast, dry							
	11/09/2015	1004	< 0.1	6.8	9.8	< 0.1	5.54	Sunny							
DVV	18/09/2015	1000	<0.1	0.0	20.4	<0.1	6.02	Overcast, sunny spells							
BH4	21/12/2015	993	<0.1	9.8	12.8	<0.1	5.33	Overcast, showers							
	05/01/2016	976	<0.1	11.6	5.6	<0.1	5.24	Overcast, dry							

08/01/2015 2646R001-01 Page 7 of 8

REFERENCES

AGS: 2010: Electronic transfer of geotechnical and geoenvironmental data (Edition 4 including addendum 3, 2011). Association of Geotechnical and Geoenvironmental Specialists.

BRE Special Digest 1: 2005 Concrete in aggressive ground.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. Published in nine parts. British Standards Institution.

BS 5930: 2015: Code of practice for site investigation. British Standards Institution.

BS 10175: 2011: Investigation of potentially contaminated sites - Code of Practice. British Standards Institution

BS EN 1997-1: 2004 : Eurocode 7 – Geotechnical Design – Part 1: General rules. Including UK National Appendix of November 2007.

British Standards Institution.

BS EN ISO 14688-1 : 2002 : Geotechnical investigation and testing – Identification and classification of soil – Part 1: Identification and description. British Standards Institution.

BS EN ISO 14688-2 : 2004 : Geotechnical investigation and testing – Identification and classification of soil – Part 2: Principles for a classification. British Standards Institution.

BS EN ISO 14689-1 : 2003 : Geotechnical investigation and testing – Identification and classification of rock – Part 1: Identification and description. British Standards Institution.

BS EN ISO 22475-1 : 2006 : Geotechnical investigation and testing – Sampling methods and groundwater measurements – Part 1: Technical principals for execution (July 2011 reprint). British Standards Institution.

BS EN ISO 22476-3: 2005: Geotechnical investigation and testing - Field Testing - Part 3: Standard penetration test

ISRM: 1981: Rock Characterisation, Testing and Monitoring - ISRM Suggested Methods (Ed E T Brown). Commission on Testing Methods, International Society for Rock Mechanics, Pergamon Press.

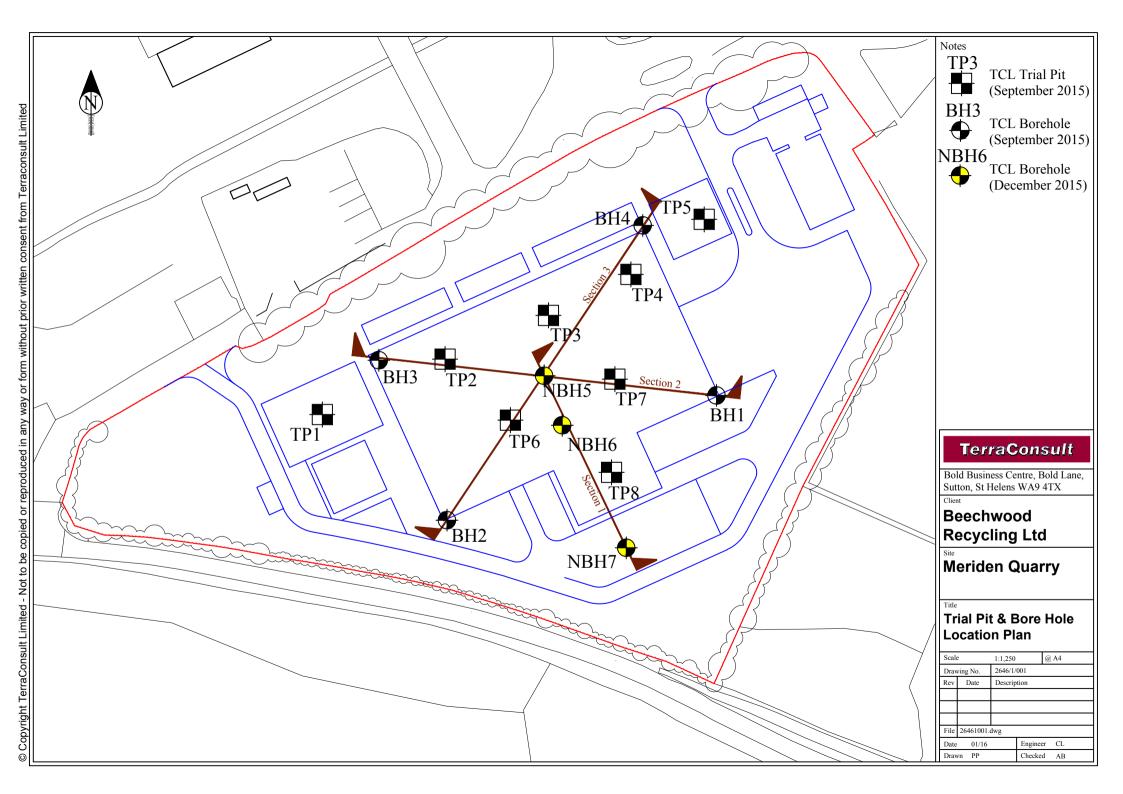
ISRM: 1985: Suggested method for determining point load strength. Commission on Testing Methods, International Society for Rock Mechanics, International Journal of Rock Mechanics, Mining Sciences and Geomechanics Abstracts, Vol. 22

6 LICENCES

British Geological Survey Reproduction Licence Number: IPR/187-68CF CO8/053-CSL

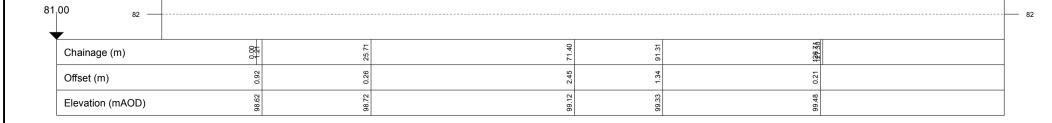
Ordnance Survey Reproduction Licence Number. 100035365

08/01/2015 2646R001-01


DRAWINGS

Exploratory Hole Location Plan

Cross Section 1 – NBH5-NBH7


Cross Section 2 – BH1 – BH3

Cross Section 3 – BH2 – BH4

Project Id: 2646 Title: Section line 1 Project Title: Meriden Quarry Vertical Scale: 1:150 **TerraConsult** Location: Meriden Horizontal Scale: 1:500 Engineer: JT Client: Beechwood Recycling Ltd Legend Key Topsoil Made Ground Sandy Gravel Silty gravelly
Sand 82,00 0.00 Chainage (m) Offset (m) Elevation (mAOD)

Project Id: 2646 Title: Section line 2 Project Title: Meriden Quarry Vertical Scale: 1:150 **TerraConsult** Location: Meriden Horizontal Scale: 1:850 Client: Beechwood Recycling Ltd Engineer: JT BH1 100 Legend Key Made Ground 89 Silty gravelly Sand Clayey gravelly Sand Gravelly

Clayey Sandy Gravel Project Id: 2646 Title: Section line 3 Project Title: Meriden Quarry Vertical Scale: 1:150 **TerraConsult** Location: Meriden Horizontal Scale: 1:850 Client: Beechwood Recycling Ltd Engineer: JT Legend Key Topsoil Made Ground Silty gravelly Silty Sand 81,00 93.82 Chainage (m) Offset (m)

Elevation (mAOD)

APPENDICES

List of Appendices

APPENDIX A Exploratory Hole Records

APPENDIX B Geotechnical Laboratory Test Results

APPENDIX C Geoenvironmental Laboratory Test Results

APPENDIX A

Exploratory Hole Records

			ation de	-											Location details:
Type: CP		om: .00	To: 15.00	Start d 26-08-		Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logged: 27-08-15	Logger: VSS	Remark	s:		mE: 423138.7 mN: 281105.5 mAOD: 99.4 Grid: OSGB
Instal'n	water- strike	Legend	Level	Depth (thick-			Stratum	Description					Samples	& In Situ Te	esting
8 = \$ 1 L1	s σ	ت ******		ness)	TOPSOIL: Da	ark arev	ish brown sand	ly gravelly Cl	AY Grave	Lis	Wa	ter Casing	Depth	Type & No	Results
			99.18 98.78	(0.30) 0.30 (0.40) - 0.70	subangular to MADE GROU fine and medi medium of qu mudstone. O concrete. Oc	rounde ND: Li um SAI artz and ccasion	ed fine-medium ght orangish bro ND. Gravel is s d quartzite with nal fine to coarso al metal wire, me	of quartz, qua own mottled g ubangular to occasional re e gravel sized	artzite. Abu preyish brown rounded find, green on fragments	undant roots wn gravelly ne and r grey s of brick an			0.50 - 0.60 0.90 - 1.00	ES B	
				-	Gravel is suba brick. Occasi	angular onal fra	lackish brown cl to rounded fine agments of rubboresent towards	to coarse of er, metal, woo	concrete, a	sphalt and		y 1.50	1.50	С	N=26 (2,1/2,8,8,8)
				(4.10)								y 3.50	3.00	С	N=4 (2,1/1,1,1,1)
			94.68	4.80	gravelly claye	y fine to	ark greyish brov o coarse SAND. artz and mudsto	. Gravel is su	bangular to	o rounded f	- Dr	y 4.50	4.50	С	N=46 (8,12/14,12,12,8
			94.08	5.40			mottled greyish pangular to roun				se - - - - Dr	y 6.00	6.00	С	N=17 (2,4/4,4,4,5)
			92.68 92.28	6.80 (0.40) – 7.20	Gravel is suba and quartzite Medium dens	angular with oc e dark o	slightly gravelly to rounded fine casional mudsto orangish brown orounded to roun	and medium one and igned slightly grave	of predom ous materia lly fine and	inately qua al. I medium	rtz	y 7.50	7.50	S	N=27 (4,3/5,6,7,9)
			90.78	8.70	Gravel is suba	edium dense dark orangish brown gravelly fine and medium SAND. avel is subangular to rounded fine of quartzite, mudstone and casional sandstone.						y 9.00	9.00	S	N=28 (3,5/7,7,6,8)
			89.68	9.80	Medium dens	e dark o	orangish brown	slightly grave	lly fine and	l medium	_				
Grour	k: R		ntries: o: Casin 7.20		Diameter	& casi	Stratum conti	inues next page Depth related From to	d remarks:	:	Wat		Depth Chiselling det From to:		Results n: Tool:
AGS Log is:	All dep	viations se pths and re	anation of symble Key Sheet. educed levels a DRAFT 1:50	ire in meters.	Project: Project No Client:	2646	den Quarry S chwood Recycli	ng Ltd					Exploratory po	sition refere	

Bore	hol	e form	ation de	tails:												Location details:
Туре		From: 0.00	To: 15.00	Start da 26-08-	ate: End date: 15 27-08-15	Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logged: 27-08-15	Log	gger: 'SS	Remarks	:		mE: 423138.70
											'					mN: 281105.50
																mAOD: 99.48 Grid: OSGB
≥ -	Τ.			Dareth										0	0 to 0'to T	
Backfill/ Instal'n	Water- strike	Legend	Level	Depth (thick- ness)			Stratum	Description					T		& In Situ Te	
 	_				SAND Grave	ما او وبيا	pangular to rour	nded fine of a	lartz and d	uartzite		Water	Casing	Depth	Type & No	Results
				(3.10)			·		·			Dry	10.50	10.50	S	N=26 (4,5/5,6,7,8)
												Dry	12.00	12.00	S	N=29 (3,5/6,7,7,9)
			86.58	12.90	Medium dens Gravel is sub	e dark angular	orangish brown to rounded fine	gravelly fine to coarse of	and mediur mixed litho	m SAND. logies.		Dry	13.50	13.50	S	N=34 (5,6/7,7,9,11)
	SP		84.48	(2.10)							-					
							Borehole term	inated at 15.00	m							
	Ins	+										Water	Casing	Depth	Type & No	Results
Gro			ntries:		Diameter	& casi	ng:	Depth relate	d remarks:	<u> </u>		vvaler		Chiselling de		Leanis
Stru	Ck:	Rose to	o: Casin			Dept		From to						From to:	Duration	n: Tool:
AGS	All	depths and r	educed levels a	re in meters.	Project N									p.o.atory po	BH	
Log Scal		e :	DRAFT 1:50		Client:		chwood Recycli	ng Ltd							DГ	Sheet 2 of 2

Boreh	nole fo	ormat	tion de	tails:												Location details:
Type: CP	Fron 0.00		To: 15.00	Start d: 27-08-		Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logged: 01-09-15	Logg VS		Remarks			mE: 423050.00 mN: 281055.40 mAOD: 99.67 Grid: OSGB
Backfill/ Instal'n	Water- strike	Legend	Level	Depth (thick-			Stratum	Description						Samples	& In Situ Te	esting
Bac	st S	9	LCVCI	ness)				•				Water	Casing	Depth	Type & No	Results
		9	99.57	0.10	rounded fine to coarse suban MADE GROU	o coars gular gi ND: Li	vish brown sligh se quartz and qu ravel size fragm ght orangish bro to rounded fine	uartzite. Occa ents of brick. own slightly s	asional med Abundant ilty gravelly	dium and roots. SAND.				0.50 - 0.60	ES	
		▓.	00.07	-							-			0.90 - 1.00	В	
			98.37	1.30	sandy CLAY.	Gravel ccasior	rm orangish bro is subangular to al angular med	o rounded find	e to coarse	of mixed	- 1	Dry	1.50	1.50	С	N=9 (4,3/3,3,2,1)
				(3.90)							1	Dry	3.00	3.00	С	N=5 (2,1/2,1,1,1)
				- - - - - - -								Dry	4.50	4.50	С	N=10 (2,1/2,3,2,3)
	3		94.47	5.20	Medium dens slightly silty fi coarse of mix	ne to co	orangish brown parse SAND. Gi logies.	mottled yello ravel is subar	wish brown ngular to ro	very grave unded fine	elly - to -					
				(2.20)								Dry	6.00	6.00	С	N=31 (4,5/5,5,9,12)
	**************************************	 	92.27	7.40		SAND	orangish brown Rare gravel of					Dry	7.50	7.50	С	N=27 (2,4/5,6,7,9)
	X X X X X X X X X X X X X X X X X X X	« × · · · · · · · · · · · · · · · · · ·		- - - - - -		_	, oc. — c									
	*****	× × × × × × × × × × × × × × × × × × ×		(2.90)								Dry	9.00	9.00	С	N=6 (1,1/1,1,2,2)
Grour	Inst ndwate		i tries: Casino	g: Seal	Diameter ed: Dia (mm):		ng:	inues next page Depth relate From to				Water		Depth hiselling deta From to:		Results 1: Tool:
AGS Log is Scale:	abbreviati All depths	tions see I s and redu	ation of symbolic Sheet. uced levels ar DRAFT		Project: Project No Client:	o: 2646	den Quarry S chwood Recyclii	ng Ltd					E	xploratory pos	BH	

Bor	eho	e form	ation de	tails:												Location details:
Туре	е:	From: 0.00	To: 15.00	Start da 27-08-		Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logged: 01-09-15	Logg VS:		Remarks	:		mE: 423050.00
OF		0.00	15.00	27-00-	13 01-09-13		Dando Nig	Illa	IIIa	01-09-13	٧٥.	3				mN: 281055.40
																mAOD: 99.67
	\perp										L ,					Grid: OSGB
Backfill/ Instal'n	Water-	Legend	Level	Depth (thick-			Stratum	Description						Samples	& In Situ Te	esting
Bac	× ×	r B		ness)			ou ata	2000p			١	Water	Casing	Depth	Type & No	Results
			89.37	-	Medium dens slightly silty fii coarse of mix	ne to co	orangish brown oarse SAND. G logies.	mottled yello	wish brown ngular to ro	gravelly unded fine	to -	Dry	10.50	10.50	С	N=26 (3,3/3,5,7,11) 55 (3,4/55 for 210mm)
			86.17	13.50 -	Medium dens Gravel is suba	e dark (angular	orangish brown to rounded fine	slightly silty s e and medium	ilightly grav of mixed li	relly SAND. thologies.		Dry	13.50	13.50	С	N=28 (3,5/7,7,7,7)
• — •	SI	× ×	84.67	15.00			Borehole term	ninated at 15.00	ım		_					
	Ins	st		-							1	Water	Casing	Depth	Type & No	Results
l	und	water e	ntries:		Diameter			Depth relate					C	hiselling det	ails:	1
	No.		D: Casin		ed: Dia (mm): Project:		th: Casing: 15.00	From to	: Remark	KS				From to:	Duration	
AG	A	l depths and i	educed levels a	re in meters.	Project No									,a.c., po	BH	
Log Scal		e:	DRAFT 1:50		Client:		chwood Recycli	ing Ltd							DI	Sheet 2 of 2
Local	J.		1.50													311661 2 01 2

		nation d												Location details:
Type: CP	From: 0.00	To: 14.80	Start d 01-09		Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logged: 02-09-15	Logger: VSS	Remarks	s:		mE: 423013.2 mN: 281104.2 mAOD: 98.6 Grid: OSGB
Backfill/ Instal'n	strike Legend	Level	Depth (thick-			Stratum	Description					· ·	& In Situ Te	T
n = -		98.52	0.10 (1.20)	rounded fine to Abundant room MADE GROU slightly clayey	to coars ts. ND: Day SAND	yish brown sligh se quartz and qu ark greyish brov . Gravel is suba are pockets (up	uartzite and so wn mottled bla angular to rou	ubangular fackish brow	ine brick. In gravelly o coarse of		er Casing	0.50 - 0.60	Type & No	Results
0		97.32	1.30	slightly sandy MADE GROU SAND. Grave	CLAY. IND: Diel is substantial	Rare whole bri ark orangish bro pangular to roun I fragments of r	cks. Rare 2m own gravelly onded of mudst	nm diamete	and mediung and igneo	n - us - Dr	y 1.50	0.90 - 1.00	С	3 (1,1/1,1,1)
			(2.90)							- Dr	y 3.00	3.00	С	N=4 (1,1/1,1,1,1)
		94.42 94.32 93.82	4.20 4.30 (0.50) 4.80	subrounded to MADE GROU Gravel is sub- Iclods (up to 1 sandy CLAY. Medium dens medium SAN	o round IND: Da ounded 00mm o	ark grey slightly ed fine of quart ark orangish bro d to rounded of diameter) of dar orangish brown vel is subangula	z and mudsto own slightly gr quartz, mudst k orangish br slightly grave	ne. ravelly clay cone and br own slightly	rey SAND. rick. Rare y gravelly ine and	Dr.	y 4.50	4.50	С	N=22 (3,2/3,3,7,9)
			(2.70)	mudstone.						- Dr	y 6.00	6.00	С	N=15 (1,2/2,4,5,4)
		91.12	7.50 - -			orangish brown gular to rounde				Dr.	y 7.50	7.50	С	N=23 (1,3/5,5,6,7)
			(3.30)							- Dr	y 9.00	9.00	С	N=14 (1,1/2,3,4,5)
roun		entries: to: Casi	: ng: Sea	Diameter led: Dia (mm):		ng:	inues next page Depth related From to			Wat		Depth Chiselling det From to:		Results 1: Tool:
AGS .og is:	abbreviation All depths ar	explanation of sy s see Key Sheet of reduced levels DRAF 1:50	s are in meters.	Project: Project No Client:	o: 2646	den Quarry S chwood Recycli	ng Ltd				E	Exploratory po	sition refere	

Borel	hole	form	ation de	tails:								•			Location details:
Type: CP	Fr	rom: 0.00	To: 14.80	Start da 01-09-		Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logged: 02-09-15	Logger: VSS	Remarks	3:		mE: 423013.20 mN: 281104.20 mAOD: 98.62 Grid: OSGB
Backfill/ Instal'n	Water- strike	Legend	Level	Depth (thick-			Stratum	Description					· ·	& In Situ Te	
B =	> "	XXXX		ness)							Wat		Depth 10.50	Type & No	Results
		×	87.82	10.80			orangish brown nangular to rour				Jm -	y 10.50	10.50	C	N=21 (2,4/5,4,5,7)
			86.22	12.40	subangular to Occasional po slightly grave	rounde ockets (ly sand	greyish brown s and fine to coarse up to 200mm) o y CLAY. Grave I red mudstone:	С	N=28 (2,4/6,7,8,7)						
		x^x^x^x^x^	84.42	(1.80) -							- Dry	y 13.50	13.50	С	N=26 (4,5/5,6,7,8)
	SP		83.82	(0.60) - 14.80	Very dense dand medium	ark oran GRAVEI	ngish brown clar	yey sandy sul one and marl. inated at 14.80		rounded fi	ne - - Dr	y 14.50	14.50	С	58 (8,12/58 for 129mm)
	Inet										Wat	er Casing	Denth	Type & No.	Pesults
Grou Struc	k: R	ater e		g: Seal		Deptl	h: Casing: 14.50	Depth related From to			Wat		Depth Chiselling de From to:	Duration	Results
AGS Log is Scale	All de :SSUE	pths and re	anation of sym the Key Sheet. educed levels a DRAFT 1:50	ire in meters.	Project: Project No Client:	o: 2646	den Quarry s chwood Recycli	ng Ltd				E	Exploratory po	sition refere	

Boreh	ole form	ation de	etails:											Location details:
Type: CP	From: 0.00	To: 14.50	Start d 03-09-		Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logged: 04-09-15	Logger: VSS	Remarks	:		mE: 423106.6 mN: 281159.6 mAOD: 98.2 Grid: OSGB
Backfill/ Instal'n Water	strike	Level	Depth (thick- ness)			Stratum	Description						& In Situ Te	T
		98.19 97.99	0.10	kounded fine-I MADE GROU slightly sandy to coarse of n tarmac (hydro fragments (up MADE GROU	medium ND: Fi slightly nixed litt carbon to 10m ND: Di	yish brown sligh n of quartz, quar irm dark reddish r gravelly CLAY. hologies. Occa odour). Occas nark reddish broved fine to coarse	rtzite, brick. An brown occas Gravel is sul sional cobble ional red brick wn clayey gra	bundant resionally most bangular to size fragm ks. Occasi velly SANE	ots. Itled light go rounded fi ents of onal wood	rey i	er Casing	0.50 - 0.60 0.90 - 1.00	Type & No ES B	Results
		96.59	1.70 -	Soft to firm da (up to 20mm)	rk redd	rick fragments. Iish brown slight owish brown fine ed fine to coarse	and medium	ndy CLAY SAND. G	with pocket		1.50	1.50	С	N=7 (3,2/2,2,1,2)
		94.09	(2.50) _							Dry	3.00	3.00	С	N=13 (1 for 75mm/1,2,4,6)
			(1.90)	occasional me	edium a CLAY.	orangish brown and coarse grav Gravel is subro mudstone.	el sized pocke	ets of dark	orangish	+ _	4.50	4.50	С	N=16 (5,4/4,4,4,4)
		92.19	6.10		subrou	orangish brown Inded predomin 3.				Dry	6.00	6.00	С	N=23 (3,4/4,5,6,8)
			(5.10)							Dry	7.50	7.50	С	N=17 (1,1/2,4,5,6)
			-							Dry	9.00	9.00	С	N=17 (1,2/2,3,5,7)
Groun	nst nose	entries: o: Casin	g: Seal	Diameter led: Dia (mm):		ng:	inues next page Depth related From to			Wate		Depth Chiselling det From to:		Results 1: Tool:
AGS Log iss Scale:	All depths and	olanation of sym see Key Sheet. reduced levels a DRAFT 1:50	are in meters.	Project: Project No Client:	2646	den Quarry chwood Recyclin	ng Ltd				E	Exploratory po	sition refere	

Bore	hole	form	ation de	tails:	- - -											Location details:
Type: CP	Fr	rom: 0.00	To: 14.50	Start da 03-09-		Crew:	Plant: Dando Rig	Barrel type: n/a	Drill bit: n/a	Logged: 04-09-15	Logg VS	er:	Remarks	·		mE: 423106.60 mN: 281159.60 mAOD: 98.29 Grid: OSGB
Backfill/ Instal'n	Water- strike	Legend	Level	Depth (thick-			Stratum	Description							& In Situ Te	T
# = - H:	S "	_3 3≷}?		ness)							\	Nater	Casing	Depth	Type & No	Results
			87.09	11.20	Medium dens Gravel is subi mudstone.	e to der ounded	nse dark orangi I to rounded fin	sh brown sligl e to medium o	ntly silty gra of quartz, q	avelly SAN uartzite and	D	Dry	10.50	10.50	С	N=24 (1,2/3,5,7,9)
		****************		(3.00)								Dry	12.00	12.00	С	N=37 (2,4/6,9,10,12)
	SP		84.09 83.79	(0.30)	Firm to stiff da Gravel is of si and greenish	ubround	lish brown sligh led to rounded Rare cobbles. Borehole term	itly sandy sligl fine to mediur inated at 14.50	n mudston	/ CLAY. e, quartzite	-	Dry	13.50	13.50	С	N=45 (4,6/8,10,12,15)
				-												
	Inst ndw		ntries:	-	Diameter	& casii	ng:	Depth relate	d remarks:		- - - - - - - - - - - - - - - - - - -	Water	Casing	Depth hiselling det	Type & No	Results
	k: R	Rose to		g: Seal	Project:	Depti	h: Casing: 14.20	From to						From to:	Duration	
Log is Scale		:	DRAFT 1:50		Project No Client:		chwood Recycli	ng Ltd							BH	\$\ \text{Sheet 2 of 2}

Roreho	le for	mation d	etails:												Location details:
Type: IP CP	From: 0.00 0.00	To: 1.20 15.00	Start d 10-12 10-12	-15 10-12-15	Crew: DH DH	Plant: N/A Dando 3000	Barrel type: N/A N/A	Drill bit: N/A N/A	Logged: 11-12-15 11-12-15	Ĺ	gger: .M .M	Remarks PB15 Er			mE: 423083.4 mN: 281103.0 mAOD: 99.1
<u> </u>			Depth	<u> </u>									Camalaa	O In Oite To	Grid: OSGB
Instal'n Water-	strike	Level	(thick- ness)			Stratum	Description			-	Water	Casing	Depth	& In Situ Te	Results
		98.82	(0.30) 0.30	roots. Gravel mudstone and MADE GROU slightly sandy angular to sul	is angul d brick for JND: Firm slightly bangula	m dark brown n gravelly CLAY r fine to coarse	ed fine to coa nottled reddis with occasior of brick fragn	h brown ar lal cobbles nents, cera	dstone, nd light grey . Gravel is mic, timber	1			0.20 - 1.20	В	
			-	sandstone, m whole bricks	udstone	and coal. Cob	bles are angu	lar to suba	ingular of	, 	Dry		1.20 1.20 - 1.65 1.20 - 1.65	S B D	N=7 (2,2/2,1,2,2)
			-								Dry		2.00 2.00 - 2.45 2.00 - 2.45	S B D	N=8 (2,3/3,2,1,2)
			(4.90) -								Dry		3.00 3.00 - 3.45 3.00 - 3.45	S B D	N=10 (2,2/4,3,1,2)
			-								Dry		4.00 4.00 - 4.45 4.00 - 4.45	S B D	N=9 (2,3/2,3,3,1)
		93.92	5.20		. Grave	n dense reddish I is subangular tone.					Dry		5.00 5.00 - 5.45 5.00 - 5.45	S B D	N=39 (2,5/5,8,12,14)
	× × × × × × × × × × × × × × × × × × ×		-								Dry		6.00 6.00 - 6.45 6.00 - 6.45	C B D	N=5 (2,3/2,1,1,1)
•	Z **		_	- - - - - -						1			7.00	D	
	X X X X X X X X X X X X X X X X X X X		(5.00)								Dry		7.50 7.50 - 7.95 7.50 - 7.95	C B D	N=15 (2,3/3,4,5,3)
				- - - - -									8.50	D	
			-								Dry		9.00 9.00 - 9.45 9.00 - 9.45	C B D	N=6 (2,5/3,1,1,1)
	lwater	rentries: to: Casir 0	ng: Sea	Diameter Dia (mm): 150		ng: Casing:	inues next page Depth relate From to			-	Water	C	10.00 Depth hiselling deta From to:		Results n: Tool:
AGS A		explanation of syr s see Key Sheet. Ind reduced levels DRAFT 1:50		Project: Project No Client:	o: 2646	den Quarry chwood Recycli	ng Ltd					E	xploratory pos	sition refere	

Borel	hole	form	ation de		- J								_	-		Location details:
Type: IP CP	Fi	rom: 0.00 0.00	To: 1.20 15.00	Start da 10-12- 10-12-	15 10-12-15	Crew: DH DH	Plant: N/A Dando 3000	Barrel type: N/A N/A	Drill bit: N/A N/A	Logged: 11-12-15 11-12-15	Log	и	Remarks PB15 Er			mE: 423083.40 mN: 281103.00 mAOD: 99.12 Grid: OSGB
Backfill/ Instal'n	Water- strike	Legend	Level	Depth (thick- ness)			Stratum	Description					1		& In Situ Te	
- u		300	00.00	40.00							-	Water	Casing		Type & No	Results
		× × × × × ×	88.92	10.20 -	Very loose da	ırk reddi	ish brown very	silty fine to me	edium SAN	D.		Dry		10.20 10.50 10.50 - 10.95	D S B	N=3 (1,2/1,0,1,1)
		× × × × × ×		(1.30)							-			10.50 - 10.95	D	
		x x x	87.62	11.50 -	Loose reddis	n brown	silty very grave	elly fine to coa	rse SAND AY. Gravel	with is subangu	lar			11.50	D	
		X		- - - - - -	to rounded fir	ne to coa	arse of sandsto	ne and mudst	one.			Dry		12.00 12.00 - 12.45 12.00 - 12.45	C B D	N=11 (2,3/3,2,3,3)
		* X X X X X X X X X X X X X X X X X X X		(3.50)							1			13.00	D	
		X X X X X X X X X X X X X X X X X X X		(3.50) -							-	Dry		13.50 13.50 - 13.95 13.50 - 13.95	C B D	N=6 (1,0/1,1,2,2)
		x × ; x × ; x × ;		- - -							1			14.50	D	
		*** ****	84.12	15.00			Borehole term	ninated at 15.00	m					15.00	D	
				- - - -												
											-					
				- -							1					
				- - - -							1					
				- - -							-					
				- -							1					
				- - -												
				- - - - -							-					
Grou		ater e	entries: o: Casin	g: Seal	Diameter ed: Dia (mm): 150		h: Casing:	Depth related From to 11.50 15.		(S		Water		Depth Chiselling deta From to:		Results 1: Tool:
AGS Log is Scale	ssue		lanation of sym see Key Sheet. educed levels a DRAFT 1:50		Project: Project N Client:	o: 2646	den Quarry S chwood Recycli	ing Ltd					E	Exploratory pos	sition refere	

Roreho			tion de	taile:												Location details:
Type: IP CP	Fror 0.0 0.0	m: 00	To: 1.20 15.00	Start d 10-12- 10-12-	-15 10-12-15	SS	Plant: N/A Dando 150	Barrel type: N/A N/A	Drill bit: N/A N/A	Logged: 11-12-15 11-12-15	L	gger: LM LM	Remarks			mE: 423092.5 mN: 281085.3 mAOD: 99.4 Grid: OSGB
Instal'n Water-	ike	Legend	Level	Depth (thick-		'	Stratum	Description						Samples	& In Situ Te	esting
Wa Wa	st	<u>6</u>	Level	ness)								Water	Casing	Depth	Type & No	Results
	× 000000000000000000000000000000000000		99.29	0.20	roots. Gravel mudstone ar MADE GROU slightly sand coarse of bri	is angu d brick f JND: So y gravell ck fragm	brown slightly s lar to subround fragments. oft to firm dark b y CLAY. Gravel lents, timber fra tone with rare a	orown mottled is angular to igments, coal,	reddish bro	own and bla	ack			0.20 - 1.20	В	
				-								Dry		1.20 1.20 - 1.65 1.20 - 1.70	S D B	N=6 (1,1/1,1,2,2)
				-							1	Dry		2.00 2.00 - 2.45 2.00 - 2.50	S D B	N=1 (1,0/0,1,0,0)
				(5.20)								Dry		3.00 3.00 - 3.45 3.00 - 3.50	S D B	N=1 (1,0/0,1,0,0)
	<u> </u>			-								Dry		4.00 4.00 - 4.45 4.00 - 4.50	S D B	N=6 (1,1/1,1,2,2)
			94.09	5.40			y mottled black se GRAVEL of s				to_	Dry		5.00 5.00 - 5.45 5.00 - 5.50 5.50 - 6.00	S D B	N=25 (4,5/6,6,7,6)
	×	 	93.49	6.00 -			gravelly fine to one of sandstone			subangular	to -			6.00	D	
	73.23.23.23 23.23.23.23	× × × × × × × × × × × × × × × × × × ×		-								Dry		6.50 6.50 - 6.95 6.50 - 7.00	S D B	N=13 (2,2/3,3,3,4)
	X3 X3 X	X		-							111111			7.50	D	
	1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	× × × ×		-								Dry		8.00 8.00 - 8.45 8.00 - 8.50	S D B	N=7 (1,1/1,2,2,2)
	(3) X 3 X 3	× × × × × × × × × × × × × × × × × × ×		-										9.00	D	
	X X	××		(7.60)							-	Dry		9.50 9.50 - 10.00 9.50 - 9.95	S B D	N=0 (1,0/0,0,0,0)
round	Ros		ntries: : Casin 2.90				ng: h: Casing:	tinues next page Depth relate From to				Water		Depth Chiselling deta From to:	Type & No ails: Duration	Results 1: Tool:
AGS og iss		I	nation of symb Key Sheet. duced levels a DRAFT 1:50		Project: Project N Client:	o: 2646	den Quarry S chwood Recycli	ng Ltd					E	Exploratory pos	sition refere	

_ `	, ,	.		·	' 9									ICII			
Borel	nole	form	ation de	etails:												Locatio	n details:
Type: IP CP	0	rom: 0.00 0.00	To: 1.20 15.00	Start da 10-12- 10-12-	15 10-12-15	Crew: SS SS	Plant: N/A Dando 150	Barrel type: N/A N/A	Drill bit: N/A N/A	Logged: 11-12-15 11-12-15	Logge LM LM		Remarks PB7 Er (mE: mN: mAOD: Grid:	423092.50 281085.30 99.49 OSGB
Backfill/ Instal'n	water- strike	Legend	Level	Depth (thick-			Stratum	Description						Samples	& In Situ Te	esting	
lust	stri		Level	ness)			Stratum	Description			W	Vater	Casing	Depth	Type & No		Results
				- - - - - - - - - - - - - - - - - - -								Dry		10.50 11.00 11.00 - 11.45 11.00 - 11.50	D S D B	N=9	(1,1/2,2,3,2)
		× × × × × × × ×		- - -							-			12.00 12.00 - 13.00	D B		
		*		- - - - -							- [Dry		12.50 12.50 - 12.95	S D	N=6	(1,1/1,1,2,2)
		X X X X X X X X X X X X X X X X X X X	85.89	13.60	Reddish brow	n slightly	y silty very san	ndy subangula	ar to rounde	d fine to				13.50	D		
		× × × × × × × × × × × × × × × × × × ×		(1.40)	coarse GRAV	EL of sa	ndstone and n	nudstone.			- - - - -			14.00 - 14.45	В		
		×	84.49	15.00			Borehole term				-			14.50 - 15.00	В		
				-													
3rou			entries: o: Casin	g: Seal	Diameter ed: Dia (mm): 150	& casin Depth 15.0	: Casing:		ed remarks: o: Remark .00 Blowing	s		Vater_		Depth Chiselling deta From to:		n: Tool:	Results
AGS Log is Scale	sue:		lanation of sym ee Key Sheet. educed levels a DRAFT 1:50		Project: Project No Client:	2646	en Quarry	ing Ltd					E	Exploratory pos	NBH		Sheet 2 of

Boreh	ole 1	form	ation de	tails:									_			Location details:
Type: IP CP	0.	om: .00 .00	To: 1.20 10.00	Start d 10-12- 10-12-	15 10-12-15	Crew: MH MH	Plant: N/A Dando 150	Barrel type: N/A N/A	Drill bit: N/A N/A	Logged: 11-12-15 11-12-15	Logge LM LM		Remarks PB8 Er (mE: 423101.20 mN: 281052.20 mAOD: 100.14 Grid: OSGB
Backfill/ Instal'n	water- strike	Legend	Level	Depth (thick-			Stratum	Description							& In Situ Te	_
9 E S	S 60	Le	99.84	(0.30) 0.30	roots. Gravel mudstone and MADE GROU slightly sandy	is angu I brick f ND: Fir slightly	m dark brown n gravelly CLAY	ed fine to coa nottled reddis with occasion	rse of sand h brown ar ial cobbles	Istone, nd light grey . Gravel is		Vater	Casing	Depth 0.00 - 1.00	Type & No B	Results
				-	sangular to sur sandstone, m whole bricks.	oanguia udstone	r fine to coarse e and coal. Cob	or brick fragn bles are angu	lents, cera	mic, timber ngular of	+	Dry		1.00 1.00 - 1.45 1.00 - 1.45	S B D	N=9 (1,1/2,2,3,2)
											-	Dry		2.00 2.00 - 2.45 2.00 - 2.45	S B D	N=4 (1,1/2,0,1,1)
				(5.80)										3.00 - 3.45	U	17 (0%)
				-								Dry		3.50 3.50 - 3.95 3.50 - 3.95	S B D	N=3 (1,1/0,1,1,1)
				-								Dry		4.00 4.00 - 4.45 4.00 - 4.45	S B D	N=8 (1,2/2,1,2,3)
				-								Dry		5.00 5.00 - 5.45 5.00 - 5.45	S B D	N=2 (1,0/0,1,0,1)
	20000		94.04	6.10			dium dense ligh Gravel is subro							6.10	D	
	200000000000000000000000000000000000000			-	with rare mud	stone						Dry		6.50 6.50 - 6.95 6.50 - 6.95	S B D	N=9 (1,2/2,2,3,2)
				(3.90)							- 1	Dry		8.00 8.00 - 8.45 8.00 - 8.45	S B D	N=19 (3,4/4,5,5,5)
		******** ********		-							- [Dry		9.50 9.50 - 9.95 9.50 - 9.95	S B D	N=19 (2,3/4,5,5,5)
Grour	c R		entries: c: Casin	10.00 g: Seal	ed: Diameter 150		ng: h: Casing:	inated at 10.00 Depth related From to	d remarks		V	Vater		Depth chiselling deta From to:		Results 1: Tool:
AGS Log is: Scale:	sue:		anation of symi see Key Sheet. educed levels a DRAFT 1:50		Project: Project No Client:	: 2646	den Quarry S chwood Recycli	ng Ltd					E	xploratory pos	sition refere	

APPENDIX B

Geotechnical Laboratory Test Results

LABORATORY REPORT

4043

Contract Number: PSL15/6113

Report Date: 22 December 2015

Client's Reference: 2646

Client Name: Terra Consult

Bold Business Centre Bold Lane, Sutton

St Helens Merseyside WA9 4TX

For the attention of: Derek Daniels

Contract Title: Meriden Quarry

Date Received: 17/12/2015
Date Commenced: 17/12/2015
Date Completed: 22/12/2015

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins M Beastall (Director) (Director) (Laboratory Manager)

D Lambe S Royle

(Senior Technician) (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR

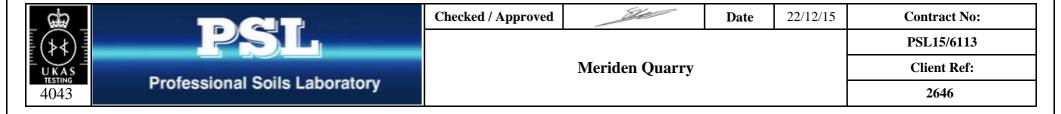
tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

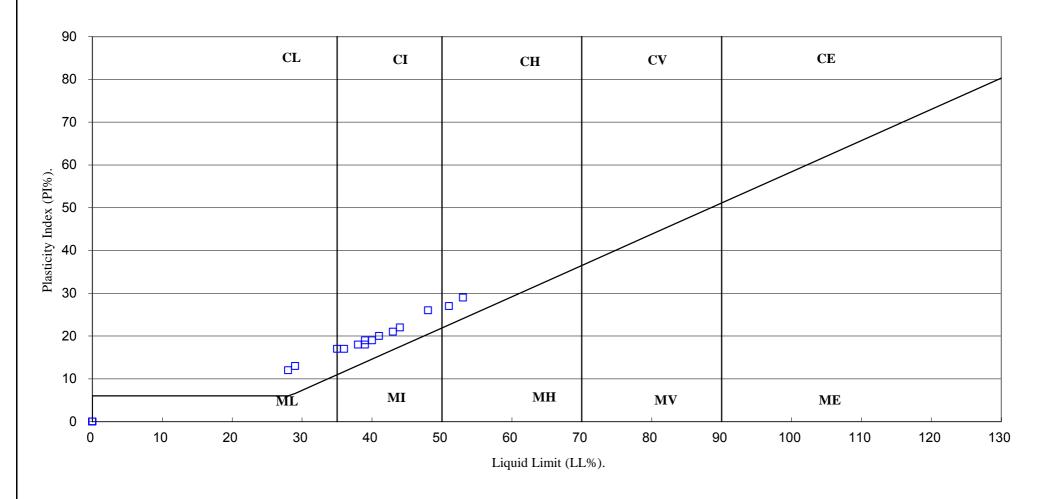
Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
NBH05		D	1.20		Brown gravelly sandy CLAY.
NBH05		D	2.00		Brown gravelly sandy CLAY.
NBH05		D	3.00		Brown very sandy very clayey GRAVEL.
NBH05		D	4.00		Brown gravelly sandy CLAY.
NBH05		D	5.00		Brown very gravelly slightly clayey SAND.
NBH06		D	1.20		Brown slightly gravelly slightly sandy CLAY.
NBH06		D	2.00		Brown slightly gravelly sandy CLAY.
NBH06		D	3.00		Brown slightly gravelly sandy CLAY.
NBH06		D	4.00		Brown slightly gravelly sandy CLAY.
NBH06		D	5.00		Brown slightly gravelly slightly sandy CLAY.
NBH06		D	6.00		Brown slightly gravelly SAND.
NBH07		D	1.00		Brown slightly gravelly sandy CLAY.
NBH07		D	2.00		Brown slightly gravelly sandy CLAY.
NBH07		D	3.50		Brown gravelly sandy CLAY.
NBH07		D	4.00		Brown slightly gravelly sandy CLAY.
NBH07		D	5.00		Brown gravelly very sandy CLAY.
			·		
			·		

œ,	BAT	Checked / Approved	See	Date	22/12/15	Contract No:
(><)						PSL15/6113
U K A S TESTING	Drafassianal Saila Laboratary		Meriden Quarry			Client Ref:
4043	Professional Soils Laboratory					2646


SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Top	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Type	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
NBH05		D	1.20		18			38	20	18	88	Intermediate plasticity CI.
NBH05		D	2.00		19			40	21	19	87	Intermediate plasticity CI.
NBH05		D	3.00		14			29	16	13	48	Low plasticity CL.
NBH05		D	4.00		22			39	21	18	86	Intermediate plasticity CI.
NBH05		D	5.00		15				NP			
NBH06		D	1.20		27			53	24	29	96	High plasticity CH.
NBH06		D	2.00		28			48	22	26	92	Intermediate plasticity CI.
NBH06		D	3.00		21			36	19	17	94	Intermediate plasticity CI.
NBH06		D	4.00		19			35	18	17	96	Intermediate plasticity CI.
NBH06		D	5.00		28			51	24	27	92	High plasticity CH.
NBH06		D	6.00		6.5				NP			
NBH07		D	1.00		18			41	21	20	89	Intermediate plasticity CI.
NBH07		D	2.00		19			43	22	21	91	Intermediate plasticity CI.
NBH07		D	3.50		20			44	22	22	82	Intermediate plasticity CI.
NBH07		D	4.00		17			39	20	19	94	Intermediate plasticity CI.
NBH07		D	5.00		15			28	16	12	80	Low plasticity CL.


SYMBOLS: NP: Non Plastic

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

(BS5930:2015)

cia		Checked /Approved	31	Date	22/12/15	Contract No:
(≯∢)						PSL15/6113
U K A S TESTING	Professional Caile Laboratory		Meriden Quarry			Client Ref:
4043	Professional Soils Laboratory					2646

APPENDIX C

Geoenvironmental Laboratory Test Results

Site: Meriden Quarry

CHEMICAL STATISTICAL ANALYSIS - based on CLEA v1.06 (Sandy Loam 1% SOM)

Job No: 2646

												S	GV / GA	C	SGV	GAC	pC4	SL	pC ₄	4SL
								S	Statistical	Analysis		Sta	tistical Res	ults	Criteria	Source	Screening	Criteria	Criteria	Source
Analyte	Limit of	TerraConsult NBH05	TerraConsult NBH05	TerraConsult NBH06	TerraConsult NBH06	TerraConsult NBH07		Standard					Commercial & Industrial	Pass/	Source of	Source of			Source of	Source of
Analyte	Detection	10/12/15	10/12/15	10/12/15	10/12/15	10/12/15	n	Deviation	Minimum	Average	Maximum	Maximum	Tier 1 Screening Threshold	Fail	Screening Criteria	Toxicological Data	Commercial	Pass / Fail	Screening Criteria	Toxicological Data
		Sample ref. 0.20	Sample ref. 2.00	Sample ref. 1.20	Sample ref. 3.00	Sample ref. 3.50							THESHOL							
Stone Content	<0.1 %		_					-	-	-	-	-	-	-	-	-	-	-	-	-
Asbestos Screen Asbestos Matrix	Positive / Negative	-	Detected	Not detected	Detected	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Asbestos Type	Material Type PLM results	-	Chrysotile	-	Loose fibres Chrysotile	-														
Quantification	<0.0001%		TBA		TBA															
Metals					ļ.,		L_		ļ .											D (0011
Arsenic (total) Cadmium (total)	<2 mg/kg <0.5 mg/kg	22 2.1	30 2.3	0.2	0.2	0.5	5	11.78	0	14	30	30.00 2.30	635 230	Pass Pass	SC050021* SC050021*	SC050021 SC050021	640 420	Pass Pass	CLEA v1.06 CLEA v1.06	Defra 2014 Defra 2014
Chromium (total) (III for S4ULs)	<2 mg/kg	81	124	33	30	31	5	41.85	30	60	124	124.00	30400	Pass	CLEA v1.06	LQM 2009	-	-	- CLEAVI.00	-
Copper (total)	<4 mg/kg	1000	1000	39	34	316	5	490.17	34	478	1000	1000.00	71700	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Lead (total)	<3 mg/kg	756	434	14	13	69	5	329.49	13	257	756	756.00	N/A	-	-	-	6000	Pass	CLEA v1.06	Defra 2014
Mercury (total inorganic) Nickel (total)	<1 mg/kg <3 mg/kg	91	1 109	28	25	32	5	0.00 39.84	25	57	109	1.00	3640 840	Pass Pass	SC050021* CLEA v1.071	SC050021 EFSA	-	-	-	-
Selenium (total)	<3 mg/kg	3	3	3	3	3	5	0.00	3	3	3	3.00	13000	Pass	SC050021*	SC050021	-	-	-	-
Zinc (total)	<3 mg/kg	855	572	81	77	306	5	335.10	77	378	855	855.00	662000	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Inorganic	pH Units	7.9	8.0	8.0	7.9	8.9	F	0.43	7.9	8	8.9	8.90	-	-			-	-	-	-
pH Value Cyanide (total)	PH Units <2 mg/kg	2.0	2.0	2.0	2.0	2.0	5	0.43	2	2	2.0	2.00	-	-	-	-	-	-	-	-
Ammonia expressed as NH4	<5 mg/kg	-	6.0	8.5	20.1	-	3	7.52	6.0	12	20.1									
Magnesium water soluble	<0.1 g/l	-	3.4	5.5	7.0	-	3	1.81	3.4	5	7.0									
Nitrate (2:1) Chloride (2:1)	<3 mg/l <0.5 mg/l	41.0	4.0 24.0	4.0 8.0	3.0 9.0	38.0	5	0.58 15.54	3.0 8.0	4 24	4.0 41.0	-								
Sulphate (2:1)	<0.005 g/l	0.120	0.120	0.0	0	0.220	5	0.08	0.02	0	0	0.22	-	-	-	-	-	-	-	-
Sulphate (total)	<200 mg/kg	951	658	200	224	884	5		200.00	583	951	-	-	-	-	-	-	-	-	-
Organic																	-	-	-	-
Soil Organic Matter	<0.1 %	2.8	1.4	0.4	0.2	0.9	5	1.04	0.2	1	2.80	2.80	-	-	-	-	-	-	-	-
TOC	<0.1 %	1.6	0.8	0.2	0.1	0.5	5	0.60	0.1	1	1.60	1.60	-	-	-	-	-	-	-	-
Phenol (Total Monohydric)	<2 mg/kg	2.0	2.0	2.0	2.0	2.0	5	0.00	2	2	2.0	2.00	24200	Pass	CLEA v1.06	SC050021	-	-	-	-
PAH								+	 											
Naphthalene	<0.1 mg/kg	0.1	0.1	0.1	0.1	0.1	5	0.00	0.1	0	0.1	0.10	200	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Acenaphthylene	<0.1 mg/kg	0.1	0.1	0.1	0.1	0.1	5	0.00	0.1	0	0.1	0.10	84000	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Acenaphthene Fluorene	<0.1 mg/kg <0.1 mg/kg	0.1 0.1	0.1 0.1	0.1	0.1	0.1	5	0.00	0.1	0	0.1 0.1	0.10 0.10	8500 64000	Pass Pass	CLEA v1.06 CLEA v1.06	LQM 2009 LQM 2009	 : -	-		-
Phenanthrene	<0.1 mg/kg	0.1	0.1	0.1	0.1	0.18	5	0.00	0.1	0	0.1	0.10	22000	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Anthracene	<0.1 mg/kg	0.1	0.1	0.1	0.1	0.1	5	0.00	0.1	0	0.1	0.10	530000	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Fluoranthene	<0.1 mg/kg	0.14	0.19	0.1	0.1	0.16	5	0.04	0.1	0	0.2	0.19	23000	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Pyrene Benz(a)anthracene	<0.1 mg/kg <0.1 mg/kg	0.13 0.1	0.17 0.1	0.1	0.1	0.2	5	0.03	0.1	0	0.2	0.17 0.10	54400 92	Pass Pass	CLEA v1.06 CLEA v1.06	LQM 2009 LQM 2009	 :	-		-
Chrysene	<0.1 mg/kg	0.1	0.1	0.1	0.1	0.1	5	0.00	0.1	0	0.1	0.10	138	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Benzo(b)fluoranthene	<0.1 mg/kg	0.1	0.17	0.1	0.1	0.1	5	0.03	0.1	0	0.2	0.17	100	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Benzo(k)fluoranthene	<0.1 mg/kg	0.1	0.1	0.1	0.1	0.1	5	0.00	0.1	0	0.1	0.10	140	Pass	CLEA v1.06	LQM 2009	- 77	- D	-	- Defee 2014
Benzo(a)pyrene Indeno(123cd)pyrene	<0.1 mg/kg <0.1 mg/kg	0.1 0.1	0.1 0.1	0.1	0.1	0.1	5	0.00	0.1	0	0.1	0.10 0.10	14 60	Pass Pass	CLEA v1.06 CLEA v1.06	LQM 2009 LQM 2009	77	Pass -	CLEA v1.06	Defra 2014
Dibenzo(ah)anthracene	<0.1 mg/kg	0.1	0.1	0.1	0.1	0.1	5	0.00	0.1	0	0.1	0.10	13	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Benzo(ghi)perylene	<0.1 mg/kg	0.1	0.1	0.1	0.1	0.1	5	0.00	0.1	0	0.1	0.10	650	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Coronene	<0.1 mg/kg	0.1	0.1	0.1	0.1	0.1	5	0.00	0.1	0	0.1	0.10	1900	Pass	CLEA v1.06	LQM 2009	-	-	-	-
BTEX Benzene	<0.002 mg/kg	0.002	0.002	0.002	0.002	0.002	5	0.00	0.002	0	0.002	0.00	43.6	Pass	CLEA v1.06	SC050021	100	Pass	CLEA v1.06	Defra 2014
Toluene	<0.005 mg/kg	0.005	0.005	0.005	0.005	0.005	5	0.00	0.005	0	0.005	0.01	86200	Pass	CLEA v1.06	SC050021	-	-	-	-
Ethyl Benzene	<0.01 mg/kg	0.002	0.002	0.002	0.002	0.002	5	0.00	0.002	0	0.002	0.00	25000	Pass	CLEA v1.06	SC050021	-	-	-	-
Xylene (o)	<0.01 mg/kg <0.01 mg/kg	0.002 0.002	0.002 0.002	0.002 0.002	0.002	0.002	5		0.002	0	0.002	0.00	10,700	Pass Pass	CLEA v1.06 CLEA v1.06	SC050021 SC050021	 :	-	-	-
Xylene (m) Xylene (p)	<0.01 mg/kg	0.002	0.002	0.002	0.002	0.002	5		0.002	0	0.002	0.00	9,990 9,630	Pass	CLEA v1.06	SC050021 SC050021	- :	-	-	-
MTBE	<0.001 mg/kg	0.005	0.005	0.005	0.005	0.005	5		0.005	0	0.005	-	-	-	-	-	-	-	-	-
All the first O		2.24	2.24	221	201		L.								0.51					
Aliphatic $>$ C ₅ - C ₆ Aliphatic $>$ C ₆ - C ₈	<0.01 mg/kg <0.05 mg/kg	0.01 0.05	0.01 0.05	0.01	0.01	0.01	5		0.01	0	0.0	0.01	3400 8300	Pass Pass	CLEA v1.06 CLEA v1.06	LQM 2009 LQM 2009	 :	-	-	-
Aliphatic >C ₈ - C ₁₀	<2 mg/kg	2.00	2.00	2.00	2.00	2.00	5		2	2	2.0	2.00	2100	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Aliphatic >C ₁₀ - C ₁₂	<2 mg/kg	2.00	2.00	2.00	2.00	2.00	5	0.00	2	2	2.0	2.00	10000	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Aliphatic >C ₁₂ - C ₁₆	<3 mg/kg	3.00	3.00	3.00	3.00	3.00	5		3	3	3.0	3.00	61000	Pass	CLEA v1.06	LQM 2009	<u> </u>	-	-	-
Aliphatic $>$ C ₁₆ - C ₂₁ Aliphatic $>$ C ₂₁ - C ₃₅	<3 mg/kg <10 mg/kg	3.00 10.00	3.00 10.00	3.00 10.00	3.00 10.00	3.00 10.00	5		10	10	3.0 10.0	3.00 10.00	1600000 1600000	Pass Pass	CLEA v1.06 CLEA v1.06	LQM 2009 LQM 2009	 	-	-	-
																			-	-
Aromatic C ₅ - C ₇	<0.01 mg/kg	0.01	0.01 0.05	0.01	0.01	0.01	5	0.00	0	0	0.01	0.01	28000	Pass	CLEA v1.06	LQM 2009	<u> </u>	-	-	-
Aromatic C ₇ - C ₈ Aromatic >C ₈ - C ₁₀	<0.05 mg/kg <2 mg/kg	0.05 2.00	2.00	2.00	2.00	2.00	5	0.00	2	2	0.05 2.0	0.05 2.00	59000 3700	Pass Pass	CLEA v1.06 CLEA v1.06	LQM 2009 LQM 2009	 :	-	-	-
Aromatic >C ₁₀ - C ₁₂	<2 mg/kg	2.00	2.00	2.00	2.00	2.00	5	0.00	2	2	2.0	2.00	17000	Pass	CLEA v1.06	LQM 2009	-	-		-
Aromatic >C ₁₂ - C ₁₆	<3 mg/kg	3.00	3.00	3.00	3.00	3.00	5		3	3	3.0	3.00	36000	Pass	CLEA v1.06	LQM 2009	-	-	-	-
Aromatic $>$ C ₁₆ - C ₂₁ Aromatic $>$ C ₂₁ - C ₃₅	<3 mg/kg <10 mg/kg	3.00	3.00 10.00	3.00 10.00	3.00 10.00	3.00	5		10	10	3.0	3.00	28000	Pass	CLEA v1.06	LQM 2009	- : -	-	-	-
	> 10 (110/kg)	10.00	10.00	10.00	10.00	10.00	5	0.00	10	10	10.0	10.00	28000	Pass	CLEA v1.06	LQM 2009			-	-

Below Detection Limits.

Exceeded GAC/SGV

Exceeded pC4SL / S4ULs

Assessment criteria for pH, Sulphide and Sulphate are not based on human health. Sulphate criteria assumes DS-1 ACEC classification for concrete.

Notes

1. Generic Qualitative Assessment Criteria have been used where appropriate based on the current CLEA 1.06 Model (default values, sandy loam 1%SOM). Where no CLEA generic guideline value has been calculated no assessment has been made. The results presented show maximum and mean concentrations. This is to provide a reasonable prediction of the range of data rather than to provide any detailed statistical appraisal.

2. Results lower than detection limit are shaded in grey.

3. When the test result is recorded as being less than the detection limit, the result used for the analysis is the detection limit.

4. Cyanide (total)*, in the absence of a GQAC based on current CLEA 1.06 Model, the Atrisk Soil Value for Cyanide (free) has been used.

5. For metals, where an SGV has been published, this value has been used. Note that the published SGVs do not include the residential without plant uptake scenario. CLEA v1.06 has therefore been used to derive GACs for this scenario. For organics, CLEA v1.06 has been used (as the SGV assumes 6% SOM)

6. pC4SL for benzene assumes 6% SOM

0812Z:\Uobs\2646-Meriden

TerraConsult

Leaders in waste management environmental & ground engineering consultancy

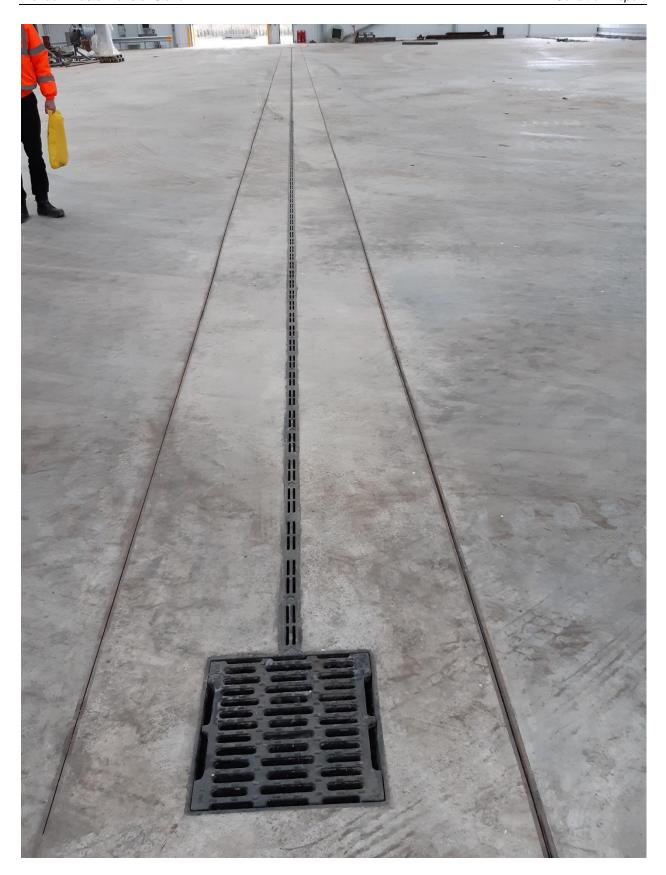
TerraConsult (South) Limited
Dugard House
Peartree Road
Colchester, Essex
CO3 0UL

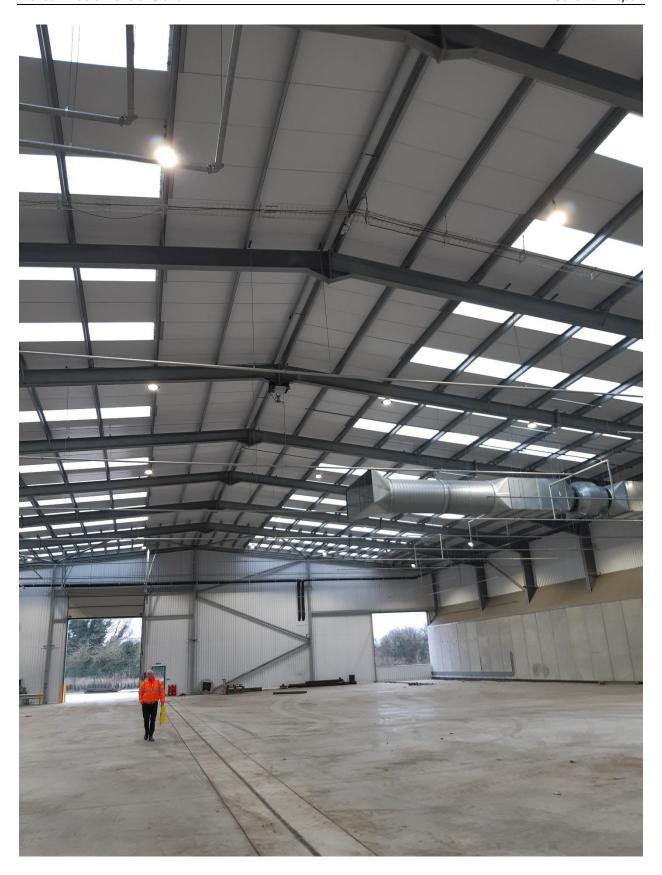
Tel: +44 (0) 1206 585600

TerraConsult Limited Bold Business Centre Bold Lane, Sutton St. Helens WA9 4TX

Tel: +44 (0) 1925 291111 Fax: +44 (0) 1925 291191

Email: mailbox@terraconsult.co.uk Website: www.terraconsult.co.uk


APPENDIX SCR6


Walkover Survey Photographs (2022)

BIFFA'S SITE WALKOVER SURVEY PHOTOGRAPHS FEBRUARY 2022

INTERNAL SITE AREAS:

EXTERNAL SITE AREAS (Prior to final concreting of some external areas)

EXTERNAL SITE AREAS (Following final concreting of some external areas)

