Salmon Development Limited Dales Manor Business Park, Sawston

Phase 2 Geoenvironmental Assessment Report

Notice

This document and its contents have been prepared and intended solely for Salmon Development Limited information and use in relation to Dales Manor Business Park, Sawston.

MLM Consulting Engineers Limited assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

Document History

Client:	Salmon Development Limited
Project:	Dales Manor Business Park, Sawston
Document Title:	Phase 2 Geoenvironmental Assessment Report
Document Reference:	775322-REP-ENV-001-Rev1
MLM Reference:	MH/775322/LL

Revision	Status	Description	Author	Checked	Approved	Date
0	Final		Lindsay Liness	Mark Henderson	Mark Henderson	04/09/2017
1	Final	Changes to text requested by client	Lindsay Liness	Darren Gill	Darren Gill	05/10/2017

Contents

1	Executive Summary	1
2	Limitations and Exceptions	
3	Introduction	4
3.1	General	4
3.2	Terms of Reference	4
3.3	Technical Approach	4
3.4	Proposed Development	4
4	The Site	5
4.1	Location and Description	5
4.2	Geology	5
4.3	Hydrogeology	5
4.4	Hydrology	5
5	Previous Assessment	6
6	Ground Investigation	
6.1	Site Work	8
6.2	Installations	8
6.3	In Situ Testing	8
6.4	Sampling	8
6.5	Post-Fieldwork Monitoring	9
6.6	Laboratory Analysis	9
7	Ground and Groundwater Conditions	11
7.1	General	11
7.2	Made Ground and Surfacing	11
7.3	Alluvium	11
7.4	Lowestoft Formation	
7.5	Zig Zag Chalk Formation	
7.6	Groundwater Conditions	
7.7	Contamination Observations	
7.8	Ground Gas and Vapour Conditions	
7.9	Underground Obstructions	13
8	Material Properties	14
8.1	General	14
8.2	Made Ground	
8.3	Alluvium	

8.4	Lowestoft Formation (Glacial Till)	15
8.5	Chalk	15
8.6	Summary	16
9	Geotechnical Assessment	17
9.1	General	17
9.2	Existing Buried Construction	17
9.3	Excavations	17
9.4	Foundations	
9.5	Ground Improvement	19
9.6	Ground Floor Slabs	19
9.7	Pavement Construction	19
9.8	Below Ground Concrete Design	19
9.9	Soakaway Potential	
9.10	Reuse of Materials	
10	Assessment of Soil Chemical Data	21
10.1	Guidelines	21
10.2	Risks to Human Health	21
10.3	Nature and Distribution of Soil Contamination	
11	Assessment of Groundwater Chemical Data	23
11.1	Guidelines	
11.2	Groundwater	
11.3	Nature and Distribution of Soil Leachate and Groundwater Contamination	24
12	Assessment of Ground Gas and Organic Vapour Data	25
12.1	Guidelines	
12.2	Screening Assessment – Ground Gas	
12.3	Screening Assessment – Organic Vapour	
12.4	Nature and Distribution of Ground Gas and Organic Vapour Contamination	25
13	Contaminated Land Risk Assessment and Conceptual Site Model	26
13.1	General Approach	
13.2	Identified Contamination Sources	
13.3	Potential Pollution Linkages	27
13.4	Phase 2 Updated Conceptual Model	27
14	Remediation and Risk Management	
14.1	General	
14.2	Soil Remediation	
14.3	Groundwater Remediation	

14.4	Gas and Organic Vapour Protection	29
14.5	Water Supply Pipework	29
14.6	Off Site Disposal	30
14.7	Remediation Documentation	30
14.8	Construction Health and Safety	30
14.9	Land Remediation Relief	31
15	Summary and Recommendations	
15 15.1	Geotechnical	32
15.1 15.2	Geotechnical Residual Contamination in 2017	32 32
15.1 15.2	Geotechnical	32 32

Figures

Figure 1:Site Location PlanFigure 2:SPT N Values vs Depth

Drawings

775322-DWG-ENV-001 Exploratory Hole Location Plan 16088-SK011-N Proposed Site Plan, Woods Hardwick

Appendix A - Exploratory Hole Logs

- Appendix B Gas and Groundwater Monitoring Results
- Appendix C Geotechnical Test Results
- Appendix D Chemical Analysis Results
- Appendix E Soakaway Test Results
- Appendix F Generic Screening Levels
- Appendix G Defining Risk

1 Executive Summary

Details	Summary of Main Text	
Introduction	This report has been prepared on the instructions of Bradbrook Consulting on behalf of Salmon Development Limited which proposes to develop the site for light industrial and commercial use. It presents the results of a ground investigation and geoenvironmental assessment alongside data from previous MLM geoenvironmental assessments undertaken in 2007 and 2008.	
Site description	The 2.9 hectare site is approximately 1km to the northeast of the centre of Sawston, Cambridgeshire and comprises open hardstanding and concrete slabs where previous buildings (now demolished) were situated.	
Environmental Setting	Strata comprising the Alluvium (unproductive strata), described as clay, silt, sand and gravel, overlying Zig Zag Chalk Formation are shown to underlie the site. The site is within a groundwater source protection zone SPZ3.	
	The nearest surface water feature is a drainage ditch adjacent to the western boundary.	
	The site is surrounded by agricultural land to the north, South Cambridge Business Park and a Tarmac Readymix plant to the east, residential properties to the southwest and open undeveloped land (a historical landfill) to the west.	
Ground Investigation		
Ground Conditions Encountered	Hardstanding (maximum proven depth 0.45m bgl) Made Ground (maximum proven depth 2.00m bgl) Alluvium (maximum proven depth 4.00m bgl) Lowestoft Formation (maximum proven depth 4.45m bgl) Zig Zag Chalk Formation (maximum proven depth 15.00m bgl)	
Groundwater	Encountered at between 4.10m and 12.00m bgl during the investigation. Recorded post-fieldwork at depths ranging from 1.00m to 3.78m bgl.	
Geotechnical Assessment		
Existing Construction	At the time of writing all previous buildings on site had been demolished and the hardstanding was being broken out and removed as part of the site strip. There is a risk of buried construction across the site.	
	Unless it is to be incorporated within the new development, any old construction encountered should be fully penetrated by all new foundations and broken well away from any new construction.	
Excavations	Excavation to proposed founding depth generally should be readily achievable with standard excavation plant. Heavy duty excavation plant/breaking equipment may be required to excavate the existing construction.	

Details	Summary of Main Text
Foundations	Pad foundations are considered suitable at the site where founding into firm to stiff Lowestoft Formation and Alluvial deposits or structureless Zig Zag Chalk Formation deposits for blocks B, C, D, G and H.
	Allowable net bearing capacity of 130kPa for a 1m ² pad at 1.0m depth or 140kPa for a 1m ² pad at 2.0m depth. Alternatively an allowable net bearing capacity of 115kPa for a 2m ² pad at 1.0m depth or 130kPa for a 2m ² pad foundation at 2.0m depth. In the west and north, deep made ground and soft alluvial deposits are present. These deposits are not considered suitable founding deposits for traditional strip/trench and pad foundations and therefore piled foundations are recommended for blocks A, E, F and G.
Ground Floors	Suspended and ground bearing
Pavements	Soils should be re-engineered through excavation and either sorting and recompaction or replacement with a granular fill
	Design CBR of 2% on treated made ground.
Soakaways	Soakaway drainage is considered suitable for the site, however drainage into the made ground is unlikely to be accepted and should be made into natural soils below.
Buried Concrete	Design Sulphate Class – DS-1 and ACEC Class – AC-1
Contamination	
Soil Contamination	Hydrocarbons above screening levels for human health in made ground.
Groundwater Contamination	Levels of groundwater contamination have reduced over the past ten years (2007-2017) to the point that only very low levels of mercury and selenium are present.
Gas/Vapour Contamination	CS4 for methane and CS2 for carbon dioxide. Levels of methane have reduced over the past ten years (2007-2017)
Remediation	The following remedial measures are recommended to mitigate the identified risks:
	 Ground gas and hydrocarbon vapour protection for buildings achieving a BS8485:2015 solution score of 3.5
	Installation of services in corridors of clean soil
	 Health and safety requirements when working in the ground
	This report should be presented to the water supply company to assist in their selection of materials for potable water supply pipework.
Further Work	
Geotechnical	Tree survey to determine the potential influence of adjacent trees.
Contaminated land	Remediation strategy and verification plan for LPA submission

2 Limitations and Exceptions

- 1 This report and its findings should be considered in relation to the terms and conditions proposed and scope of works agreed between MLM Consulting Engineers Ltd (MLM) and the client.
- 2 The Executive Summary, Conclusions and Recommendations sections of the report provide an overview and guidance only and should not be specifically relied upon until considered in the context of the whole report and the development, if any, proposed.
- The assessment and interpretation of contamination and associated risks are based on the scope of work agreed with the client and the report may not be sufficient to fully address contaminations or to allow detailed remediation design to proceed without further investigation and analysis.
- 4 Any assessments made in this report are based on the ground conditions as revealed by the exploratory holes and pits, together with the results of any field or laboratory testing undertaken and, where appropriate, other relevant data which may have been obtained for the sites including previous site investigation reports. There may be special conditions appertaining to the site, however, which have not been revealed by the investigation and which have not, therefore, been taken into account in the report. The assessment may be subject to amendment in the light of additional information becoming available.
- 5 Interpretations and recommendations contained in the report represent our professional opinions, which were arrived at in accordance with currently accepted industry practices at the time of reporting and based on current legislation in force at that time.
- 6 Where the data available from previous site investigation reports, supplied by the Client, have been used, it has been assumed that the information is correct. No responsibility can be accepted by MLM for inaccuracies within the data supplied.
- 7 Whilst the report may express an opinion of possible configuration of strata between or beyond exploratory hole or pit locations, or on the possible presence of features based on visual, verbal or published evidence, this is for guidance only and no liability can be accepted for the accuracy.
- 8 Comments on groundwater conditions are based on observations made at the time of the investigation unless otherwise stated. It should be noted that groundwater levels can vary due to seasonal or other effects.
- 9 The copyright in this report and other plans and documents prepared by MLM is owned by them and no such report, plan or document may be reproduced, published or adapted without their written consent. Complete copies of this report may, however, be made and distributed by the Client as an expedient in dealing with matters related to its commission.
- 10 This report is prepared and written in the context of the proposals stated in the introduction to this report and should not be used in a differing context. Furthermore, new information, improved practices and legislation may necessitate an alteration to the report in whole or in part after its submission. Therefore, with any change in circumstances or after the expiry of one year from the date of the report, the report should be referred to us for re-assessment and, if necessary, re-appraisal.

3 Introduction

3.1 General

This report has been prepared by MLM Consulting Engineers Ltd (MLM) on the instructions of Bradbrook Consulting (Agent) on behalf of Salmon Development Limited (Client), which is proposing to develop the site for light industrial and commercial use.

The objective of this report is to provide an assessment of ground conditions with respect to design of foundations, slabs and infrastructure and gives recommendations for appropriate solutions. It also includes a generic quantitative risk assessment (GQRA) of contamination risks to human health and the environment and provides, where necessary, a summary of recommended mitigation or remediation measures.

This report will combine and update data collected during two previous site investigations at the site covered under MLM reports Phase II Geoenvironmental Assessment Report (Ref. DMB/721750/R1/F) dated April 2008 and Supplementary Geoenvironmental Assessment Report (Ref. DMB/721750/R2/F) dated August 2008. Data will be compared against current S4UL/C4SL screening values and gas monitoring results will be assessed using BS8485:2015 guidance.

It is understood that this report will form part of a planning submission for the site and will inform construction.

3.2 Terms of Reference

The terms of reference for the work were set out in the MLM proposals ref. 775322-FEE-ENV-002-Rev1 dated 12 June 2017 and 775322-FEE-ENV-003 dated 16 June 2017.

3.3 Technical Approach

The geoenvironmental and geotechnical work undertaken by MLM follows the Association of Geotechnical and Geoenvironmental Specialists (AGS) *Good Practice Guidelines for Site Investigations.*

The process of contamination assessment adopted in this report generally follows the model procedures for the management of contaminated land described in the Environment Agency Contaminated Land Report 11. It also takes into account the guidance issued in the National Planning Policy Framework (NPPF)

The format of the report is in general accordance with the reporting requirements of BS5930:2015.

3.4 Proposed Development

It is understood that the proposed development will comprise eight blocks (Blocks A to H), comprising 27 commercial and light industrial business units and the associated access roads, car parking areas and soft landscaping.

Details of the proposed layout are shown on Woods Hardwick Proposed site plan drawing 16088-SK011-N dated November 2016.

4 The Site

4.1 Location and Description

The site is located off West Way, approximately 1km to the northeast of the centre of Sawston village, Cambridgeshire. It is irregular in shape and covers an area of 2.9 hectares. It is bordered to the north by agricultural land, to the east by West Way with a Tarmac Readymix plant and South Cambridge Business Park beyond, to the southwest by residential properties and to the northwest by open undeveloped land where a historical landfill was situated.

The site is generally level and covered entirely by mixed hardstanding of concrete, macadam and brickwork. Buildings previously occupying the site have been demolished and raised concrete areas are still present where they stood. Tall metal fencing surrounds the entire site and large metal gates provide access from West Way in the southeast corner and half way along the eastern boundary.

At the time of writing this report the site had recently undergone vegetation clearance and areas of hardstanding in the south were being broken out and the materials stockpiled on site.

The National Grid Reference for the approximate centre of the site is 549040, 250430.

A location plan of the site is presented as Figure 1.

4.2 Geology

The geological map of the area shows the site to be underlain by Alluvium overlying Zig Zag Chalk Formation in the west. Superficial deposits are not shown to underlie the Zig Zag Chalk Formation in the eastern half of the site.

The site is shown to lie in an area unaffected by historical landslips.

4.3 Hydrogeology

The Environment Agency website provides the following hydrogeological information:

Table 4.1 Aquifer Properties

Aspect	Designation	Description
Groundwater Source Protection Zone	SPZ3	Source catchment protection zone. Defined as the area around a source within which all groundwater recharge is presumed to be discharged at the source.
Aquifer Designation – Superficial Deposit	Unproductive Strata	These are deposits with low permeability that have negligible significance for water supply or river base flow.
Aquifer Designation – Bedrock Deposit	Principal Aquifer	These are deposits that have high intergranular and/or fracture permeability - meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale.

4.4 Hydrology

The closest significant surface water feature is a drainage ditch running directly adjacent with the western boundary. The River Granta is located approximately 700m to the north of the site.

There are no abstractions from surface waters within 500m of the site.

5 Previous Assessment

The following reports have been produced for the site and are summarised below:

Table 5.1 Previous Reports

Company (Date) Title	Findings
MLM (2007) Phase I Desk Study. Ref. 721576/R1/F	The site was developed around 1960 as a factory used for the manufacture of roof tiles. The site was used for this purpose until it was sold in 2007.
	On site processes involved in the manufacture of roof tiles included the mixing of sand and cement with various additives and baking in kilns.
	A drainage ditch fed by a spring to the north runs alongside the western boundary. An outfall was noted in the southwest corner of the site which discharged surface water runoff from the site into the ditch via a 'Conder' interceptor. This also included surface water runoff from the Tarmac Readymix site to the east, which was piped below the site via a three-stage interceptor, located in the northeast corner of the site.
	Surrounding land uses include arable land to the north, a Tarmac Readymix plant to the east, residential properties to the south and a former landfill to the west which was restored in 1977. Along the northern boundary was a dismantled single track railway line.
	Five above ground storage tanks (AST) were on the site containing diesel, kerosene/heating oil and mould oil. Although no underground storage tanks (UST) were believed to be present, four underground storage chambers were identified, including, one for the storage of aggregate, a waste liquid sump, a liquid waste pit and a waste pigment sump. Other drums and containers were present on site containing oil, waste oil, general waste, pigment, concrete, flammable liquids (possibly solvents) and hydrochloric acid.
	Visual evidence of minor spillage was noted on the ground around a diesel pump and pipework associated with a kerosene AST. Pigment staining was also identified in the northwest.
MLM (2008) Phase II Geoenvironmental Assessment Report. Ref. DMB/721750/R1/F	Ground conditions encountered included made ground generally 1.0m thick and locally up to 2.6m bgl, comprising mainly soft to firm sandy gravelly clay. Underlying the made ground was Glacial Till comprising soft to very stiff clay with variable gravel content and locally Alluvium. The chalk bedrock was encountered at depths of 1.1m to 3.7m bgl.
	Groundwater was encountered at depths of between 4.3m and 12m rising to between 4.1m and 10m during the ground investigation and during subsequent monitoring visits at depths of between 1.81m and 3.26m bgl.
	Traditional pad/strip foundations will be appropriate for the majority of the site with allowable bearing pressures in the range of 100-150kN/m ² . Locally soil conditions are such that deep pads, vibrotreatment or piling will be appropriate. Subgrades will comprise made ground where preliminary design CBRs of 2% are appropriate.

Company (Date) Title	Findings
	 Below ground structures are present on site including infilled pits and sumps for the storage of waste pigment and concrete tailings. Soil contamination was not present above screening values for risks to human health in respect to the site end use as a light industrial or commercial development. Low levels of soil contamination were present in respect to risks to water supply and would therefore require upgraded water supply pipes to be installed at the site. Zinc was present in soil locally which could present risks to plant life. Groundwater contamination in excess of UK drinking water standards was present locally in the centre of the site in Glacial Till deposits in the form of arsenic, mercury and selenium. Gas monitoring recorded elevated levels of methane (maximum 81%) and
	carbon dioxide. Gas protection measures will be required for the proposed development.
MLM (2008) Supplementary Geoenvironmental Assessment Report. Ref. DMB/721750/R2/F	An assessment of the former landfill off site to the west showed it was operational between 1974 and 1993 and was licenced to accept inert waste. However there is mention in an Envirocheck Report that the waste types also included Cat. 3 waste type chemicals and chemical compounds. Records also indicate that the landfill may not be lined.
	TPH compounds were present locally in soil in excess of guideline screening values for light industrial or commercial land use.
	Groundwater contamination including arsenic, mercury, selenium and TPH was present locally in excess of UK drinking water standards.

6 Ground Investigation

This section includes the work undertaken as part of the previous MLM Phase II Geoenvironmental Assessment (Ref. DMB/721750/R1/F) and Supplementary Geoenvironmental Assessment (Ref. DMB/721750/R2/F) undertaken in 2008.

6.1 Site Work

Site work was carried out in September 2007, July 2008 and between 4 and 6 July 2017 and included the following.

Table 6.1 Summary of Exploratory Holes

Туре	Ref. (2007/2008)	Ref. (2017)	Depth Range (m bgl)
Cable percussion boreholes	BH1 - BH3, BH2A,	CP201 - CP203	15.00
Windowless sampler boreholes	WS1 - WS11, WS101 - WS114,	WS201 - WS205	3.00 - 5.00
Trial pits		TP201, TP202, TP203	0.70 – 2.00
Soakaway pits	TP1 – TP2	TP202A, TP204	1.80 – 3.35

The exploratory holes were set out by an MLM engineer based on the findings of the desk study and site walkover in locations to maximise the available data, whilst operating within the constraints of the site.

All boreholes were logged by a geoenvironmental engineer in general accordance with BS5930:2015. The exploratory hole logs are presented in Appendix A.

The locations of all the exploratory holes are presented on Drawing 775322-DWG-ENV-001.

6.2 Installations

Combined gas and groundwater monitoring standpipes were installed in boreholes WS3, WS5 – WS7, WS10, WS11 and BH1 in 2007, WS101, WS103 – WS105, WS108 and WS112 in 2008 and WS201 – WS205 and CP201 – CP203 in 2017.

Details of the installations are provided on the relevant borehole logs.

6.3 In Situ Testing

Standard penetration tests (SPTs) were undertaken at regular intervals in the cable percussion/windowless sampler boreholes (BH1 – BH3, BH2A, WS1 – WS11 and WS101 – WS111).

Hand shear vane tests were undertaken at shallow depth (<1.2m) in the trial pits and on samples recovered from depth in trial pits.

In situ test types and depths are recorded on the relevant exploratory hole records.

6.4 Sampling

Geotechnical undisturbed samples were recovered from the cable percussion borehole in U100 tubes.

Continuous soil cores were recovered from the windowless sampler boreholes in clear PVC liners to prevent cross contamination and aid sample recovery.

Disturbed samples were recovered from all exploratory holes, in bulk bags and/or tubs depending on the soil types and proposed laboratory testing.

Contamination samples were recovered in plastic tubs and glass jars, appropriate for the laboratory analysis undertaken.

Sample types and depths are recorded on the relevant exploratory hole records.

6.5 Post-Fieldwork Monitoring

Post-fieldwork monitoring of ground gas/organic vapour concentrations and groundwater levels has been undertaken on four occasions between 3 and 29 October 2007, on four occasions between 16 July and 5 August 2008 and on six occasions between 11 July and 22 August 2017. The results are presented in Appendix B.

6.6 Laboratory Analysis

The following laboratory tests were scheduled on samples recovered from the exploratory holes.

Table 6.2 Summary of Geotechnical Testing

Test	2007
Natural moisture content	6
Atterberg limits	6
pH and water soluble sulphate	4

Geotechnical testing was undertaken by a UKAS-accredited laboratory to BS1377 and the results are presented in Appendix C.

Table 6.3 Summary of Contamination Analysis

Test	2007	2008	2017
Metals (As, Cd, Cr, Cu, Ni, Zn, Pb, Hg, Se)	12	6	-
Petroleum hydrocarbons (speciated TPHCWG)	7	7	-
Speciated polycyclic aromatic hydrocarbons (PAH USEPA16)	5	2	-
Total Organic Carbon (TOC)	5		-
MLM standard suite : metals (As, Cd, Cr, Cu, Ni, Zn, Pb, Hg, Se), speciated polycyclic aromatic hydrocarbons (PAH USEPA16), petroleum hydrocarbons (speciated TPHCWG), total cyanide and total phenols	-	-	2
Waste Acceptance Criteria (WAC) Testing	-	-	2

Table 6.4 Summary of Contamination Analysis – Groundwater, in 2007

Test	2007	2008	2017
Metals (As, Cd, Cr, Cu, Ni, Zn, Pb, Hg, Se)	1	1	4
Petroleum hydrocarbons (speciated TPHCWG)	1	1	4
pH and water soluble sulphate	1	-	-
PAH (speciated USEPA 16)	-	-	4
Volatile Organic Compounds (VOC)	-	-	4
Hardness	-	-	4

Contamination analysis was undertaken by a UKAS-accredited laboratory and the results are presented in Appendix D.

7 Ground and Groundwater Conditions

7.1 General

The following sections include data from the previous investigations by MLM dated April 2008 (ref: DMB/721750/R1/F) and August 2008 (ref: DMB/721750/R2/F).

The following general strata sequence was encountered across the site. Interpolation between exploratory hole positions has been undertaken based on visual observations and laboratory testing.

Table 7.1 Generalised Strata Sequence

Stratum	Depth ra	nge (m bgl)	Proven Thickness range (m)	
	Тор	Base	()	
Hardstanding (concrete, macadam and brick paving)	GL	0.08 - 0.45	0.08 – 0.45	
Made Ground	0.08 - 0.45	0.20 - 2.00	0.20 – 2.52	
Alluvium	0.55 – 3.80	1.70 – 4.00	0.40 - 3.00	
Lowestoft Formation (glacial)	0.20 - 2.40	1.10 – 4.45	0.60 - 3.00*	
Zig Zag Chalk Formation	0.50 - 5.20	1.80 – 15.00*	0.10 – 13.90*	

* Base of stratum not proven in all holes

Features, structures or certain ground conditions may be present between exploratory hole locations, which are different to those encountered during the investigation but which may impact upon construction.

The findings of the site investigations generally match the published geology for the area.

7.2 Made Ground and Surfacing

Made ground was present in boreholes BH1 – BH3, BH2A, CP201 – CP203, WS3 – WS11, WS101 – WS114, WS201 – WS205 and trial pits TP1, TP2, TP201 – TP204 and TP202A across the site and comprised concrete, macadam and brick paving surfacing over sand gravel and sandy gravelly clay, red containing gravel sized fragments of brick, concrete, wood, ash, clinker and tile.

Borehole BH2, trial pits TP201 and TP202 was terminated in this soil.

7.3 Alluvium

Underlying the made ground in boreholes CP201 – CP203, WS5, WS101, WS103, WS104, WS107, WS109, WS111, WS112, WS201 – WS205 in the northern half of the site, gravelly and sandy silts and clays, occasional peat and organic clay were encountered. These deposits are considered to be Alluvium.

Trial pits TP202A and TP203 was terminated in these soils

7.4 Lowestoft Formation

Underlying the made ground in boreholes BH1, BH3, WS1 – WS4, WS6 – WS11, WS102, WS105, WS106, WS108, WS109 and WS112, and in trial pits TP1 and TP2 across the site sand, gravel and sandy, gravelly clays were encountered. These deposits are considered to be glacial till of the Lowestoft Formation.

Borehole WS3, WS4, WS11, WS105, WS108 and WS110 were terminated in these soils.

7.5 Zig Zag Chalk Formation

Underlying the Alluvium and Lowestoft Formations in boreholes BH1, BH2A, BH3, CP201, CP202, CP203, WS1, WS2, WS5, WS6, WS7, WS8, WS9, WS10, WS101, WS102, WS103, WS104, WS106, WS107, WS109, WS111, WS112, WS113, WS114, WS201, WS202, WS203, WS204 and WS205, and trial pits TP1, TP2 and TP204 across the site chalk was encountered. These deposits are considered to be of the Zig Zag Chalk Formation.

All exploratory holes which encountered the chalk were terminated in these soils.

7.6 Groundwater Conditions

Groundwater seepages were encountered during the fieldwork in boreholes BH1, BH2A, BH3, WS107 WS113, CP201, CP202 and CP203 at depths ranging from 4.10m bgl to 12.00m bgl.

During post-fieldwork monitoring water levels were recorded at depths ranging from 1.00m bgl to 3.78m bgl.

The groundwater is from the chalk and is considered to be representative of the groundwater table in the area.

Groundwater flows in a southwest direction.

7.7 Contamination Observations

Made ground, including fragments of ash, clinker, wood (potentially treated), brick and concrete is present across the site. These soils may be an indicator of the potential presence of contaminants.

Table 7.2 below lists the visual or olfactory evidence of contamination noted during the investigation.

Table 7.2 Evidence of Contamination During Investigation

Description	Location	Depth (m bgl)
Hydrocarbon odour and occasional black staining	WS6, WS7, WS11, WS101, WS102, WS104, WS105, WS106, WS107, WS112, WS113, WS114, TP1	0.20 – 3.80

Olfactory and visual evidence of contamination was observed in exploratory holes at several locations in the vicinity of the former main building, in the northwest and southwest corners and in one location in the northeast.

7.8 Ground Gas and Vapour Conditions

The presence of made ground across the site indicates the potential for ground gases to be present. There was visual and olfactory evidence of hydrocarbon contamination in soil which could indicate the potential presence of organic vapour.

A summary of the range of readings is presented in table 7.3 below.

Date	Methane (%)	Carbon Dioxide (%)	VOC (ppm)	Flow Rate (I/hr)	Barometric Pressure (mb)
3-Oct-07	<0.1 - 30.5	<0.1 – 5.6	<1.0-2.0	<0.1	1016 - 1017
17-Oct-07	<0.1 - 49.7	< 0.1 - 4.6	<1.0	< 0.1 - 0.8	1013 - 1014
24-Oct-07	<0.1 - 81.8	<0.1 – 5.7	<1.0-6.3	< 0.1 - 0.3	1029
29-Oct-07	<0.1 - 64.8	<0.1 – 5.8	<1.0 - 3.0	< 0.1 - 0.3	1013
16-Jul-08	<0.1 – 73.0	< 0.1 - 4.3	< 0.1 - 0.8	<0.1 – 2.5	1016 - 1020
23-Jul-08	<0.1 - 62.7	< 0.1 - 3.4	<0.1 - 33	< 0.1 - 0.9	1014 - 1020
28-Jul-08	<0.1 – 72.1	< 0.1 - 4.0	_	< 0.1 - 0.8	1007 - 1008
5-Aug-08	<0.1 – 78.1	<0.1 – 5.8	< 0.1 - 0.7	0.2 - 0.7	1011 - 1012
11-Jul-17	<0.1 - 60.8	< 0.1 - 4.1	< 0.1 - 0.3	<0.1	1006 - 1007
27-Jul-17	<0.1 – 65.5	0.2 – 3.2	<0.1	<0.1	1002
1-Aug-17	<0.1 – 65.5	0.2 - 4.9	<0.1	<0.1	1011 - 1012
11-Aug-17	<0.1 - 66.0	0.2 – 5.2	<0.1	<0.1 - 4.8	1016
15-Aug-17	<0.1 – 65.9	0.2 – 3.7	<0.1	<0.1	1011 - 1012
22-Aug-17	<0.1 - 59.7	1.5 – 5.8	<0.1	<0.1	1018

Table 7.3 Summary of Gas and Vapour Monitoring

7.9 Underground Obstructions

The buildings and structures present on site during the ground investigations in 2007 and 2008 have since been demolished, however the hardstanding and concrete slabs were still present at the time of the ground investigation in July 2017. Therefore there is a risk of buried construction (e.g. foundations and services) across the site.

At the time of writing, site clearance was being undertaken at the site, all vegetation had been cleared and the hardstanding was being broken out and removed, it is unknown whether all buried construction will be removed as part of this process.

8 Material Properties

8.1 General

The following sections include data from the previous investigations by MLM dated 2008 (Ref. DMB/721750/R1/F and Ref. DMB/721750/R2/F).

The following presents a summary of the properties of the soils encountered, based on field observations, in situ field testing and laboratory test results.

For the purposes of property designation, soils are divided into fine soils (clays and silts) and coarse soils (sands and gravels).

Soil plasticity class for fine soils is based on the classification system of BS5930, adopting modified plasticity index values (based on percentage passing 425µm sieve).

Volume change potential of fine soils on change of moisture content has been assessed using guidance provided in NHBC Standards/BRE Digest 240 - Part 1.

Equivalent approximate undrained shear strengths (c_u) and equivalent approximate coefficients of volume compressibility (m_v) have been calculated from recorded SPT N values, adopting f₁ and f₂values respectively (based on CIRIA 143)appropriate to the recorded plasticity.

The angle of shearing resistance (☑) of the coarse soils has been derived from the uncorrected standard penetration resistance N using the relationship published by Peck et al (1967).

Because of the nature of the investigation techniques employed, it is difficult to determine with accuracy the Grade of the structured Chalk (structureless Chalk can be generally reasonable accurately graded based on visual observation of disturbed samples), which is best determined from significantly more costly, rotary cored boreholes. Therefore, the Chalk Grades assigned to the structured Chalk strata are based on visual observations of the recovered material and engineering judgement concerning the in situ fracture spacing and aperture.

8.2 Made Ground

The made ground is inherently variable and as such representative values of geotechnical properties are impracticable to determine. On this basis, limited laboratory geotechnical testing has been undertaken on it.

SPT 'N' values (uncorrected for overburden pressure) in the granular made ground deposits at a depth of 1.0m bgl ranged from to 5 to 8 indicating a loose density and angles of friction of approximately 28° -29°.

SPT 'N' values (uncorrected for overburden pressure) in the cohesive made ground deposits, at depths of 1.0m to 2.0m bgl, ranged from 4 to 29, equating to approximate shear strengths of 18kPa to 131kPa, indicating a very low to high undrained shear strength classification (BS5930).

A single atterberg limits test was undertaken on a sample of cohesive made ground, the natural moisture content was 21% with a modified plasticity index of 13%. On this basis, the soil is classified as intermediate plasticity (CI soil) and of low swelling/shrinkage potential on change of moisture content.

Sulphate (SO₄) analysis on the made ground recorded a level of 0.06 l⁻¹ and pH value of 7.7.

8.3 Alluvium

Atterberg limits testing was undertaken on a single sample of the cohesive alluvial soils. The natural moisture content was 17% with a modified plasticity index of 7%. On this basis, the soil is classified as low plasticity (CL soil) and of low swelling/shrinkage potential on change of moisture content.

SPT 'N' values (uncorrected for overburden pressure) in the Alluvium deposits, at depths of 1.0m to 3.0m bgl, ranged from 4 to 13, equating to approximate shear strengths of 18kPa to 58.5kPa, indicating a very low to medium undrained shear strength classification.

8.4 Lowestoft Formation (Glacial Till)

SPT 'N' values (uncorrected for overburden pressure) in the granular glacial deposits, at depths of 2.0m to 4.0m bgl, ranged from 9 to 25 indicating a loose to medium relative density. Angles of shearing resistance based on these results range from 30° to 35°.

SPT 'N' values (uncorrected for overburden pressure) in the cohesive glacial till, at depths of 1.0m to 4.0m bgl, ranged from 6 to 63, which equates to approximate shear strengths of 27kPa to 283.5kPa, indicating a low to very high undrained shear strength classification.

Recorded natural moisture contents in the fine fraction of these materials range from 14% to 21% and modified plasticity indices from 7% to 20%. On this basis these soils are classified as of low to intermediate plasticity (CL to Cl soils) and of low to medium swelling/shrinkage potential on change of moisture content.

Atterberg limits testing was undertaken on samples taken from the glacial till described as 'chalky' clay, chalk and very clayey 'chalky' gravelly sand. Recorded natural moisture contents in the fine fraction of these materials range from 12% to 38% and modified plasticity indices were 4%. On this basis these soils are classified as a silt (ML soil) and of low swelling/shrinkage potential on change of moisture content.

Sulphate (SO4) analysis on the Glacial Till recorded levels of <0.01 to 0.02g l-1 and pH values of 7.9 to 8.3.

8.5 Chalk

SPT 'N' values (uncorrected for overburden pressure) recorded in the chalk range from 5 to 39 which, based on published guidance, indicates the chalk to be of a weathering grade Dm/Dc to A.

8.6 Summary

In summary the following geotechnical parameters have been recorded and/or calculated:

Table 8.1 Geotechnical Parameters

Stratum	Moisture Content (%)	Plasticity Index* (%)	Swelling/ Shrinkage Potential	SPT N Values	Angle of friction (Ø) (Deg)	Undrained Shear Strength (kN/m²) SPT
						511
Made Ground	21	13	Low	4 to 29	28 to 29	18 to 131
Alluvium	17	7	Low	4 to 13	-	18 to 58.5
Lowestoft Formation (Glacial till)	14 to 21	7 to 20	Low to intermediate	6 to 63	30 to 35	27 to 283.5
Zig Zag Chalk Formation	-	-	-	5 to 39	-	-

* Modified

9 Geotechnical Assessment

9.1 General

This geotechnical assessment is based on the parameters determined from the field work and laboratory analysis as described in section 8. It presents a geotechnical assessment of possible foundation solutions and infrastructure design; it does not constitute a detailed design report for the proposed development.

The merits of the available options discussed should be reviewed by the foundation/structural engineers.

The proposed development is understood to comprise eight blocks of commercial and light industrial business units and associated access roads, car parking and soft landscaping.

It is anticipated that finished ground levels will be at, or close to, existing ground levels. Should this not be the case then this assessment may need to be reviewed.

9.2 Existing Buried Construction

At the time of writing, the hardstanding on site and concrete slabs below previous building was being broken out and removed as part of the site strip. It is possible that existing buried construction including tanks, sumps, foundations and services will be encountered below the site.

Unless it is to be incorporated within the new development, any old construction encountered should be fully penetrated by all new foundations and broken well away from any new construction.

Any soil disturbed by excavation of foundations, tanks, sumps and services should also be fully penetrated by new foundations.

9.3 Excavations

Excavation to anticipated founding depths should be readily achievable using standard excavation plant. However, excavation through any buried construction may require heavy-duty excavation plant.

Instability of excavation faces was not noted during excavation of the trial pits, however random and sudden falls should be expected from the faces of near vertically sided excavations put down at the site. This situation is likely to be prevalent in the made ground and low strength natural fine soils and is likely to be exacerbated by water inflows.

Temporary trench support, or battering of excavation sides, is likely to be required for all excavations that are to be left open for any length of time, and will definitely be required where man entry is required.

Particular attention should be paid to excavation at, or close to, site boundaries and adjoining existing roads/structures/buildings, where collapse of excavation faces could have a disproportionate effect.

A risk assessment of the stability of any open excavation should be undertaken by a competent person and appropriate measures adopted to ensure safe working practise in and around open excavations. Further guidance on responsibilities and requirements for working near, and in, excavations can be obtained from the Construction Design and Management Regulations (2015).

Recorded groundwater levels are generally shallow. Based on site observations, it is considered that sump pumping is likely to be sufficient to deal with anticipated flows. However, it should be recognised that groundwater levels will fluctuate seasonally and the timing of construction may dictate the extent of groundwater control required.

Any water pumped from excavations is likely to need to be passed via settlement tanks before being discharged to the sewer; discharge consents will also be required.

9.4 Foundations

The appropriate foundation solution adopted for the site will depend not only on ground conditions, but also on structural loading, load distribution and the limiting criteria for movement or settlement of the buildings, which may have high specification finishes and unevenly distributed loadings so that settlement, and particularly differential settlement, will need to be maintained within tight tolerances.

The made ground and soft Alluvium deposits are considered unsuitable in their present condition for use as founding soils on the basis of their relatively low strength and high compressibility and should be fully penetrated by all new foundations.

The ground conditions at the site vary significantly and foundation types and depths will depend on the depth of made ground and soft alluvial deposits, underground obstructions and the variability of soils laterally across the building footprints.

9.4.1 Pad Foundations

Pad foundations are considered suitable for the proposed development where founding into firm to stiff Lowestoft Formation and alluvial deposits or structureless Zig Zag Chalk Formation deposits for blocks B, C, D, G and H in the south and east and based on the design soil parameters provided in earlier sections of this report, as a guide, an allowable net bearing capacity of 130kPa should be available for a 1m² pad at 1.0m depth or 140kPa for a 1m² pad foundation at 2.0m depth. Alternatively an allowable net bearing capacity of 115kPa should be available for a 2m² pad at 1.0m depth or 130kPa for a 2m² pad foundation at 2.0m depth. Table 9.1 shows a summary of suitable founding depths for each block.

Block	Suitable founding depth (m bgl)	Strata description
В	2.4	Sandy gravelly clay
С	1.6	Gravelly clay
D	1.0	Gravelly clay
G	2.8 (or piles)	Sandy gravelly silt (north)
		Structureless chalk (south)
Н	1.0	Gravelly clay

Table 9.1 Summary of suitable foundation depths by block

These values should result in total settlements of not more than 25mm, keeping differential settlements within acceptable limits. NB should enlarging the pads be considered (for example because loads are such that the quoted bearing pressure is inadequate based on the size of foundation identified) this will probably lead to increased settlements and the above recommendations should be reviewed.

9.4.2 Piled Foundations

In the west and north of the site, made ground and soft alluvial deposits have been encountered at depths greater than 2.0m bgl and in the southwest corner at depths greater than 3.0m bgl. Due to the variability and poor consolidation characteristics of these deposits, it is unlikely that traditional pad foundations will be suitable and therefore piled foundations are recommended for blocks A, E and F. Either pad foundations or piles are considered suitable for block G in the southwest. Driven piles should be suitable for this site. However, the choice of piling system and detailed design of piles are beyond the scope of this report and should be undertaken the specialist piling contractor taking into account the following considerations.

Obstructions in the ground, such as old foundations can cause piles to stop at shallower than design depth, or deviate from the vertical, thereby reducing their capacity

Groundwater was observed during the boring of the intrusive holes and temporary casing may be required for bored piles unless CFA piles with placement of concrete as the pile is withdrawn, are used.

Piles should extend a minimum of five pile diameters into the bearing stratum to fully mobilise end-bearing resistance

The made ground and natural low strength soils will provide only minimal lateral resistance and piles should be designed to be sufficiently rigid, and to have sufficient embedment into the founding soils to minimise the risk of unacceptable lateral movement

Piles should be designed adopting the parameters and recommendations provided in earlier sections of this report and CIRIAC574.

9.5 Ground Improvement

The made ground and alluvial deposits are considered unsuitable in their present condition for use as founding soils and it is recommended that they be treated in situ to improve their bearing characteristics to allow shallow foundations to be constructed upon them.

Vibrotreatment may not be suitable at the site due to high organic content in the alluvial deposits. It is understood that discussions are currently taking place into the feasibility of improving the ground using Controlled Modulus Columns (CMC).

9.6 Ground Floor Slabs

Suspended and ground bearing slabs should be suitable for use at the site. Ground floor slabs should be employed in conjunction with a suitable gas protection scheme due to the presence of made ground and ground gases at the site.

Following site preparation/regrading it is anticipated that made ground will remain below floor slabs. This material is likely to be mixed and variable and generally of relatively low strength. It is recommended that it be re-engineered through excavation and sorting to remove any oversize or otherwise unsuitable materials prior to recompaction or replacing with a granular fill.

9.7 Pavement Construction

Following site preparation and regrading the sub-grade will comprise made ground and natural clays.

The made ground is mixed and variable and it is recommended that, where encountered at formation level, these deposits be excavated rolled. The excavated material should be sorted to remove any oversize or otherwise unsuitable materials, prior to recompacting. Any deficit in material should be made up in suitable imported material suitably compacted as above. Following this treatment an overall design CBR of 2% should be available.

To improve upon the design CBR values of the sub grade the following options could also be considered:

- Lime or cement stabilisation will improve design CBR values significantly and could be considered in order to reduce capping and or sub-base thicknesses.
- Use of geogrid support layers in capping/sub base layer.
- Use of crushed concrete from on site as capping.

9.8 Below Ground Concrete Design

Based on the results of the pH and water soluble sulphate determinations on soil samples and in accordance with the categorisation system of BRE Special Digest 1, the soils below the site fall within Design Sulphate Class DS-1 with a corresponding ACEC Class of AC-1.

9.9 Soakaway Potential

Soakaway testing was undertaken as part of the investigations in 2008 and 2017, the results are presented in Appendix E. Based on these results a 'design' infiltration rate of 3.04E-04m²/hr should be recommended.

The Environment Agency are unlikely to accept soakaways discharging into made ground and discharge should be below the made ground into the natural soil.

Concentrated ingress of water into the chalk can initiate new dissolution features, particularly in low-density chalk and destabilise the loose backfill of existing ones. Infilled dissolution feature have not been identified at the site, however based on the CIRIA guidance, soakaways should be avoided in areas where dissolution features are known to be prevalent if at all possible but, if unavoidable, should be sited at least 20m away from any foundations. The type of soakaway adopted and their locations should be discussed with a Building Control approved inspector to obtain their requirements in terms of Building Regulations.

9.10 Reuse of Materials

The made ground below the site is considered unsuitable in its present condition for re-use as fill at the site on the basis of the recorded contamination/that it contains significant volumes of unsuitable materials.

Excavated natural fine soils are considered are considered unsuitable for re-use as fill at the site due to their low strength/high compressibility. Excavated natural coarse soils are considered suitable for re-use as fill at the site below areas of hard-standing or buildings following sorting to remove any deleterious, oversize or otherwise unsuitable materials.

Excavated natural heavily weathered (Grade D) Chalk soils are considered unsuitable for re-use as fill at the site due to their relatively low strength and likely high compressibility. Excavated Grade C and above Chalk should be suitable for re-use as fill at the site. However, it should be noted that chalk is highly susceptible to wetting and overworking, which can quickly render otherwise suitable materials unsuitable.

10 Assessment of Soil Chemical Data

The following sections include data from the previous investigations by MLM in 2007 and 2008 alongside data from the recent investigation in July 2017. All data will be compared against current guideline screening values.

10.1 Guidelines

This section presents a generic quantitative risk assessment (GQRA) to identify potential sources of contamination for further evaluation in the Contaminated Land Risk Assessment section of the report. GQRA involves a comparison of chemical laboratory test results to soil screening levels that are considered to be appropriate to the context of the intended site use.

Soil screening values used in this human health risk assessment have been drawn from the following publications:

- Suitable for Use Levels (S4ULs) were published in 2015 by Land Quality Management Ltd (LQM) and the Chartered Institute of Environmental Health (CIEH). S4ULs are based on the principles of 'minimal' or 'tolerable' risk and are therefore sufficiently conservative for GQRAs under the planning regime, which need only demonstrate that new development is 'safe' and 'suitable for use'. By reproducing these S4ULs, MLM acknowledges "Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3184. All rights reserved".
- Category 4 Screening Levels (C4SLs) were published in 2014 by Defra and have been used for lead, which has no S4UL.
- There is no S4UL for cyanide and, in the absence of UK guidance, a Dutch Intervention Value (DIV) of 50mg/kg has been used.
- Generic Assessment Criteria (GAC) were published jointly in 2009 by the Environmental Industries Commission, Association of Geotechnical and Geoenvironmental Specialists and Contaminated Land: Applications in Real Environments (EIC/AGS/CL:AIRE) for a range of organic and inorganic contaminants not covered by S4ULs.

A full list of screening levels used in the assessment is included in Appendix F.

Appropriately sensitive testing methods have been adopted throughout and on this basis, where contaminants are recorded at less than detection limits, they are considered to be 'not present'.

10.2 Risks to Human Health

The development proposals are for commercial and light industrial and for the purpose of this human health risk assessment the intended land use scenario is considered to be commercial.

Soil organic matter tests in samples of made ground gave values of between 0.60% and 2.1% with a mean of 1.3%, therefore a generic SOM of 1% has been used for selecting appropriate screening levels.

Table 10.1 below provides a summary of the measured contaminant concentrations above screening levels. Results below screening levels are not presented in the table and further assessment of these contaminants is not considered to be necessary.

Table 10.1 Results Exceeding Human Health Screening Levels

Contaminant	Screening Level	Number Tested	Location Exceeding (loc., depth, conc., soil)
Aliphatic TPH >C10 - C12	9700	17	WS113 (0.40m, 16000, MG)*

All concentrations in mg/kg

MG denotes made ground

*The contamination testing undertaken on soil samples in 2008 measured TPH in broader faction bands than the screening values published in current guidance. We have therefore conservatively compared historic TPH banded results to the lowest screening value that is most protective of human health.

10.3 Nature and Distribution of Soil Contamination

TPH contamination was identified in one location (WS113) at the southeast end of the main building on site. This contamination was in a 0.31m thick layer of made ground associated with hydrocarbon odour. There was no evidence of hydrocarbon odour in soil in the deeper made ground or in the underlying chalk.

11 Assessment of Groundwater Chemical Data

11.1 Guidelines

The site is underlain by a Principal Aquifer and therefore the results of the analyses have been compared to the UK Drinking Water Standards (DWS).

The site is bordering a drainage ditch and therefore the results of the analyses have also been compared to Environmental Quality Standards (EQS). Where there are no EQS for a contaminants of concern reference will be made to appropriate alternatives.

EQS for some metals are banded according to water hardness. Water hardness values ranging from 280 to 370 CaCO₃/l have been recorded and for the purposes of this assessment the EQS values for the >250 mg CaCO₃/l range have been adopted.

11.2 Groundwater

Tables 11.1 and 11.2 below provide a summary of the contaminant concentrations recorded above DWS and EQS. Results below DWS/EQS are not presented in the table and further assessment of these contaminants is not considered to be necessary.

Contaminant	DWS	2007 (location, conc., depth, stratum)	2008 (location, conc., depth, stratum)	2017 (location, conc., depth, stratum)
Arsenic	10	WS3 (13, 3.26m, ZZC)	WS113 (26.6, 0.51, MG)	-
Mercury	1.0	WS3 (4.1, 3.26m, ZZC) WS5 (4.4, 1.98m, AL) WS6 (2.1, 2.54m, LF)	-	WS202 (1.1, 3.59m, ZZC)
Selenium	10	WS3 (14, 3.26m, ZZC)	-	WS201 (12, 3.29m, ZZC) WS202 (18, 3.59m, ZZC)
Nickel	20	-	WS113 (69.7, 0.51m, MG)	-
TPH	10	-	WS113 (5200, 0.51m, MG)	-

Table 11.1 Groundwater Results Exceeding DWS

All concentrations in µg/l MG denotes Made Ground AL denotes Alluvium LF denotes Lowestoft Formation ZZC denotes Zig Zag Chalk Formation

Contaminant	EQS	2007 (location, conc., depth, stratum)	2008 (location, conc., depth, stratum)	2017 (location, conc., depth, stratum)
Copper	28	WS3 (100, 3.26m, ZZC)	WS113 (80.8, 0.51m, MG)	-
Mercury	1.0	WS3 (4.1, 3.26m, ZZC) WS5 (4.4, 1.98m, AL) WS6 (2.1, 2.54m, LF)	-	WS202 (1.1, 3.59m, ZZC)
TPH	30	-	WS113 (5200, 0.51m, MG)	-

Table 11.2 Groundwater Results Exceeding EQS

All concentrations in µg/l MG denotes Made Ground AL denotes Alluvium LF denotes Lowestoft Formation ZZC denotes Zig Zag Chalk Formation

11.3 Nature and Distribution of Soil Leachate and Groundwater Contamination

In the 2007/2008 investigations, groundwater contamination in excess of DWS and EQS was identified in the southern half of the site in the vicinity of the former large building. By 2017, groundwater contamination in excess of DWS and EQS had reduced and was more localised to an area in the southwest of the former building. The previously identified arsenic, nickel, copper and hydrocarbons are no longer present in 2017 and the extent and concentrations of mercury are greatly reduced.

The overall groundwater flow beneath the site is towards the southwest, suggesting the contamination may not be associated with the historic landfill off-site to the west. Equally, however, there is no evidence of an on-site source of mercury and selenium as levels in soil are relatively low.

12 Assessment of Ground Gas and Organic Vapour Data

This section presents a GQRA to identify potential sources of gas and organic vapour in the ground that could impact on human health.

12.1 Guidelines

The proposed development is commercial and the potential impact of ground gas on development is assessed through the British Standard BS8485:2015 and the Characteristic Situations published by CIRIA.

A generic quantitative risk assessment for organic vapour (v-GQRA) has been undertaken in accordance with the CIRIA VOC Handbook C682 to assess the potential impact on human health from the indoor inhalation of vapour generated by organic compounds in soil. For TPH, the LQM S4ULs are considered to be protective of human health from the indoor inhalation of hydrocarbon vapour.

12.2 Screening Assessment – Ground Gas

Fourteen visits to site have been made following site work (four visits in 2007, four in 2008 and six in 2017). A summary of site maximum monitoring results are presented in Table 12.1 below from which Gas Screening Values (GSVs) have been calculated.

Parameter	Maximum 2007	GSV 2007	Maximum 2008	GSV 2008	Maximum 2017	GSV 2017
Methane	81.8%	0.654 l/hr	78.1%	1.95 l/hr	66.0%	3.17 l/hr
Carbon dioxide	5.8%	0.0464 l/hr	5.8%	0.145 l/hr	5.8%	0.278 l/hr
Flow rate	0.8 l/hr		2.5 l/hr		4.8 l/hr	

Table 12.1 Site Maximum Gas Concentrations and Flow Rate

An initial screening assessment on the most recent data from 2017 places the site in a CIRIA Characteristic Situation CS3 for methane ground gas and CS2 for carbon dioxide ground gas. However, the levels of methane are significantly greater than 1% and the GSV is at the upper limit for CS3, therefore the Characteristic Situation for methane is raised to CS4.

12.3 Screening Assessment – Organic Vapour

Based on soil test results, S4ULs for TPH compounds in soil are exceeded, which indicates that there is a potential risk to human health for the inhalation of vapour generated by organic compounds in soil.

12.4 Nature and Distribution of Ground Gas and Organic Vapour Contamination

Elevated concentrations of methane were recorded in boreholes located along the western boundary, nearest to the historic landfill offsite to the west.

Levels of methane show a trend in reduction between 2007 and 2017, however longer term monitoring would be required to establish if this a truly reducing source term.

13 Contaminated Land Risk Assessment and Conceptual Site Model

13.1 General Approach

The assessment of risk from contamination follows the source-pathway-receptor (SPR) approach. Each of these elements is described as follows.

Without a source-pathway-receptor linkage in place, it is considered that there is no risk of harm and remediation is unlikely to be required. If, however, there is a linkage between source and receptor then a risk-based approach is used to assess the significance or potential impact of the SPR-linkage to determine if remediation is required.

Such an assessment involves Quantitative Risk Assessment (QRA). The QRA process involves the identification of sources based on site investigation findings (eg compound concentration exceeding S4UL) together with identification of the exposure pathway and sensitive receptor. A Conceptual Site Model (CSM) is then developed and presented that shows the possible pollution linkages.

In terms of identifying *significant* pollution linkages (i.e. those that require remediation), a level of risk (ranging from Very Low to Very High) is assigned to each. Where the level of risk is 'Moderate' or greater, then the pollution linkage is considered to be 'significant' and remediation is required. Risk definitions are provided in Appendix G.

13.2 Identified Contamination Sources

Based on the GQRA presented in the previous sections, sources of contamination that could impact on receptors have been identified and are summarised in Table 13.1 below.

Table 13.1 Residual Sources of Contamination in 2017

Receptor type	Source
Human health	Hydrocarbons in made ground Methane and carbon dioxide ground gas
Groundwater	Mercury and selenium in groundwater
Surface waters	Mercury in groundwater

13.3 Potential Pollution Linkages

Table 13.2 below presents a review of potential pollution linkages for the site.

Receptor	Pathway	Notes	SPR Link
Human Healt	h		
Future site users	Dermal contact, ingestion or inhalation of soil and soil dust	Site users could come into contact with contaminated soils in landscape areas and screening levels are exceeded.	~
	Migration in permeable strata and inhalation of gas/organic vapour	Ground gas could enter new buildings and accumulate. Gas monitoring has recorded elevated methane, carbon dioxide and gas flow.	~
	Migration in permeable strata, accumulation and risk of explosion	Ground gas could enter new buildings and accumulate. Gas monitoring has recorded elevated methane and gas flow.	✓
Adjacent site users	Ingestion/inhalation of windblown dust	Residential properties are located adjacent to the site and screening levels are exceeded.	~
Construction workers and services maintenance staff	Dermal contact, ingestion or inhalation of soil and soil dust	Construction workers may come into contact with contaminated soil during site works and screening levels are exceeded.	~
Developmen	t		
Future plant life	Plant uptake in garden or landscape area	See section 12.5.	-
Water supply pipes	Contact with contaminated material	See section 12.6.	-
Environment			
Surface water: Drainage ditch along western boundary	Surface runoff	The site will be capped with hardstanding and buildings	×
	Groundwater movement	Groundwater contamination is in excess of EQS and could be in hydraulic connection with the drainage ditch	~
Groundwater: Superficial aquifer	Leaching from soil and vertical fluid movement	Superficial deposits are designated as unproductive strata	x
Groundwater: Bedrock Principal aquifer	Leaching from soil and vertical fluid movement	Groundwater contains mercury and selenium in excess of DWS	~

Potentially complete SPR linkages are carried forward for further assessment in Table 13.3.

13.4 Phase 2 Updated Conceptual Model

Based on the sources, pathways and receptors identified above, Table 13.3 below summarises all complete pollutant linkages for the site and identifies the level of risk from each.

Table 13.3 Risk Estimation Table

Source	Area Affected	Contaminants	Pathway	Receptor	Likelihood	Potential Magnitude	Overall Risk	Justification and/or Mitigating Factors
Made Ground	Southeast	TPH	Ingestion, dermal contact and fugitive inhalation	Site users	Unlikely	Medium	Low	Site will be capped by buildings and hardstanding.
				Site construction/ maintenance workers	Likely	Medium	Moderate	Exposure to contaminated soils could occur during construction and ground works.
				Adjacent site users	Low	Medium	Low	Contaminated soil dust could reach neighbouring residential development to the south during construction and ground works
	Southwest	Mercury and Selenium	Leaching or vertical fluid movement	Groundwater (bedrock aquifer)	Likely	Medium	Moderate	DWS are exceeded in groundwater.
		Mercury	Groundwater movement	Surface water	Likely	Medium	Moderate	EQS are exceeded in groundwater.
Off site landfill	West	Ground gas (Methane)	Migration and explosion	Site users and structures	Likely	Severe	High	Characteristic Situation CS4 for methane.
		Ground gas (Carbon dioxide)	Inhalation	Site users	Low	Medium	Low	Characteristic Situation CS2 for carbon dioxide.
				Site construction/ maintenance workers	Low	Medium	Moderate	Carbon dioxide >5% and could accumulate in deep excavations and services voids.

14 Remediation and Risk Management

14.1 General

This assessment has identified potential hazards at the site with possible SPR-linkages, which could represent potentially unacceptable risks to identified receptors.

Mitigation of the SPR-linkages summarised in Table 13.3 is recommended to reduce the impact of contamination on site occupants.

The following is for guidance only and does not represent final design of a remediation scheme. Remediation schemes can require the submission of a remediation strategy and verification plan to the Local Authority and/or Environment Agency.

14.2 Soil Remediation

On the basis of the GQRA and CSM, the following soil remediation is considered to be required.

Aspect	Description
Direct contact by construction workers	Construction workers should be provided with suitable PPE when dealing with potentially contaminated soils.
Direct contact by future maintenance workers	Bedding, backfill and surround to all services constructed in clean imported materials such that installation of new pipework and future maintenance is in clean soil.

Table 14.1 Summary of Recommended Soil Remediation and Mitigation

14.3 Groundwater Remediation

DWS and EQS are exceeded by a small margin for selenium and mercury, however the results over the past ten years (2007-2017) suggest a reducing source term. Groundwater treatment will almost certainly be ineffective against such low concentrations and is not proposed.

14.4 Gas and Organic Vapour Protection

The site is CS4 for methane and CS2 for carbon dioxide and gas protection is therefore required. The development will include industrial (Type D) buildings and gas protection should achieve a minimum BS8485:2015 solution score of 3.5, taking into account proposed construction.

Hydrocarbon vapour protection is required for new buildings, however this can be fulfilled as part of the proposed gas protection.

14.5 Water Supply Pipework

Certain contaminants in soil can have an adverse effect on the quality of drinking water in pipework constructed underground.

The UKWIR publication 10/WM/03/21, *Guidance for the selection of water supply pipes to be used in brownfield sites*, provides developers and water companies with criteria against which the results of soil testing can be compared as part of design. It should be noted that the scope of testing in the guidance exceeds what is required from a contaminated land investigation based on previous site use.

It is advised therefore that this report is provided to the water company who, in turn, will advise on appropriate materials to be used in the water supply network.

In the absence of testing or feedback from the water supply company, it should be assumed that barrier pipe construction is required on all brownfield sites or where pipework will pass through made ground soil whose chemical quality will be compromised compared to natural soil.

14.6 Off Site Disposal

All waste soils which are to be removed from site (e.g. foundation arisings) need to be classified in terms of waste disposal prior to export.

The proposed receiving landfill site should be provided with a copy of the laboratory test results, including the results of any waste acceptance criteria (WAC) testing in order to confirm the waste classification and that they are suitably licensed to accept the waste.

Some additional testing may be necessary for the receiving landfill site to confirm its ability to accept the waste.

Natural soils from an uncontaminated site (excluding peat and topsoil) would normally be disposed of at an inert landfill without the need for further testing.

Non-hazardous soils require pre-treatment prior to disposal. Effective pre-treatment, involving separation, sorting and screening can offer cost reductions. Costs for disposal of non-hazardous and hazardous soils are significant compared to disposal of inert material.

14.7 Remediation Documentation

Based on the findings of this report, remediation is considered to be required and under the conditions of planning, a remediation strategy and verification plan may need to be submitted to the planning authority.

14.8 Construction Health and Safety

It is recommended that construction workers at the site adopt appropriate personal hygiene precautions at the site and use personal protective equipment as required, particularly provision of washing facilities, wearing of gloves and avoidance of hand to mouth contact (e.g. eating or smoking), especially when dealing with made ground.

Handling of soil and water should be minimised and dust suppression measures should be implemented, particularly during any excavation through the made ground. Soils should be dampened during excavation and handling to limit dust, and lorries suitably sheeted. Surface run-off from vehicle washing, dust suppression or storms, during construction, should be controlled to prevent entry into watercourses and off-site drainage systems.

Gas and vapour monitoring should be carried out before entry into deep excavations or confined spaces.

These precautions are considered to be industry standard when developing sites of this nature, and reference can be made to the HSE document HSG66 *Protection of workers and the general public during development of contaminated land* for further information.

14.9 Land Remediation Relief

At the time of writing, Land Remediation Relief (LRR) is a 150% credit on corporation tax claimable by certain corporate bodies against qualifying expenditure when undertaking investigation and remediation of potentially contaminated or derelict sites.

Contamination requiring remediation has been identified and there may be potentially qualifying expenditure.

15 Summary and Recommendations

The site is underlain by made ground over superficial Alluvium and Lowestoft deposits, which in turn overlie soils identified as Zig Zag Chalk Formation. Existing construction including foundations, services and tanks is likely to be present as a result of the previous development of the site.

15.1 Geotechnical

Pad foundations are considered suitable for the proposed development where founding into the firm to stiff Lowestoft and Alluvial deposits of structureless Zig Zag Chalk Formation for blocks B, C, D, G and H, at depths of 1.0m to 2.8m bgl

An allowable net bearing capacity of 130kPa should be available for a 1m² pad at 1.0m depth or 140kPa for a 1m² pad foundation at 2.0m depth. Alternatively an allowable net bearing capacity of 115kPa should be available for a 2m² pad at 1.0m depth or 130kPa for a 2m² pad foundation at 2.0m depth. These values should result in total settlements of not more than 25mm, keeping differential settlements within acceptable limits. In the west and north of the site, deep made ground and soft alluvial deposits are present. These deposits are not considered suitable founding deposits for pad foundations and therefore piled foundations are recommended for blocks A, E, F and G.

Either deeper pad foundations or piles are considered suitable for block G in the southwest.

There is likely to be adequate infiltration capacity for soakaway drainage at the site, though the ground conditions including the presence of made ground, contamination in soil and the potential for new dissolution features forming in chalk should be taken into account when designing a suitable drainage system for the site.

Excavated natural soils are unlikely to be suitable for re-use at the site.

Existing buried construction should be fully penetrated by, and broken away from new foundations.

Ground floors may need to be suspended due to the thickness of made ground and low strength soils. Buried construction should be broken away from the slab to avoid interaction.

Following the surfacing strip an overall design CBR of 2% should be available on the made ground following treatment and natural fine soils, following proof rolling of the formation.

The soils at the site fall within Design Sulphate Class DS-1 with a corresponding ACEC Class of AC-1.

15.2 Residual Contamination in 2017

Hydrocarbons in made ground in the southeast exceed screening levels for future commercial use.

Groundwater contains mercury and selenium above DWS and mercury above EQS. These exceedances are however marginal and the remediation of low levels of metals in groundwater is likely to be highly ineffective and is not therefore proposed.

Based on extensive monitoring, the site is Characteristic Situation CS4 for methane and CS2 for carbon dioxide. Levels of methane have reduced over the past ten years (2007-2017).

Recommended remediation and mitigation could include:

- Gas protection achieving a BS8485:2015 solution score of 3.5 in buildings (possibly in combination with in-ground venting along the western boundary)
- Hydrocarbon vapour protection incorporated into gas protection measures
- Installation of services in corridors of clean soil

• Protection of site workers and the general public during construction

This report should be presented to the water supply company to assist in their selection of materials for potable water supply pipework.

15.3 Further Work

A current tree survey is required to determine the potential influence of trees adjacent to the site, to the proposed foundation solution.

A remediation strategy and verification plan may need to be submitted to the planning authority.

Materials destined for off-site disposal to landfill may require further assessment in accordance with WM3 to determine their waste classification. Waste acceptance criteria testing may also be required by the receiving landfill site in order to confirm they are suitably licenced to accept the waste.

If materials are to be re-used on site, a materials management plan may be required in accordance with the CL:AIRE Definition of Waste: Development Industry Code of Practice in order to demonstrate that the material is not a waste.

16 References

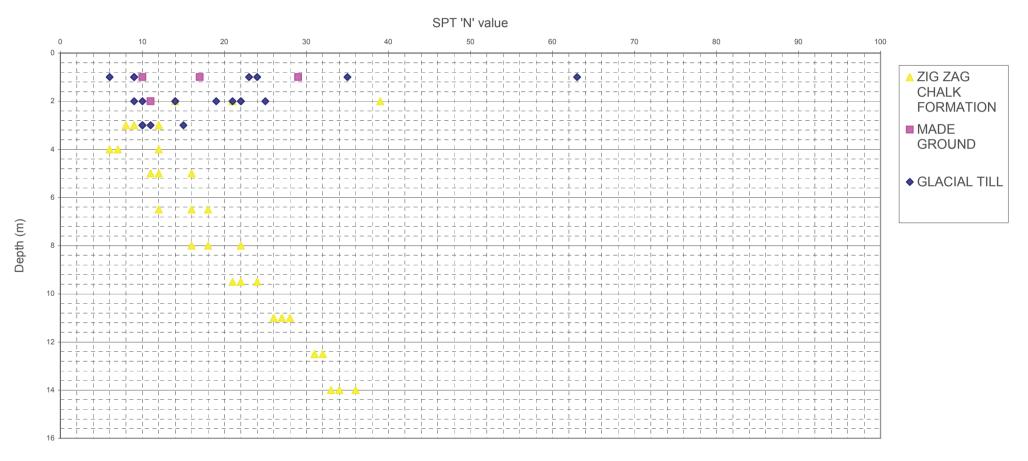
- 1 Association of Geotechnical and Geoenvironmental Specialists (2004) A clients guide to site investigations.
- 2 Association of Geotechnical and Geoenvironmental Specialists (2006) AGS guidelines for good practise in site investigations.
- 3 Association of Geotechnical and Geoenvironmental Specialists (1999) Code of conduct for site investigations.
- 4 Association of Geotechnical and Geoenvironmental Specialists (2005) Management of risk associated with the preparation of ground reports.
- 5 Association of Geotechnical and Geoenvironmental Specialists (2005) Guidelines for the preparation of the ground report.
- 6 Association of Geotechnical and Geoenvironmental Specialists (2000) Guidelines for combined geoenvironmental and geotechnical investigations.
- 7 British Standards Institution (2011) Investigation of potentially contaminated sites code of practice. BS10175:2011.
- 8 British Standards Institution (2010) Code of practice for site investigation. BS5930:2015.
- 9 British Standards Institution (1990) Methods of test for civil engineering purposes. BS1377:1990.
- 10 British Standards Institution (1986) Code of practice for foundations. BS8004:2015.
- 11 British Standards Institution (2015) Code of practice for the characterization and remediation from ground gas in affected developments. BS8485:2015.
- 12 British Geological Survey (2002) Sheet 205 Saffron Walden. 1:50,000 scale Geology Map, Solid and Drift Edition.
- 13 Building Research Establishment (2005) Concrete in aggressive ground. BRE Special Digest 1.
- 14 Building Research Establishment (2003) Soakaway Design. BRE Digest 365.
- 15 CIRIA (1995) The standard penetration test (SPT). Methods and use. CIRIA Report C143.
- 16 CIRIA (2002) Engineering in chalk. CIRIA Report C574
- 17 CIRIA (2007) Assessing risks posed by hazardous ground gases to buildings. CIRIA Report C665.
- 18 CIRIA (2009) The VOCs Handbook: Investigating, assessing and managing risks from inhalation of VOCs at land affected by contamination. CIRIA Report C682.
- 19 DEFRA & Environment Agency (2004) Model procedures for the management of contaminated land. Contaminated Land Report 11.
- 20 Environment Industries Commission, Association of Geotechnical and Geoenvironmental Specialists and Contaminated Land: Applications in Real Environments (2009) The soil generic assessment criteria for human health risk assessment.
- 21 European Community (1976) Environmental quality standards for List 1 and List 2 dangerous substances (EC Directive 76/464/EEC).

- 22 Hansen J and Brinch A (1978) A code of practise for foundation engineering. Danish Geotechnical Institute Bulletin No. 32.
- 23 Health and Safety Executive (1991) Protection of workers and the general public during the development of contaminated land.
- 24 Highways Agency (2009) Interim Advice Note 73/06 Revision 1 Design guidance for road pavement foundations.
- 25 Land Quality Management Ltd (2015) The LQM/CIEH S4ULs for human health risk assessment.
- 26 National House Building Council (2007) Guidance on evaluation of development proposals on sites where methane and carbon dioxide are present.

Figures

Figure 1: Site Location Plan

Figure 2: SPT N Values vs Depth

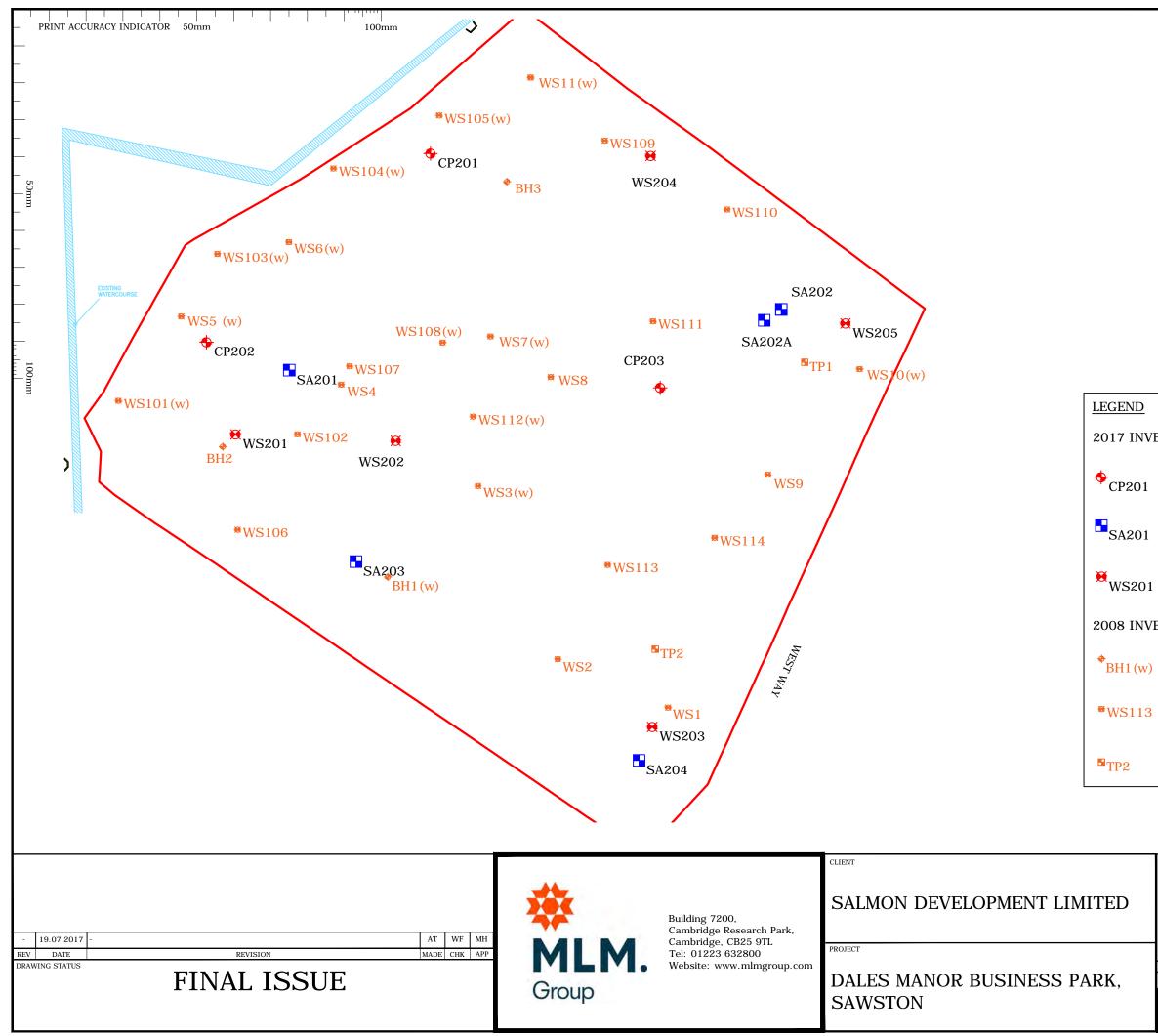


SPT 'N' VALUE vs DEPTH PLOT

Figure: 2

- Site: Dales Manor Business Park
- Location: Sawston, Cambridgeshire

Job No. 721750



Drawings

775322-DWG-ENV-001 Exploratory Hole Location Plan

16088-SK011-N Proposed Site Plan, Woods Hardwick

NOTES

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ENGINEERS, ARCHITECTS AND SPECIALISTS DRAWINGS AND THE SPECIFICATION.
- 2. DO NOT SCALE FROM THIS DRAWING MANUALLY OR ELECTRONICALLY. WRITTEN PERMISSION MUST BE OBTAINED FROM MLM PRIOR TO SCALING ELECTRONICALLY OR USING THIS ELECTRONIC FILE.
- 3. BASE PLAN PROVIDED BY THE CLIENT.

2017 INVESTIGATION

- CABLE PERCUSSION BOREHOLE LOCATION
- SOAKAWAY TEST LOCATION
- 1 WINDOWLESS SAMPLER BOREHOLE LOCATION

2008 INVESTIGATION

-) CABLE PERCUSSION BOREHOLE LOCATION
- 3 WINDOWLESS SAMPLER BOREHOLE LOCATION

TRIAL PIT LOCATION

EXPLORATORY HOLE PLAN	LOCATION
DRAWN/DESIGN AT MLM REF SCALE 1:1000 @A3 775322	REVISION _
PROJECT 775322-DWG-EN	V-001

ALL AREAS ARE GROSS INTERNAL

BLOCK UNIT

			-				
٨	1	5936	551	732	68	6668	619
A	2	5936	551	732	68	6668	619
D	3	7814	726	789	73	8603	799
В	4	4811	447	807	75	5618	522
	5	3765	350	596	53	4361	405
	6	1830	170		-	1830	170
С	7	1830	170		-	1830	170
	8	1830	170		-	1830	170
	9	1830	170		-	1830	170
	10	3070	285		-	3070	285
D	11	3795	352	632	59	4427	412
D	12	6343	589	632	59	6975	648
	13	6451	599	643	60	7094	659
Е	14	6451	599	643	60	7094	659
	15	3056	284		-	3056	284
	16	1484	138		-	1484	138
F	17	1484	138		-	1484	138
	18/19	3466	322		-	3466	322
	20	3231	300		-	3231	300
	21	1484	138		-	1484	138
G	22	1484	138		-	1484	138
	23/24	3433	319		-	3433	319
	25	10912	1014	910	85	11822	1099
Н	26	10867	1010	903	84	11770	1094
	27	18304	1701	2502	232	20806	1932
GRANI	D TOTAL	120907	11234	10503	976	131410	12210
		•	•	•	•	•	

GROUND FLOOR GIA FIRST FLOOR GIA

SQ. FT. SQ. M. SQ. FT. SQ. M.

TOTAL GIA | TOTAL GIA

SQ. FT.

SQ. M.

BLOCK	UNIT	TOTAL GEA SQ. FT.	TOTAL GEA SQ. M.
A	1 & 2	14413	1339
B, C & D	3, 4, 5, 6, 7, 8, 9, 10, 11 & 12	43727	4062
E	13 & 14	15432	1433
F	15, 16, 17, 18 & 19	10456	971
G	20,21, 22, 23 & 24	10606	985
Н	25, 26 & 27	46959	4363
GRAND TOTAL		141593	13153

SITE AREA -	313,025 sq.ft. 29,081m ²
DEVELOPMENT DENSITY (GEA) -	45.2%
CAR PARK RATIO BASED ON GROSS EXTERNAL AREAS (1:50 - MAXIMUM RATIO FOR B2 [263 spaces required])	1/49m ² (266 SPACES TOTAL)
DISABLED PARKING - (MINIMUM 5% PROVISION OF OVERALL SPACES)	32 SPACES PROVIDED
CYCLE STAND RATIO BASED ON GROSS EXTERNAL AREAS	158 EXTERNAL (1/83m²)
SURVEYED BOUNDARY FENCING -	

<u>N</u>	1no. UNIT OMITTED FROM BLOCKS G & H. UNIT NUMBERS AMENDED TO SUIT	DMC	CHW	26-04-17
М	DISABLED SPACES TO UNITS 12 AND 13 RE-LOCATED	mrma	mrma	24-11-08
L	WIND TURBINE ADDED AND SITE SIGNAGE BOARD RE-LOCATED	mrma	mrma	22-09-08
K	OVERALL TOTAL GIA FIGURE CORRECTED	BB	MA	28-08-08
J	TITLE NOTE AMENDED	BB	KDM	20-08-08
н	ACOUSTIC FENCE ADDED, INTERNAL CYCLE STAND RATIO TAKEN OFF	BB	KDM	18-08-08
G	PARKING CONFIGURATION TO BLOCK H AMENDED, CYCLE STANDS AMENDED	MA	MA	05-08-08
F	PARKING CONFIGURATIONS AMENDED, TRACKING DIAGRAMS ADDED	MA	MA	30-07-08
E	GENERAL AMENDMENTS TO SITE LAYOUT	DM	MA	23-07-08
D	SEATING ADDED, CAR PARKING AMENDED	DM	MA	18-07-08
С	ROAD LAYOUT AMENDED, HEDGE PARTIALLY REMOVED, CYCLE STANDS	DM	MA	17-07-08
	RELOCATED, 3.0m CLEARENCE INDICATED FROM BLOCK H TO HEDGE,			
	TRACKING REVISED			
В	DISTANCE FROM EXISTING TREES TO PROPOSED BLOCK H INCREASED,	BB	KDM	02-07-08
	RADIUS IN PROPOSED NEW ENTRANCE AMENDED			
	HEAVY GOODS VECHICLES ACCESS FOR BLOCKS F AND G PROVIDED			
А	GENERAL AMENDMENTS TO SITE LAYOUT	DM	MA	18-06-08
Revision	Description	Drawn	Checked	Date

		Woods Hardwick Architects, Engineers and Development Consultants
Title	DALES MANOR BUSINESS PARK SAWSTON	15-17 Goldington Road Bedford MK40 3NH United Kingdom
Details	PROPOSED SITE PLAN	T. +44 (0)1234 268862 F. +44 (0)1234 353034 mail@woodshardwick.com www.woodshardwick.com

Drawn **BB**

Please consider the environment before printing this drawing

Scale 1:500 @ A1 Date NOV 2017

^{Chk} KDM

Appendix A - Exploratory Hole Logs

Lo Pro Cli Pro	ent: oject	on: Sawa t ID: 7217	ston, 750 urance r: Ros	Carr e Es		eshire			BOREHOLE Drilling Metl Date of Bor Ground Lev Coords:	nod: ng: el:	BH1 Cable Percussion Start Date: 03/10/2007 Finish Date:04/10/2007 -	-			M .uk.com
IN SI	τυ τι	ESTS/SAMF	PLING						STRATA					NOT	ES
Depth (m)	Sample Ref.	SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	De	scriptio	n of Strata		Chiselling Depth (m)	Chiselling Time (mins)	Water (m)
0.00 0.08 0.20 1.10 1.20 1.70 2.50 3.00 4.00 5.00 6.50 8.00	D 3 D 4 D 5 U 1 D 6	(S) N=21 (5,6,7,7,4,3) (S) N=12 (3,2,3,2,3,4) (S) N=6 (1,1,1,2,2,1) (S) N=12 (1,1,2,3,3,4) (S) N=18 (4,3,4,4,5,5) (S) N=22 (4,5,5,6,5,6)		0.08	4.00	0.08 0.12 0.30 0.60	0.5 1.0 1.0 2.2 3.0 3.5 4.0 4.5 5.0 6.5 6.5 6.5 7.0 7.5 8.0 9.0 9.5		(GLACIAL TILL	and. ND) lium bri ND) slightly angula .) hite, br	gravelly CLAY. Gravel is r flint and chalk fragments. own clayey CHALK. Grade				4.10
11.0		(S) N=24 (4,5,5,6,6,7) (S) N=27 (5,5,6,6,7,8)			10.00		10.0 10.5 11.0 11.5								
12.5		(S) N=31 (5,6,7,7,8,9) (S) N=34			- 13.00		12.5 13.0 13.5 14.0								
15.0	D 8	(5,6,8,8,9,9)		15.00	15.00		14.5		End of Borehol	e at 15.	00 m				
Bor	rehole	e Diameter (mm):			Wel	I Diamete	er (mm): -		∠ ▼	Water Strike Water Standing		and Shea ocket Per		Result er Result
Ca		Depth (m bgl):	d to 1	5m bgl.			. /		S C N=17	Standard Penetration Test - Split Spoon Method Standard Penetration Test - Solid Cone Method	Slotted Pipe	Filter Arisi	onite b Grave	backfill

Lo Pro Cli Pro	ent:	ID: 7217 Endi Enginee	ston, 750 uranc r: Ros	Carr e Es		eshire			BOREHOLE NO. BH2 Drilling Method: Cable Percussion Date of Boring: Start Date: 04/10/2007 Finish Date:04/10/2007 Finish Date:04/10/2007 Ground Level: - Coords: - Issue Status:	-		.uk.com
									STRATA		NOT	
Depth (m)	Sample Ref.	SPT SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	Description of Strata	Chiselling Depth (m)		Water (m)
0.08 0.20 0.40 0.50 0.75	D 1 D 2 D 3 D 4 D 5			0.08	1	0.08 0.12 0.30 0.25	0.5 0.5 1.0 1.5 2.0 3.0 3.5 4.0 4.5 5.5 6.5 7.0 7.5 8.0 9.0 9.0 9.0 10.0 11.5 11.5 11.5 10.0 11.5		BRICK PAVING. Loose brown sand. (MADE GROUND) Firm grey gravelly clay. Gravel is fine to medium brick, concrete and flint. (MADE GROUND) End of Borehole at 15.00 m			Dry
Ca		Diameter (Depth (m bg :: 1.Pipe e	I):	Itered	at 0.75		I Diamete	r (mm):	✓ Water Strike HV ▼ Water Standing P S Standard Penetration Test - W Split Spoon Method C Standard Penetration Test - Solid Cone Method SPT "N" Value with number of blows per 75mm in brackets W 55/25 55 blows to achieve 25mm W D Small Disturbed Sample W U Undisturbed Sample PP J Jar Sample PI W Water Sample PP	Pocket P ell Install Ber Filte Aris		ter Result egend: backfill

Lo Pro Cli Pro	ent: oject	on: Sawa t ID: 7217	ston, 750 uranc r: Ros	Carr e Es		eshire			Date of Boring: Stat	I2A ble Percussion art Date: 04/10/2007 iish Date:04/10/2007	1			M.uk.com
	T 11 T 1	ESTS/SAMF							STRATA				NOTE	=0
Depth (m)	Sample Ref.		Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	Description of S	Strata		Chiselling Depth (m)	Chiselling Time (mins)	Water (m)
0.08 0.20 0.40 1.20 1.70 2.60 3.00 4.00 5.00	D 4 U 1 D 5	(S) N=11 (2,1,3,2,3,3) (S) N=12 (2,2,2,3,3,4) (S) N=7 (2,1,2,1,2,2) (S) N=11 (2,1,2,3,3,3) (S) N=16 (3,2,3,4,4,5)		0.08 0.20 0.50	 1.00 2.00 3.00 4.00 6.00 7.00 	0.08 0.12 0.30 2.10	- 0.5 - 1.0 - 1.5 - 2.0 - 2.5 - 3.0 - 3.5 - 4.5 - 5.5 - 6.5 - 7.0 - 7.5		BRICK PAVING. Loose brown sand. (MADE GROUND) Dense red medium brick gra (MADE GROUND) Firm grey gravelly clay. Gra brick, concrete and flint. (MADE GROUND) Structureless white, brown o Dc. (ZIG ZAG CHALK FORMAT	avel is fine to medium clayey CHALK. Grade				5.50
8.00 9.50 11.0		(S) N=18 (2,1,4,4,5,5) (S) N=22 (2,2,5,5,6,6) (S) N=28 (3,2,6,7,7,8)			9.00	12.40	8.0 9.0 9.5 10.0 11.5							
12.5 14.0 15.0	D 7	(S) N=31 (3,3,7,8,8,8) (S) N=33 (5,5,8,8,8,9)		15.00	12.00		12.0 12.5 13.0 14.0 14.5 15.5		End of Borehole at 15.00 m	n				
		<u> </u>			<u> </u>				<u>↓</u> 181-1	or Strike	HV Ha	and Shea	r Vane F	Result
Cas		e Diameter (Depth (m bgl s: 1.Boreh	l):	ckfille	d with a		I Diamete	r (mm):	▼ Water S Stand: Split S C Stand: Solid (N=17 SPT "I per 75 55/25 55 blo D Small U Undist B Bulk S J Jar Sa	er Strike er Standing dard Penetration Test - Spoon Method dard Penetration Test - I Cone Method "N" Value with number of blows '5mm in brackets ows to achieve 25mm II Disturbed Sample Sturbed Samples Sample er Sample		nstallat Bento Filter Arisin	ion Le onite b Grave	er Result egend: packfill

Lo Pre Cli Pre	ent: oject	on: Saw : ID: 7217	ston, 750 uranc	Carr e Es	Busine hbridge tates I ake	eshire			BOREHOLE NO. BH3 Drilling Method: Cable Percussion Date of Boring: Start Date: 05/10/2007 Finish Date:05/10/2007 Ground Level: - Coords: -	=
									Issue Status:	
		ESTS/SAMI					c		STRATA NOTES	
	Sample Ref.	SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	Description of Strata Chiselling (m (m) Chiselling (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	
0.10 0.30 0.50 1.20 1.70	U 1 D 4			0.20 0.50 1.80	1.00	0.20 0.30 1.30	0.5		ASPHALT. Dense grey and brown sand and medium to coarse concrete gravel. (MADE GROUND) Firm grey gravelly clay. Gravel is fine to medium	
2:89	D 5	(S) N=14 (3,4,4,4,3,3)		1.00	2.00	1.90	2.0		brick, wood, concrete and flint. (MADE GROUND) Firm light grey, brown sandy gravelly CLAY.	
3.00	De	(S) N=15 (3,3,3,4,4,4)		3.70	3.00	1.50	3.0		Gravel is fine to medium chalk. (GLACIAL TILL)	
4.00		(S) N=12 (1,1,2,3,3,4)		5.70	4.00		4.0		Structureless white, brown clayey CHALK. Grade Dc. (ZIG ZAG CHALK FORMATION)	
5.00		(S) N=16 (3,2,3,4,4,5)			5.00		5.0			
6.50		(S) N=12 (1,1,3,3,3,3)			6.00		6.0 6.5			
Z:88	D 7	(S) N=16 (2,2,3,4,4,5)			8.00		8.5	T P P		
9.50		(S) N=21 (3,3,4,5,6,6)			9.00	11.30	9.0			10.0 0
11.0		(S) N=26 (4,4,6,6,7,7)			11.00		11.0			12.00
12.5		(S) N=32 (5,5,7,8,8,9)			13.00		12.5	······································		12.00
14.0		(S) N=36 (5,6,8,9,9,10)			14.00		14.0			
15.0	D 8			15.00	15.00		15.0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	End of Borehole at 15.00 m	
Boi	rehole	e Diameter (mm):		ŀ	We	I Diamete	r (mm):	Water Strike	
		Depth (m bg	,					()	S Standard Penetration Test - Well Installation Legend:	_
Rei	marks	s: 1.Boreh	iole ba	ckfille	d with a	arisings			Split Spoon Method C Standard Penetration Test - Solid Cone Method N=17 SPT "N" Value with number of blows per 75mm in brackets Set Space	
									bef / shmin in brackets Arisings 55/25 55 blows to achieve 25mm D Small Disturbed Sample U Undisturbed Samples B Bulk Sample J Jar Sample W Water Sample	

Lo Pre Cli Pre	ient: oject	on: Saws : ID: 7217	ston, 750 uranc TRos	Cam e Es		eshire			BOREHOLE NO. WS1 Drilling Method: Window Sampler Date of Boring: Start Date: 25/09/2007 Finish Date:25/09/2007 Ground Level: - Coords: - Issue Status:
		ESTS/SAMF	PLING			[STRATA NOTES
Depth (m)	Sample Ref.	SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	Mate (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)
0.30	D 2	(C) N=63 (6,10,16,16,15,1 6) (C) N=39 (10,9,10,10,9,10)		0.25	- 1.00	0.25	0.5		CONCRETE. Dry Very stiff dark grey and brown slightly gravelly CLAY. Gravel is fine to medium flint and chalk. (GLACIAL TILL) Structureless white and brown slightly clayey CHALK. Grade Dc. CHALK FORMATION)
2.50 3.00 4.00		(C) N=9 (4,2,3,2,2,2) (C) N=11 (2,2,3,2,3,3)		4.00	- 3.00	2.80	2.5		End of Borehole at 4.00 m
Ca	sing [e Diameter (Depth (m bgl s: 1.Boreh):	ckfille	d with a		I Diameter	(mm): -	- ✓ Water Strike ✓ Water Standing S Standard Penetration Test - Split Spoon Method C Standard Penetration Test - Solid Cone Method N=17 SPT "N" Value with number of blows per 75mm in brackets 55/25 55 blows to achieve 25mm D Small Disturbed Sample U Undisturbed Samples B Bulk Sample J Jar Sample W Water Sample

Lo Pr Cl Pr	ient: oject	on: Saw : ID: 721	vston, 750 uranc r: Ros	Carr e Es	tates l ake	ess Pa eshire Ltd			BOREHOLE NO. WS2 Drilling Method: Window Sampler Date of Boring: Start Date: 25/09/2007 Finish Date: 25/09/2007 Ground Level: - Coords: - Issue Status:
IN S	ITU T	ESTS/SAM	PLING						STRATA NOTES
Depth (m)	Sample Ref.	SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	(m) (m) (m) (m) (m) (m) (m) (m) (m) (m)
1.00 1.10	D 2	(S) N=24 (7,6,6,6,6,6) (S) N=14 (6,4,5,3,3,3) (S) N=10 (2,3,2,3,2,3)		0.25 2.60 3.00	- 1.00	0.25	0.5 1.0 1.0 2.0 2.5 3.0 4.0		CONCRETE. Dy Stiff dark grey and brown gravelly CLAY. Gravel is fine to medium flint and chalk. (GLACIAL TILL) Structureless white and and brown slightly clayey CHALK. Grade Dc. (ZIG ZAG CHALK FORMATION) End of Borehole at 3.00 m
Ca	sing [e Diameter (Depth (m bg s: 1.Boreł	JI):	ckfille	d with a		I Diameter	r (mm):	V Water Strike Water Standing S Standard Penetration Test - Split Spoon Method C Standard Penetration Test - Solid Cone Method N=17 SPT "N" Value with number of blows per 75mm in brackets 55/25 55 blows to achieve 25mm D Small Disturbed Sample U Undisturbed Sample J Jar Sample W Water Sample W Water Sample

Lo Pre Cli Pre	ient: oject	on: Saw ID: 7217	ston, 750 uranc r: Ros	Carr	tates l ake	ess Pa eshire Ltd			BOREHOLE NO. WS3 Drilling Method: Window Sampler Date of Boring: Start Date: 25/09/2007 Finish Date: 25/09/2007 Ground Level: - Coords: - Issue Status:
		ESTS/SAM							STRATA NOTES
Depth (m)	Sample Ref.	SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	(m) Wate (m) Description of Strata (m) Description of Strata
0.70				0.25	- - - - - -	0.25	- 0.5		CONCRETE. Dry Very stiff dark grey gravelly clay. Gravel is fine to medium flint, brick, concrete and chalk. (MADE GROUND) Dry
1.00 1.50		(S) N=29 (4.4.8.8.6.7)		1.10	- - - -	0.70			Firm dark grey gravelly CLAY. Gravel is fine to medium chalk and flint. (GLACIAL TILL)
2.00		(S) N=10 (2,2,2,2,3,3)			- 2.00		2.0		Firm light brown grey and white very gravelly CLAY. Gravel is fine to medium flint and chalk. (GLACIAL TILL)
3.00		(S) N=10 (2,2,2,2,3,3)			- 3.00	2.20	3.0		
4.00		(S) N=12 (2,2,3,2,3,4)		4.00	- 4.00		4.5		End of Borehole at 4.00 m
Ca	sing E	Diameter (Depth (m bg :: 1.Well i	I):	d to 4	m bgl	Wel	I Diamete	r (mm):	✓ Water Strike ✓ Water Standing S Standard Penetration Test - Split Spoon Method C C Standard Penetration Test - Solid Cone Method Bentonite backfill N=17 SPT "N" Value with number of blows per 75mm in brackets Filter Gravel 55/25 Stolucurbed Sample U Undisturbed Sample J Jar Sample W Water Sample

11	oject catic					ess Pa eshire	rk		BOREHOLE NO. WS4 Drilling Method: Window Sampler Date of Boring: Start Date: 25/09/2007
Cli Pr	ient:	Enginee	uranc r: Ros			Ltd			Finish Date 25/09/2007 Ground Level: - Coords: - Issue Status:
		ESTS/SAM							STRATA NOTES
	Sample Ref.	SPT Type/ Results	Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	Description of Strata
						0.25	sililian	12	CONCRETE.
0.70		(S) N=17 (3,3,4,4,5)		0.25	- 1.00	1.55	0.5		Dry Stiff dark grey gravelly clay. Gravel is fine to medium ash, brick and flint. (MADE GROUND)
2.00	D 3	(S) N=22 (5,6,6,5,6,5)		1.80	- 2.00		2.5		Firm dark grey gravelly CLAY. Gravel is fine to medium chalk and flint. (GLACIAL TILL)
3.00	D 4	(S) N=10 (3,3,2,2,3,3)		2.80	- 3.00	1.20	- 3.0		Soft to firm light brown grey and white very gravelly CLAY. Gravel is fine to medium flint and chalk. (GLACIAL TILL)
4.00		(S) N=6 (2,1,1,1,2,2)		4.00	- 4.00		4.0		End of Borehole at 4.00 m
Ca	sing D	Diameter (Depth (m bg :: 1.Boreh	l):	ckfille	d with a		I Diamete	r (mm):	✓ Water Strike ✓ Water Standing S Standard Penetration Test - Split Spoon Method C Standard Penetration Test - Solid Cone Method N=17 SPT "N" Value with number of blows per 75mm in brackets 55/25 55 blows to achieve 25mm D Small Disturbed Sample U Undisturbed Sample J Jar Sample W Water Sample

Lo Pre Cli Pre	ent:	n: Saw ID: 721 End Enginee	rston, 750 uranc r: Ros	Carr e Es	tates l ake	ess Pa eshire Ltd			Finish Date:25/09/2007	MLM ww.mlm.uk.com			
		ESTS/SAM				1		1	STRATA NOTES				
Depth (m)	Sample Ref.	SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	Chiselling Time (mins)	Water (m)			
0.70	D 1			0.25	- 1.00	0.25	0.5		CONCRETE. Soft dark grey and black gravelly clay. Gravel is fine to medium brick, tile and concrete. (MADE GROUND)	Dry			
1.30	D 2			1.20	- 2.00	0.80	1.5		Soft light brown gravelly CLAY. Gravel is fine to medium flint and chalk. (ALLUVIUM)				
2.50	D 3			2.70	- - - -	0.70	2.5		Very soft black sandy organic CLAY. (ALLUVIUM) Soft to firm light brown grey and white very				
3.00	D 4				- 3.00 	0.80	3.0		gravelly CLAY. Gravel is fine to medium flint and chalk. (ALLUVIUM)				
4.00	D 5			3.50 4.00	-	0.50	4.0		Structureless white and brown slightly clayey CHALK. Grade Dc. (ZIG ZAG CHALK FORMATION) End of Borehole at 4.00 m				
Ca	sing D	Diameter (Pepth (m bg : 1.Well i	l):	d to 4	m bgl.	Wel	I Diamete	r (mm):	S Standard Penetration Test - Split Spoon Method C Standard Penetration Test - Solid Cone Method N=17 SPT "N" Value with number of blows per 75mm in brackets 55/25 55 blows to achieve 25mm D Small Disturbed Sample	esult nd:			

Lo Pro Cli Pro Lo	ent: oject ggeo	n: Saw ID: 7217 Endu Enginee	ston, 750 uranc r: Ros Ros	Cam e Est	ibridge tates l ake	ess Pa eshire _td			Finish Date 25/09/2007 Ground Level: - WW Coords: - Issue Status:	MLM ww.mlm.uk.cor			
	-	ESTS/SAMI		0					STRATA				
Depth (m)	Sample Ref.	SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	Description of Strata	Depth (m) Chiselling Time (mins)	Water (m)		
						0.35	25.02		CONCRETE.		Dry		
0.60	D 1			0.35	- - -	0.45			Firm red, grey and black gravelly clay. Gravel is fine to medium concrete and brick. (MADE GROUND)				
1.00	D 2	(S) N=9 (1,1,2,2,2,3)		0.80	- 1.00 -		1.0		Stiff bluish grey gravelly CLAY. Gravel is fine to medium flint and chalk. (GLACIAL TILL) Strong inorganic odour and staining.				
2.00	D 3	(S) N=19 (3,5,4,4,5,6)		2.10	- - - - - - - - - - - - - - -	1.30	2.0		Firm light brown grey and white very gravelly CLAY. Gravel is fine to medium flint and chalk. (GLACIAL TILL)				
3.00	D 4	(S) N=11 (4,3,3,3,2,3)			- 3.00	1.40	2.5						
4.00	D 5	(S) N=8 (2,1,2,2,2,2)		3.50 4.00	- - - - 4.00	0.50	4.0		Structureless white and brown slightly clayey CHALK. Grade Dc. (ZIG ZAG CHALK FORMATION) End of Borehole at 4.00 m				
Ca	sing D	Diameter (Depth (m bg s: 1.Well i	I):	d to 4r	m bgl.	Wel	I Diamete	r (mm):	- Water Standing S Standard Penetration Test - Split Spoon Method C Standard Penetration Test - Solid Cone Method N=17 SPT "N" Value with number of blows	Shear Vane Penetromo allation L entonite Iter Grav risings	egend: backfill		

Lo Pro Cli Pro	ent: oject	on: Saw ID: 7217	rston, 750 uranc r: Ros	Carr e Es		eshire			BOREHOLE NO. WS7 Drilling Method: Window Sampler Date of Boring: Start Date: 25/09/2007 Finish Date: 25/09/2007 Ground Level: - Coords: - Issue Status:	-
		ESTS/SAM					6		STRATA NOTES	
Depth (m)	Sample Ref.	SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	Description of Strata Chiselling (n) (n) (n) (n) (n) (n) (n) (n) (n) (n)	
0.50		(S) N=10 (2,1,1,2,2,5)		0.20	- 1.00	0.20	0.5		CONCRETE. Firm light grey and white gravelly clay. Gravel is fine to medium brick and concrete. (MADE GROUND) Inorganic odour.	
1.50	D 2			1.30	-	0.70	- 1.5		Very stiff dark grey gravelly CLAY. Gravel is fine to medium flint. (GLACIAL TILL)	
2.00 2.20		(S) N=25 (4,6,7,6,6,6)		2.00	- 2.00		2.0		Loose brown slightly gravelly SAND. Gravel is fine to medium flint. (GLACIAL TILL)	
2.45		() Error		2.90 3.00		0.90	2.5		Structureless white and brown slightly clayey CHALK. Grade Dc. (ZIG ZAG CHALK FORMATION) End of Borehole at 3.00 m	
					4.00		- 3.5 - 3.5 			
Cas	sing D	Diameter (Depth (m bg :: 1.Well i	II):	d to 3	m bgl.	Wel	I Diamete	r (mm)	S Standard Penetration Test - Split Spoon Method C Standard Penetration Test - Solid Cone Method N=17 SPT "N" Value with number of blows per 75mm in brackets 55/25 55 blows to achieve 25mm D Small Disturbed Sample U Undisturbed Sample	

Clie Proj	ject iject	n: Saw ID: 7217	ston, 750 uranc r: Ros	Cam e Es	tates l ake	ess Pa eshire Ltd	rk		BOREHOLE NO. WS8 Drilling Method: Window Sampler Date of Boring: Start Date: 25/09/2007 Finish Date:25/09/2007 Ground Level: - Coords: - Issue Status:
1		ESTS/SAMI	PLING			1		1	STRATA NOTES
Depth (m)	Sample Ret.	SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	Water (m) (m) (m) (m)
0.80 D 1.00		(S) N=9 (2,2,2,2,3,2) (S) N=22 (4,4,5,5,6,6)		0.20	- 1.00	0.20 - 1.60 - - - - - - - -	- 0.5		CONCRETE. Dry Firm dark grey gravelly CLAY. Gravel is fine to medium flint and chalk. (GLACIAL TILL) Dry Soft to firm orange and brown sandy CLAY. (GLACIAL TILL) Dry
3.00 3.50 D		(S) N=8 (2,2,2,2,2)		2.80	- 3.00	1.20	3.0		Structureless white and brown slightly clayey CHALK. Grade Dc. (ZIG ZAG CHALK FORMATION)
Casi	ing D	^{(S) N=7} (1,2,2,2,1,2) Diameter (pepth (m bg : 1.Boreh	l):	4.00	- - - - - - - - - -		4.0 4.5 I Diamete	r (mm):	End of Borehole at 4.00 m Image: Second Strike Image: Water Striker Image: Wa

Loc Pro Clie Pro Log	ent: oject ggeo	n: Saw ID: 7217 Endi Enginee I by:	ston, 750 uranc r: Ros Ros	Carr e Es		eshire			BOREHOLE NO. WS9 Drilling Method: Window Sampler Date of Boring: Start Date: 25/09/2007 Finish Date: 25/09/2007 Ground Level: - Coords: - Issue Status:
		ESTS/SAMI							STRATA NOTES
Depth (m)	Sample Ref.	SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	Description of Strata
0.30 0.60 1.00 1.10 2.00 2.50 3.00	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0.25	2.0		CONCRETE. Dry Dense dark grey concrete gravel. (MADE GROUND) (MADE GROUND) Very stiff dark bluish grey gravelly CLAY. Gravel is fine to medium chalk and flint. (GLACIAL TILL) (GLACIAL TILL) Firm to stiff light brown grey and white very gravelly CLAY. Gravel is fine to medium flint and chalk. (GLACIAL TILL) (GLACIAL TILL) Structureless white and brown slightly clayey CHALK. Grade Dc. (ZIG ZAG CHALK FORMATION) (ZIG ZAG CHALK FORMATION)	
Cas	sing D	Diameter (Pepth (m bg : 1.Boreh	I):	ckfille	4.00 4.00		4.0 4.0 I Diameter	r (mm):	V Water Strike V Water Standing S Standard Penetration Test- Split Spoon Method C Standard Penetration Test- Solid Cone Method C Standard Penetration Test- Solid Cone Method N=17 SPT "N" Value with number of blows per 75mm in brackets 55/25 55 blows to achieve 25mm D Small Disturbed Sample U Undisturbed Sample J Jar Sample W Water Sample

Lo Pro Cli Pro	ent: oject ggec	n: Saw ID: 7217 Endi Enginee I by:	ston, 750 uranc r: Ros Ros	Cam e Est	ibridge tates l ake	ess Pa eshire Ltd			Coords: -		.mlm	.uk.com
	TU TE	ESTS/SAM		(u	-	S	L L	-	STRATA		NOT	ES
Depth (m)	Sample R	SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	Description of Strata	Chiselling Depth (m)	Chiselling Time (mins)	Water (m)
0.20	D 1			0.08 0.30		0.08			BRICK PAVING. Loose red and brown clayey gravelly sand. Gravel is fine to medium brick and concrete. (MADE GROUND)	-		Dry _
0.50	D 2					0.50	- 0.5 		Stiff white and brown very gravelly CLAY. Gravel is fine to coarse flint and chalk (GLACIAL TILL)			-
1.00	D 3	(S) N=23 (2,3,3,5,8,7)		0.80	• 1.00	0.30	- 1.0		Stiff light brown slightly sandy CLAY. (GLACIAL TILL)	_		-
						1.00			Stiff light brown grey and white very gravelly CLAY. Gravel is fine to medium flint and chalk. (GLACIAL TILL)			
2.00	D 4	(S) N=21 (10,11,9,5,4,3)		2.10	- - 2.00 - - - -	0.90	2.0		Structureless white and brown slightly clayey CHALK. Grade Dc. (ZIG ZAG CHALK FORMATION)	_		
2.70 3.00	D 5	(S) 50/135mm (15,10,25,25)		3.00	- - - 3.00 -		3.0		End of Borehole at 3.00 m	_		
					- - 		- 3.5 - 3.5 					
Cas	sing D	Diameter (pepth (m bg	l):		· · ·	Wel	I Diamete	er (mm): -	Vater Standing		ation L tonite	ter Result egend: backfill
Rei	marks	: 1.Well i	nstalle	d to 3r	n bgl.				N=17 SPT "N" Value with number of blows per 75mm in brackets 55/25 55 blows to achieve 25mm D Small Disturbed Sample U Undisturbed Sample J Jar Sample W Water Sample	Aris	er Grav ings Plain Casing	Piezometer Tip

Lo Pre Cli Pre	ient: oject	on: Saw ID: 7217	vston, 750 uranc r: Ros	Carr e Es	ibridg tates ake	ess Pa eshire Ltd			BOREHOLE NO. WS11 Drilling Method: Window Sampler Date of Boring: Start Date: 25/09/2007 Finish Date: 25/09/2007 Ground Level: - Coords: - Issue Status:
		ESTS/SAM	PLING			1			STRATA NOTES
Depth (m)	Sample Ref.	SPT Type/ Results	Shear Strength	Depth (m)	Level (mAOD)	Thickness (m)	Installation Details	Legend	Description of Strata U U C U C U C U C U C U C U C U C U C C
0.50	D 1			0.20	- - - - - -	0.20	0.5		CONCRETE. Dry Loose light brown and black clayey sandy brick and concrete gravel. (MADE GROUND)
1.00	D 2	(S) N=6 (3,3,1,2,1,2)		1.00	- 1.00				Firm light brown slightly gravelly CLAY. Gravel is fine to medium flint. (GLACIAL TILL) Inorganic odour and staining.
2.00	D 3	(S) N=9 (1,1,2,2,2,3)		2.70	- 2.00	1.70	2.0		
3.00		(S) N=10 (3,2,2,3,2,3)			- 3.00	1.30	3.0		Soft to firm light brown grey and white very gravelly CLAY. Gravel is fine to medium flint and chalk. (GLACIAL TILL)
3.80		(S) N=7 (2,2,1,2,2,2)		4.00	- 4.00		4.0		End of Borehole at 4.00 m
Ca	sing E	Diameter (Depth (m bg	JI):	d to 4	m bgl.	Wel	I Diamete	r (mm):	✓ Water Strike ✓ Water Standing S Standard Penetration Test - Split Spoon Method C C Standard Penetration Test - Solid Cone Method Bentonite backfill N=17 SPT "N" Value with number of blows per 75mm in brackets 55/25 55 blows to achieve 25mm D Small Disturbed Sample U Undisturbed Sample J Jar Sample W Water Sample

Client: Project Logged	n: Sawst ID: 72175 Salmo Engineer: by:	on, Ca 50 on Harv Heste HC	vester I	jeshire Proper		ited Ground Level: - Coordinates: - Tel: Coordinates: -	Environm Cambridg bridge 5 9TL 01223 811 01223 811 01223 811 01223 81	ental ge Rese 5600 15630	arch Park
Sample Ref.	SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Description of Strata	Thickness (m)	Installation Details	Water (m)
D1: 0.90-1.00m	1.00m (S) N=4 (1,1,1,1,1)				0.10 0.20 0.65	CONCRETE pavoirs. Coarse yellow sand. (MADE GROUND) Red very sandy coarse brick gravel with occasional clinker and ash. (MADE GROUND) Firm to stiff grey-brown sandy gravelly clay. Gravel is fine to coarse of flint, concrete, and chalk with occasional ash streaks. Dark grey staining and faint hydrocarbon odour from 0.65 o.8m bgl. (MADE GROUND)	0.10 0.10 0.45 1.35		Dry
D2: 1.90-2.00m D3: 2.40-2.50m	2.00m (S) N=5 (1,1,1,1,1,2)				- - - - - - - - -	Soft dark grey stained sandy slightly gravelly SILT. Gravel is fine to coarse of chalk and flint. Organic odour. (ALLUVIUM)	0.75		
	3.00m (S) N=11 (2,2,2,3,3,3)				3.00	Firm pale grey silty slightly sandy gravelly MARL. Gravel is fine to coarse sub-rounded to sub-angular chalk and occasional flint in a grey silt matrix. (ZIG ZAG CHALK FORMATION)			
D4: 3.90-4.00m	4.00m (S) N=9 (3,2,3,2,2,2)				4.00	End of Borehole at 4.45 m	1.70		
using a F 2. When ur Photoion Remarks:	ndertaken Sh Pilcon Hand S ndertaken PIE isation Detec ng well instal	Shear Va D Readin ctor	ne. gs recor		ng	Legend: Water Strike Well Installation/Back ▼ Water Standing Backfill Details: S Standard Penetration Test - Split Spoon Method Concrete C Standard Penetration Test - Solid Cone Method Bentonite N=17 SPT "N" Value with number of blows per 75mm in brackets Bentonite 55/25 S5 blows to achieve 25mm Filter ES Environmental Sample (1 tub & 1 jar) Arisings D Small Disturbed Sample Backfill U Undisturbed Samples Backfill B Bulk Sample Backfill J Jar Sample Harsample W Water Sample Harsample	Pipe De Plai	etails: n Pipe tted Pi	ē

Project Client: Project Logged	n: Sawst ID: 72175 Salmo Engineer: by:	on, Ca 50 on Harv Heste HC	vester l	jeshire Proper	9	mited	BOREHOLE REF: WS10 Drilling Method: Windowless Start of Drilling: 08/07/2008 Completion: 08/07/2008 Ground Level: - (mAOD) Coordinates: -	s Sampler 8 8 8 8 WW MLI 72C Car CB Tel Fax	MLM www.mlm.uk.com 4 Environmental 10 Cambridge 25 9TL 01223 815600 : 01223 815630 ail: cambridge@mlm.uk.com
Sample Ref.	SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Legend	STRATA Description of Stra	ita	Thickness (m) Details (m) (m)
D1: 0.40-0.50m D2: 0.90-1.00m D3: 1.90-2.00m D4: 2.90-3.00m	1.00m (S) N=13 (2,3,3,2,4,4) 2.00m (S) N=13 (2,2,2,3,4,4) 3.00m (S) N=8 (2,2,2,2,2,2) 4.00m (S) N=5 (1,1,1,1,1,2)				- 0.20 - 0.50 - 1.00 1.00 - 1.60 - 2.00 - 2.40 		CONCRETE. Dark grey sandy to very sandy fine to coarse sub- ingular clinker, brick, chalk and flint gravel. Hydr odour. MADE GROUND) Tirm to stiff dark grey sandy gravelly clay. Gravel o cobble sized of clinker, brick, charcoal, chalk an Hydrocarbon odour. MADE GROUND) Stiff grey-brown slightly sandy gravelly CLAY. Graving ine to coarse, sub-angular to sub-rounded of chall lint with a band of broken up flint and chalk GRAV. 4 1.6m bgl. LOWESTOFT FORMATION) Soft to firm grey-brown occasionally gravelly CLAY s fine to coarse chalk, flint and carbonaceous mat LOWESTOFT FORMATION) Structureless grey-white and yellow stained slightly illy gravelly MARL. Gravel is fine to coarse of weat ind rare flint and carbonaceous streaks. ZIG ZAG CHALK FORMATION) Structureless grey-white and yellow stained slightly Structureless grey-white and yellow stained slightly ind rare flint and carbonaceous streaks. ZIG ZAG CHALK FORMATION)	vel is k and /EL from /. Gravel /erial.	Image:
using a I 2.When ur Photoion Remarks:	ndertaken Sh Pilcon Hand S ndertaken PII isation Detec backfilled w	Shear Va D Readin ctor	ine. Igs recor		ng	C N=1 55/2 ES D U B J W	Water Strike Water Standing Standard Penetration Test - Split Spoon Method Standard Penetration Test - Solid Cone Method Solid Cone Method SPT "N" Value with number of blows per 75mm in brackets	Well Installation/Ba Backfill Details: Concrete Bentonite Filter Gravel Arisings Backfill	ackfill Legend: Pipe Details: Plain Pipe Slotted Pipe Piezometer Tip

Client: Project Logged	n: Sawst ID: 72175 Salmo Engineer:	on, Ca 0 n Harv Heste HC	vester I	eshire Proper	e	mited	BOREHOLE REF: WS103 Drilling Method: Windowless Sampler Start of Drilling: 08/07/2008 Completion: 08/07/2008 Ground Level: - (mAOD) Coordinates: -	MLM Environn 7200 Cambrid Cambridge CB25 9TL Tel: 01223 81 Fax: 01223 8 email: cambrid	nental Ige Rese 5600 15630	arch Park
Sample Ref.	SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Legend	Description of Strata	Thickness (m)	Installation Details	Water (m)
D1: 0.90-1.00m	1.00m (S) N=8 (2,4,2,2,2,2)						ONCRETE. Park grey very sandy very gravelly clay. Gravel is fine to obble sized sub-angular to sub-rounded clinker, ash, flint, chalk, tile and concrete. MADE GROUND)	0.30		Dry
D2: 1.90-2.00m	2.00m (S) N=4 (1,1,1,1,1)				- 2.00 2.00	с (,	irm pale brown to beige gravelly CLAY. Gravel is fine to parse chalk and occasional flint. ALLUVIUM)	0.70		
D3: 2.90-3.00m	3.00m (S) N=4 (1,1,1,1,1)				2.70 3.00	G	ark brown to black organic silty sandy gravelly CLAY. ravel is fine flint and chalk. Rootlets and decaying wood agments encountered. Organic odour. ALLUVIUM)	1.10		
D4: 3.90-4.00m D5: 4.00-4.45m	4.00m (S) N=9 (1,2,2,3,2,2)				4.00 4.00 4.4.0 4.45	(, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	lack PEAT. Organic odour. ALLUVIUM) tructureless CHALK composed of silty fine to medium weak halk GRAVEL in a grey-white and yellow stained silt matrix. ZIG ZAG CHALK FORMATION) Find of Borehole at 4.45 m	0.20		
using a F 2.When un Photoion Remarks:	dertaken Sho Pilcon Hand S dertaken PIE isation Detec	Shear Va D Readin Ctor	ne. gs recor		ng	Lege ∑ S C N=17 55/2! ES D U B J W	Water Strike Backfill Details: Water Standing Standard Penetration Test - Split Spoon Method Standard Penetration Test - Solid Cone Method Bentonit SPT "N" Value with number of blows per 75mm in brackets Filter	e Pipe Do Pla	etails: in Pipe tted P	2

Project: Location							BOREHOLE REF: WS104	Λ	[]	Λ
Project Client:	ID: 72175 Salmo Engineer:	0 n Harv	vester f	Proper		imited	Ground Level: - (mAOD) Coordinates: -	Environm Cambrid ridge 9TL 1223 81)1223 81	nental ge Rese 5600 L5630	A.COM
IN SIT	U TESTS/SAM	MPLING					STRATA	Cambrid	ide@uu	III.UK.COIII
Sample Ref.	SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Legend	Description of Strata	Thickness (m)	Installation Details	Water (m)
D1: 0.70-0.80m D2: 1.40-1.50m D3: 1.90-2.00m	1.00m (C) N=8 (3,3,3,3,1,1) 2.00m (S) N=7 (1,1,1,2,2,2) 3.00m (S) N=10 (2,2,2,3,3,2)				0.04 0.28 0.40 - 0.80 - 1.00 1.00 - 1.00 1.00 - 1.50 - 2.00 - 2.60 		ASPHALT. CONCRETE. Sandy brick and concrete gravel. (MADE GROUND) Dark grey-brown sandy very gravelly clay. Gravel is fine to coarse sub-rounded to angular clinker, tile, brick, flint and chalk. Black staining and faint hydrocarbon odour from 0.6-0.8m bgl. (MADE GROUND) Pale grey - beige sandy chalk, brick, clinker and flint gravel. (MADE GROUND) Pale grey, red-stained sandy brick, flint, clinker and occasional chalk gravel. Hydrocarbon odour. (MADE GROUND) Soft to firm grey red streaked CLAY. Faint hydrocarbon odour. (ALLUVIUM) Structureless CHALK composed of cream, slightly sandy silty sub-angular to rounded GRAVEL in a cream, black and red stained matrix. Faint hydrocarbon odour. (ZIG ZAG CHALK FORMATION) End of Borehole at 3.00 m	0.04 0.24 0.12 0.40 0.20 0.50 1.10		Dry
using a F 2. When un Photoion Remarks:	dertaken She ilcon Hand S dertaken PID isation Detec ig well install	Shear Va D Readin Stor	ne. gs record		ng	Lee V S C N= 55/ ES D U B J W	Water Standing Standard Penetration Test - Split Spoon Method Standard Penetration Test - Solid Cone Method SPT "N" Value with number of blows per 75mm in brackets Concrete Bentonite Filter	Pipe De Plai	etails: in Pipe tted P	ē,

Client: Project Logged	n: Sawst ID: 72175 Salmo Engineer:	on, Ca 0 n Harv Heste HC		eshire Proper		ed Ground Level: - Coordinates: - Fax:	Environn) Cambrid bridge 5 9TL 01223 81 01223 8	nental ge Rese 5600 15630 dge@ml	K.com arch Park
Sample Ref.	SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth bue (m) be	Description of Strata	Thickness (m)	Installation Details	Water (m)
D1: 0.90-1.00m					0.05 0.20	ASPHALT. CONCRETE. Grey-brown sandy gravelly sand. Gravel is fine to coarse tile, brick, concrete, wood and rare clinker. Hydrocarbon odour. (MADE GROUND)	0.05 0.15 0.90	5	Dry
D2: 1.90-2.00m					- 2.00	Bright red-stained broken up tiles with a dark grey band from 2.2 to 2.3m bgl. Strong hydrocarbon odour. (MADE GROUND)	1.30		
D3: 2.90-3.00m					3.00 3.00	Pale grey and orange stained gravelly SAND. Gravel is fine chalk and rare fine to coarse flint. (LOWESTOFT FORMATION) <i>End of Borehole at 3.00 m</i>	0.60		
					4.00				
using a F 2.When un Photoion Remarks:	dertaken Sho Pilcon Hand S dertaken PIE isation Detec ng well instal	Shear Va O Readin Stor	ne. gs recor		ng	 Water Standing Standard Penetration Test - Split Spoon Method Standard Penetration Test - Solid Cone Method Standard Penetration Test - Solid Cone Method SPT "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blows per 75mm in brackets Spt "N" Value with number of blow	Pipe D Pla Slo	etails: in Pipe tted P	2

Project Client: Project Logged	n: Sawsto ID: 72175 Salmo Engineer: by:	on, Ca 0 n Harv Heste HC	mbridg vester l	geshire Proper		ted Groun (mAOI	nates: -	ess Sampler 008 008	MLM Environmental 7200 Cambridge Research Park Cambridge CB25 9TL Tel: 01223 815600 Fax: 01223 815630 email: cambridge@mlm.uk.com
Sample Ref.	U TESTS/SAI SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	,	STRATA Description of S	Strata	Thickness (m) Details (m) (m) (m) (m)
D1: 0.90-1.00m	1.00m (S) N=7 (1,1,2,1,2,2)				0.10 0.50	🛞 🛛 sub-angular c	ck gravel. ND) wn gravelly clay. Gravel is fine halk, flint, brick, clinker and ash rbon odour in places.	to coarse gravel.	E E 0.10 Dry 0.40 1.50
D2: 1.90-2.00m D3: 2.40-2.50m	2.00m (S) N=9 (1,1,1,2,3,3)				- 2.00 2.00 		rown slightly sandy slightly grav to coarse chalk and flint. FORMATION)	eily CLAY.	0.70
	3.00m (S) N=9 (2,2,3,2,2,2)				2.70 - - - - - - - - - - - - - -	stained sandy rounded fine	CHALK composed of grey-cream gravelly MARL. Gravel is weak to coarse chalk and occasional l \LK FORMATION)	, sub-angular to	0.30
D4: 3.90-4.00m	4.00m (S) №10 (2,2,2,3,2,3)				4.00	sub-angular tr stained matrix (ZIG ZAG CHA	CHALK composed of cream, slig o rounded GRAVEL in a grey-wh (ALK FORMATION) Tehole at 4.45 m		0.95
using a F 2.When un Photoion Remarks:	dertaken She Pilcon Hand S dertaken PIC isation Detec backfilled wi	Shear Va D Readin ctor	ne. gs recor		ng	Split Spo C Standarc Solid Cor N=17 SPT "N" ' blows pe 55/25 55 blows ES Environn D Small Dis	anding I Penetration Test - on Method I Penetration Test - he Method Value with number of r 75mm in brackets to achieve 25mm hental Sample (1 tub & 1 jar) sturbed Sample bed Samples hple	Well Installation, Backfill Details: Concrete Bentonite Filter Gravel Arisings Backfill	/Backfill Legend: Pipe Details: Plain Pipe Slotted Pipe Piezometer Tip

Project Client: Project Logged	n: Sawst ID: 72175 Salmo Engineer:	on, Ca 50 on Harv Heste HC	mbrid <u>e</u> vester l	geshire Proper		mited	BOREHOLE REF: WS Drilling Method: Windowl Start of Drilling: 08/07/20 Completion: 08/07/20 Ground Level: - (mAOD) Coordinates: -	ess Sampler 208 208 208 WW MLI Car CB Tel Fax	MLM Menvironmental D0 Cambridge Research Park mbridge 25 9TL : 01223 815600 :: 01223 815630 ail: cambridge@mlm.uk.com
Sample Ref.	SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Legend	Description of S	Strata	Thickness (m) Details (m) Material Material
D1: 0.30-0.40m D2: 0.90-1.00m	1.00m (5) N=13 (3,5,4,3,3,3)				0.18 0.30 0.50		Reinforced CONCRETE. (ellow brown sand and fine to coarse sub-ang concrete gravel. (MADE GROUND) .oose dark brown-black gravelly sand. Gravel ash and flint. Hydrocarbon odour. (MADE GROUND) Dense brown occasionally grey stained clayey Gravel is fine to cobble sized flint, chalk, brick wood fragments. Organic odour. (MADE GROUND) Brown sandy becoming very sandy CLAY. Gravel coarse chalk, flint and wood fragments with ra carbonaceous streaks. (ALLUVIUM)	l is clinker, gravelly sand. c, ash and vel is fine to	
D3: 1.90-2.00m	2.00m (S) N=10 (2,2,2,3,2,3)				- 2.00		Pale grey and yellow stained sandy gravelly co		1.40
D4: 2.90-3.00m	3.00m (5) N=10 (2,1,2,2,3,3)				- 3.00	P. P. P	Gravel comprises fine to medium weak chalk. plack banding from 3-4m bgl. Organic odour. (ALLUVIUM)	Peat bands and	1.60
D5: 3.90-4.00m	4.00m (5) N=8 (1,1,2,2,2,2)				4.00 4.00	$\frac{r}{r} \frac{r}{r} \frac{r}$	Structureless CHALK compsed of cream, yellov gravelly SILT. Gravel is predominantly fine and chalk. ZIG ZAG CHALK FORMATION) End of Borehole at 4.45 m		0.45
using a l 2.When ur Photoion Remarks:	ndertaken Sh Pilcon Hand S ndertaken PII iisation Detec backfilled w	Shear Va D Readin ctor	ne. gs recor		ng	Leg ✓ S C N=1 55/2 ES U B J W	blows per 75mm in brackets	Well Installation/Ba Backfill Details: Concrete Bentonite Filter Gravel Arisings Backfill	ackfill Legend: Pipe Details: Plain Pipe Slotted Pipe Piezometer Tip

Project Client: Project Logged	n: Sawst ID: 72175 Salmo Engineer: by:	50 on Harv Heste HC	mbridg vester l	jeshiro Propei	e	imited	Ground Level: - (mAOD) Coordinates: -	MLM 7200 Camt CB25 Tel: (Fax:	MLM Environmental 7200 Cambridge Research Park Cambridge CB25 9TL Tel: 01223 815600 Fax: 01223 815630 email: cambridge@mlm.uk.com			
Sample Ref.	SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Legend	STRATA Description of Strata		Thickness (m) Details Mate			
D1: 0.50-0.60m	.50-0.60m 1.00m (5) N=13 (1,2,2,3,4,4) .90-2.00m (C) N=18 (3,3,5,4,5,4) .90-3.00m 3.00m (C) N=11 (2,2,2,3,3,3) .90-3.00m 3.00m (C) N=11 (2,2,2,3,3,3) .90-3.00m 3.00m (C) N=11 (2,2,2,3,3,3) .90-3.00m		- 0.22 - 0.50 - 0.65 - 1.00 1.00 - 2.00 2.00 		Description of Strata		2.45					
using a l 2.When ur Photoion Remarks:	ndertaken Sh Pilcon Hand S Idertaken PII isation Deteo ng well instal	Shear Va D Readin ctor	ne. gs recor		4.45		Water Strike Water Standing Standard Penetration Test - Split Spoon Method Standard Penetration Test - Solid Cone Method 7 SPT "N" Value with number of blows per 75mm in brackets 25 55 blows to achieve 25mm Environmental Sample (1 tub & 1 jar)	Concrete Bentonite	kfill Legend: Pipe Details: Plain Pipe Slotted Pipe Piezometer Tip			

Project Client: Project Logged	n: Sawsto ID: 72175 Salmo Engineer:	on, Ca 0 n Harv Heste HC	vester I	jeshire Proper		nited	Ground Level: - 72 (mAOD) 72 Coordinates: - 74	MWW.M MEnvironn 00 Cambrid 25 9TL 1: 01223 81 x: 01223 8 hail: cambri	nental Ige Rese 5600 15630 dge@ml	arch Park
Sample Ref.	SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Legend	Description of Strata	Thickness (m)	Installation Details	Water (m)
D1: 0.90-1.00m	1.00m				0.03 0.10 0.20		SPHALT. SPHALT. ellow brown sand and flint and concrete gravel. MADE GROUND) tiff gravelly clay. Gravel is flint, chalk, brick and ash. MADE GROUND)	0.03 0.07 0.10 0.80		Dry
D2: 1.60-1.70m	(S) N=10 (2,2,2,3,2,3)				. 1.70 -	f (, C a	oft black organic slightly sandy PEAT. Gravel is chalk and lint. Faint organic odour. ALLUVIUM) range-grey slightly clayey SAND and fine to medium flint nd chalk GRAVEL. LOWESTOFT FORMATION)	0.70		
D3: 2.90-3.00m	2.00m (S) N=13 (3,4,3,2,4,4) 3.00m				- 2.00			1.80		
D4: 3.90-4.00m	(C) N=11 (3,3,3,2,3,3) 4.00m (C) N=5 (1,1,2,1,1,1)				4.00	S T T T T T T T T T T T T T T T T T T T	tructureless CHALK composed of cream, slightly sandy silty ub-angular to rounded GRAVEL in a cream and orange stained natrix. ZIG ZAG CHALK FORMATION)	0.95		
					4.45	E	nd of Borehole at 4.45 m		***	
using a F 2.When un Photoion Remarks:	dertaken Sha 'ilcon Hand S dertaken PIE isation Detec backfilled wi	Shear Va D Readin Stor	ne. gs recor		h l	Lege ↓ S C N=17 55/25 ES D U B J W	blows per 75mm in brackets Filter	Pipe D	etails: in Pipe tted P	2

Project Client: Project Logged	n: Sawst ID: 72175 Salmo Engineer: by:	on, Ca 50 on Harv Heste HC	mbrid <u>e</u> vester	geshiro Propei		hited Ground Level: - 72008 (mAOD) Coordinates: - Fax:	ALAM Environmental Cambridge Research Park oridge 19TL 11223 815600 01223 815630 I: cambridge@mlm.uk.com
Sample Ref.	SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Description of Strata	Thickness (m) Details (m) Details
D1: 0.50-0.60m					0.18	Reinforced CONCRETE. Dark grey sandy gravelly clay. Gravel is fine to cobble sized brick, ash, tile, chalk and flint. (MADE GROUND)	0.18 Dry 0.62
D2: 0.90-1.00m	1.00m (S) N=5 (1,1,1,2,1,1)				- 1.00	Structureless chalk and occasional flint and ash gravel in a grey-white silt matrix. (MADE GROUND)	0.70
D3: 1.90-2.00m	2.00m (5) N=4 (1,1,1,1,1,1)				- 1.50	Dark grey sandy gravelly clay. Gravel is fine to coarse chalk, flint and rare ash and brick. (MADE GROUND)	0.80
D4: 2.90-3.00m	3.00m (S) N=11 (2,2,3,3,3,2)				- 2.30	Orange-beige very sandy gravelly CLAY. Gravel is fine to coarse chalk and flint. (LOWESTOFT FORMATION)	2.15
D5: 3.90-4.00m	4.00m (S) N=6 (1,1,2,2,1,1)				4.00	End of Borehole at 4.45 m	
using a 2.When ur Photoior Remarks:	ndertaken Sh Pilcon Hand S ndertaken PII hisation Deteo e backfilled w	Shear Va D Readin ctor	ne. gs recor		ng	Legend: Well Installation/Bac ✓ Water Strike ✓ Water Standing S Standard Penetration Test - Split Spoon Method C Standard Penetration Test - Split Spoon Method C Standard Penetration Test - Split Spoon Method N=17 SPT "N" Value with number of blows per 75mm in brackets S5/25 S5 blows to achieve 25mm ES Environmental Sample (1 tub & 1 jar) D Small Disturbed Sample U Undisturbed Samples B Bulk Sample J Jar Sample W Water Sample	kfill Legend: Pipe Details: Plain Pipe Slotted Pipe Piezometer Tip

Project Client: Project Logged	n: Sawst ID: 72175 Salmo Engineer:	on, Ca 50 on Harv Heste HC	vester I	jeshire Propei	e	imited	Ground Level: - (mAOD) Coordinates: -	MLLM www.mlm.uk.com MLM Environmental 7200 Cambridge Research Par Cambridge Cabs 971 Tel: 01223 815630 arx: 01223 815630 amail: cambridge@mlm.uk.com
Sample Ref.	SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Legend	Description of Strata	Thickness (m) Installation Details
D1: 0.40-0.50m					0.04		ASPHALT. Reinforced CONCRETE. Stiff dark grey-brown slightly gravelly clay. Gravel is fine to coarse brick, chalk, ash, clinker and wood. MADE GROUND)	0.04 Dry 0.26 0.70
D2: 1.40-1.50m	1.00m (S) N=9 (1,1,1,2,3,3)				- 1.00 1.00		Soft to firm pale grey and dark grey stained sandy gravelly lay. Gravel is fine to coarse chalk, flint and occasional prick and ash. (MADE GROUND)	0.70
D3: 1.90-2.00m	2.00m (5) №9 (2,1,2,2,2,3)				- 1.70 - 1.90 - 2.00 - 2.10		Firm pale grey silty slightly sandy gravelly MARL. Gravel sine to coarse sub-rounded to sub-angular chalk and sccasional flint in a grey silt matrix. (ALLUVIUM) Dark brown sandy PEAT with wood fragments and rootlets. Faint organic odour. (ALLUVIUM) Firm pale grey silty slightly sandy gravelly MARL. Gravel s fine to coarse sub-rounded to sub-angular chalk and sccasional flint in a grey silt matrix.	0.20
D4: 2.90-3.00m	3.00m (S) N=8 (2,1,2,2,2)						(ZIG ZAG CHALK FORMATION) Structureless CHALK composed of cream, slightly sandy silty sub-angular to rounded GRAVEL in a pale grey and orange stained matrix. (ZIG ZAG CHALK FORMATION)	
D5: 3.90-4.00m	4.00m (S) N=5 (1,1,1,2,1,1)							1.45
using a l 2.When ur Photoion Remarks:	ndertaken Sh Pilcon Hand S ndertaken PII iisation Detec e backfilled w	Shear Va D Readin ctor	ne. gs recor		4.45		blows per 75mm in brackets Filter	Backfill Legend: Pipe Details: Plain Pipe Slotted Pipe Piezometer Tip

Location Project Client: Project Logged	Project Engineer: Hester Carter Logged by: HC IN SITU TESTS/SAMPLING						ed Ground Level: - 72000 (mAOD) Coordinates: - 72000 Coordinates: - 720000 Coordinates: - 720000 Coordinates: - 72	environm Cambrid ridge 9TL 1223 81 1223 81	nental ge Rese 5600 15630	K.COM arch Park
Sample Ref.	SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Legend	Description of Strata	Thickness (m)	Installation Details	Water (m)
D1: 0.30-0.40m					0.27 0.45 0.55		Reinforced CONCRETE. Yellow brown sand and fine to coarse sub-angular flint and concrete gravel. (MADE GROUND) Loose dark brown-black gravelly sand. Gravel is clinker, ash and flint. Hydrocarbon odour. (MADE GROUND) Brown sandy becoming very sandy CLAY. Gravel is fine to coarse chalk, flint and abundant wood fragments and carbonaceous material. Organic odour. (ALLUVIUM)	0.27 0.18 0.10		Dry
D3: 1.90-2.00m D4: 2.00-2.10m D5: 2.90-3.00m					- 2.00 2.00 - 2.20 - 2.20 		Soft to firm pale grey-brown gravelly CLAY. Gravel is chalk, shell fragments and carbonaceous material. (ALLUVIUM) Structureless CHALK composed of cream, slightly sandy silty sub-angular to rounded GRAVEL in a cream and yellow stained matrix. (ZIG ZAG CHALK FORMATION) End of Borehole at 3.00 m	0.20		
Notes:					- 4.00 		egend:		-	
using a F 2.When un Photoion Remarks:	dertaken She ilcon Hand S dertaken PIE sation Detec g well install	ihear Va Readin tor	ne. gs recor		ng		Water Standard Penetration Test - Split Spoon Method Standard Penetration Test - Solid Cone Method =17 SPT "N" Value with number of blows per 75mm in brackets 5/25 55 blows to achieve 25mm S Environmental Sample (1 tub & 1 jar) Small Disturbed Sample Undisturbed Sample Bulk Sample Jar Sample	Slo	in Pipe tted P	<u>j</u>

Project Client: Project Logged	n: Sawst ID: 72175 Salmo Engineer: by:	on, Ca 50 on Harv Heste HC	mbridg vester I	jeshire Propei	e	mited	Ground Level: - (mAOD) Coordinates: -	MLM Environ 7200 Cambrid Cambridge CB25 9TL Tel: 01223 8 Fax: 01223 8	dge Research Pa
Sample Ref.	U TESTS/SA SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Legend	STRATA Description of Strata	Thickness (m)	Installation Details (m)
D1: 0.40-0.50m W1: 0.51-0.51m D2: 0.90-1.00m D3: 1.90-2.00m					- 0.09 - 0.29 - 0.60 - 1.10 - 1.10 		Red ASPHALT. Reinforced CONCRETE. Dense dark grey-brown clayey very gravelly sand. Gravel is fine to coarse clinker, filint, brick, chalk and ash. Strong hydrocarbon odour. (MADE GROUND) Light grey-brown sandy gravelly clay. Gravel is fine to coarse chalk, finit and occasional wood fragments and carbonaceous material. (MADE GROUND) Structureless CHALK composed of cream, slightly sandy silty sub-angular to rounded GRAVEL in a cream and yellow stained matrix. (ZIG ZAG CHALK FORMATION) End of Borehole at 3.00 m	0.09 0.20 0.31 0.50	₩ 0.51
using a F 2.When ur Photoion Remarks:	dertaken Sh Pilcon Hand S dertaken PII isation Detec backfilled wi	Shear Va D Readin ctor	ne. gs recor		4.00	Lec	blows per 75mm in brackets Filter	Pipe D Pla	egend: vetails: ain Pipe otted Pipe ezometer Tip

Project Client:	n: Sawsto ID: 72175 Salmo Engineer:	on, Ca 0 n Harv	mbrid <u>e</u> vester l	jeshire Propei	e	mited	BOREHOLE REF: WS1 Drilling Method: Windowler Start of Drilling: 09/07/200 Completion: 09/07/200 Ground Level: - (mAOD) Coordinates: -	ss Sampler 08	MLM Environ 7200 Cambridge CB25 9TL Tel: 01223 8 Fax: 01223 8	nbridge Research Pa e 3 815600		
IN SIT	U TESTS/SAI		د			8	STRATA		S	uo		
Sample Ref.	SPT Results (Type)	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Legend	Description of St	rata	Thickness (m)	Installation Details		
D1: 0.90-1.00m					0.45		Sandy coarse concrete gravel. MADE GROUND) Beige sandy slightly gravelly SILT. Gravel is fine ind occasional fint. Hydrocarbon odour. LOWESTOFT FORMATION)	e chalk	0.45		Dry	
D2: 1.90-2.00m D3: 2.90-3.00m					2.00		Structureless CHALK composed of cream, slightl sub-angular to rounded GRAVEL in a cream and natrix. ZIG ZAG CHALK FORMATION)	y sandy silty yellow stained	0.90			
Notes:					4.00		end:	Well Installation	/Backfill L	egend:		
1. When un using a F 2. When un Photoion Remarks:	dertaken She iilcon Hand S dertaken PIE isation Detec backfilled wi	ihear Va Readin tor	ne. gs recor		ng	Zeg Z S C N=1' S5/2 ES D U B J W	Water Strike Water Standing Standard Penetration Test - Split Spoon Method Standard Penetration Test - Solid Cone Method SPT "N" Value with number of blows per 75mm in brackets	Backfill Details: Concrete Bentonite Filter Gravel Arisings Backfill	Pipe I Pla	otted P ezomet	e ipe	

	ject: atior		es Manor vston, Ca			(TRIAL PIT: TP1	T	NA
Pro Clie Pro	ject I ent:	ID: 721 Salı Enginee		vester F	Properti	es Limi		nmental ridge Res 815600 815630	
IN S	SITU T	ESTS/SA	MPLING				STRATA	snageen	
Depth (m)	Sample Ref.	PID Reading (ppm)	Shear Strength (kPa)	Level (mAOD)	Depth (m)	Legend	Description of Strata	Thickness (m)	Water (m)
0.30	D 1				- 0.20 - 0.25 - 0.35	S S	einforced CONCRETE. and and gravel comprising concrete, clinker and ash. MADE GROUND)	0.20	Dry
0.50	D 2				- 0.5		ark grey very sandy very gravelly clay. Gravel is brick, ash, int and chalk. Hydrocarbon odour. MADE GROUND)	0.45	
1.00	2		44		0.80	C(I	ale grey, dark grey stained clayey sand and gravel of fine to barse flint, chalk, brick and ash. Hydrocarbon odour. MADE GROUND) rm dark grey-brown very sandy slightly gravelly CLAY. Gravel		
1.00	5				-		fine to coarse, sub-angular to sub-rounded chalk and flint. OWESTOFT FORMATION)	1.05	
					1.5			1.05	
2.00	D 4				- 1.85 	D P C	range silty gravelly to very gravelly SAND. Gravel is redominantly fine to coarse sub-rounded chalk. Gravel ontent increases with depth. OWESTOFT FORMATION)	0.65	
					- 	S S S	tructureless CHALK with weak cream fine to coarse ub-rounded GRAVEL in a pale grey-cream and yellow stained andy silt matrix. ZIG ZAG CHALK FORMATION)	_	
					- - - - - - - - -			0.85	
3.35	В 1				3.35 	E	nd of Trial Pit at 3.35 m		
					- - - - - -				
Dept Soil I Rema 1.Soa 2.3	h Rang Infiltra arks: akawa 35m to	ge: Ition Rate y test un 0 3.35m	dertaken at	: depth o		<u> </u>	Dimensions: Legend: 2.00m ✓ Water Strike 0.70m ✓ Water Standing D Small Disturbed Sam B Bulk Sample J Jar Sample W Water Sample	ple	<u> </u>
							Stability:GoodNotes:Plant Used:1. When undertaken shear recorded using Pilcon Ha 2. When undertaken PID Re recorded using Photoioni	nd She eadings	ar Vane

Date of	1 L.	
Client: Salmon Harvester Properties Limited Dackin Date: 05/07/2000 Project Engineer: Hester Carter Ground Level: - 7200 Ca Logged by: HC Coordinates: - 7200 Ta	/.mlm.u ironmental nbridge Res	Ik.com earch Park
IN SITU TESTS/SAMPLING STRATA	mbridge@m	Im.uk.com
Depth (m) Description of Strata	Thickness (m)	Water (m)
0.06 ASPHALT. CONCRETE.	0.06	Dry
0.50 D 1 CONCRETE.	0.24	
Grey-brown sandy gravelly CLAY. Gravel is flint and chalk. (LOWESTOFT FORMATION)	0.45	
1.00 D 2	0.35	
1.50 D 3 Structureless CHALK with weak cream fine to coarse sub-rounded GRAVEL in a pale grey-cream and yellow stained sandy silt matrix. (ZIG ZAG CHALK FORMATION)		
2.50 B 1		
End of Trial Pit at 2.65 m		
Soakaway Test Details (where applicable) Dimensions: ⊥egend: Depth Range: 1.70m ⊥egend: Soil Infiltration Rate: 1.70m ⊥egend: Remarks: 1.70m ⊥.70m ⊥egend: 1.66m to 2.65m bgl. 0.70m Jar Sample W Water Standing 2.Trial pit backfilled with arisings. 0.70m W Water Standing Stability: Good Notes: 1. When undertaken sheat recorded using Pilcon I 2.Wen undertaken PID recorded using Photoic 2.Wen undertaken PID recorded using Photoic 2.Wen undertaken PID	r strengt land She Readings	ar Vane

MLM. Group	Project: Project ID: Location: Client: Project Engineer:	7753 Saws	22 ston on Harve		ess Park Properties Limited	Method: Start: Finish: Level (mOD): Co-ordinates:	CP 05/07/2017 05/07/2017 22.16 549011.81E 250500.07N	Loggod	of 2	P201	
Depth SPT (m) (Type		Level (mAOD)	Depth (m)	Legend		Description of St	rata	L	Thickness (m)	Inst'/ Backfill	Water (m)
		22.01 21.86	0.15		CONCRETE. Re-bar ab CONCRETE Light brown clayey sand GRAVEL. MADE GROUND Dark grey silty slightly si brick, concrete, chert an MADE GROUND	y fine to coarse bri andy gravelly CLAY			0.15 0.15 1.00		
		20.86	- 1.30 		Medium dense brown m brown silty gravelly SAN rounded flint and chalk. ALLUVIUM	ottled grey silty SA ID. Gravel is fine to	ND quickly becor coarse angular t	ning a o sub-	2.00		
		18.86	- 3 - 3.30 		Firm grey slightly gravel white gravelly CLAY. Gra mudstone and chalk. ZIG ZAG CHALK FORM	avel is fine to coars	y becoming white e angular to sub-	e mottled off rounded			
			- 5 						11.70		
General Notes 1. Shear Strengths determined	by hand shear va	ne.			Water Strike Det	Continued on next sh ails. Recorded in Depth	^{eet} metres below gro Casing	ound level (m b		Depth to	water
2. See key sheet for explanatio Remarks	n oi symbols				Date	Encountered 4.50	Depth	Remarks		fter 20 m 4.4(iins (m)

Oroup	M.	Project: Project ID: Location: Client: Project Engineer:	7753 Saws	22 ston ion Harve		ess Park Properties Limited	Method: Start: Finish: Level (mOD): Co-ordinates:	CP 05/07/2017 05/07/2017 22.16 549011.81E - 250500.07N	1:50 Sheet 2 Logged A.W	of 2	P201	
Depth (m)	SPT Results (Type)	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of Str	rata	I	Thickness (m)	Inst'/ Backfill	Water (m)
General Notes	fetermined by		7.16			Water Strike De	End of borehole at 15.0	0 m	d level (m b			
1. Shear Strengths o 2. See key sheet for Remarks	determined by explanation of	/ hand shear va of symbols	ne.			Date	Depth Encountered 4.50	Casing Depth	Inflow Remarks		Depth to fter 20 m 4.40	ins (m)

₩ MLM.	Project: Project ID: Location:	7753 Saws	ston			Method: Start: Finish: Level (mOD):	CP 06/07/2017 06/07/2017 21.63	1:50	С	P202	
Group	Client: Project Engineer:	Salm L. Lin		ster Pı	operties Limited	Co-ordinates:	548951.13E - 250448.98N	Sheet 1 Logged A.W.			
Lepth Re	SPT Strength sults Shear ype) (kPa)	Level (mAOD)	Depth (m)	Legend		Description of Str	rata		Thickness (m)	Inst'/ Backfill	Water (m)
		21.43	- 0.20		CONCRETE. Re-bar a CONCRETE				0.20		
			-		Light brown clayey san GRAVEL.	dy fine to coarse brid	ck, concrete and lime	estone	0.40		
		21.03	- 0.60 		MADE GROUND Firm dark grey silty gra lenses. Gravel is fine to sized fragments of bric MADE GROUND	coarse angular to re	uent fine to medium ounded chert with gr	sand avel	0.70		
		20.33	1.30		Medium dense brown r to coarse angular to su ALLUVIUM	nottled grey gravelly b-rounded flint and c	silty SAND. Gravel i ihalk.	s fine	1.40		
		18.93	2.70 		Firm grey mottled brow sandy with depth. Grav and chalk. ALLUVIUM	n slightly gravelly sa el is fine to coarse a	ndy CLAY becoming ngular to sub-rounde	very ed flint			
			- - - - - - - - -						2.50		
		16.43	- 5 5.20 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		Firm white and off white to sub-rounded chalk. ZIG ZAG CHALK FOR			angular			
General Notes 1. Shear Strengths determin	ned by hand shear va	ne.		<u> </u>	Water Strike De	tails. Recorded in	metres below ground			1	
2. See key sheet for explan	ation of symbols				Date	Depth Encountered	Casing Depth	Inflow Remarks	l at	Depth to fter 20 m	water ins (m)
Remarks						4.80				4.50)

Croup	M.	Project: Project ID: Location: Client: Project Engineer:	Sawston Salmon Harves : L. Liness			ess Park Properties Limited	Method: Start: Finish: Level (mOD): Co-ordinates:	CP 06/07/2017 06/07/2017 21.63 548951.13E - 250448.98N	1:50 Sheet 2 Logged A.W.	of 2	P202	
Depth (m)	SPT Results (Type)	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of St	rata		Thickness (m)	Inst'/ Backfill	Water (m)
			6.63	$ 10 \\ - 10 \\ - 10 \\ - 11 \\$	가지 않는 것 같아. 이 가지 않는 것 이 가지 않는 것 같아. 이 가지 않는		- End of borehole at 15.0	0 m		9.80		
General Notes 1. Shear Strengths o 2. See key sheet for	determined by r explanation	y hand shear va of symbols	ne.		1	Water Strike De Date	Depth Encountered	metres below groun Casing Depth	d level (m b Inflow Remarks	[Depth to ter 20 m	water ins (m)
Remarks							4.80				4.50)

Oroup	M.	Project: Project ID: Location: Client: Project Engineer:	7753 Saws	ton on Harve		ess Park Properties Limited	Method: Start: Finish: Level (mOD): Co-ordinates:	CP 05/07/2017 05/07/2017 22.03 549074.03E 250436.61N	1:50 = - Sheet 1	of 2	P203	
Depth (m)	SPT Results (Type)	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of St	rata		Thickness (m)	Inst'/ Backfill	Water (m)
			21.88 21.73 21.33	0.15		CONCRETE. Re-bar ab CONCRETE Off-white and grey claye coarse angular to sub-ro MADE GROUND	ey gravelly silty CHA bunded chalk and cl	LK. Gravel is w nert.	eak fine to	0.15 0.15 0.40		
			17.83	- 0.70 - 1 - 2 - 3 - 4 - 4 - 4.20 - 5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		Firm grey silty sandy CL ALLUVIUM Grey mottled green sligt coarse angular to sub-ro ALLUVIUM Firm white and off white to sub-rounded chalk. ZIG ZAG CHALK FORM	gravelly CLAY. Gra IATION	vel is fine to coa	arse angular	3.50		
General Notes 1. Shear Strengths	determined by	/ hand shear va	ne.		·1	Water Strike Det	1	metres below gr				
2. See key sheet for Remarks	r explanation o	of symbols	-			Date	Depth Encountered 4.10	Casing Depth	Inflow Remarks		Depth to fter 20 m 3.70	ins (m)

Group	M.	Project: Project ID: Location: Client: Project Engineer:	7753 Saws	22 ston ion Harve		ess Park Properties Limited	Method: Start: Finish: Level (mOD): Co-ordinates:	CP 05/07/2017 05/07/2017 22.03 549074.03E - 250436.61N	1:50 Sheet 2 Logged A.W.	of 2	P203	
Depth (m)	SPT Results (Type)	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of Str	ata		Thickness (m)	Insť/ Backfill	Water (m)
General Notes	fetermined h		7.03			Water Strike De	- End of borehole at 15.0	0 m	d level (m b			
1. Shear Strengths o 2. See key sheet for Remarks	explanation of	v nand shear va of symbols	ne.			Date	Depth Encountered 4.10	Casing Depth	Inflow Remarks	a	Depth to fter 20 m 3.70	ins (m)

# MLI	M.	Project: Project ID: Location: Client:	7753 Saws	ston		ss Park operties Limited	Method: Start: Finish: Level (mOD):	WLS 05/07/201 05/07/201 21.65	7 1:50		S201	
Group		Project Engineer:	L. Lir				Co-ordinates:	548958.97 250424.07	Loggod			
Depth (m)	SPT Results (Type)	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of St	rata		Thickness (m)	Inst'/ Backfill	Water (m)
ES1 : 1.00 - 2.00m			21.45 21.35	- 0.20 - 0.30 		CONCRETE. Re-bar ab CONCRETE Grey brown clayey graw concrete and limestone. MADE GROUND Soft to firm brown and d Gravel is fine to coarse a gravel sized fragments of cobbles form 1.8m to 1.9 MADE GROUND	elly fine to coarse S ark grey silty slightl angular to rounded of brick, concrete, a	y sandy grave chert, flint and	lly CLAY.	0.20		
			19.65	- 2 2.00	() () () () () () () () () ()	Dark grey clayey slightly medium chalk and flint. ALLUVIUM	r gravelly organic S Frequent decayed r	ILT. Gravel is f ootlets. Organ	ine to ic odour.	0.50		
			19.15	- 2.50 - 3 		Recovered as grey whit composed of firm moist are weak to moderately Flints absent. Occasiona ZIG ZAG CHALK FORM	very silty gravelly C strong fine to coars al decayed rootlets.	LAY (marly ch e angular to s	alk). Clasts	2.50		
			16.65	5 5.00			- End of borehole at 5.0	0 m			<u>•</u> .• <u>+</u>	1
General Notes 1. Shear Strengths o 2. See key sheet for	letermined by explanation	/ hand shear va	ne.		<u> </u>	Water Strike Det	Depth	Casing	ground level (m b Inflow		Depth to	
Remarks Borehole dry and sta						Jare	Encountered	Depth	Remarks	a	fter 20 m	ins (m)

🔅 MLI Group	м.	Project: Project ID: Location: Client:	7753 Saws	ston		s Park operties Limited	Method: Start: Finish: Level (mOD): Co-ordinates:	WLS 05/07/2017 05/07/2017 21.93 549002.38E -	1:50 Sheet 1	of 1	S202	2
		Project Engineer:	L. Lir	ness				250422.26N	Logged I W.F.	by:		
Depth (m)	SPT Results (Type)	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of Str	rata		Thickness (m)	Inst'/ Backfill	Water (m)
			21.88 21.63	0.05 0.30		MACADAM MADE GROUND CONCRETE. Re-bar a CONCRETE Soft to firm brown and Gravel is fine to coars gravel sized fragments odour. MADE GROUND	dark grey silty slightly angular to rounded	chert, flint and chalk	c with	0.25		
			19.93 19.53	- - 2 2.00 - 2.40	(x·× ≺aka) I	Dark grey clayey sligh medium chalk and flin ALLUVIUM Firm light grey and yel	t. Frequent decayed r	ootlets. Organic odo	our.	0.40		
			18.93			Recovered as grey wh	to coarse angular to MATION	sub-rounded chalk.		0.60		
				- - - - - - - - - - - - - - - - - - -		composed of firm mois are weak to moderate Flints absent. Occasio ZIG ZAG CHALK FOF	ly strong fine to coars nal decayed rootlets.	e angular to sub-rou		2.00		
			16.93	- 5 5.00			- End of borehole at 5.00					
General Notes 1. Shear Strengths o 2. See key sheet for			ne.			Water Strike D Date	etails. Recorded in Depth Encountered	metres below groun Casing Depth	d level (m bo Inflow Remarks		Depth to fter 20 m	
Remarks Borehole dry and sta	able.									a		

# ML	M.	Project: Project ID: Location: Client:	7753 Saws	ston		ss Park roperties Limited	Method: Start: Finish: Level (mOD):	WLS 05/07/2017 05/07/2017 22.05	1:50		S203	}
Group		Project Engineer:	L. Lir				Co-ordinates:	549071.90E - 250344.79N	Sheet 1 Logged W.F.			
Depth (m)	SPT Results (Type)	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of Str	rata		Thickness (m)	Inst'/ Backfill	Water (m)
			21.92 21.86 21.75 21.55 20.45	- 0.13 0.19 0.30 0.50 - 1 - 1 - 1 - 1 - 1 		CONCRETE. Re-bar at CONCRETE Light grey CONCRETE Grey clayey sandy fine and limestone GRAVEL MADE GROUND Very stiff dark grey silty to sub-rounded chert ar ash. MADE GROUND Buff very silty gravelly fangular to sub-angular ZIG ZAG CHALK FOR Storing fine to coarse ar ZIG ZAG CHALK FOR Storing fine to coarse ar ZIG ZAG CHALK FOR	. Re-bar absent to coarse angular to gravelly CLAY. Grav d flint with gravel sit ine to medium SANE flint. Rare angular fli VATION patched yellow stru ayey sit matrix. Clas ingular to sub-rounde VATION	vel is fine to coarse zed fragments of b D. Gravel is fine to nt cobble at 0.9m. Ctureless CHALK of ts are weak to moo d. Flints absent. (G	angular rick and coarse	0.13 0.11 0.20 1.10 2.40		
General Notes 1. Shear Strengths 2. See key sheet for	determined by r explanation	y hand shear va of symbols	ne.			Water Strike De Date	Depth Encountered	metres below grou Casing Depth	nd level (m b Inflow Remarks		Depth to fter 20 m	
Remarks Refusal at 4.0m on	hard chalk. Bo	orehole dry and	stable.									

M Gro	LM.	Project: Project ID: Location: Client: Project	7753 Saws	ston		s Park operties Limited	Method: Start: Finish: Level (mOD): Co-ordinates:	WLS 05/07/2017 05/07/2017 22.06 549071.44E -	1:50 Sheet 1	of 1	S204	
		Engineer:	L. Lir	ness				250499.44N	Logged W.F.	by:		
Depth (m)	SPT Results (Type)	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of St	rata		Thickness (m)	Inst'/ Backfill	Water (m)
			21.86 21.76	0.20		CONCRETE. Re-bar at CONCRETE Light brown clayey sand GRAVEL. MADE GROUND		ck, concrete and lim	estone	0.20 0.10 0.50		
			21.26	0.80		Dark grey silty slightly s brick, concrete, ash, cli	andy gravelly CLAY nker, chert and chall	Gravel is fine to co	arse	0.30		
			20.96	- 1 - 1.10		MADE GROUND Light brown clayey grav	velly fine to coarse S	AND. Gravel is fine	to	0.30		
			20.66	1.40 	× + × × × ×	coarse angular to sub-r MADE GROUND Off-white and yellow bro fine to coarse angular to	own silty gravelly cla	vev CHALK. Grave	l is weak			
			19.86	- - 2 - 2.20	(×·×́∖ ×sko ×××	MADE GROUND Dark grey and black cla to medium chalk, chert fragments. Organic odd	and flint. Frequent d			0.80		
				-		ALLUVIUM Recovered as grey whit composed of firm moist are weak to moderately Flints absent. Occasion	t very silty gravelly C strong fine to coars	LAY (marly chalk). e angular to sub-ro	Clasts unded.			
				- 3 		ZIG ZAG CHALK FOR				2.20		
				- - - -								
			17.66	- - - 4.40								
			17.00	- - -		Recovered as grey whit silty GRAVEL. Clasts an angular to sub-rounded ZIG ZAG CHALK FORM	re weak to moderate I. Flints absent. (Gra	ly strong fine to coa	ayey arse	0.60		
			17.06	5 5.00			- End of borehole at 5.0	U m				
General Note	s			-		Water Strike De	tails. Recorded in	metres below grour	id level (m h	al)		
1. Shear Stre 2. See key sh	ngths determined b neet for explanation		ne.			Date	Depth Encountered	Casing Depth	Inflow Remarks		Depth to fter 20 m	
Remarks Borehole dry	and stable.											

₩ ML	м.	Project: Project ID: Location:	Dales 7753 Saws		Busin	ss Park	Method: Start: Finish: Level (mOD):	WLS 05/07/2017 05/07/2017 22.10	1:50	W	S205	5
Group		Client: Project Engineer:	Salm L. Lir		ester F	operties Limited	Co-ordinates:	549124.25E - 250454.07N	Sheet 1 Logged W.F.			
Depth (m)	SPT Results (Type)	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of Str	rata		Thickness (m)	Inst'/ Backfill	Water (m)
			21.90 21.85 21.60	- 0.20 - 0.25 - 0.50		CONCRETE. Re-bar al CONCRETE Light brown and pink sa MADE GROUND	andy brick and concr		/	0.20 ∞∞ 0.25		
			21.20	- - - - 0.90		Off-white and grey clay coarse angular to sub-r MADE GROUND	ounded chalk and ch	nert.		0.40		
			20.90	- 1.20	×^	Dark grey silty sandy gr ash. MADE GROUND				0.30		
				- - - - - - 2 -		Dark brown very silty of ALLUVIUM Buff and yellow sandy g sub-rounded chalk. Yell ZIG ZAG CHALK FORM	gravelly SILT. Gravel low brown sand lens	is fine to coarse an		1.10		
			19.80	- 2.30 		Recovered as off-white of gravelly SILT. Clasts angular to sub-rounded ZIG ZAG CHALK FOR	are weak to modera I. Flints absent. (Gra	tely strong fine to co	omposed oarse	1.10		
			18.70	- 3.40			End of borehole at 3.4) m				
				- - - - - - - - - - - - - - - - - - -								
General Notes 1. Shear Strengths 2. See key sheet fo	determined by r explanation	y hand shear va	ne.			Water Strike De Date	Depth	metres below groun	Inflow		Depth to	
Remarks Refusal at 3.40m or			d stable.				Encountered	Depth	Remarks	af	iter 20 m	ins (m)

2	MLI	A	Project: Project ID Location:): 77	les Ma 5322 wston	anor Business Park	Method: Start: Finish:	TP 04/07/2017 04/07/2017		7	۲Р20 ⁻	1
	Group		Client:	Sa	Imon	Harvester Properties Limited	Level (mOD): Co-ordinates:	21.79 548973.56E -	1:25 Sheet	1 of 1		
			Project Engineer:	L. I	Liness	6		250441.41N	Logge	d by:		
INSIT	U TEST/S/	AMPLING					 TRATA		W.F.			
Depth (m)	Sample Ref.	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of Strata				Thickness (m)	Water (m)
			21.69	- 0.10		MACADAM MADE GROUND CONCRETE. Re-bar absent. CONCRETE				/	0.10	
0.50	ES1		21.49	- 0.30 		Firm dark grey silty gravelly CLAY wi coarse angular to rounded chert with and wood. Occasional brick and con MADE GROUND	gravel sized fragme crete cobbles. Orgar	ents of brick, concre nic odour.	te, ash, cl	inker	0.70	
						Firm dark grey and light grey very sil rounded chert with gravel sized frage MADE GROUND	nents of brick, concr	avel is fine to coars ete and ash. Strong	e angular 9 organic (to odour.	1.00	
Notes:			19.79	- 2 2.00			End of trial pit at 2.00 m		Dime	ensions:		
Shear Remar	strengths		using Pilic	on Hand	Shea	r Vane		1.40 Stability: Plant Used: Mechanical Ex)m	0.35m		

ž	MLI	м.	Project: Project ID Location:	: 77	lles M 5322 wston	anor Business Park	Method: Start: Finish: Level (mOD):	TP 04/07/2017 04/07/2017 22.07	1:25	1	⁻ P202	2
	Froup		Client:	Sa	lmon	Harvester Properties Limited	Co-ordinates:	549106.86E -	Sheet			
			Project Engineer:	L.	Liness	3		250457.88N	Logge W.F.	d by:		
	J TEST/S	AMPLING				l l	STRATA					
Depth (m)	Sample Ref.	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of Strata				Thickness (m)	Water (m)
			21.92	0.15		Reinforced CONCRETE. CONCRETE					0.15	
			21.92	- 0.15 - - - -		Grey brown silty gravelly CLAY. Gra sized fragments of brick, concrete a west encountered at 0.7m in south MADE GROUND	and macadam.Electric	angular to rounded c al cable and ducting	chert with g running	gravel east to	0.55	
			21.37	0.70		west encountered at 0.7m in south	side of pit.				0.55	
				- - - - - -								
Notes: Shear s	strengths	recorded	using Pilic	on Hand	Shea	r Vane			Dime	ensions:		
Remark	s					d at 0.7m bgl due to power cat	ble.	1.30		0.35m		
								Stability: Plant Used: Mechanical Ex	kcavator			

	₿ MLI	M	Project: Project ID Location:): 77	ales M 5322 iwstor	anor Business Park	Method: Start: Finish:	TP 04/07/2017 04/07/2017	4.05	Т	P202	A
	Group		Client:	Sa	Imon	Harvester Properties Limited	Level (mOD): Co-ordinates:	22.11 549102.23E -	1:25 Sheet	1 of 1		
			Project Engineer:	L.	Lines	8		250454.91N	Logge W.F.	d by:		
INSIT	U TEST/S	AMPLING				{	STRATA		VV.I .			
Depth (m)	Sample Ref.	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of Strata				Thickness (m)	Water (m)
				-		Reinforced CONCRETE. CONCRETE					0.25	
0.40	ES1		21.86	0.25		Dark grey silty gravelly CLAY. Grav sized fragments of brick, concrete, MADE GROUND	el is fine to coarse an ash and clinker.	gular to rounded che	ert with gr	avel	0.25	-
			21.61	- - - - - - - - - - - -		Stiff light grey and white silty grave and chert with gravel sized fragmer cobbles. Cobble and boulder sized MADE GROUND	nts of brick, concrete a	and clinker. Occasion	to rounde nal brick	d flint	0.50	
			21.11	- 1 1.00 	(*************************************	Friable dark brown grey gravelly ve to sub-rounded flint, chert and chal ALLUVIUM	ry clayey organic SIL k. Organic odour.	T. Gravel is fine to m	edium an	gular	1.00	
			20.11	2 2.00	2 × -×. X 416, X X 416, X		- End of trial pit at 2.00 m					
				- - - - - - - - - - - - - - - - - - -								
Notes		rocorded			Ch	r \/ono			Dime	ensions:	1	I
Rema	rks		using Pilic bakaway te			r Vane - see separate results sheet.		1.50 Stability: Plant Used: Mechanical Ex	m	0.35m		

B B C Description of status B Description of status B C Description of status B C D <thd< th=""> <thd< th=""> D D</thd<></thd<>			И.	Project: Project ID Location: Client:): 77 Sa	5322 wston	anor Business Park Harvester Properties Limited	Method: Start: Finish: Level (mOD): Co-ordinates:	TP 04/07/2017 04/07/2017 21.70 548991.64E -	1:25 Sheet 7	1 of 1	P203	3
Node: Shear strengths Strength (URAD) Level (URAD) Origin (URAD) 2 (URAD) BLOCK PM/MO (URAD) Description of Stratis BLOCK PM/MO (URAD) 1 1:50 0.20 0.20 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 1:10 0.20 0.20 0.20 0.20 <tr< td=""><td></td><td></td><td></td><td></td><td>L.</td><td>Liness</td><td>i</td><td></td><td>250389.57N</td><td></td><td>l by:</td><td></td><td></td></tr<>					L.	Liness	i		250389.57N		l by:		
Nete: Nete: 0.00 0.00 19.70 -1.200		J TEST/SA	MPLING				S	TRATA					
Ndes: Skeet Strengths recorded using Pillicon Hand Sheer Vane Add. Strengths Add	Depth (m)	Sample Ref.	Shear			Legend		Description of Strata					Water (m)
Notes: Notes: 0.00 0.00 0.00 0.00 0.00 Notes: 0.00 0.00 0.00 0.00 0.00 0.00 Notes: 0.00<					-		MADE GROUND	se SAND. Cobbles a	are brick. Frequent ro	ootlets.	/		
Notes: Notes: Dimensions 0.30 Notes: Shear strengths recorded using Pilcon Hand Shear Vane Dimensions: 0.35m				21.50	- 0.20		MADE GROUND Yellow brown and orange very cobbly				/	0.20	
Notes: State is frequencies 0.360 Notes: State is many state of the st				21.30	- 0.40		Firm to stiff dark grey gravelly CLAY.	Gravel is fine to coa	arse brick, concrete a	and chalk.		0.20	
Notes: Shear strengths recorded using Pilcon Hand Shear Vane Dimensions:					-		MADE GROUND					0.20	
Shear strengths recorded using Pilicon Hand Shear Vane 0.35m Remarks 1.40m					2 2.00	(× - ×)<	Friable dark grey very silty gravelly o sized fragments of brick. Occasional ALLUVIUM	brick and clinker co	l is fine to medium ch	nert with g	ravel		
Remarks Trial pit dry and stable. 0.35m 1.40m		trenathe	recorded		on Hand	Shee	r Vane			Dime	nsions:		
Plant Used: Mechanical Excavator	Remark	s		using MIIC	un Hand	Snea	vane		Stability: Plant Used:	n	0.35m		

, I	MLI	м.	Project: Project IE Location:): 77! Sa	5322 wston		Method: Start: Finish: Level (mOD):	TP 04/07/2017 04/07/2017 22.38	1:25	1	⁻ P204	4
G	Group		Client: Project Engineer:		Imon I	Harvester Properties Limited	Co-ordinates:	549068.32E - 250335.71N	Sheet Logged W.F.			
INSITU	J TEST/S/	AMPLING				5	 STRATA					
Depth (m)	Sample Ref.	Strength Shear (kPa)	Level (mAOD)	Depth (m)	Legend		Description of Strata	I			Thickness (m)	Water (m)
			22.28	0.10		BLOCK PAVING MADE GROUND Yellow brown medium to coarse SA MADE GROUND	ND. Frequent rootlet	S.		/	0.10 0.20	
			22.08	- 0.30 		Densely compacted dark grey sand COBBLES. MADE GROUND	y fine to coarse brick	, concrete and clinke	r gravei	L and	0.30	
			21.78	0.60		Very stiff light blue grey and buff ver MADE GROUND	ry silty CLAY. Occasio	onal brick gravel fragi	ments.		0.20	
			21.58	0.80 1 1.80		Recovered as off-white and buff str cobbly SILT. Clasts are weak to mor Flints absent. (Grade Dm) ZIG ZAG CHALK FORMATION	uctureless CHALK co derately strong fine to	o coarse angular to si	ry gravell ub-rounde	y ed.	1.00	
Notes:				- - - - - - - - - - - - - - - - - - -					Dima			
Shear s Remark	s		using Pilio bakaway te			r Vane - see separate results sheet.		1.20r Stability:		nsions: 0.35m		
								Plant Used: Mechanical Exe	cavator			

		<u>S(</u>	DIL STRATA	<u>A</u>	
STRATA		WATER		BACKFILL / IN Backfill Details	STALLATIONS
	MADE GROUND / FILL		WATER STRIKE	× 4 × 4	CONCRETE
	TOPSOIL	\Box	WATER STANDING		BENTONITE
0.000	COBBLES AND BOULDERS			13.23	FILTER/GRAVEL
	GRAVEL				ARISINGS BACKFILL
	SAND			Pipe Details	
*****	SILT				PLAIN PIPE
8333	CLAY				
sile sile sile	PEAT				SLOTTED PIPE
e alio alio a					PIEZOMETER TIP
SAMPLES				IN SITU TEST	ING
U100	OPEN DRIVE TUBE SAMPLE (100 mm NOMINAL DIAMETER)				PENETRATION TEST USING THE
JT100	OPEN DRIVE THIN WALL TUBE SAMPLE (100 mm NOMINAL DIAMETER)				PENETRATION TEST USING A SOLID CONE
U38	OPEN DRIVE TUBE SAMPLE (38 mm NOMINAL DIAMETER)				AS BEEN COMPLETED THE TYPE OF TEST E WILL BE REPORTED.
P	PISTON SAMPLE (100 mm NOMINAL DIAMETER UNLESS NOT	ED OTHERWISE)		and the second provide the second states	. 300 mm PENETRATION OF THE MAIN DRIVE OMPLETED, THE NUMBER OF BLOWS
D	SMALL DISTURBED SAMPLE				E) WILL BE REPORTED.
в	BULK DISTURBED SAMPLE			SET OF BLOW CO	RDS COLUMN ON THE LOG WILL SHOW EACH DUNTS PER 75 mm OF PENETRATION INCLUDIN AND WILL ALSO INDICATE THE PARTIAL
BLK	BLOCK SAMPLE				CHIEVED (mm) FOR INCOMPLETE TESTS.
C	ROTARY CORE SAMPLE				
3	GAS SAMPLE				
	UNDISTURBED SAMPLE				
u					
	TUBE SAMPLE				
īτ	TUBE SAMPLE ENVIRONMENTAL SAMPLE				
u ut es					

Appendix B - Gas and Groundwater Monitoring Results

Project:Dales Manor Business ParkLocation:SawstonProject No.721750Operator:Ross Blake

Instruments Used:

Date:	3-Oct-07		
Barometric Pr	essure	Start:	1017
(mb):		Finish:	1016

Position Number	Methane (% Vol)	Carbon Dioxide (% Vol)	Oxygen (% Vol)	Organic Vapours (ppm)	Gas Flow (Litres/hr)	Water Level (m bgl)
WS3	25.4	0.1	4.0	0	-0.1	3.26
WS5	0.1	3.9	13.7	2	0.0	1.98
WS6	3.0	0.0	10.6	1	0.1	2.54
WS7	30.5	1.0	11.7	1	0.0	DRY
WS10	0.0	5.6	8.7	2	0.1	DRY
WS11						Covered over

Project:Dales Manor Business ParkLocation:SawstonProject No.721750Operator:Ross Blake

Instruments Used:

Date:	17-Oct-07		
Barometric I	Pressure	Start:	1014
(mb):		Finish:	1013

Position Number	Methane	Carbon Dioxide	Oxygen	Organic Vapours	Gas Flow	Water Level
	(% Vol)	(% Vol)	(% Vol)	(ppm)	(Litres/hr)	(m bgl)
WS5	0.1	4.6	9.1	0	0.8	1.81
WS6	6.2	0.0	3.0	0	0.8	2.48
WS7	49.7	1.4	8.0	0	0.1	2.42
WS10	0.1	0.1	19.9	0	0.3	3.00
BH1	0.1	0.1	20.0	0	0.1	End cap jammed
WS11	*					Covered over
WS3	*					Covered over

Project:Dales Manor Business ParkLocation:SawstonProject No.721750Operator:Ross Blake

Instruments Used:

Geotechnical Instruments GA2000 Tape Dipmeter Phocheck 3000 PID

 Date:
 24-Oct-07

 Barometric Pressure
 Start:
 1029

 (mb):
 Finish:
 1029

Position Number	Methane (% Vol)	Carbon Dioxide (% Vol)	Oxygen (% Vol)	Organic Vapours (ppm)	Gas Flow (Litres/hr)	Water Level (m bgl)
	· · · · ·	· · · · · ·	. ,			
WS3	67.2	0.0	2.6	3	0.2	DRY
WS5	0.1	5.3	10.1	1	0.2	2.15
WS6	19.2	0.0	1.6	0	0.2	2.80
WS7	81.8	2.8	2.1	0	0.2	DRY
WS10	0.1	5.7	10.2	1	0.3	3.00
WS11	-	-	-	-	-	Covered over
BH1	0.1	0.4	18.5	6.3	0.1	-

Project:Dales Manor Business ParkLocation:SawstonProject No.721750Operator:Ross Blake

Instruments Used:

Date:	29-Oct-07		
Barometric I	Pressure	Start:	1013
(mb):		Finish:	1013

Position Number	Methane (% Vol)	Carbon Dioxide (% Vol)	Oxygen (% Vol)	Organic Vapours (ppm)	Gas Flow (Litres/hr)	Water Level (m bgl)
WS3	64.8	0.0	0.8	3	0.2	2.74
WS5	0.1	5.3	9.5	0	0.1	2.11
WS6	14.6	0.0	3.8	0	0.0	2.80
WS7	56.1	2.2	5.6	0	0.3	DRY
WS10	0.1	5.8	8.9	0	0.2	3.00
BH1	0.1	0.1	19.4	1	0.2	-

Project:Dales Manor Business ParkLocation:SawstonProject No.721750Operator:Ross Blake

Instruments Used:

Date:	3-Oct-07		
Barometric P	ressure	Start:	1017
(mb):		Finish:	1016

Position Number	Methane (% Vol)	Carbon Dioxide (% Vol)	Oxygen (% Vol)	Organic Vapours (ppm)	Gas Flow (Litres/hr)	Water Level (m bgl)
WS3	25.4	0.1	4.0	0	-0.1	3.26
WS5	0.1	3.9	13.7	2	0.0	1.98
WS6	3.0	0.0	10.6	1	0.1	2.54
WS7	30.5	1.0	11.7	1	0.0	DRY
WS10	0.0	5.6	8.7	2	0.1	DRY
WS11						Covered over

Project:Dales Manor Business ParkLocation:SawstonProject No.721750Operator:Ross Blake

Instruments Used:

Date:	17-Oct-07		
Barometric I	Pressure	Start:	1014
(mb):		Finish:	1013

Position Number	Methane	Carbon Dioxide	Oxygen	Organic Vapours	Gas Flow	Water Level
	(% Vol)	(% Vol)	(% Vol)	(ppm)	(Litres/hr)	(m bgl)
WS5	0.1	4.6	9.1	0	0.8	1.81
WS6	6.2	0.0	3.0	0	0.8	2.48
WS7	49.7	1.4	8.0	0	0.1	2.42
WS10	0.1	0.1	19.9	0	0.3	3.00
BH1	0.1	0.1	20.0	0	0.1	End cap jammed
WS11	*					Covered over
WS3	*					Covered over

Project:Dales Manor Business ParkLocation:SawstonProject No.721750Operator:Ross Blake

Instruments Used:

Date:	24-Oct-07		
Barometric	Pressure	Start:	1029
(mb):		Finish:	1029

Position Number	Methane	Carbon Dioxide	Oxygen	Organic Vapours	Gas Flow	Water Level
	(% Vol)	(% Vol)	(% Vol)	(ppm)	(Litres/hr)	(m bgl)
WS3	67.2	0.0	2.6	3	0.2	DRY
WS5	0.1	5.3	10.1	1	0.2	2.15
WS6	19.2	0.0	1.6	0	0.2	2.80
WS7	81.8	2.8	2.1	0	0.2	DRY
WS10	0.1	5.7	10.2	1	0.3	3.00
WS11	-	-	-	-	-	Covered over
BH1	0.1	0.4	18.5	6.3	0.1	-

Project:Dales Manor Business ParkLocation:SawstonProject No.721750Operator:Ross Blake

Instruments Used:

Geotechnical Instruments GA2000 Tape Dipmeter Phocheck 3000 PID

Date: 29-Oct-07

Barometric Pressure	Start:	1013
(mb):	Finish:	1013

Position Number	Methane	Carbon Dioxide	Oxygen	Organic Vapours	Gas Flow	Water Level
	(% Vol)	(% Vol)	(% Vol)	(ppm)	(Litres/hr)	(m bgl)
WS3	64.8	0.0	0.8	3	0.2	2.74
WS5	0.1	5.3	9.5	0	0.1	2.11
WS6	14.6	0.0	3.8	0	0.0	2.80
WS7	56.1	2.2	5.6	0	0.3	DRY
WS10	0.1	5.8	8.9	0	0.2	3.00
BH1	0.1	0.1	19.4	1	0.2	-

Project:Dales Manor Business ParkLocation:SawstonProject No.721750Operator:CM

Instruments Used:

Date:	16-Jul-08					
Barometric F	Pressure	Start:	1020			
(mb):		Finish:	1016			
Position Number	Methane	Carbon Dioxide	Oxygen	Organic Vapours	Gas Flow	Water Level
	(% Vol)	(% Vol)	(% Vol)	(ppm)	(Litres/hr)	(m bgl)
WS3	48.2	0.0	7.3	0	0.4	3.13
WS5	0.1	3.8	12.0	0	0.8	1.87
WS6	10.5	0.0	11.1	0	0.5	2.52
WS7	44.3	1.3	9.7	0	0.7	2.38
WS10	0.1	0.0	20.8	0	1.0	2.99
BH1	0.2	0.1	21.0	0	0.1	3.14
WS101	0	0.1	18.2	0	0.7	1.82
WS103	0.1	0.3	18.8	0.4	1	2.25
WS104	0.1	0	20.3	0.8	1	DRY
WS105	0.2	0	20.1	0	2.5	1.08
WS11	-	-	-	-	-	-
WS108	73	4.3	0.9	0	0.5	DRY
WS112	19.6	0	15	0	0.4	2.14

Project:Dales Manor Business ParkLocation:SawstonProject No.721750Operator:HC

Instruments Used:

Date:	23-Jul-08		
Barometric	Pressure	Start:	1020
(mb):		Finish:	1014

Position Number	Methane	Carbon Dioxide	Oxygen	Organic Vapours	Gas Flow	Water Level
	(% Vol)	(% Vol)	(% Vol)	(ppm)	(Litres/hr)	(m bgl)
WS3	57.3	0.0	6.3	0	0.4	3.20
WS5	0.3	3.4	12.4	0	0.8	1.93
WS6	10.5	0.0	11.1	0	0.5	2.52
WS7	62.7	2.7	3.3	0	0.7	2.41
WS10	0.1	0.0	20.8	0	0.7	2.99
BH1	0.6	0.2	20.4	33	0.1	3.23
WS101	0.3	0.3	15.3	0	0.7	1.85
WS103	0.5	0.4	17.8	0.4	0.8	2.33
WS104	0.3	0	20.1	0.8	0.7	DRY
WS105	0.5	0	18.8	5	0.9	1.19
WS108	43.6	3.2	3.4	9	0.5	DRY
WS112	12.2	0	17.8	0	0.4	2.1

Project:Dales Manor Business ParkLocation:SawstonProject No.721750Operator:MCC

Instruments Used:

Geotechnical Instruments GA2000 Tape Dipmeter Phocheck 3000 PID

Date: 28-Jul-08 Barometric Pressure Start: 1007 (mb): Finish: 1008

Position Number	Methane	Carbon Dioxide	Oxygen	Organic Vapours	Gas Flow	Water Level	Sample Taken	Notes
	(% Vol)	(% Vol)	(% Vol)	(ppm)	(Litres/hr)	(m bgl)		
WS3	62.2	0.0	4.4	-	0.8	3.10	Ν	Depth 4.0m
WS5	0.1	4.0	11.9	-	0.1	1.98	N	Depth 4.0m
WS6	-	-	-	-	-	-	Ν	Could not locate.
WS7	-	-	-	-	-	-	N	Covered over.
WS10	0.2	3.9	10.3	-	0.3	3.01	N	Depth 3.1m
WS11	-	-	-	-	-	-	Ν	Could not locate.
BH1	0.1	0.0	20.5	-	0.2	3.14	N	Depth 13.7m
WS101	0.1	0.5	15.2	-	0.3	1.77	N	Depth 1.85m
WS103	0.1	0.8	15.8	-	0.1	2.26	N	Depth 3.15m
WS104	1.5	1.7	16.3	-	0.2	Dry	N	Depth 3.0m
WS105	0.2	0.0	19.8	-	0.1	1.07	Ν	Depth 2.55m
WS108	72.1	3.2	0.8	-	0.4	3.03	Ν	Depth 3.13m
WS112	31.1	0.0	13.5	-	0.4	1.93	Ν	Depth 3.05m

Project:Dales Manor Business ParkLocation:SawstonProject No.721750Operator:MCC

Instruments Used:

Geotechnical Instruments GA2000 Tape Dipmeter Phocheck 3000 PID

Date: 5-Aug-08 Barometric Pressure Start: 1012 (mb): Finish: 1011

Position Number	Methane	Carbon Dioxide	Oxygen	Organic Vapours	Gas Flow	Water Level	Sample Taken	Notes
	(% Vol)	(% Vol)	(% Vol)	(ppm)	(Litres/hr)	(m bgl)		
WS3	78.1	0.0	0.4	0.3	0.4	3.21	Ν	Depth 4.0m
WS5	0.1	5.7	9.4	0.0	0.3	2.19	Ν	Depth 4.0m
WS6	20.9	0.0	0.5	0.1	0.2	2.51	Ν	Depth 4.0m
WS7	-	-	-	-	-	-	N	Covered over.
WS10	0.1	5.8	9.1	0.0	0.3	3.02	N	Depth 3.1m
WS11	-	-	-	-	-	-	Ν	Could not locate.
BH1	0.1	0.0	20.1	0.0	0.2	3.21	N	Depth 13.7m
WS101	0.1	0.5	14.9	0.0	0.2	1.79	N	Depth 1.85m
WS103	0.0	0.9	18.5	2.4	0.5	1.35	N	Depth 3.15m
WS104	0.1	0.1	20.2	1.4	0.7	Dry	N	Depth 3.0m
WS105	0.1	0.0	20.6	0.0	0.3	1.03	Ν	Depth 2.55m
WS108	-	-	-	-	-	-	Ν	Cover stuck.
WS112	43.0	0.0	14.9	0.1	0.3	1.90	Ν	Depth 3.05m

		GAS AND	GROUND	WATER MON	IITORING F	RECORD SH	IEET								
		PROJECT	Dales Manor	Business Park,	Sawston								MLM	REF.	775322
ML	.M .	DATE OF M	ONITORING		11/07/17	TIME			12:00	TECHNICIAN			0.1.557		1.05.0
Group	0	WEATHER		Dry, cloudy				EQUIPMENT	USED	GFM 435, DIP	METER, PID		SHEET	I NO.	1 OF 6
Well No. /		thane %)		n Dioxide (%)		ygen %)	, .	n Sulphide %)	Pressure (mb)	Flow (l/hr)	VOC (ppm)	Depth to Water (mbgl)	Depth to Base (mbgl)	С	omments
Location	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(am)				base (mbgi)		
CP201	51.0	51.0	2.1	2.1	2.1	2.1	-	-	1007	<0.1	<0.1	3.78	15.00		
CP202	0.1	0.1	<0.1	<0.1	21.2	21.2	-	-	1007	<0.1	<0.1	3.33	15.00		
CP203	2.1	2.1	0.4	0.4	17.5	17.5	-	-	1006	<0.1	0.3	3.64	15.00		
WS201	60.8	60.8	2.4	2.4	0.5	0.5	-	-	1007	<0.1	<0.1	3.32	5.00		
WS202	21.6	21.6	0.4	0.4	4.9	4.9	-	-	1006	<0.1	<0.1	3.64	5.00		
WS203	0.1	0.1	3.1	3.1	11.0	11.0	-	-	1006	<0.1	<0.1	3.70	4.00		
WS204	3.0	3.0	3.6	3.6	0.9	0.9	-	-	1007	<0.1	<0.1	3.60	5.00		
WS205	0.1	0.1	4.1	4.1	9.9	9.9	-	-	1006	<0.1	0.3	Dry	3.40		

-		GAS AND	GROUND	WATER MON	IITORING F	RECORD SH	IEET								
-		PROJECT	Dales Manor	Business Park,	Sawston								MLM	1 REF.	775322
ML	.М.	DATE OF M	ONITORING		27/07/17	TIME			12:00	TECHNICIAN		ш		TNO	
Group	þ	WEATHER		Cloudy with s	howers			EQUIPMENT	USED	GFM 435, DIF	METER, PID	·	SHEE	T NO.	2 OF 6
Well No. / Location		ethane (%)		n Dioxide (%)		ygen %)		n Sulphide %)	Pressure (mb)	Flow (l/hr)	VOC (ppm)	Depth to Water (mbgl)	Depth to Base (mbgl)	Co	mments
Location	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(dn)				base (mbgi)		
CP201														Well flooded	at surface
CP202	<0.1	<0.1	0.2	0.2	20.4	20.4	-	-	1002	<0.1	<0.1	3.30	15.00		
CP203														Well flooded	at surface
WS201	65.5	65.5	2.7	2.7	<0.1	<0.1	-	-	1002	<0.1	<0.1	3.33	5.00		
WS202	40.2	40.2	1.5	1.5	<0.1	<0.1	-	-	1002	<0.1	<0.1	3.60	5.00		
WS203	<0.1	<0.1	3.2	3.2	11.1	11.1	-	-	1002	<0.1	<0.1	3.64	4.00		
WS204	2.0	2.0	3.1	3.1	1.9	1.9	-	-	1002	<0.1	<0.1	3.37	5.00		
WS205							-	-						Well flooded	at surface

-		GAS AND	GROUND	WATER MON	IITORING F	RECORD SH	IEET								
201		PROJECT	Dales Manor	Business Park,	Sawston								MLM	1 REF.	775322
ML	.М.	DATE OF M	ONITORING		01/08/17	TIME			12:00	TECHNICIAN		LL	0.1155	-	
Group	С	WEATHER		Dry, sunny				EQUIPMENT	USED	GFM 435, DIF	P METER, PID		SHEE	T NO.	3 OF 6
Well No. / Location		thane (%)		n Dioxide (%)		ygen %)	, .	n Sulphide %)	Pressure (mb)	Flow (l/hr)	VOC (ppm)	Depth to Water (mbgl)	Depth to Base (mbgl)	Co	omments
Location	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(mb)				base (mbgi)		
CP201														Well flooded	at surface
CP202	<0.1	<0.2	0.2	0.2	20.6	21.6	-	-	1011	<0.1	<0.1	3.28	15.00	Sample colle	cted
CP203														Well flooded	at surface
WS201	65.5	65.5	2.7	2.7	<0.1	<0.1	-	-	1011	<0.1	<0.1	3.29	5.00	Sample colle sediment in s	
WS202	45.1	45.1	2.0	2.0	<0.1	<0.1	-	-	1011	<0.1	<0.1	3.59	5.00	Sample colle sample	cted, sediment in
WS203	<0.1	<0.2	3.2	3.2	10.8	10.8	-	-	1011	<0.1	<0.1	3.64	4.00	Insufficient v	vater to sample
WS204	2.5	3.5	2.9	2.9	0.8	0.8	-	-	1012	<0.1	<0.1	3.52	5.00	Sample colle sediment in s	
WS205	<0.1	<0.2	4.9	4.9	5.5	5.5	-	-	1012	<0.1	<0.1	Dry	3.40		

		GAS AND	GROUND\	WATER MON	IITORING F	RECORD SH	EET								
-		PROJECT	Dales Manor	Business Park, S	Sawston								MLM	1 REF.	775322
ML	.М.	DATE OF M	ONITORING		11/08/17	TIME			10:00			LL	0.1155	-	
Group		WEATHER		Dry, sunny				EQUIPMENT	USED	GFM 435, DIF	P METER, PID		SHEE	T NO.	4 OF 6
Well No. / Location		ethane (%)		n Dioxide (%)		∕gen %)		n Sulphide %)	Pressure (mb)	Flow (l/hr)	VOC (ppm)	Depth to Water (mbgl)	Depth to Base (mbgl)	C	omments
Location	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(dm)				Base (mbgi)		
CP201														Well flooded	at surface
CP202	<0.1		0.2		20.5		-	-	1016	<0.1	<0.1	3.10	15.00		
CP203														Well flooded	at surface
WS201	66.0		2.9		<0.1		-	-	1016	4.8	<0.1	3.17	5.00		
WS202															ccess well due to e works being
WS203															
WS204	3.3		2.1		0.9		-	-	1016	<0.1	<0.1	2.48	5.00		
WS205	<0.1		5.2		3.2		-	-	1016	<0.1	<0.1	Dry	3.40		

		GAS AND	GROUND	WATER MON	IITORING F	RECORD SH	IEET								
***	1	PROJECT	Dales Manor	Business Park,	Sawston								MLM	1 REF.	775322
ML	.М.	DATE OF M	ONITORING		15/08/17	TIME			09:00	TECHNICIAN		LL	0.1155		
Group	þ	WEATHER		Dry, cloudy				EQUIPMENT	USED	GFM 435, DIF	METER, PID		SHEE	T NO.	5 OF 6
Well No. /		ethane (%)		n Dioxide (%)		ygen %)	, .	n Sulphide %)	Pressure	Flow (l/hr)	VOC (ppm)	Depth to Water (mbgl)	Depth to	Co	omments
Location	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(mb)				Base (mbgl)		
CP201	59.1	60.1	1.5	1.5	<0.1	<0.2	-	-	1011	<0.1	<0.1	3.59	15.00		
CP202	<0.1	<0.2	0.2	0.2	20.5	21.5	-	-	1012	<0.1	<0.1	3.10	15.00		
CP203														Well flooded	at surface
WS201	65.9	65.9	2.8	2.8	<0.1	<0.1	-	-	1012	<0.1	<0.1	3.14	5.00		
WS202														Unable to ac site clearanc	cess well due to e works
WS203														Well destroy clearance wo	ed during site orks
WS204	3.6	3.6	3.7	3.7	<0.1	<0.1	-	-	1011	<0.1	<0.1	3.42	5.00		
WS205	<0.1	<0.2	5.4	5.4	4.3	5.3	-	-	1011	<0.1	<0.1	Dry	3.40		

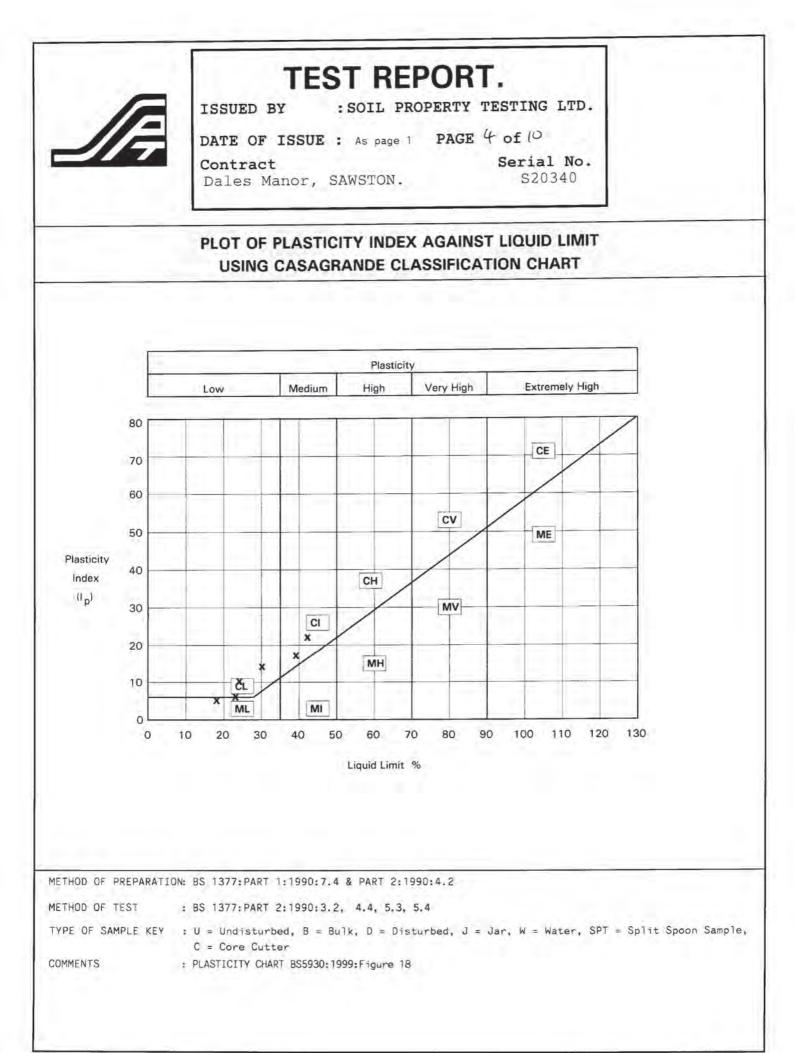
-		GAS AND	GROUNDV	VATER MON	IITORING F	ECORD SH	EET								
		PROJECT	Dales Manor	Business Park,	Sawston								MLM	REF.	775322
ML	.М.	DATE OF MO	ONITORING		22/08/17	TIME			10:00	TECHNICIAN		LL			
Group	D	WEATHER		Dry, sunny		I		EQUIPMENT	USED	GFM 435, DIF	METER, PID		SHEE	T NO.	6 OF 6
Well No. / Location		thane (%)		n Dioxide %)		/gen %)		n Sulphide %)	Pressure (mb)	Flow (l/hr)	VOC (ppm)	Depth to Water (mbgl)	Depth to Base (mbgl)	C	omments
Location	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(dm)				base (mbgi)		
CP201	59.7	59.7	1.5	1.5	<0.1	<0.2	-	-	1018	<0.1	<0.1	3.54	15.00		
CP202														Well destroy clearance we	ed during site orks
CP203														Well flooded	l at surface
WS201														Well destroy clearance we	ed during site orks
WS202														Well destroy clearance we	ed during site orks
WS203														Well destroy clearance we	ed during site orks
WS204	3.3	3.3	3.5	3.5	0.7	0.7	-	-	1018	<0.1	<0.1	3.38	5.00		
WS205	<0.1	<0.2	5.8	5.8	5.8	5.8	-	-	1018	<0.1	<0.1	Dry	3.40		

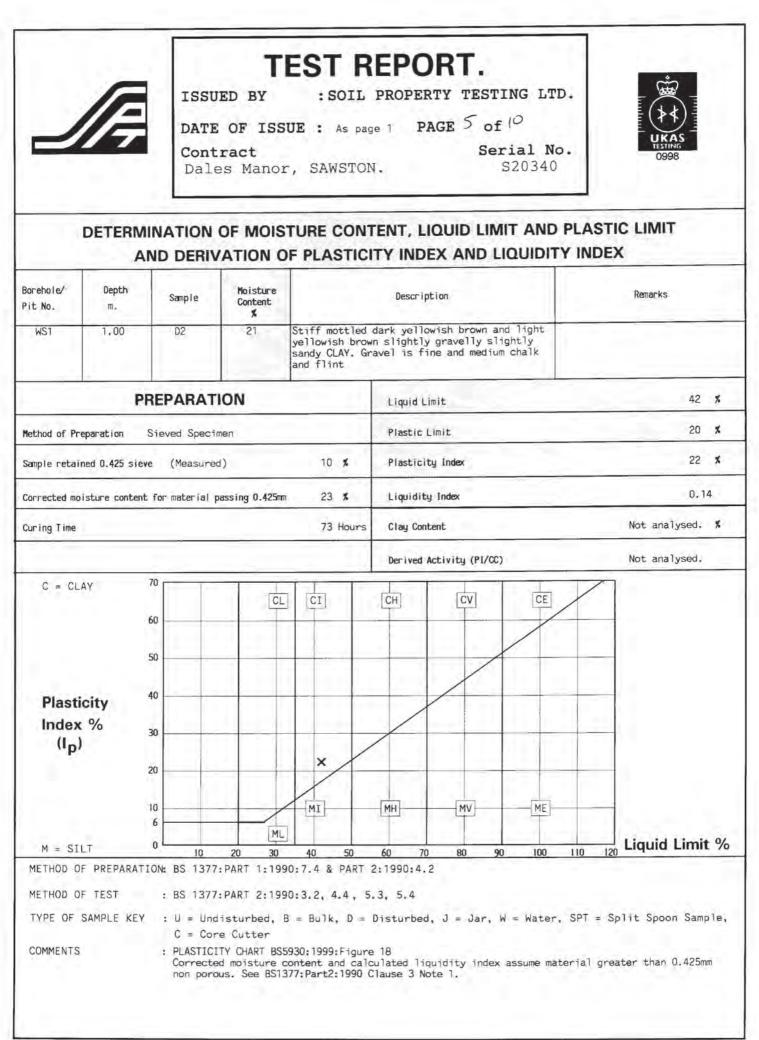
Appendix C - Geotechnical Test Results

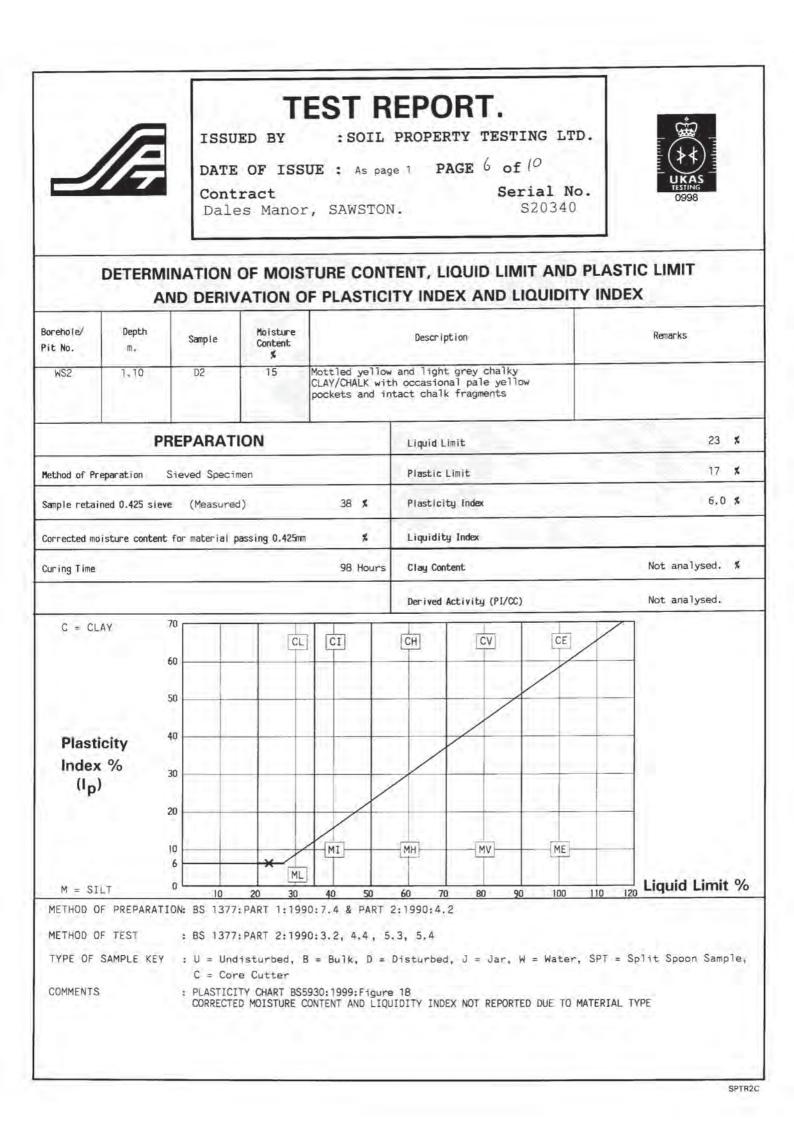
TEST REPORT. ISSUED BY : SOIL PROPERTY TESTING LTD.

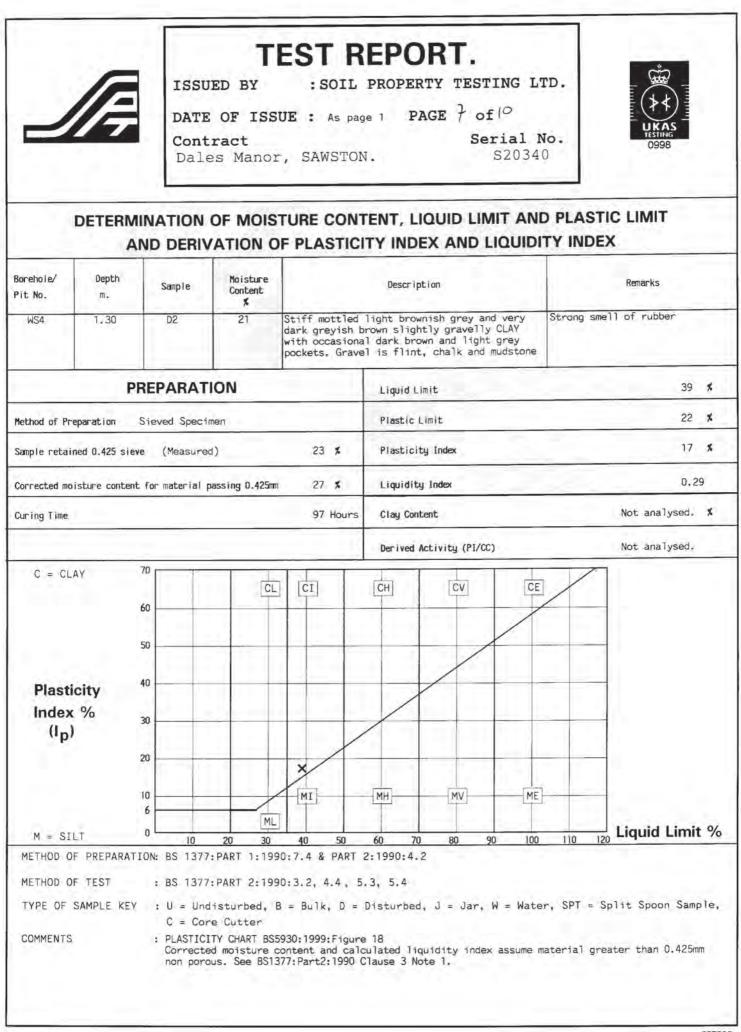
DATE OF ISSUE : As page 1 PAGE 3 of 10

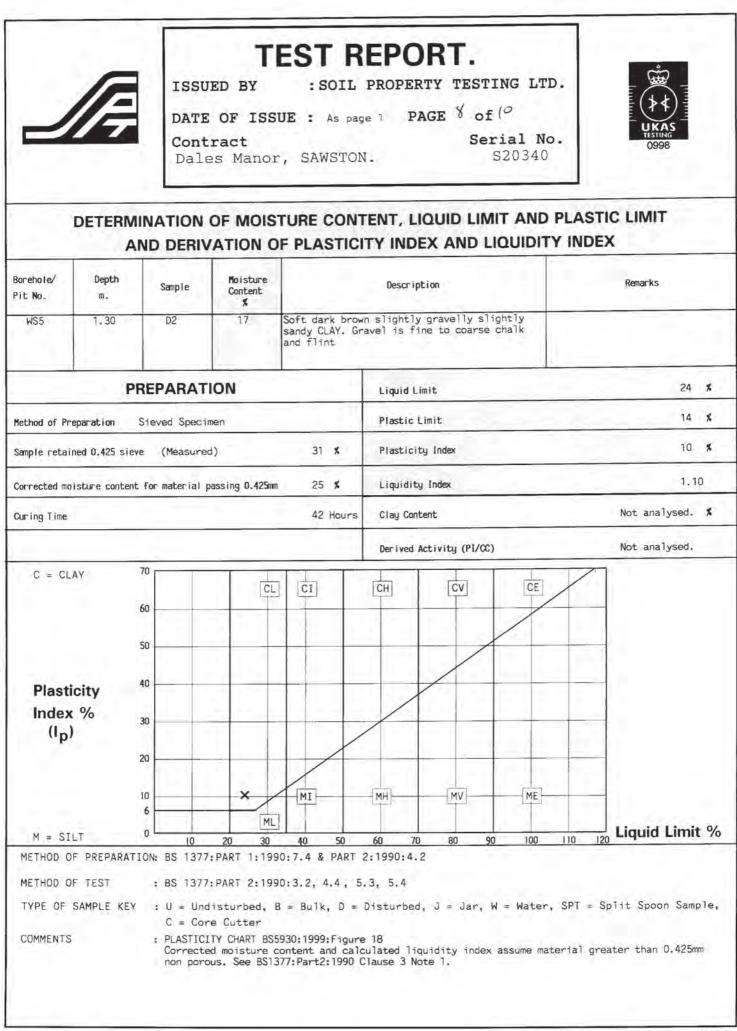
Contract

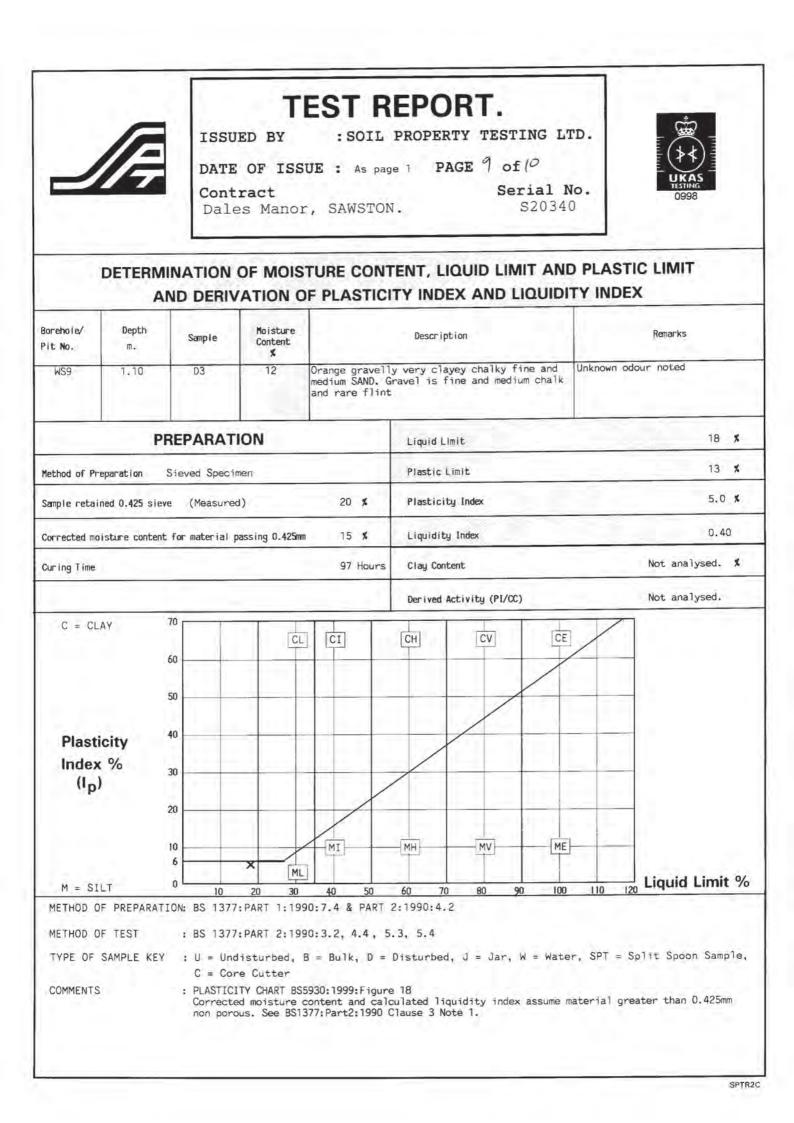

Dales Manor, SAWSTON.

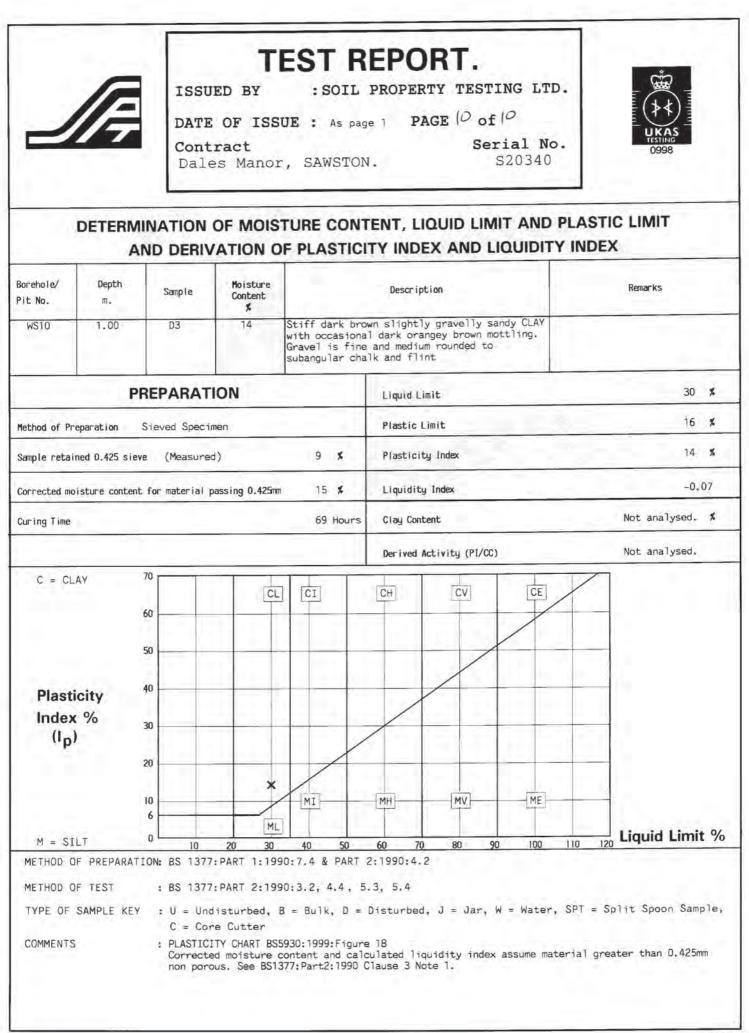

Serial No. S20340




SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX SAMPLE PREPARATION Moisture Liquid Plastic Plast-Liqu-Depth Borehole/ icity idity Ret'd Corr'd Curing CLASS Description Sample Content Limit Limit Method 0.425um M/C Time Index Index Pit No. m. S/N (*) <0.425um (hrs.) (%) (%) (%) (%) (%) Stiff mottled dark yellowish brown and light yellowish brown slightly gravelly slightly sandy CLAY. Gravel CI 23 73 S 1.00 D2 42 20 22 0.14* 10(M) WS1 21 is fine and medium chalk and flint Mottled yellow and light grey ML chalky CLAY/CHALK with 98 S 38(M) 1.10 D2 15 23 17 6.0 WS2 occasional pale yellow pockets and intact chalk fragments Stiff mottled light brownish CI 97 0.29* 23(M) 27 S WS4 1.30 D2 21 39 22 17 grey and very dark greyish brown slightly gravelly CLAY with occasional dark brown and light grey pockets. Gravel is flint, chalk and mudstone 1,10* CL 31(M) 25 42 Soft dark brown slightly 10 S WS5 1.30 D2 17 24 14 gravelly slightly sandy CLAY. Gravel is fine to coarse chalk and flint Orange gravelly very clayey chalky fine and medium SAND. Gravel is fine and medium ML 0.40* 20(M) 15 97 5.0 S WS9 1.10 D3 12 18 13 chalk and rare flint CL -0.07* 9(M) 69 Stiff dark brown slightly WS10 D3 14 30 16 14 S 15 1.00 gravelly sandy CLAY with occasional dark orangey brown mottling. Gravel is fine and medium rounded to subangular chalk and flint METHOD OF PREPARATION : BS 1377: PART 1:1990:7.4 & PART 2:1990:4.2 S = Wet Sieved Specimen N = prepared from Natural : BS 1377: PART 2: 1990: 3.2, 4.4, 5.3, 5.4 METHOD OF TEST : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, TYPE OF SAMPLE KEY C = Core Cutter. A = Assumed, M = Measured COMMENTS .


REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample. Oven drying temperature if not 105-110 deg C.





TEST REPORT.

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 3 of 4

Contract

Dales Manor, SAWSTON.

Serial No. S20340-S

DETERMINATION OF THE SULPHATE CONTENT OF SOIL AND GROUNDWATER

Borehole/	Depth			tion of Solub	le Sulphate Groundwater		Description	Demoster
Pit No.	т.	Sample	Acid Soluble	Water Soluble 2:1 S03 g/1	g/1	passing 2mm sieve		Remarks
WS1	1.00	D2	5/3 %	0.02		100	Stiff mottled dark yellowish brown and light yellowish brown slightly gravelly slightly sandy CLAY. Gravel is fine and medium chalk and flint	Gravel crushed to pas 2mm sieve
WS2	1.10	D2		<0.01	-	77	Mottled yellow and light grey chalky CLAY/CHALK with occasional pale yellow pockets and intact chalk fragments	
WS4	1.30	D2		0.06		98	Stiff mottled light brownish grey and very dark greyish brown slightly gravelly CLAY with occasional dark brown and light grey pockets. Gravel is flint, chalk and mudstone	Strong smell of rubbe
WS9	1.10	D3		< 0.01		92	Orange gravelly very clayey chalky fine and medium SAND. Gravel is fine and medium chalk and rare flint	Unknown odour noted
	OF PREPA OF TEST			RT 1:1990: RT 3:1990:		377:PART 3	:1990:5.2 Acid Soluble, 5.3 So :5.4 Groundwater	il/Water Extract
TYPE OF	SAMPLE	С	= Core C			= Disturb	ed, J = Jar, W = Water, SPT = S	Split Spoon Sample,
REMARKS	TO INCL	2 C 2 C 2					variation from test procedure, e. Oven drying temperature if n	

TEST REPORT.

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 4 of 4

Contract

Serial No. S20340-S

Dales	Manor,	SAWSTON.

DETERMINATION OF THE pH VALUE

Borehole/ Pit No.	Depth m.	Sample	pH Value	Description	Remarks
WS1	1.00	D2	7.9	Stiff mottled dark yellowish brown and light yellowish brown slightly gravelly slightly sandy CLAY. Gravel is fine and medium chalk and flint	Gravel crushed to pass 2mm sieve
WS2	1.10	D2	8.1	Mottled yellow and light grey chalky CLAY/CHALK with occasional pale yellow pockets and intact chalk fragments	
WS4	1.30	D2	7.7	Stiff mottled light brownish grey and very dark greyish brown slightly gravelly CLAY with occasional dark brown and light grey pockets. Gravel is flint, chalk and mudstone	Strong smell of rubber
WS9	1.10	D3	8.3	Orange gravelly very clayey chalky fine and medium SAND. Gravel is fine and medium chalk and rare flint	Unknown odour noted
		ION: BS 1377 : BS 1377		90:7 BS 1377:PART 3:1990:9.4	
				B = Bulk, D = Disturbed, J = Jar, W = Wate	r, SPT = Split Spoon Sample,
		C = Cor	e Cutter		an a star star a star a star a star a
COMMENTS		: Test not	UKAS accred	dîted.	
REMARKS	TO INCLUDE			e, loss of moisture, variation from test p within original sample. Oven drying tempera	

Appendix D - Chemical Analysis Results

7200 Cambridge Research Park Cambridge CB25 9TL FAO M Henderson			ABORATO Results of receive Dales Mano		Results of analysis of 19 samples received 01 October 2007 Dales Manor Business Park, Sawston	analysis of 19 samples d 01 October 2007 r Business Park, Sawston			5	Report Date 09 October 2007	2007 2007
Login Batch No							71	71060			
Chemtest LIMS ID				AC36458	AC36460	AC36461	AC36462	AC36463	AC36464	AC36465	AC36468
sample ID Sample No				D1	D1	W32 D3	01	022 D2	03 D3	01 D1	01 10
Depth				0.3m	0.4m	2.8m	0.7m	1.5m	2.7m	0.7m	0.7m
<i>Matrix</i> SOP↓ Determinand↓	CAS Not	Units4	*	SOIL	SOIL	SOIL	NOS	SOIL	SOIL	SOIL	SOIL
		%	Σ				1.2			0.60	2.1
	14808798	g I-1	Σ								
2450 Arsenic	7440382	mg kg-1	Ø	14	17		22			14	17
Cadmium	7440439	mg kg-1	Σ	0.20	<0.1		0.25			0.13	0.48
Chromium	7440473	mg kg-1	⊃	19	2.1		27			17	37
Copper	7440508	mg kg-1	Σ	13	<5		26			16	22
Mercury	7439976	mg kg-1	2	<0.1	<0.1		0.48			0.30	0.24
Nickel	7440020	mg kg-1	Σ :	19	5.7		25			19	32
Lead	7439921	mg kg-1	Z :	33	6.1		83			30	75
Selenium	7782492	mg kg-1	5	<0.1	<0.1		<0.1			<0.1	<0.1
_	7440666	mg kg-1	Σ	45	11		88			35	580
-	S	mg kg-1	Σ					<20	<20		
2673 TPH > C6-C10		mg kg-1			V V	V V	V C				
IPH >C10-C21		mg kg-	Σ		V	V	60				
TPH >C21-C40		mg kg-1	Σ :		V V	V	26				
1 otal Petroleum Hydrocarbons	S	mg kg-'	2 2		07.>	07.>	QQ QQ			Ç	Ċ
	20218	ma ka-1					0.0			07	- 0
Acenaphthene	83329	ma ka-1	2				0.6			<0.1	
Fluorene	86737	mg kg-1	Σ				-			<0.1	<0.1
Phenanthrene	85018	mg kg-1	Σ				0.9			က	0.2
Anthracene	120127	mg kg-1	Σ				<0.1			0.9	<0.1
Fluoranthene	206440	mg kg-1	Σ				3.8			4.1	0.2
Pyrene	129000	mg kg-1	Σ				1.6			2.7	1.1
Benzo[a]anthracene	56553	mg kg-1	Σ				0.6			1.1	<0.1
Chrysene	218019	mg kg-1	Σ				9.0			1.3	<0.1
Benzo[b]fluoranthene	205992	mg kg-1	Z				0.9			-	0.5
Benzo[k]fluoranthene	207089	mg kg-1	Σ				0.7			~	0.7
Benzo[a]pyrene	50328	mg kg-1	Σ				0.8			1.1	<0.1
Dibenzo[a,h]anthracene	53703	mg kg-1	Σ				0.6			0.7	<0.1

* Accreditation status All lests util

This report should be interpreted in conjunction with the notes on the accompanying cover page

Report sample ID range Report page 1 of 2 Column page

AC36458 to AC36492

MLM Environmental Ltd
7200 Cambridge Research Park
Cambridge

LABORATORY TEST REPORT

CB25 9TL

FAO M Henderson

Dales Manor Business Park, Sawston

Results of analysis of 19 samples received 01 October 2007

Login Batch No							71	71060			
Chemtest LIMS ID				AC36472	AC36474	AC36477	AC36479	AC36481	AC36483	AC36485	AC36488
Sample ID				WS6	WS6	WS7	WS8	WS8	WS9	WS10	WS10
Sample No				D1	D3	D1	D1	D3	D2	D1	D5
Depth				0.6m	2.0m	0.5m	0.8m	3.5m	0.6m	0.2m	2.7m
Matrix				SOIL							
SOP↓ Determinand↓	CAS Not	Units↓	*								
2630 Total Organic Carbon		%	Σ	0.58		0.23					
2210 Sulfate (2:1 water soluble)	14808798	g -1	Σ								
2450 Arsenic	7440382	mg kg-1	Σ	18		8.4	21		22		
Cadmium	7440439	mg kg-1	Σ	0.13		<0.1	0.20		0.16		
Chromium	7440473	mg kg-1	⊃	25		6.9	14		0.6		
Copper	7440508	mg kg-1	Σ	16		<5<	15		12		
Mercury	7439976	mg kg-1	Σ	0.44		<0.1	0.19		0.23		
Nickel	7440020	mg kg-1	Σ	24		8.7	19		13		
Lead	7439921	mg kg-1	Σ	66		6.4	62		100		
Selenium	7782492	mg kg-1	⊃	<0.1		<0.1	0.18		<0.1		
Zinc	7440666	mg kg-1	Σ	58		11	35		52		
2670 Total Petroleum Hydrocarbons		mg kg-1	Σ		<20		<20	<20			
2673 TPH >C6-C10		mg kg-1	⊃	Ý						7	v
TPH >C10-C21		mg kg-1	Σ	910						۲ ۲	V
TPH >C21-C40		mg kg-1	Σ	150						۲ ۲	V
Total Petroleum Hydrocarbons		mg kg-1	Σ	1100						<20	<20
2700 Naphthalene	91203	mg kg-1	Σ			<0.1					
Acenaphthylene	208968	mg kg-1	Σ			0.1					
Acenaphthene	83329	mg kg-1	Σ			<0.1					
Fluorene	86737	mg kg-1	Σ			0.5					
Phenanthrene	85018	mg kg-1	Σ			0.2					
Anthracene	120127	mg kg-1	Σ			<0.1					
Fluoranthene	206440	mg kg-1	Σ			0.6					
Pyrene	129000	mg kg-1	Σ			<0.1					
Benzo[a]anthracene	56553	mg kg-1	Σ			<0.1					
Chrysene	218019	mg kg-1	Σ			<0.1					
Benzo[b]fluoranthene	205992	mg kg-1	Σ			<0.1					
Benzo[k]fluoranthene	207089	mg kg-1	M			<0.1					
Benzo[a]pyrene	50328	mg kg-1	Δ			<0.1					
Dihenzola hlanthracene	53703	ma ka-1	Δ			< 0 1					

All tests undertaken between 04-Oct-2007 and 9-Oct-2007

This report should be interpreted in conjunction with the notes on the accompanying cover page * Accreditation status

Report sample ID range Report page 1 of 2 Column page 2

AC36458 to AC36492

MLM Environmental Ltd 7200 Cambridge Research Park Cambridge

CB25 9TL

FAO M Henderson

LABORATORY TEST REPORT

Results of analysis of 19 samples received 01 October 2007

Dales Manor Business Park, Sawston

ogin	Login Batch No					71060	
hemt	Chemtest LIMS ID				AC36489	AC36490	AC36492
Sample ID	e ID				WS11	WS11	WS11
Sample No	e No				D1	D2	D4
Depth					0.5m	1.3m	3.8m
Matrix					SOIL	SOIL	SOIL
SOPt	Determinand↓	CAS Not	Units↓	*			
2630	Total Organic Carbon		%	Σ			
2210	Sulfate (2:1 water soluble)	14808798	g -1	Z	0.46		
2450	Arsenic	7440382	mg kg-1	Σ	19	19	13
	Cadmium	7440439	mg kg-1	Σ	0.11	<0.1	<0.1
	Chromium	7440473	mg kg-1		26	17	3.5
	Copper	7440508	mg kg-1	Σ	15	19	<5
	Mercury	7439976	mg kg-1	Σ	0.13	1.1	<0.1
	Nickel	7440020	mg kg-1	Σ	24	23	7.7
	Lead	7439921	mg kg-1	Σ	57	72	<5
	Selenium	7782492	mg kg-1	∍	<0.1	<0.1	0.17
	Zinc	7440666	mg kg-1	Σ	96	62	
2670	Total Petroleum Hydrocarbons		mg kg-1	Z			
2673	TPH >C6-C10		mg kg-1				v
	TPH >C10-C21		mg kg-1	Σ			Ý
	TPH >C21-C40		mg kg-1	Σ			v
	Total Petroleum Hydrocarbons		mg kg-1	Σ			<20
2700	Naphthalene	91203	mg kg-1	Z	<0.1		
	Acenaphthylene	208968	mg kg-1	Σ	2		
	Acenaphthene	83329	mg kg-1	Σ	0.3		
	Fluorene	86737	mg kg-1	Σ	2.2		
	Phenanthrene	85018	mg kg-1	Z	<0.1		
	Anthracene	120127	mg kg-1	Σ	<0.1		
	Fluoranthene	206440	mg kg-1	Σ	0.6		
	Pyrene	129000	mg kg-1	Σ	<0.1		
	Benzo[a]anthracene	56553	mg kg-1	Σ	<0.1		
	Chrysene	218019	mg kg-1	Σ	<0.1		
	Benzo[b]fluoranthene	205992	mg kg-1	Σ	<0.1		
	Benzo[k]fluoranthene	207089	mg kg-1	Σ	<0.1		
	Benzo[a]pyrene	50328	mg kg-1	Σ	<0.1		
	Dihanzola hlanthracana	53703	1 21 22	N/I	- 01		

All tests undertaken between 04-Oct-2007 and 9-Oct-2007

* Accreditation status This report should be interpreted in conjunction with the notes on the accompanying cover page

Column page 3 Report page 1 of 2 Donor common ID concor

Report sample ID range AC36458 to AC36492

MLM Environmental Ltd
7200 Cambridge Research Park
Cambridge

CB25 9TL

FAO M Henderson

LABORATORY TEST REPORT

Results of analysis of 19 samples received 01 October 2007

Dales Manor Business Park, Sawston

						71060	090			
		AC36458	A	C36460	AC36461	AC36462	AC36463	AC36464	AC36465	AC36468
		M		S2	WS2	WS3	WS3	WS3	WS4	WS5
		D1		D1	D3	D1	D2	D3	D1	D1
		0.3		4m	2.8m	0.7m	1.5m	2.7m	0.7m	0.7m
		SOIL		JIC	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2700 Indeno[1,2,3-cd]pyrene	193395 mg kg- ¹	Σ				0.7			0.8	<0.1
Benzo[g,h,i]perylene	191242 mg kg-1	Σ				0.1			0.4	<0.1
Total (of 16) PAHs	mg kg-1	Σ				17			18	5.3
2010 pH	1	Σ				12.1			9.8	9.9

All tests undertaken between 04-Oct-2007 and 9-Oct-2007

* Accreditation status This report should be interpreted in conjunction with the notes on the accompanying cover page

Report page 2 of 2 Report sample ID range AC36458 to AC36492

Column page 1

MLM Environmental Ltd
7200 Cambridge Research Park
Cambridge

CB25 9TL

FAO M Henderson

LABORATORY TEST REPORT

Chemtest

Report Date 09 October 2007

Results of analysis of 19 samples received 01 October 2007

Dales Manor Business Park, Sawston

							71(71060			
				AC36472	AC36474	AC36477	AC36479	AC36481	AC36483	AC36485	AC36488
				WS6	WS6	WS7	WS8	WS8	WS9	WS10	WS10
				D1	D3	D1	D1	D3	D2	D1	D5
				0.6m	2.0m	0.5m	0.8m	3.5m	0.6m	0.2m	2.7m
				SOIL							
2700 Indeno[1,2,3-cd]pyrene	193395	mg kg-1	Σ			<0.1					
Benzo[g,h,i]perylene	191242	mg kg-1	Σ			<0.1					
Total (of 16) PAHs		mg kg-1	Σ			<2					
2010 pH			Σ	11.9		94					

All tests undertaken between 04-Oct-2007 and 9-Oct-2007

Report page 2 of 2 Column page 2

AC36458 to AC36492 Report sample ID range

This report should be interpreted in conjunction with the notes on the accompanying cover page * Accreditation status

WLM Environmental Ltd
7200 Cambridge Research Park
Cambridge

CB25 9TL

LABORATORY TEST REPORT

FAO M Henderson

Dales Manor Business Park, Sawston

Results of analysis of 19 samples received 01 October 2007

	AC36492	WS11	D4	3.8m	SOIL				
71060	AC36490	WS11	D2	1.3m	SOIL				
	AC36489	WS11	D1	0.5m	SOIL	<0.1	<0.1	5.1	11.8
						Σ	Σ	Σ	Σ
						mg kg-1	mg kg-1	mg kg-1	ı
						193395	191242		
						2700 Indeno[1,2,3-cd]pyrene	Benzo[g,h,i]perylene	Total (of 16) PAHs	H
						2700			2010 pH

All tests undertaken between 04-Oct-2007 and 9-Oct-2007

This report should be interpreted in conjunction with the notes on the accompanying cover page * Accreditation status

AC36458 to AC36492 Report sample ID range Report page 2 of 2

Column page 3

D			Results of	analvsis of 8 3	samples					
CB25 9TL			received	16 October	2007				24 October 2007	2007
FAO Mark Henderson			Dales Manor	Dales Manor Business Park, Sawston	۲, Sawston					
Login Batch No						54	54093			
Chemtest LIMS ID			AC40836	AC40837	AC40838	AC40839	AC40840	AC40841	AC40842	AC40843
Sample ID			WS1	WS3	WS3	WS5	WS5	WS6	WS7	WS11
Sample No			D3	D1	D3	D1	D3	D1	D1	D3
Depth			2.5m	0.7m	2.7m	0.7m	2.5m	0.6m	0.5m	2.0m
		-	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SOP↓ Determinand↓ 2210 Sulfate (2:1 water soluble)	CAS No↓ Uni 14808798 a	a I-1 M	<0.01	0.34	0.06	0.17	<0.01	0.13	0.02	0.03
							3.5			
							<0.1			
Chromium	7440473 mg	mg kg-1 U					8.2			
Copper	7440508 mg	mg kg-1 M					6.6			
Mercury	7439976 mg	mg kg-1 M					<0.1			
Nickel	7440020 mg	mg kg-1 M					7.9			
Lead	7439921 mg	mg kg-1 M					6.0			
Selenium	7782492 mg	mg kg-1 U					0.39			
Zinc	7440666 mg	mg kg-1 M					11			
		mg kg-1 M					<20			
2700 Naphthalene							<0.1			
Acenaphthylene	208968 mg	mg kg-1 M					<0.1			
Acenaphthene	83329 mg	mg kg-1 M					<0.1			
Fluorene	86737 mg	mg kg-1 M					<0.1			
Phenanthrene	85018 mg	mg kg-1 M					<0.1			
Anthracene	120127 mg	mg kg-1 M					<0.1			
Fluoranthene	206440 mg	mg kg-1 M					<0.1			
Pyrene	129000 mg	mg kg-1 M					<0.1			
Benzo[a]anthracene	56553 mg	mg kg-1 M					<0.1			
Chrysene	218019 mg	mg kg-1 M					<0.1			
Benzo[b]fluoranthene	205992 mg	mg kg-1 M					<0.1			
Benzo[k]fluoranthene	207089 mg	mg kg-1 M					<0.1			
Benzo[a]pyrene	50328 mg	mg kg-1 M					<0.1			
Dibenzo[a,h]anthracene		mg kg-1 M					<0.1			
Indeno[1,2,3-cd]pyrene		mg kg-1 M					<0.1			
Benzo[g,h,i]perylene	191242 mg	mg kg-1 M					<0.1			
Total (of 16) PAHs	mg	mg kg-1 M					<2			
2010 hH		2	8.4		8.1		84			80

All tests undertaken between 18-Oct-2007 and 24-Oct-2007

This report should be interpreted in conjunction with the notes on the accompanying cover page

Report page 1 of 1 Column page 1

LABORATORY TEST REPORT

Chemtest

7200 Cambridge Research Park MLM Environmental Ltd

2010 pH

* Accreditation status

MLM Environmental Ltd 7200 Cambridge Research Park Cambridge

CB25 9TL

FAO M.Henderson

LABORATORY TEST REPORT

Results of analysis of 3 samples received 05 October 2007

Dales Manor Business Park, Sawston

AC38529 WA TER <0.5 WS6 7.9 а. 4. 9.4 9.9 5.7 7.7 4.9 69 v 23 WATER 45412 AC38528 WS5 <0.5 <0.1 <0.1 110 4.3 3.6 1.6 <0.1 <10 3.2 v 4 4 30 2 AC38527 WATER WS3 <0.5 <0.1 100 <0.1 <0.1 <10 9.6 4.6 190 5.4 4. <u>~</u> 4 22 \supset \supset \supset \supset \supset \supset \supset \supset * \supset \supset \supset \supset \supset \supset hg I-1 Units↓ hg I-1 hg I-1 hg I-1 hg I-1 CAS No1 7440428 7440439 7440473 7440508 7439976 7440382 7439921 7440020 7782492 7440666 НЦ Total Petroleum Hydrocarbons TPH >C21-C40 TPH >C10-C21 TPH >C6-C10 SOP↓ Determinand↓ Chemtest LIMS ID Chromium Cadmium Selenium Mercury -ogin Batch No 1450 Arsenic Copper Nickel Boron Lead Zinc 1010 pH Sample No Sample ID 1673 Depth Matrix

All tests undertaken between 15-Oct-2007 and 15-Oct-2007

Column page 1 Report page 1 of 1 Report sample ID range AC38527 to AC38529

7200 Cambridge Research Park MLM Environmental Ltd Cambridge

CB25 9TL

LABORATORY TEST REPORT

Results of analysis of 2 samples

Chemtest

Report Date 09 November 2007

received 05 November 2007

Dales Manor Business Park, Sawston

FAO M Henderson			Ö	ales Manor B	Dales Manor Business Park, Saws	Saw
Login Batch No				456	45638	
Chemtest LIMS ID				AC47552	AC47553	
Sample ID				WS6	BH1	
Sample No			I			
Depth			1			
Matrix				WATER	WATER	
SOP4 Determinand4	CAS Not	Units↓	*			
1675 TPH > C5-C7		hg I-1	∍	<0.1	<0.1	
TPH >C7-C8		hg I-1	∍	<0.1	<0.1	
TPH >C8-C10		hg I-1	∍	<0.1	<0.1	
TPH >C10-C12		hg I-1	∍	<0.1	<0.1	
TPH >C12-C16		hg I-1	∍	<0.1	<0.1	
TPH >C16-C21		hg I-1	⊃	<0.1	<0.1	
TPH >C21-C35		hg I-1	⊃	<0.1	<0.1	
Total Petroleum Hydrocarbons		hg I-1	⊃	<10	<10	

All tests undertaken between 08-Nov-2007 and 8-Nov-2007 * Accreditation status

AC47552 to AC47553 Report sample ID range Report page 1 of 1 Column page 1

This report should be interpreted in conjunction with the notes on the accompanying cover page

MLM E	MLM Environmental Ltd 7200 Cambridge Research Park		AMENDED LABO	DED		RATORY TEST REPORT	TEST R	EPORT		2	Chemtest	Itest
Cambridge	dge			Ľ	tesults of an	Results of analysis of 11 samples	samples				Report Date	ite 2008
CB25 9TL	JTL				receive	received 18 July 2008	08				04 August	2000
FAO	Hester Carter			Dales	Manor Busir	Dales Manor Business Park, Sawston 721750	wston 72175	0				
Login B	Login Batch No							100	100436			
Chemtes	Chemtest LIMS ID			Ī	AD25574	AD25575	AD25576	AD25577	AD25578	AD25579	AD25580	AD25581
Sample ID	Q				TP1	WS101	WS101	WS104	WS105	WS107	WS107	WS110
Sample No	No				-	~	4	~	7	~	7	~
Depth					0.3	0.0	3.9	0.7	1.9	0.3	0.9	0.5
SOP4 [Determinand↓	CAS Not	Units 4	*	SUIL	SUIL	SUIL	SUIL	SUL	SUL	SUIL	SUIL
2450	Arsenic	7440382	mg kg-1	Σ			4.4			9.1	9.8	17
	Cadmium	7440439	mg kg-1	Σ			<0.1			0.10	0.16	0.30
	Chromium	7440473	mg kg-1	Σ			5.2			16	18	20
	Copper	7440508	mg kg-1	Σ			<5			9.6	18	46
	Mercury	7439976	mg kg-1	Σ			<0.1			<0.1	0.24	10
	Nickel	7440020	mg kg-1	Σ			6.3			16	18	26
	Lead	7439921	mg kg-1	Σ			<5			10	32	200
	Selenium	7782492	mg kg-1	Σ			<0.2			<0.2	<0.2	<0.2
	Zinc	7440666	mg kg-1	Σ			<10			25	45	82
2670	TPH >C6-C10		mg kg-1	z	5	v v	v V	v L	v v	~		
!	TPH >C10-C21		mg kg-1	z	380	v V	v	750	7	3300		
I	TPH >C21-C40		mg kg-1	z	23	v -	v V	100	34	330		
	Total Petroleum Hydrocarbons		mg kg-1	Σ	410	< 10	< 10	850	41	3700		
2700	Naphthalene	91203	mg kg-1	Σ						0.2		
	Acenaphthylene	208968	mg kg-1	Σ						23		
- 1	Acenaphthene	83329	mg kg-1	Σ						36		
	Fluorene	86737	mg kg-1	Σ						40		
	Phenanthrene	85018	mg kg-1	Σ						1.4		
	Anthracene	120127	mg kg-1	Σ						38		
	Fluoranthene	206440	mg kg-	2						1.4		
	Pyrene	129000	mg kg-'	Σ :						0.5		
	Benzolajantnracene	50000	Da Kg	Σ :						7.0		
	Chrysene	218019	mg kg-	2						0.2		
	Benzo[b]fluoranthene	205992	mg kg-	Σ :						0.2		
	Benzo[k]fluoranthene	207089	mg kg-'	Σ						<0.1		
	Benzo[a]pyrene	50328	mg kg-1	Σ						<0.1		
	Dibenzo[a,h]anthracene	53703	mg kg-1	Σ						<0.1		
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	Σ						<0.1		
	Benzo[g,h,i]perylene	191242	mg kg-1	Σ						0.1		
	Total (of 16) PAHs		mg kg-1	Σ						140		

This report should be interpreted in conjunction with the notes on the accompanying cover page * Accreditation status

Report sample ID range Report page 1 of 2

AD25574 to AD25584

7200 Cambridge Research Park MLM Environmental Ltd Cambridge

CB25 9TL

AMENDED LABORATORY TEST REPORT

M Chemtest

Report Date 04 August 2008

Results of analysis of 11 samples

received 18 July 2008

Sawston 721750 ċ Ċ N.N.

Login Batch No						
Chambert 1 MC 1					100	100436
Chemtest LINIS IL				Ī	AD25582	AD25583
Sample ID					WS112	WS113
Sample No				I	. 	-
Depth					0.3	0.4
Matrix					SOIL	SOIL
SOP↓ Determinand↓	1 and 4	CAS Not	Units1			
2450 Arsenic		7440382	mg kg-1	Σ		10
Cadmium		7440439	mg kg-1	Σ	0.20	0.14
Chromium		7440473	mg kg-1	Σ	19	19
Copper		7440508	mg kg-1	Σ	14	13
Mercury		7439976	mg kg-1	Σ	0.12	<0.1
Nickel		7440020	mg kg-1	Σ	18	19
Lead		7439921	mg kg-1	Σ	19	10
Selenium		7782492	mg kg-1	Σ	<0.2	<0.2
Zinc		7440666	mg kg-1	Σ	39	06
2670 TPH >C6-C10	C10		mg kg-1	z		1900
TPH >C10-C21	-C21		mg kg-1	z		16000
TPH >C21-C40	-C40		mg kg-1	z		1100
Total Petrc	otal Petroleum Hydrocarbons		mg kg-1	Z		20000
2700 Naphthalene	ne	91203	mg kg-1	Σ		0.9
Acenaphthylene	ylene	208968	mg kg-1	Σ		29
Acenaphthene	ene	83329	mg kg-1	Σ		56
Fluorene		86737	mg kg-1	Σ		58
Phenanthrene	ene	85018	mg kg-1	Σ		4.8
Anthracene	D	120127	mg kg-1	Σ		51
Fluoranthene	ne	206440	mg kg-1	Σ		0.6
Pyrene		129000	mg kg-1	Σ		<0.1
Benzo[a]anthracene	nthracene	56553	mg kg-1	Σ		<0.1
Chrysene		218019	mg kg-1	Σ		0.1
Benzo[b]fl	Benzo[b]fluoranthene	205992	mg kg-1	Σ		<0.1
Benzo[k]flu	Benzo[k]fluoranthene	207089	mg kg-1	Σ		<0.1
Benzo[a]pyrene	/rene	50328	mg kg-1	Σ		<0.1
Dibenzo[a,	Dibenzo[a,h]anthracene	53703	mg kg-1	Σ		<0.1
Indeno[1,2	ndeno[1,2,3-cd]pyrene	193395	mg kg-1	Σ		<0.1
Benzo[g,h,	3enzo[g,h,i]perylene	191242	mg kg-1	Σ		<0.1
Total (of 16) PAHs	3) PAHs		mg kg-1	Σ		200

All tests undertaken between 24-Jul-2008 and 28-Jul-2008

Report page 1 of 2 Column page 2

AD25574 to AD25584 Report sample ID range

This report should be interpreted in conjunction with the notes on the accompanying cover page

MLM Environmental Ltd 7200 Cambridge Research Park Cambridge

CB25 9TL

FAO Hester Carter

AMENDED LABORATORY TEST REPORT

Results of analysis of 11 sample

M Chemtest

Report Date 04 August 2008

received 18 July 2008

Dales Manor Business Park, Sawston 721750

IMSID IMSID ferminand↓ CAS No↓ terminand↓ CAS No↓ senic 7440382 ron 7440428 inomium 7440428 ronium 7440473 romium 7440473 pper 7440608 ad 7440508 stcury 7440020 entum 7440020 H > C6C10 7440666 H > C10-C21 7440666 H > C21-C40 7440666	100436 AD25584 WS113	~	0.51	WATER		26.6	<20	<0.5	۲ ۲	80.8	Ý	<0.5	69.7	9.3	15.2	2500	2600	62	5200
INSID INSID INSID Inside terminand↓ CAS No↓ terminand↓ CAS No↓ senic 7440382 ron 7440428 idmium 7440439 iromium 7440439 ronium 7440508 ad 7440508 stcury 7440508 ad 7440508 inomium 7440508 ad 7440508 inomium 7440666 H > C6C10 7782492 in > C10-C21 1 H > C21-C40 1 H > C21-C40 1			1		*	∍	⊃	⊃	∍	⊃	⊃	⊃	⊃	⊃	∍	⊃	⊃	∍	∍
IMS ID IMS ID terminand↓ senic ron idmium iro					Units4	hg I-1	hg I-1	hg I-1	hg I-1	hg I-1	hg I-1	hg I-1	hg I-1	hg I-1	hg I-1	hg I-1	hg I-1	hg I-1	hg I-1
atch No st LIMS ID ID No Determinand↓ Arsenic Boron Cadmium Chromium Chromium Chromium Copper Lead Mercury Nickel Selenium Selenium Zinc TPH > C6-C10 TPH > C21-C40 TPH Acgueous Phase)					CAS Not	7440382	7440428	7440439	7440473	7440508	7439921	7439976	7440020	7782492	7440666				
	Login Batch No Chemtest LIMS ID Sample ID	Sample No			SOP↓ Determinand↓	1450 Arsenic	Boron	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Zinc	TPH >C6-C10	TPH >C10-C21	TPH >C21-C40	TPH (Aqueous Phase)

All tests undertaken between 24-Jul-2008 and 28-Jul-2008 * Accreditation status

Column page 1 Report page 2 of 2 Report sample ID range AD25574 to AD25584

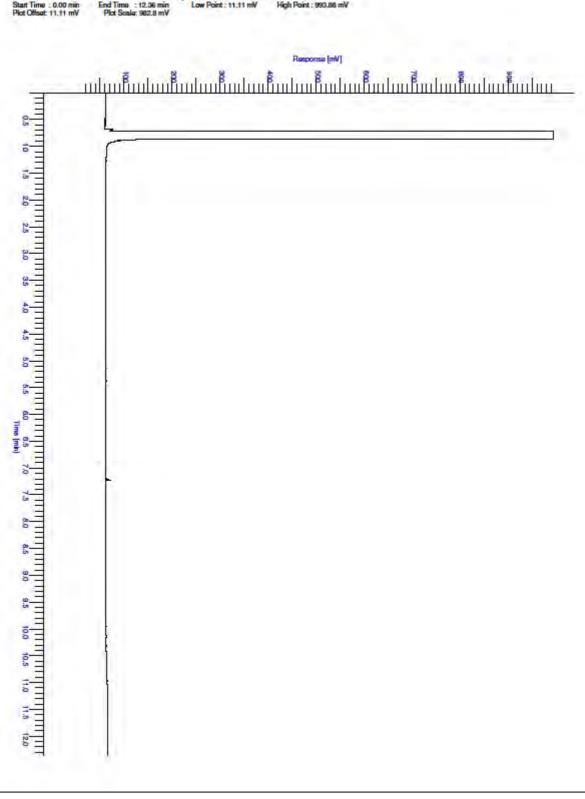
This report should be interpreted in conjunction with the notes on the accompanying cover page

Chemtest The right chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.co.uk

Report No.:	17-17565-1		
Initial Date of Issue:	17-Jul-2017		
Client	MLM		
Client Address:	Building 7200 IQ Cambridge Cambridge Cambridgeshire CB25 9TL		
Contact(s):	Lindsay Liness		
Project	775322 - Dales Manor Business Park		
Quotation No.:		Date Received:	07-Jul-2017
Order No.:		Date Instructed:	07-Jul-2017
No. of Samples:	2		
Turnaround (Wkdays):	6	Results Due:	14-Jul-2017
Date Approved:	17-Jul-2017		
Approved By:			
M.J.			
Details:	Martin Dyer, Laboratory Manager		

Client: MLM	Chemtest Job No.:			17-17565	17-17565		
Quotation No.:	0	Chemtest Sample ID.:			480970	480972	
Order No.:	Client Sample Ref.:			TP201	TP202A		
		Sample Type:		SOIL	SOIL		
			Top Dep	, ,	0.50	0.40	
			Date Sa	<u> </u>	04-Jul-2017	04-Jul-2017	
Determinand	Accred.	SOP	Units				
Moisture	N	2030	%	0.020	18	12	
Chromatogram (TPH)	Ν			N/A	See Attached	See Attached	
рН	U	2010		N/A	8.5	8.3	
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.057	0.074	
Cyanide (Total)	U	2300	00	0.50	< 0.50	< 0.50	
Sulphide (Easily Liberatable)	U		mg/kg	0.50	9.7	10	
Arsenic	U	2450	0 0	1.0	29	23	
Boron	N	2450	mg/kg	0.40	21	13	
Cadmium	U	2450	mg/kg	0.10	0.30	0.12	
Chromium	U	2450	mg/kg	1.0	18	13	
Copper	U	2450	mg/kg	0.50	43	14	
Mercury	U	2450	mg/kg	0.10	0.51	0.16	
Nickel	U	2450	mg/kg	0.50	28	15	
Lead	U	2450	mg/kg	0.50	32	42	
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	
Zinc	U	2450	mg/kg	0.50	60	35	
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	6.7	< 1.0	
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	28	< 1.0	
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	33	< 1.0	
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	68	< 5.0	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	1.5	< 1.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	5.1	< 1.0	
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	5.6	< 1.0	
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	
Total Aromatic Hydrocarbons	Ν	2680		5.0	12	< 5.0	
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	80	< 10	
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Acenaphthylene	U	2700		0.10	< 0.10	< 0.10	
Acenaphthene	U	2700	5	0.10	< 0.10	< 0.10	
Fluorene	U		mg/kg	0.10	< 0.10	< 0.10	

Client: MLM		Chemtest Job No.:				17-17565	
Quotation No.:	(Chemtest Sample ID.:			480970	480972	
Order No.:		Client Sample Ref.:			TP201	TP202A	
			Sample	e Type:	SOIL	SOIL	
			Тор Dep		0.50	0.40	
		Date Sampled:			04-Jul-2017	04-Jul-2017	
Determinand	Accred.	SOP	Units	LOD			
Phenanthrene	U	2700	mg/kg	0.10	0.49	< 0.10	
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Fluoranthene	U	2700	mg/kg	0.10	0.85	< 0.10	
Pyrene	U	2700	mg/kg	0.10	0.81	< 0.10	
Benzo[a]anthracene	U	2700	mg/kg	0.10	0.52	< 0.10	
Chrysene	U	2700	mg/kg	0.10	0.49	< 0.10	
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Total Of 16 PAH's	U	2700	mg/kg	2.0	3.2	< 2.0	
Total Phenols	U	2920	mg/kg	0.30	< 0.30	< 0.30	

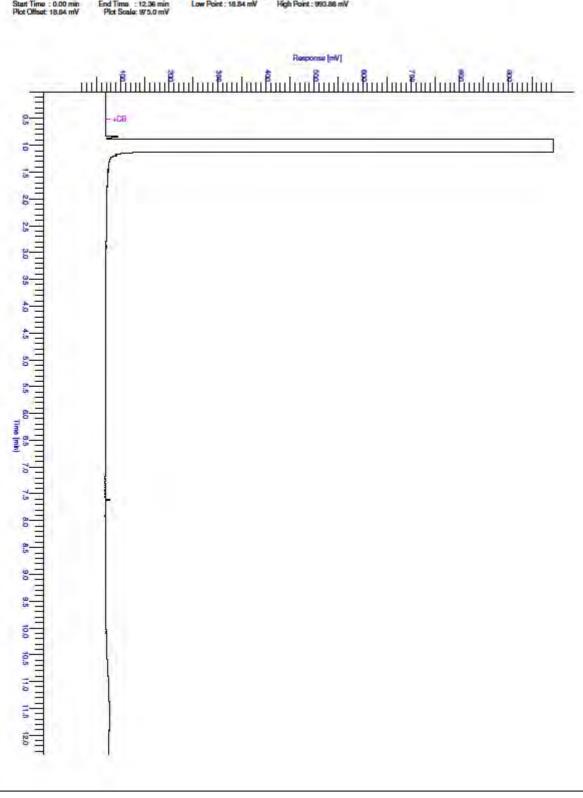

TPH Chromatogram on Soil Sample: 480970 Chromatogram

 Sample Name : 480970 xt1-17-17565
 Sample #: 039
 Page 1 of 1

 FileName : 13:2017/GC221/Jul/1007_1_TPHCWGA/1007_1_TPHCWGA_A039.raw
 Date: 14/07/2017 10:34-26
 Time of Injaction: 11/07/2017 06:17:37

 Start Time : 0.00 min
 End Time : 12:36 min
 Low Point : 11.11 mV
 High Point : 993.86 mV

 Plot Offsat: 11.11 mV
 Plot Scale: 982.8 mV
 N
 Plot Scale: 982.8 mV


TPH Chromatogram on Soil Sample: 480972

 Sample Name:
 480972
 sci.17.17565
 Sample #: 017
 Page 1 of 1

 FileName
 :13.2017/GC25NJul/1107_3_TPHCWGA\1107_3_TPHCWGA_A017.raw
 Date::14/07/2017 10:35:41
 Time of Injection::11/07/2017 21:49:16

 Start Time :
 0.00 min
 End Time ::12.36 min
 Low Point ::18.84 mV
 High Point : 993.88 mV

 Plot Offset:
 18.64 mV
 Plot Scale: 975.0 mV
 Sci.2017 10:2

Project: 775322 - Dales Manor Business Park

Chemtest Job No:	17-17565				Landfill	Waste Acceptanc	e Criteria	
Chemtest Sample ID:	480970					Limits		
Sample Ref:	TP201					Stable, Non-		
Sample ID:						reactive	Hazardous	
Top Depth(m):	0.50				Inert Waste	hazardous	Waste	
Bottom Depth(m):					Landfill	waste in non-	Landfill	
Sampling Date:	04-Jul-2017					hazardous		
Determinand	SOP	Accred.	Units			Landfill		
Total Organic Carbon	2625	U	%	0.59	3	5	6	
Loss On Ignition	2610	U	%	3.3			10	
Total BTEX	2760	U	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815	U	mg/kg	< 0.10	1			
TPH Total WAC (Mineral Oil)	2670	U	mg/kg	110	500			
Total (Of 17) PAH's	2700	N	mg/kg	3.2	100			
рН	2010	U		8.5		>6		
Acid Neutralisation Capacity	2015	N	mol/kg	0.083		To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test	
	mg/l			mg/kg	ng/kg using BS EN 12457-3 at L/S 10 I/kg			
Arsenic	1450	U	0.0028	< 0.050	0.5	2	25	
Barium	1450	U	0.031	< 0.50	20	100	300	
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5	
Chromium	1450	U	0.011	0.11	0.5	10	70	
Copper	1450	U	0.019	0.19	2	50	100	
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2	
Molybdenum	1450	U	0.0035	< 0.050	0.5	10	30	
Nickel	1450	U	0.0034	< 0.050	0.4	10	40	
Lead	1450	U	< 0.0010	< 0.010	0.5	10	50	
Antimony	1450	U	0.0046	0.046	0.06	0.7	5	
Selenium	1450	U	0.0037	0.037	0.1	0.5	7	
Zinc	1450	U	0.0038	< 0.50	4	50	200	
Chloride	1220	U	10	100	800	15000	25000	
Fluoride	1220	U	3.6	36	10	150	500	
Sulphate	1220	U	75	750	1000	20000	50000	
Total Dissolved Solids	1020	N	410	4100	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610	U	18	180	500	800	1000	

Soild Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	18			

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project: 775322 - Dales Manor Business Park

Chemtest Job No:	17-17565				Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	480972					Limits	
Sample Ref:	TP202A					Stable, Non-	
Sample ID:						reactive	Hazardous
Top Depth(m):	0.40				Inert Waste	hazardous	Waste
Bottom Depth(m):					Landfill	waste in non-	Landfill
Sampling Date:	04-Jul-2017					hazardous	
Determinand	SOP	Accred.	Units			Landfill	
Total Organic Carbon	2625	U	%	0.67	3	5	6
Loss On Ignition	2610	U	%	2.3			10
Total BTEX	2760	U	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg	< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	U	mg/kg	< 10	500		
Total (Of 17) PAH's	2700	Ν	mg/kg	< 2.0	100		
pH	2010	U		8.3		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.23		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using BS	S EN 12457-3 at L	/S 10 I/kg
Arsenic	1450	U	0.022	0.22	0.5	2	25
Barium	1450	U	0.014	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	U	0.0023	< 0.050	0.5	10	70
Copper	1450	U	0.020	0.20	2	50	100
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.013	0.13	0.5	10	30
Nickel	1450	U	0.0052	0.052	0.4	10	40
Lead	1450	U	0.0013	0.013	0.5	10	50
Antimony	1450	U	0.0032	0.032	0.06	0.7	5
Selenium	1450	U	0.0032	0.032	0.1	0.5	7
Zinc	1450	U	0.0039	< 0.50	4	50	200
Chloride	1220	U	13	130	800	15000	25000
Fluoride	1220	U	0.42	4.2	10	150	500
Sulphate	1220	U	22	220	1000	20000	50000
Total Dissolved Solids	1020	N	140	1400	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	21	210	500	800	1000

Soild Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID

Test Methods

SOP	Title	Parameters included	Method summary
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

The right chemistry to deliver results

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

Chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.co.uk

Report No.:	17-20058-1		
Initial Date of Issue:	07-Aug-2017		
Client	MLM		
Client Address:	Building 7200 IQ Cambridge Cambridge Cambridgeshire CB25 9TL		
Contact(s):	Lindsay Liness		
Project	775322 Dales Manor Business Park Sawston		
Quotation No.:		Date Received:	01-Aug-2017
Order No.:	775322	Date Instructed:	01-Aug-2017
No. of Samples:	4		
Turnaround (Wkdays):	5	Results Due:	07-Aug-2017
Date Approved:			
Bate Appleved.	07-Aug-2017		
Approved By:	07-Aug-2017		
	07-Aug-2017		

Results - Water

Project: 775322 Dales Manor Business Park Sawston

Client: MLM		Cher	ntest J	ob No.:	17-20058	17-20058	17-20058	17-20058
Quotation No.:		Chemte	st Sam	ple ID.:	491340	491341	491342	491343
Order No.: 775322		Clier	nt Samp	le Ref.:	CP202	WS201	WS202	WS204
		Clie	ent Sam	ple ID.:	W1	W1	W1	W1
			Sampl	e Type:	WATER	WATER	WATER	WATER
			Top De	oth (m):	3.28	3.29	3.59	3.52
			Date Sa	ampled:	01-Aug-2017	01-Aug-2017	01-Aug-2017	01-Aug-2017
Determinand	Accred.	SOP	Units					
Chromatogram (TPH)	N			N/A	See Attached	See Attached	See Attached	See Attached
Cyanide (Total)	U	1300	mg/l	0.050	< 0.050	< 0.050	< 0.050	< 0.050
Total Hardness as CaCO3	U	1270	mg/l	15	340	370	350	280
Boron (Dissolved)	U	1450	µg/l	20	66	130	140	300
Arsenic (Total)	U	1450	µg/l	1.0	1.1	7.1	4.2	8.3
Cadmium (Total)	U	1450	µg/l	0.080	< 0.080	< 0.080	< 0.080	< 0.080
Chromium (Total)	U	1450	µg/l	1.0	7.1	1.5	< 1.0	< 1.0
Copper (Total)	U	1450	µg/l	1.0	2.3	< 1.0	< 1.0	< 1.0
Mercury (Total)	U	1450	µg/l	0.50	< 0.50	< 0.50	1.1	< 0.50
Nickel (Total)	U	1450	µg/l	1.0	4.9	7.7	7.3	5.4
Lead (Total)	U	1450	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Selenium (Total)	U	1450	µg/l	1.0	3.3	12	18	2.9
Zinc (Total)	U	1450	µg/l	1.0	10	4.7	3.1	< 1.0
Chromium (Hexavalent)	U	1490	µg/l	20	< 20	< 20	< 20	< 20
Aliphatic TPH >C5-C6	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	Ν	1675	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C8-C10	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons	N	1675	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	Ν	1675	µg/l	10	< 10	< 10	< 10	< 10
Naphthalene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10

Results - Water

Project: 775322 Dales Manor Business Park Sawston

Client: MLM		Chei	mtest Jo	ob No.:	17-20058	17-20058	17-20058	17-20058
Quotation No.:	(Chemte	st Sam	ple ID.:	491340	491341	491342	491343
Order No.: 775322		Clier	nt Samp	le Ref.:	CP202	WS201	WS202	WS204
		Clie	ent Sam	ple ID.:	W1	W1	W1	W1
			Sampl	e Type:	WATER	WATER	WATER	WATER
			Top De	oth (m):	3.28	3.29	3.59	3.52
			Date Sa	ampled:	01-Aug-2017	01-Aug-2017	01-Aug-2017	01-Aug-2017
Determinand	Accred.	SOP	Units	LOD				
Anthracene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	1700	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dichlorodifluoromethane	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	N	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	U	1760	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloroethane	U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans 1,2-Dichloroethene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane	U	1760	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Trichloromethane	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichloroethene	Ν	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	U	1760	µg/l	10	< 10	< 10	< 10	< 10
Bromodichloromethane	U	1760	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	Ν	1760	µg/l	10	< 10	< 10	< 10	< 10
Toluene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene	Ν	1760	µg/l	10	< 10	< 10	< 10	< 10
1,1,2-Trichloroethane	U	1760	µg/l	10	< 10	< 10	< 10	< 10
Tetrachloroethene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0

Results - Water

Project: 775322 Dales Manor Business Park Sawston

Client: MLM		Che	mtest J	ob No.:	17-20058	17-20058	17-20058	17-20058
Quotation No.:	(Chemte	est Sam	ple ID.:	491340	491341	491342	491343
Order No.: 775322		Client Sample Ref.:		CP202	WS201	WS202	WS204	
		Clie	ent Sam		W1	W1	W1	W1
				e Type:	WATER	WATER	WATER	WATER
			Top De	· · /	3.28	3.29	3.59	3.52
			Date Sa		01-Aug-2017	01-Aug-2017	01-Aug-2017	01-Aug-2017
Determinand	Accred.	SOP	Units	LOD				
1,3-Dichloropropane	U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane	U	1760	µg/l	10	< 10	< 10	< 10	< 10
1,2-Dibromoethane	U	1760	µg/l	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene	Ν	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	Ν	1760	µg/l	50	< 50	< 50	< 50	< 50
N-Propylbenzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	Ν	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane	U	1760	µg/l	50	< 50	< 50	< 50	< 50
1,2,4-Trichlorobenzene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	U	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	U	1760	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether	Ν	1760	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols	U	1920	mg/l	0.030	< 0.030	< 0.030	< 0.030	< 0.030

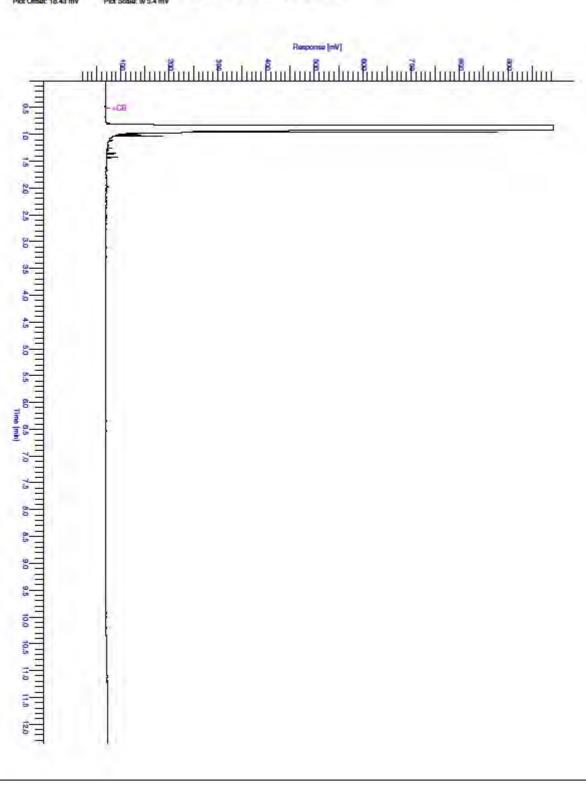
TPH Chromatogram on Water Sample: 491340 Chromatogram

 Sample Name : 491340 wx1-17-20058
 Sample 4:036

 FileName : 13:2017/GC16I/AugWATER0972/WATER0972_A036.naw
 Date: 07/06/2017 10:48:42

 Mathod :
 Time of Injection: 03/06/2017 0

 Start Time : 0.00 min End Time : 12:36 min Low Point : 19:10
 Plot Offset: 19:10 mV
 Page 1 of 1 action: 03/08/2017 09:39:23 Low Point : 19.10 mV High Point : 993.88 mV Response [mV] กปฏาขึ้นปกตรี้แปกเข้าปกเข้าเป็นปกตรี้แปกเข้าปกตรี้แปกเข้าปกตรี้แปกเข้าปกตรี้แปกเข้าปกตรี้แปกเข้าเป็นปกตรี้ +CB


TPH Chromatogram on Water Sample: 491341 Chromatogram

 Sample Name : 491341 wr.1-17-20058
 Sample #: 037
 Page 1 of 1

 FileName : 13/2017/GC16/AnglWATER0972/WATER0972/A037.raw
 Date: 07/09/2017 10:48:54
 Time of Injaction: 03/08/2017 10:10:46

 Start Time : 0.00 min End Time : 12.36 min Low Point : 18.43 mV
 High Point : 993.88 mV

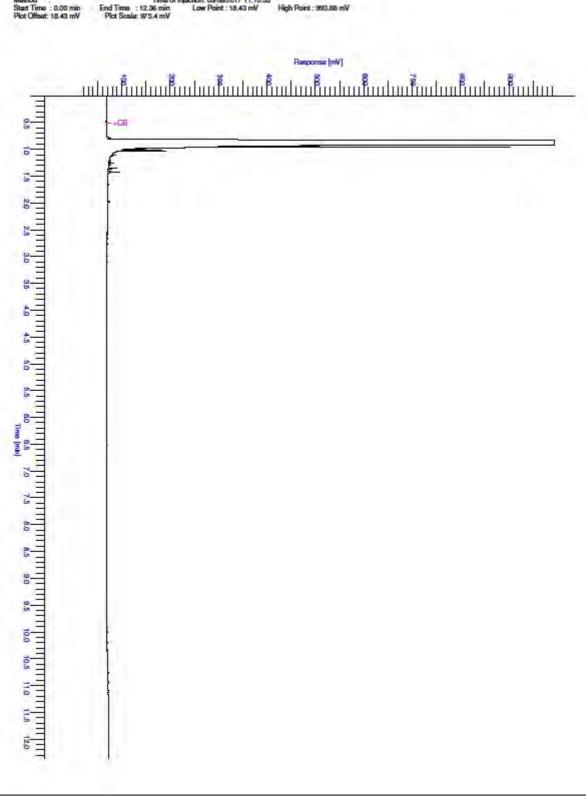
 Plot Offsact: 18.43 mV
 Plot Scala: 375.4 mV

TPH Chromatogram on Water Sample: 491342 Chromatogram
 Sample Name : 491342 wx1-17-20058
 Sample #: 038

 FileName : 13:2017/GC16I/AugWATER0972/WATER0972_A038.naw
 Date: 07/06/2017 10:48:06

 Mathod :
 Time of Injection: 03/06/2017 10:48:06

 Start Time : 0.00 min End Time : 12:36 min Low Point : 18:42
 Plot Offset: 18:42 mV
 Page 1 of 1 Time of Inje End Time, : 12.36 min Plot Scale: 975.5 mV action: 03/08/2017 10:40:54 Low Point : 18.42 mV High Point : 993.88 mV Response [mV] านปฏาเร็กปการขึ้นปการขึ้นปการขึ้นปการขึ้นปการขึ้นปการขึ้นปการขึ้นปการข CE 7.0 7.5 6.0 6.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0


TPH Chromatogram on Water Sample: 491343 Chromatogram

 Sampla Name : 491343 wr.1-17-20058
 Sampla 8: 039
 Page 1 of 1

 FiloName : 13:2017/IGC16/Aug/WATER0972/WATER0972_A039.naw
 Date: 07/08/2017 10:48:16
 Mathod :
 Time of Injaction: 03/08/2017 11:10:53

 Mathod :
 Start Time : 0.00 min End Time : 12:36 min Low Point : 18:43 mV
 High Point : 993.86 m

 Plot Offsat: 18:43 mV
 Plot Scale: 975.4 mV
 High Point : 993.86 m

Test Methods

SOP	Title	Parameters included	Method summary
1270	Total Hardness of Waters	Total hardness	Calculation applied to calcium and magnesium results, expressed as mg I-1 CaCO3 equivalent.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Pentane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GC FID detection
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.

The right chemistry to deliver results

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample

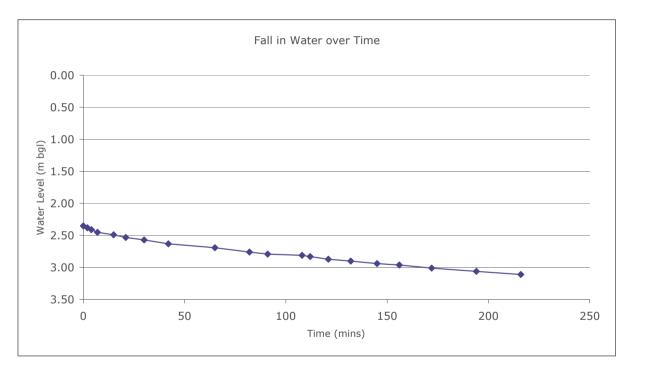
Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

Appendix E - Soakaway Test Results

SOAKAWAY TEST RESULTS


Project Name: Dales Manor Business Park

Location: Sawston Project Ref: 721750

Test Location: **SA1**

Time	Water Level
(mins)	(m bgl)
0	2.35
2	2.38
0 2 4 7	2.41
	2.45
15	2.49
21	2.53
30	2.57
42	2.63
65	2.69
82	2.76
91	2.79
108	2.81
112	2.83
121	2.87
132	2.9
145	2.94
156	2.96
172	3.01
194	3.06
216	3.11

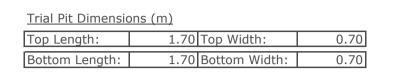
Soil Infiltration Rate 1.6x10-5m/s Trial Pit Dimensions (m)Top Length:1.60 Top Width:0.60Bottom Length:1.60 Bottom Width:0.60

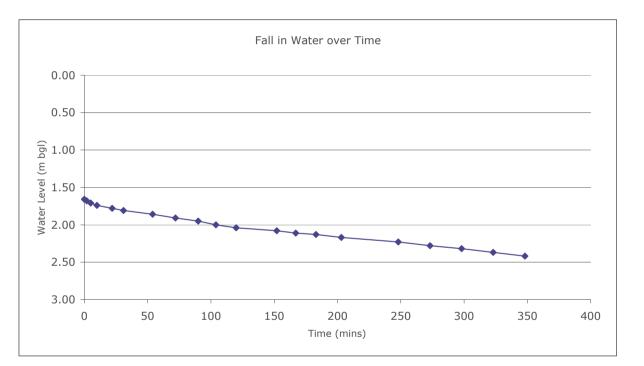
Remarks

- 1. Test Undertaken in general accordance with BRE Digest 365.
- 2. Trial pit was not filled with aggregate.
- 3. Stability was variable
- 4. Results were extrapolated to ensure water level reached 75% effective depth.

SOAKAWAY TEST RESULTS

Project Name: Dales Manor Business Park


Location: Sawston Project Ref:


721750

SA2 Test Location:

Time	Water Level
(mins)	(m bgl)
0	1.66
0 2 5	1.68
	1.71
10	1.74
22	1.78
31	1.81
54	1.86
72	1.91
90	1.95
104	2.00
120	2.04
152	2.08
167	2.11
183	2.13
203	2.17
248	2.23
273	2.28
298	2.32
323	2.37
348	2.42

Soil Infiltration Rate
1x10-5m/s

Remarks

- Test Undertaken in general accordance with BRE Digest 365. 1.
- 2. Trial pit was not filled with aggregate.
- 3. Stability was variable.
- Results were extrapolated to ensure water level reached 75% effective depth. 4.

SOAKAWAY T Based on BRE Di			007)		XXXX
Project Name:	Dales Manor B	usiness Park			•••
Location:	Sawston				MLM.
Project Ref:	775322				
Test Location:	TP202A - Tes	t 1			Group
Readings:	<u> </u>	Trial Pit Dim		1	
Time (mins)	Water Level (m bgl)	Length Width	1.50 0.35		
0	1.03	Depth	2.00		
2	1.26				
3	1.31	Assumed In	vert Level (m bgl)		0.79
4 5	1.35 1.39				
6	1.42	Was trial pit	filled with gravel (Yes,	/No):	Yes
7	1.46				
8	1.49				
9	1.53	Assumed fill	porosity (CIRIA 156)		30
10 15	1.58 1.69				
20	1.79	Ground Con	ditions:		
25	1.88		Refer to engineers log	S	
32	1.92				
37	1.92				
		Fall in \	Nater over Time		
(100.00 B) 0.20 0.40 0.40 0.40					
0.20					Time
9 0.40					75% Effective Depth
≥ 0.60					25% Effective Depth
0.80					
1.00					
1.20				•	
1.40					
1.60					
1.80					
2.00			•		
2.20		1	1		
0	10	20	30	40	Time (mins)
		c. V _{p75}	5 - 25		
Soil Infiltration R	ate (m/sec)	$f = a_{p50} x$	t _{p75 - 25}		
Soil Infiltration R	ate (m/sec)	f3.59I	E-05		
Remarks					
1. The soil infiltra	ation rate has be	en calculated u	ising the BRESOAK Pro	gram version :	1.0.4

SOAKAWAY T Based on BRE Di	Gest 365: Soaka		007)		X .
Project Name:	Dales Manor B	usiness Park			
Location:	Sawston				MLM.
Project Ref:	775322				Group
Test Location:	TP202A - Tes	t 2			Group
Readings:	Watawa Lawal		nensions (m)	_	
Time (mins)	Water Level (m bgl)	Length Width	1.50 0.35	_	
0	0.85	Depth	2.00		
1	1.02				0.05
2 3	1.11 1.15	Assumed In	vert Level (m bgl)		0.85
4	1.20				
5	1.23	Was trial pit	t filled with gravel (Y	es/No):	Yes
10 15	1.33 1.40				
20	1.45	Assumed fil	l porosity (CIRIA 156)	30
30	1.55				
45 60	1.68 1.76	Ground Con	ditions		
	1.70		Refer to engineers I	ogs	
<u> </u>		Fall in	Water over Time		
(16 0.00 B 0.20 					.
0.20					Time
/ater					75% Effective Depth
\$ 0.60					25% Effective Depth
0.80					
1.00					
1.20					
1.40					
1.60					
1.80					
2.00	, , ,		, ,	·	
0	10 20	30	40 50	60 70	Time (mins)
Soil Infiltration R	ate (m/sec)	$f \frac{V_{p7!}}{a_{p50} x}$	5 - 25 t _{p75 - 25}		
Soil Infiltration R	ate (m/sec)	f <u>1.18</u>	E-05		
Remarks					
1. The soil infiltra	ation rate has be	en calculated ι	using the BRESOAK P	rogram version	1.0.4

	TEST RESULTS igest 365: Soaka		007)				X
Project Name: Location:	Dales Manor B Sawston	usiness Park					MIM
Project Ref:	775322						MLM.
Test Location:	TP202A - Tes	t 3					Group
Readings:		Trial Pit Dim	nensions (m)				
Time	Water Level	Length	1.5				
(mins) 0	(m bgl) 0.79	Width Depth	0.3				
1	0.92	Depth	2.0	0			
2	1.01	Assumed In	vert Level (n	n bgl)			0.79
3	1.08						
4 5	1.14	Was trial nit	t filled with g	ravel (Yes/	No).		Yes
10	1.30	was that pro	t filled with g		110).		Tes
15	1.36						
20	1.42	Assumed fil	l porosity (CI	RIA 156)			30
30 45	1.52						
45 60	1.66 1.76	Ground Con	ditions				
103	1.91		Refer to eng	ineers logs	5		
(j) 0.00 (j) 0.20 0.40 0.40 0.60		Fall in ^v	Water over Time				Time
0.40							75% Effective Depth
0.80							25% Effective Depth
1.00					-		
	≁.						
1.40							
1.60							
1.80							
2.20	20 30	40 50	60 70	80 90	100	110	
	20 30	-0 50			100	110	Time (mins)
Soil Infiltration F	Rate (m/sec)	$f \frac{V_{p79}}{a_{p50} \times a_{p50}}$	5 - 25 t _{p75 - 25}				
Soil Infiltration F	Rate (m/sec)	f <u>1.22</u>	E-05				
Remarks							
1. The soil infiltr	ation rate has be	en calculated u	using the BRE	SOAK Prog	gram vers	ion 1	1.0.4
L							

	TEST RESULTS igest 365: Soaka		007)			XÅK
Project Name:	Dales Manor B	usiness Park				25
Location:	Sawston					MLM.
Project Ref:	775322					
Test Location:	TP204 - Test	1				Group
Readings:	Water Lovel		ensions (m)			
Time (mins)	Water Level (m bgl)	Length Width	1.20 0.35			
0	1.03	Depth	1.80			
1	1.47					1.00
2 3	1.66 1.70	Assumed In	vert Level (m bgl)			1.00
4	1.71					
5	1.71	Was trial pit	; filled with gravel (`	Yes/No):		Yes
10	1.72					
15 20	1.72 1.72	Assumed fill	porosity (CIRIA 15	6)		30
60	1.72	//ssumed m		.0)		50
		Ground Con				
			Refer to engineers	logs		
ੁੱਛੇ 0.00 T		Fall in V	Water over Time			
(jp 0.00 L 0.20 0.40 0.40 0.60						Time
						75% Effective Depth
≥ 0.60						
						25% Effective Depth
0.80						
1.00						
1.20						
1.40						
1.60						
1.80	• • •					
2.00						
0	10 20	30	40 50	60	70	Time (mins)
		<i>V</i> _{p75}	5 - 25			
Soil Infiltration R	tate (m/sec)		t _{p75 - 25}			
Soil Infiltration R	tate (m/sec)	f <u>3.97</u>	E-04			
Remarks						
1. The soil infiltra	ation rate has be	en calculated ι	ising the BRESOAK	Program ve	rsion 1	1.0.4

	Gest 365: Soaka	S vay Design (2007)			X X X
Project Name:	Dales Manor B	usiness Park			
Location:	Sawston				MLM.
Project Ref:	775322				
Test Location:	TP204 - Test	2			Group
Readings:		Trial Pit Dimension			
Time (mins)	Water Level (m bgl)	Length Width	1.20 0.35		
0	1.00	Depth	1.80		
1	1.50				
2	1.65	Assumed Invert Le	evel (m bgl)		1.00
3 4	1.69 1.70				
5	1.71	Was trial pit filled	with gravel (Yes/No):	Yes
10	1.72	·		,	
					20
	+	Assumed fill poros	ity (CIKIA 156)		30
	+				
		Ground Conditions			
		Refer	to engineers logs		
	_				
		Fall in Water ove	er Time		
ୁ ଜୁ 0.00					
ੁੱ ਹੁ 0.20					Time
E 0.20					75% Effective Depth
af ≥ 0.60					25% Effective Depth
0.80					
1.00					
1.20					
1.40					
1.60					
1.80	~				
2.00					
0		10		20	Time (mins)
Soil Infiltration R	ate (m/sec)	$f \frac{V_{p75-25}}{a_{p50} \times t_{p75-25}}$	5		
Soil Infiltration R	ate (m/sec)	f 4.03E-04			
Remarks					-
1. The soil infiltra	ation rate has be	en calculated using th	ne BRESOAK Progra	m version	1.0.4

SOAKAWAY T Based on BRE Dig			007)		X
Project Name: Location: Project Ref:	Dales Manor B Sawston 775322	usiness Park			MLM.
Test Location:	TP204 - Test	1			Group
Readings:		Trial Pit Dim	ensions (m)		
Time (mins) 0 1 2	Water Level (m bgl) 1.13 1.46 1.62	Length Width Depth Assumed In	1.20 0.35 1.80 vert Level (m bgl)		1.00
3 4 5 10	1.69 1.69 1.70 1.72		filled with gravel (Yes/	No):	Yes
			porosity (CIRIA 156)		30
		Ground Con	ditions: Refer to engineers log:	5	
Image: symptotic symptot symptotic symptotic symptotic		Fall in V	Vater over Time		Time 75% Effective Depth 25% Effective Depth
2.00		10		20	Time (mins)
Soil Infiltration R Soil Infiltration R Remarks		$f \frac{V_{p75}}{a_{p50} x}$ $f \frac{3.051}{a_{p50} x}$	t _{p75 - 25}		
	ation rate has bee	en calculated u	sing the BRESOAK Pro	gram version :	1.0.4

Appendix F - Generic Screening Levels

LQM/CIEH S4UL	Resid	lential	Allotments	Commercial	Public Open	Public
(except allotments)	With	Without			Space	Open Space
	homegrown	homegrown			(residential)	(park)
	produce	produce				
	27			on sandy loam so		170
Arsenic (inorganic)	37 1.7	40	43 35	640 12	79 2.2	170 63
Beryllium Boron	290	1.1e+4	45	2.4e+5	2.2 2.1e+4	4.6e+4
Cadmium	11	85	1.9	190	120	532
Chromium III (or			18000	8600	1500	3.3e+4
total)	910	910	10000	0000	1300	5.56+4
Chromium VI			1.8	33	7.7	220
(hexavalent)	6	6				
Copper	2400	7100	520	6.8e+4	1.2e+4	4.4e+4
Mercury (inorganic)	40	56	19	1100	120	240
Nickel	180	180	230	980	230	3400
Selenium	250	430	88	1.2e+4	1100	1800
Vanadium	410	1200	91	9000	2000	5000
Zinc	3700	4.0e+4	620	7.3e+5	8.1e+4	1.7e+5
Lead (Defra C4SL used						
in the absence of a	200	310	80	2330	630	1300
published S4UL)						
				on sandy loam soil	with SOM 1%, 2.	
	210	3000	34	8.4e+4		2.9e+4
Acenaphthene	510	4700	85	9.7e+4	1.5e+4	3.0e+4
	1100	6000	200	1.0e+5		3.0e+4
Acenaphthylene	170	2900	28	8.3e+4	1.5e+4	2.9e+4 3.0e+4
Acenaphthylene	420 920	4600	69 140	9.7e+4	1.50+4	3.0e+4 3.0e+4
	2400	6000 3.1e+4 ^{vap (1.17)}	160 380	1.0e+5 5.2e+5		3.00+4
Anthracene	5400	3.5e+4	950	5.4e+5	7.4e+4	1.5e+5
Antiliacene	1.1e+4	3.7e+4	2200	5.4e+5	7.4674	1.56+5
	7.2	11	2.9	170		49
Benzo[a]anthracene	11	14	6.5	170	29	56
	13	15	13	180		62
	2.2		0.97	35		11
Benzo[a]pyrene	2.7	3.2	2.0	35	5.7	12
	3.0		3.5	36		13
	2.6	3.9	0.99	44	7.1	13
Benzo[b]fluoranthene	3.3	4.0	2.1	44	7.2	15
	3.7	4.0	3.9	45	7.2	16
	320		290	3900		1400
Benzo[ghi]perylene	340	360	470	4000	640	1500
	350		640	4000		1600
	77	110	37	1000	100	370
Benzo[k]fluoranthene	93	110	75	1200	190	410 440
	100 15	30	130 4.1			93
Chrysene	22	30	4.1 9.4	350	57	110
Chilysene	27	32	19	330	57	120
	0.24	0.31	0.14	3.5	0.57	1.1
Dibenzo[ah]anthracen	0.28	0.32	0.27	3.6	0.57	1.3
e	0.30	0.32	0.43	3.6	0.58	1.4
	280	1500	52			6300
Fluoranthene	560	1600	130	2.3e+4	3100	6300
	890	1600	290			6400
	170	2800	27	6.3+4		
Fluorene	400	3800	67	6.8e+4	9900	2.0e+4
	860	4500	160	7.1e+4		
	27	45	9.5	500		150
Indeno[123-cd]pyrene	36	46	21	510	82	170
	41	46	39	510		180
Naphthalan-	2.3	2.3	4.1	190	4000	1200
Naphthalene	5.6	5.6	10	460 1100	4900	1900
	<u>13</u> 95	13	24 15	2.2e+4		3000
Phenanthrene	220	1300 1500	38	2.2e+4 2.2e+4	3100	6200 6200
i nenantillene	440	1500	38 90	2.2e+4 2.3e+4	5100	6300
	620	3700	110	2.30+4		0300
Pyrene	1200	3800	270	5.4e+4	7400	1.5e+4
J	2000	3800	620			

LQM/CIEH S4UL		lential	Allotments	Commercial	Public Open	Public Open
(except allotments)	With homegrown	Without homegrown			Space (residential)	Space (park)
	produce	produce			(residential)	
			ed on sandy loan	n soil with SOM 1%	, 2.5% or 6%)	
	0.087	0.38	0.017	27	72	90
Benzene	0.17	0.7	0.034	47	72	100
	0.37	1.4	0.075	90	73	110
	130	880 ^(vap 869)	22	5.6e+4 ^{vap (869)}	5.6e+4	8.7e+4vap (869)
Toluene	290	1900	51	1.1e+5 ^{vap (1920)}	5.6e+4	9.5e+4 ^{vap} (1920)
	660	3900	120	1.8e+5 ^{vap (4360)}	5.6e+4	1.0e+5 ^{vap} (4360)
Ethylhonzono	47	83	16	5700 ^{vap (518)} 1.3e+4 ^{vap (1220)}	2.4e+4	1.7e+4 ^{vap (518)} 2.2e+4 ^{vap (1220)}
Ethylbenzene	110 260	190 440	39 91	2.7e+4 ^{vap} (2840)	2.4e+4 2.5e+4	2.7e+4 ^{vap} (2840)
	56	79	29	5900	4.1e+4	1.7e+4
m- & p-xylene	130	180	69	1.4e+4	4.2e+4	2.3e+4
	310	430	160	3.0e+4	4.3e+4	3.1e+4
	60	88	28	6600	4.1e+4	1.7e+4
o-xylene	140	210	67	1.5e+4	4.2e+4	2.3e+4
-	330	480	160	3.3e+4	4.3e+4	3.3e+4
	Pet	roleum Hydrocar	bons (based on	sandy loam soil wit	h SOM 1%, 2.5% o	r 6%)
	42	42	730	3200	5.7e+5	9.5e+4
TPH aliphatic EC>5-6	78	78	1700	5900	5.9e+5	1.3e+5
	160	160	3900	1.2e+4	6.0e+5	1.8e+5
	100	100	2300	7800	6.0e+5	1.5e+5
TPH aliphatic EC>6-8	230	230	5600	1.7e+4	6.1e+5	2.2e+5
	530	530 27	1.3e+4	4.0e+4	6.2e+5	3.2e+5 1.4e+4
TPH aliphatic EC>8-10	27 65	65	320 770	2000 4800 ^{vap (190)}	1.3e+4	1.4e+4 1.8e+4 ^{vap (190)}
TPH aliphatic EC>0-10	150	150	1700	1.1e+4 ^{vap} (451)	1.30+4	2.1e+4 ^{vap} (451)
	130 ^{vap (48)}	130 ^{vap} (48)	2200	9700		2.1e+4
TPH aliphatic EC>10-12	330 ^{vap} (118)	330 ^{vap} (118)	4400	2.3e+4 ^{vap} (118)	1.3e+4	2.3e+4 ^{vap} (118)
•	760 ^{vap} (283)	770 ^{vap (283)}	7300	4.7e+4 ^{vap} (283)		2.4e+4 ^{vap} (283)
	1100	1100	1.1e+4	5.9e+4		2.5e+4
TPH aliphatic EC>12-16	2400	2400	1.3e+4	8.2e+4	1.3e+4	2.5e+4
	4300	4400	1.3e+4	9.0e+4 ^s		2.6e+4
	6.5e+4	6.5e+4	2.6e+5	1.6e+6		4.5e+5
TPH aliphatic EC>16-35	9.2e+4	9.2e+4	2.7e+5	1.7e+6	2.5e+5	4.8e+5
	1.1e+5	1.1e+5	2.7e+5	1.8e+6		4.9e+5
	6.5e+4	6.5e+4	2.6e+5	1.6e+6	05.5	4.5e+5
TPH aliphatic EC>35-44	9.2e+4	9.2e+4	2.7e+5	1.7e+6	2.5e+5	4.8e+5
	1.1e+5 70	1.1e+5 370	2.7e+5 13	1.8e+6 2.6e+4		4.9e+5 7.6e+4
TPH aromatic EC>5-7	140	690	27	4.6e+4	5.6e+4	8.4e+4
	300	1400	57	8.6e+4	0.0014	9.2e+4
	130	860	22	5.6e+4 ^{vap (869)}		8.7e+4vap (869)
TPH aromatic EC>7-8	290	1800	51	1.1e+5	5.6e+4	9.5e+4
	660	3900	120	1.8e+5 ^{vap (4360)}		1.0e+5 ^{vap} (4360)
	34	47	8.6	3500 ^{vap (613)}		7200 ^{vap (613)}
TPH aromatic EC>8-10	83	110	21	8100 ^{vap (1500)}	5000	8500 ^{vap (1500)}
	190	270	51	1.7e+4 ^{vap} (3580)		9300 ^{vap} (3580)
	74	250	13	1.6e+4		9200
TPH aromatic EC>10-12	180	590	31	2.8e+4	5000	9700
	380	1200	74	3.4e+4	5400	1.0e+4
TDU aromatia EC, 12, 14	140	1800	23	3.6e+4	5100 5100	1.00.1
TPH aromatic EC>12-16	330 660	2300 2500	57 130	3.7e+4 3.8e+4	5100 5000	1.0e+4
	260	2300	46	3.00+4	5000	7600
TPH aromatic EC>16-21	540	1900	110	2.8e+4	3800	7700
	930	1700	260	2.0014	0000	7800
	1100		370			7800
TPH aromatic EC>21-35	1500	1900	820	2.8e+4	3800	7800
	1700		1600			7900
	1100		370			7800
TPH aromatic EC>35-44	1500	1900	820	2.8e+4	3800	7800
	1700		1600			7900
				am soil with SOM 19		
	120	440	23	440	440	440
Phenol	200	690	42	690	690	690
	380	1200	83	1300	1300	1300
Chlorophenols (except	0.87	94	0.13 3500	(20	1100	
pentachlorophenol)	2.0	150 210	0.30 0.70	4000 4300	620	1100
	4.5 0.22	210 27vap (16.4)	0.70	4300		110
Pentachlorophenol	0.52	29	0.08	400	60	120
. s.naomorophonor	1.2	31	0.19	400		120

LQM/CIEH S4UL		ential	Allotment	Commercial	Public Open	Public Open
(except allotments)	With homegrown produce	Without homegrown produce			Space (residential)	Space (park)
			pounds (based	on sandy loam soil	with SOM 1%, 2.5%	or 6%)
	0.0071	0.0092	0.0046	0.67		21
1,2-Dichloroethane	0.011	0.013	0.0083	0.97	29	24
	0.019	0.023	0.016	1.7		28
1 1 1 Tuisklans ath an a	8.8	9.0	48	660	1.45 5	5.7e+4 ^{vap (1425)} 7.6e+4 ^{vap (2915)}
1,1,1-Trichloroethane	18 39	18 40	110 240	1300 3000	1.4e+5	$1.0e + 5^{vap}$ (6392)
	1.6	3.9	0.41	270		1800
1,1,2,2-	3.4	8.0	0.89	550	1400	2100
Tetrachloroethane	7.5	17	2.0	1100		2300
1.1.1.2-	1.2	1.5	0.79	110		1500
Tetrachloroethane	2.8	3.5	1.9	250	1400	1800
	6.4	8.2	4.4	560		2100
Tatraphlaraathana (DCC)	0.18	0.18	0.65	19	1400	810
Tetrachloroethene (PCE)	0.39 0.90	0.40 0.92	1.5 3.6	42 95	1400	1100 1500
	0.026	0.026	0.45	2.9	890	190
Tetrachloromethane	0.020	0.020	1.0	6.3	920	270
	0.13	0.13	2.4	14	950	400
	0.016	0.017	0.041	1.2	,,,,,	70
Trichloroethene (TCE)	0.034	0.036	0.091	2.6	120	91
	0.075	0.080	0.21	5.7		120
Trichloromethane	0.91	1.2	0.42	99		2600
(chloroform)	1.7	2.1	0.83	170	2500	2800
(enterorenni)	3.4	4.2	1.7	350		3100
Chloroethene (vinyl	0.00064	0.00077	0.00055	0.059	2.5	4.8
chloride)	0.00087 0.0014	0.0010 0.0015	0.0010 0.0018	0.077 0.12	3.5	5.0 5.4
	0.46	0.46	5.9	56	1.1e+4	1300
Chlorobenzene	1.0	1.0	14	130	1.3e+4	2000
	2.4	2.4	32	290	1.4e+4	2900
	23	24	94	2000	9.0e+4	2.4e+4
1,2-Dichlorobenzene	55	57	230	4800	9.5e+4	3.6e+4
	130	130	540	1.1e+4	9.8e+4	5.1e+4
	0.4	0.44	0.25	30		390
1,3-Dichlorobenzene	1.0	1.1	0.6	73	300	440
	2.3	2.5	1.5	170		470
	61	61	15	4400 ^{vap (224)} 1.0e+4 ^{vap (540)}	1 7- 4	3.6e+4 ^{vap (224)} 3.6e+4 ^{vap (540)}
1,4-Dichlorobenzene	150 350	150 350	37 88	$2.5e + 4^{vap}$ (1280)	1.7e+4	$3.6e + 4^{vap}$ (1280) $3.6e + 4^{vap}$ (1280)
	1.5	1.5	4.7	102		770 ^{vap (134)}
1,2,3-Trichlorobenzene	3.6	3.7	12	250	1800	1100 ^{vap} (330)
.,_,_	8.6	8.8	28	590		1600 ^{vap (789)}
	2.6	2.6	55	220	1.5e+4	1700 ^{vap (318)}
1,2,4-Trichlorobenzene	6.4	6.4	140	530	1.7e+4	2600 ^{vap (786)}
	15	15	320	1300	1.9e+4	4000 ^{vap (1880)}
	0.33	0.33	4.7	23	1700	380vap (37)
1,3,5-Trichlorobenzene	0.81	0.81	12	55	1700	580 ^{vap} (91)
	1.9	1.9	28	130	1800	860 ^{vap} (217)
1,2,3,4-	15	24	4.4	1700 ^{vap (122)}	020	1500 ^{vap (122)}
Tetrachlorobenzene	36 78	56 120	11 26	3080 ^{vap (304)} 4400 ^{vap (728)}	830	1600 1600
	0.66	0.75	0.38	4400 4 (39)	78	110 ^{vap} (39)
1,2,3,5-	1.6	1.9	0.38	120 ^{vap} (98)	79	120
Tetrachlorobenzene	3.7	4.3	2.2	240 ^{vap} (235)	79	130
1015	0.33	0.73	0.06	42		25
1,2,4,5- Tetrachlorobenzene	0.77	1.7	0.16	72	13	26
Tetrachior oberizerie	1.6	3.5	0.37	96		26
	5.8	19	1.2	640		
Pentachlorobenzene	12	30	3.1	770	100	190
	22	38	7.0	830		
Llavaablaa l	1.8 ^{vap} (0.2)	4.1 ^{vap (0.2)}	0.47	110 ^{vap (0.2)}		
Hexachlorobenzene	3.3vap (0.5)	5.7 ^{vap (0.5)}	1.1	120 ^{vap} (0.5)	16	30
	4.9	6.7	2.5	120	1.10.4	1200
Carbon disulphide	0.14 0.29	0.14 0.29	4.8 10	11 22	1.1e+4 1.1e+4	1300 1900
Carbon usuiphide	0.29	0.29	23	47	1.1e+4 1.2e+4	2700
	0.29	0.32	0.25	31	1.2014	48
Hexachlorobutadiene	0.7	0.78	0.23	66	25	50
	0.7	1.8	1.4	120		50

		Pesticides (based on sandy	loam soil with SOM	1%, 2.5% or 6%)	
	5.7	7.3	3.2			30
Aldrin	6.6	7.4	6.1	170	18	31
	7.1	7.5	9.6			31
	0.97	7.0	0.17			30
Dieldrin	2.0	7.3	0.41	170	18	30
	3.5	7.4	0.96			31
	3.3	610	0.50	9300		2300
Atrazine	7.6	620	1.2	9400	1200	2400
	17.4	620	2.7	9400		2400
	0.032	6.4	0.0049			26
Dichlorvos	0.066	6.5	0.010	140	16	26
	0.14	6.6	0.022			27
	7.4	160	1.2	5600		2400
Endosulfan	18	280	2.9	7400	1200	2400
Liiuusullali	41	410	6.8	8400		2500
	0.23	6.9	0.035	170		47
HCH (including Lindane)	0.55	9.2	0.087	180	24	48
-	1.2	11	0.21	180		48
		Explosives (based on sandy	loam soil with SOM	1%, 2.5% or 6%)	
	1.6	65	0.24			260
2,4,6-Trinitrotoluene	3.7	66	0.58	1000	130	270
	8.1	66	1.40			270
	120		17		2.6e+4	4.9e+4
RDX	250	1.3e+4	38	2.1e+5	2.6e+4	5.1e+4
	540		85		2.7e+4	5.3e+4
	5.7		0.86			2.3e+4 ^{vap} (0.35)
HMX	13	6700	1.9	1.1e+5	1.3e+4	2.3e+4 ^{vap (0.39)}
	26		3.9			2.4e+4 ^{vap} (0.48)

Assessment Criteria – Controlled Waters

Substance		EQS		DWS		Substance		EQS	DWS
List 1									
	Fresh	Estuary	Marine						
Mercury	1	0.5	0.3	1		Endrin		0.005	0.1 *
Cadmium	5	5	2.5	5		Total 'Drins		0.03	-
Hexachlorocyclohexane	0.1	0.02	0.02	-		Hexachlorob	enzene	0.03	-
Carbon tetrachloride		12		-		Hexachlorob	utadiene	0.1	-
Total DDT		0.025		0.5 *		Chloroform		12	-
pp DDT		0.01		-		1,2-dichloroe	ethane	10	-
Pentachlorophenol		2		0.1 *		Trichlorethyl	ene	10	-
Dieldrin		0.01		0.03		Perchlorethy	lene	10	-
Isodrin		0.005		0.1 *		Trichloroben	zene	0.4	-
Aldrin	0.01		0.03						
List 2									1
1,1,1-Trichloroethane		100		-		Fenitrothion		0.01	0.1 *
1,1,2-Trichloroethane		400		-		Flucofuron		1	0.1 *
2,4-D (ester)		1		-		Iron		1000	200
2,4-D (non-ester)	40		_		Linuron		2	0.1 *	
2,4-Dichlorophenol	20		-		Malathion		0.01	0.1 *	
2-Chlorophenol	50		-		Mecoprop		20	0.1 *	
4-Chloro-3-methyl-phenol	40		_		Mevinphos		0.02	0.1 *	
Arsenic		50		10		Naphthalene		10	0.1 *
Atrazine &Simazine		2		0.1 *		Omethoate		0.01	0.1 *
Azinphos-methyl		0.01		0.1 *		PCSDs		0.05	0.1 *
Bentazone		500		0.1 *		Permethrin		0.01	0.1 *
Benzene		30		1		рН		6 - 9	6.5 - 9.5
Biphenyl		25		-		Sulcofuron		25	0.0 - 9.0
Boron		2000		1000				50	0.1 *
Chloronitrotoluenes		<u></u>		1000		Toluene		0.005	0.1 *
Cyfluthrin		0.001		0.1 *		Triazaphos Tributyltin		0.005	0.1 *
Demeton		0.001		0.1 *		Trifluralin		0.02	0.1 *
		0.001		0.1 *				0.02	
Dichlorvos		0.001				Triphenyltin			0.1 *
Dimethoate				0.1 *		Xylene (m a	na p, o)	30	- 10 *
Endosulphan		0.003		0.1 *		TPH		30	10 ^
List 2 (hardness related)									
Hardness	0-!	50	>50	>100	-	>150	>200	>250	
(mg/l CaCO₃)			-100	-150)	-200	-250		
Suitable for all fish									
Copper	1	-	6	10		10	10	28	2000
Nickel	5		100	150		150	200	200	20
Vanadium	2	0	20	20		20	60	60	-
Suitable for salmonid (game) fish					Τ				
Chromium	E	5	10	20		20	50	50	50
Lead	4		10	10		20	20	20	10
	4		10	10		20	20	20	10

Zinc	8	50	75	75	75	125	-
Suitable for Cyprinid (coarse) fish							
Chromium	150	175	200	200	250	250	50
Lead	20	125	125	250	250	250	10
Zinc	75	175	250	250	250	500	-

Other Compounds

Acrylamide	0.1	Tetrachloroethene and Trichloroethene	10
Antimony	5	Trihalomethanes(ii)	100
Benzo(a)pyrene	0.01	Vinyl chloride	0.5
Bromate	10	Aluminium	200
Cyanide	50	Iron	200
1, 2-dichloroethane	3	Manganese	50
Epichlorohydrin	0.1	Sodium	200
Fluoride	1.5 mg/l	Tetrachloromethane	3
Heptachlor	0.03	Ammonium	0.5 mg/l
Heptachlor epoxide (iii)	0.03	Nitrate	50 mg/l
Other pesticides	0.1	Nitrite	0.5 mg/l
Pesticides (total)	0.5	Chloride	250 mg/l
PAHs(i)	0.1	Sulphate	250 mg/l
Selenium	10	TPH	10 *

Notes:

* Values taken from 1989 Regs
. Specified compounds are benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]-perylene, indeno[1,2,3-c,d]pyrene.
ii. Specified compounds are chloroform, bromoform, dibromochloromethane, bromodichloro-methane.

Unless stated otherwise all units $\mu g \ I^{\text{-1}}$

Assessment Criteria – Water Supply Pipes

Substance [1]	UK	WIR
	PE	PVC
Organic compounds		
ТРН	-	
TPH >C5-C10	2	1.4
TPH >C11-C20	10	NL
TPH >C21-C40	500	NL
Extended VOC suite	0.5	0.125
Extended SVOC suite	2	1.4
BTEX + MTBE	0.1	0.03
Aromatic hydrocarbons		
Benzene	0.1	0.03
Ethylbenzene	0.1	0.03
Toluene	0.1	0.03
Xylenes	0.1	0.03
Phenol	2	0.4
Cresol	2	0.04
Chlorinated phenols		
Total	2	0.04
Polyaromatic hydrocarbons		
Tatal	2	1 4

Fotal 2		1.4
Other organic compounds		
Ethers	0.5	1
Nitrobenzene	0.5	0.4
Ketones	0.5	0.02
Aldehydes	0.5	0.02
Amines	Detected	NL

Notes:

All UKWIR TV's (except BTEX and MTBE) are based on taste and odour detection threshold.
 PE – polyethylene; PVC – polyvinyl chloride

All units mg/kg in soil.
 All units mg/kg in soil.
 The threshold for TPH is 1000mg/kg provided no other organic compounds are present. If the TPH level exceeds 50mg/kg then the sum of TPH plus other organic compounds must not be greater than the upper threshold. If the other compounds are not tested for then the threshold for TPH must be set at the lower threshold.

Assessment Criteria – Phytotoxicity

Potentially phytotoxic elements [1]	BS3882:2015			
	Soil pH <6.0	Soil pH 6.0 – 7.0	Soil pH >7.0	
Zinc	<200	<200	<300	
Copper	<100	<135	<200	
Nickel	<60	<75	<110	

Notes: 1. All units mg/kg dry solids.

Appendix G - Defining Risk

Identification of Unacceptable Risk

The method for risk evaluation is qualitative and is developed from the model provided in CIRIA C552 *Contaminated Land Risk Assessment – a guide to good practice* (DETR 2001). It involves classifying risk in terms of (a) magnitude of the potential consequence (severity) of occurrence and (b) the probability (likelihood) of occurrence. The risk rating derived is used to determine what action, if any, is needed to further investigate that risk and/or remediate to reduce risk to an acceptable level.

Task 1: Classification of Consequence

Classification	Definition	Examples
Severe	 Short-term (acute) risk to human health likely to result in "significant harm" (as defined in EPA90 Part 2a) 	Unusually high concentration of toxic substance on the surface of a garden or recreation area.
	 Short-term (acute) risk of pollution of sensitive water resource. 	Major spillage of contamination from the site into controlled waters. EA Category 1 pollution incident. Closure of an abstraction point.
	 Short-term (acute) risk to an ecosystem, or organism forming part of an ecosystem. 	Explosion, causing building collapse (and death if occupied).
Medium	 Chronic damage to human health likely to result in "significant harm". Pollution of sensitive water resource. 	Concentration of contaminant from site exceeds generic or site-specific assessment criteria for human health or water supply pipes. Presence of asbestos.
	 Significant change in a particular ecosystem, or organism forming part of such ecosystem. 	Leaching of contaminants from a site to a principal or secondary (A) aquifer. Concentration exceeds DWS or EQS in Inner Source Protection Zone (SPZ1). EA Category 2 pollution incident.
		Death of a species or loss of habitat within an area of national importance.
Mild	• Exposure is unlikely to result in "significant harm" to human health.	Concentration of contaminant from site below generic or site-specific assessment criteria.
	 Pollution of non-sensitive water resource. 	Pollution of secondary (B or undifferentiated) aquifer. EA Category 3 pollution incident.
	 Damage to sensitive buildings, structures and services or the 	Damage to a building rendering it unsafe to occupy.
	environment.	Death of a species or loss of habitat within an area of local importance.
		Loss of plants in garden or landscape areas (BS3882 limits exceeded).

Classification	Definition	Examples
Minor	 Harm (but not significant harm) resulting in a financial loss or expenditure to resolve. Non-permanent human health effects. Easily repairable damage to buildings, structures and services. 	Pollution of unproductive strata.

Task 2: Classification of Probability

Classification	Definition
High Likelihood	There is a pollution linkage and an event appears very likely in the short term and almost inevitable over the long term or there is actual evidence at the receptor of harm or pollution.
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur.
	Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term.
Low Likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term.
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an event would occur in the very long term.

Task 3: Risk Estimation

			Conse	quence	
		Severe	Medium	Mild	Minor
	High Likelihood	Very high risk	High risk	Moderate risk	Low risk
ability	Likely	High risk	Moderate risk	Low risk	Low risk
Probability	Low Likelihood	Moderate risk	Low risk	Low risk	Very low risk
	Unlikely	Low risk	Low risk	Very low risk	Very low risk
No linkage			No	risk	

Task 4: Description of the Estimated Risks and Likely Action Required

Risk	Action
Very high risk	There is a high probability that severe harm could arise or there is evidence that severe harm is currently happening. This risk, if realised, is likely to result in substantial liability.
	Urgent investigation and remediation are required for the site in its existing state and for development.
High risk	Harm is likely to arise. Realisation of the risk is likely to present a significant liability.
	Urgent investigation is required and remedial works may be necessary in the short term and are likely over the long term. Remediation will be required for development.

Risk	Action
Moderate risk	A potential linkage is identifiable. However, it is either relatively unlikely that harm would be severe or, if any harm were to occur, it is more likely that the harm would be relatively mild.
	Investigation is required to quantify the risk and determine potential liability. Remediation will be required for development.
Low risk	It is possible that harm could arise but it is likely that this harm, if realised, would at worst normally be mild.
	Investigation is not normally required but could be useful to confirm a preliminary assessment. Remedial works are unlikely to be required or will be limited.
Very low risk	There is a low possibility that harm could arise. In the event of such harm being realised it is not likely to be severe. Site is not capable of being determined under Part 2a.
	No further action recommended.

T +44 1223 632 800 A Building 7200 Cambridge Research Park Cambridge, CB25 9TL

www.mlmgroup.com