wardell-armstrong.com

ENERGY AND CLIMATE CHANGE ENVIRONMENT AND SUSTAINABILITY INFRASTRUCTURE AND UTILITIES LAND AND PROPERTY MINING, QUARRYING AND MINERAL ESTATES WASTE RESOURCE MANAGEMENT

Endless Energy Ltd

Keighley Clean Energy Facility, Aire Valley Road, Keighley

Flood Risk Assessment

August 2016

your earth our world

DATE ISSUED:	August 2016
JOB NUMBER:	SH11087
REPORT NUMBER:	2016_12.1

Endless Energy Ltd

Keighley Clean Energy Facility, Aire Valley Road, Keighley

Flood Risk Assessment

PREPARED BY:

J Rimmer

Associate Director

REVIEWED BY:

S Riley

R Kevan

Associate Director

APPROVED BY:

Technical Director

Document Record

Issue No.	Date	Details
1	15 July 2016	First version
2	20 July 2016	Second version
3	4 August 2016	Third version
4	10 August 2016	Final report

This report has been prepared by Wardell Armstrong LLP with all reasonable skill, care and diligence, within the terms of the Contract with the Client. The report is confidential to the Client and Wardell Armstrong LLP accept no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this document may be reproduced without the prior written approval of Wardell Armstrong LLP.

Wardell Armstrong is the trading name of Wardell Armstrong LLP, Registered in England No. OC307138.

Registered office: Sir Henry Doulton House, Forge Lane, Etruria, Stoke-on-Trent, ST1 5BD, United Kingdom

UK Offices: Stoke-on-Trent, Cardiff, Carlisle, Edinburgh, Greater Manchester, London, Newcastle upon Tyne, Shaftesbury, Sheffield, Taunton, Truro, West Bromwich. International Offices: Almaty, Moscow

ENERGY AND CLIMATE CHANGE ENVIRONMENT AND SUSTAINABILITY INFRASTRUCTURE AND UTILITIES LAND AND PROPERTY MINING AND MINERAL PROCESSING MINERAL ESTATES AND QUARRYING WASTE RESOURCE MANAGEMENT

pp

CONTENTS

1	INTR	ODUCTION	1
	1.1	Instructions	1
	1.2	Background Information	1
	1.3	Data Sources	2
2	SITE	INFORMATION	3
	2.1	Existing Site	3
	2.2	Development Proposals	3
	2.3	Watercourses and Local Drainage	3
	2.4	Sewerage	3
	2.5	Easements	4
	2.6	Geology and Hydrogeology	4
3	FLO	DDING INFORMATION	5
	3.1	Flood History	5
	3.2	Potential for Flooding	5
4	FLO	DD RISK ASSESSMENT	6
	4.1	Fluvial Flooding	6
	4.2	Flooding from Surface Water Run-off	6
	4.3	Foul Sewerage	7
	4.4	Groundwater Flooding	8
	4.5	Allowance for Climate Change	8
	4.6	Residual Risk	8
	4.7	Sequential Test	8
5	CON	CLUSIONS	9

APPENDICES

- Appendix IEnvironment Agency CorrespondenceAppendix IIYorkshire Water Correspondence
- Appendix III Hydraulic Calculations

DRAWINGS

Drawing No	Title	Scale
548.02()500	Proposed Site Plan – Overall Layout	1: 500@A0
SH11087-010	Drainage Strategy	1: 1000@A1
SH11087-020	Drainage Layout	1: 1000@A1
SH11087-021	Manhole Schedules	NTS

1 INTRODUCTION

1.1 Instructions

1.1.1 This report is prepared in accordance with instructions from Endless Energy Ltd. It follows the drainage principles established by the granting of planning permission for the previous similar application in April 2014 (Ref. 13/04217/FUL) and by the subsequent discharge of the relevant planning conditions for that permission (Nos 31. 32 and 34; Ref. 13/04217/SUB01).

1.2 Background Information

National Planning Policy Framework

- 1.2.1 The National Planning Policy Framework and associated Technical Guidance explain how flood risk should be taken into consideration during the planning and development process. NPPF specifies a *sequential test* and an *exception test* to guide local planning authorities on the suitability of proposed development sites. It categorises flood risk by *flood zone* and defines the types of development *appropriate* to each flood zone according to *vulnerability*. The flood zones are defined as:
 - Zone 1: Areas with a Low Probability of flooding (annual probability less than 0.1% or 1 in 1000 years).
 - Zone 2: Areas with a Medium Probability of flooding (annual probability between 0.1% (1 in 1000 years) and 1.0% (1in 100 years) for rivers, 0.1 0.5% (1 in 1000 to 1 in 200 years) for coastal areas.
 - Zone 3a: Areas with a High Probability of flooding (annual probability greater than 1.0% (1 in 100 years) for rivers, 0.5% (1 in 200 years) for coastal areas).
 - Zone 3b: The Functional Floodplain (probability as Zone 3a).

Environment Agency Flood Maps

1.2.2 The Environment Agency (EA) predicts the likelihood of flooding via a national series of indicative flood maps, available to the public by request and via the EA website. These maps show the Flood Zones, described above, coloured in different shades of blue.

City of Bradford Metropolitan District Council Strategic Flood Risk Assessment

1.2.3 As part of their Local Development Framework (LDF) documentation, local authorities are required to produce a Strategic Flood Risk Assessment (SFRA) which sets the scene

for flood risk in their areas. The Bradford SFRA was not available for viewing from the City of Bradford Metropolitan District Council website.

City of Bradford Metropolitan District Council Preliminary Flood Risk Assessment

- 1.2.4 A Preliminary Flood Risk Assessment (PFRA) is a high level screening exercise to identify areas where there is significant flood risk in national terms and covers the risk of flooding from local sources, namely Ordinary Watercourses, surface water run-off and groundwater. It does not directly consider flooding from main rivers or from sewers.
- 1.2.5 PFRAs have been produced by Lead Local Flood Authorities (LLFAs) in England and Wales to fulfil statutory requirements in the Flood Risk Regulations 2009. In this case the LLFA is City of Bradford Metropolitan District Council and its PFRA was published in June 2011.

1.3 Data Sources

- 1.3.1 Flood data for the site and its surroundings has been obtained from the EA attached at <u>Appendix I</u>. The EA planning application consultation response has been added.
- 1.3.2 Pre-Planning Sewerage Enquiry advice, including sewerage records, as provided by Yorkshire Water Services (YWS) attached at <u>Appendix II</u>. The YWS planning application consultation response has been added.

2 SITE INFORMATION

2.1 Existing Site

- 2.1.1 The site is Keighley Clean Energy Facility, Aire Valley Road, Keighley and is located as shown on the Drawing No 548.02(--)500 *Proposed Site Plan Overall Layout*. The site comprises about 3.5 ha of vacant Brownfield land and is bounded by gas holders of Thwaite Gas Works and industrial units to the west, Aire Valley Road to the north and a railway line and agriculture to the south and east. The site is located 3 km to the east of Keighley town centre.
- 2.1.2 The site was inspected with respect to flood risk by Wardell Armstrong on 16 August 2013 and 17 January 2014. The ground is generally level but is hummocky with reworked soil cover in the west and dense vegetative soil surface cover in the east. The site visit did not identify any official land drainage network on site but a drainage ditch was observed along the boundary with the Aire Valley Road and an area of standing water had formed by natural water flows along the central northern boundary.
- 2.1.3 The site is Brownfield and the existing impermeable area is significant due to a large coverage of reclaimed ground and un-vegetated soil cover in the western part of the site, but minimal impermeable area is present in the east due to vegetative cover.

2.2 Development Proposals

- 2.2.1 It is proposed that the site be developed for industrial use as an Energy from Waste plant as shown on Drawing No 548.02(--)500. According to NPPF, commercial/industrial land use is classed as 'less vulnerable' to flooding.
- 2.2.2 The proposed degree of coverage of the site by impermeable surfacing (roofs, access roads, service yards and car parks) is about 2.3 ha which constitutes about 65% of the total site area.

2.3 Watercourses and Local Drainage

2.3.1 The nearest surface watercourse is the River Aire, a Main River, about 220m to the north. The drainage authority is City of Bradford MDC.

2.4 Sewerage

2.4.1 According to Yorkshire Water Services- see <u>Appendix II</u> - there are public foul/combined sewers recorded crossing/running close to the site with diameters of 750mm, 900mm, 1200mm, 1350mm, 1400mm, 990/660mm and 915/610mm.

2.4.2 The local Waste Water Treatment Works is Marley WWTW which is approximately300m to the east of the site.

2.5 Easements

2.5.1 No buildings are to be erected within 6.5 metres, nor trees planted within 5 metres of these public sewers. It may not be acceptable to raise or lower ground levels over these sewers, nor to restrict access to the manholes on these sewers.

2.6 Geology and Hydrogeology

2.6.1 The site is located on made ground underlain by alluvium and Glacial Till and Millstone Grit which is classified as a Minor or Secondary A Aquifer.

3 FLOODING INFORMATION

3.1 Flood History

- 3.1.1 According to the EA, there are no records of flooding at the site see <u>Appendix I</u>.
- 3.1.2 The Bradford PFRA contains no records of historical flooding at the site.

3.2 Potential for Flooding

Fluvial Flooding

3.2.1 The EA Flood Map – see <u>Appendix I</u> - shows the site to be located in Flood Zone 1, i.e. an area with a Low Probability of flooding (annual probability less than 0.1% (1 in 1000 years).

Flooding from Surface Water Run-off

- 3.2.2 As the site is more than 1 ha in area, it is a requirement of NPPF that flood risk from surface water run-off be assessed.
- 3.2.3 Surface water flooding, either in the form of overland flow or standing water, could be caused by allowing water to flow directly off the site onto the adjoining land or by overloading the drainage system to the point where it will surcharge.
- 3.2.4 No specific details of flooding at the site were presented in the PFRA.
- 3.2.5 Prior to the demolition of the site infrastructure, the development area was predominantly hard surfaced roofs and yards and is currently vacant Brownfield land.
- 3.2.6 The impermeable area of roofs, access roads, service yards and car parks for the proposed development as shown on Drawing No 548.02(--) 500 will be about 2.3 ha, about 65% of the total site area of 3.5 ha.
- 3.2.7 Given that the existing site is conservatively estimated to be around 70% impermeable (2.5 ha) and that the proposed development will be slightly less (2.3 ha), there will be a small decrease in surface water run-off.

Groundwater Flooding

3.2.8 Given the geology of the area, there are no local records of significant groundwater flooding available other than in relation to cellar flooding in the PFRA.

4 FLOOD RISK ASSESSMENT

4.1 Fluvial Flooding

4.1.1 The site is within Flood Zone 1 and has a low probability of flooding. The chance of flooding each year is less than 0.1% (1 in 1,000). Consequently, there is no significant risk of flooding from fluvial sources for the site and future development will not be required to satisfy the Sequential Test.

4.2 Flooding from Surface Water Run-off

Surface Water Run-Off

- 4.2.1 Surface water run-off will be attenuated to the Greenfield rate using SuDS-based devices and discharged to the River Aire as shown on Drawing No SH11087-010 *Drainage Strategy*.
- 4.2.2 Surface water run-off from the impermeable areas has been modelled using Micro Drainage software for a 1 in 100 year storm with an allowance of 20% for climate change see Section 4.5 below. In order to limit the discharge to the Greenfield run-off rate of 25 litres per second, a storage volume of about 1700 m³ was estimated using Micro Drainage Quick Storage for the original planning application.

Sustainable Urban Drainage Systems (SuDS)

- 4.2.3 In the preliminary design shown on Drawing No SH11087-010, the necessary attenuation is achieved via an underground tank in the western part of the site, located between two major plant buildings. This feature proved the feasibility of underground storage which is likely to remain as a major factor in the final design for the following reasons:
 - The shallow natural geology on the site, consisting mainly of alluvium (up to 20m thick), combined with the contamination which remains in the ground at depth, is likely to eliminate infiltration as a potential drainage technique.
 - Because the site needs to drain from east to west to connect to the River Aire to the west of the old landfill area, the storage feature will need to be at the western end where there is no space in the layout for external SuDS features, such as open ponds or swales.
- 4.2.4 As part of the detailed design undertaken to discharge the planning conditions of the original permission, other SuDS devices, such as oversized pipes and permeable paving with cellular storage beneath have been incorporated into the drainage network.

These devices have had the effect of reducing the volume necessary for the underground tank shown on Drawing No SH11087-010. As shown on Drawing No SH11087-020 *Drainage Layout*, two relatively small areas of shallow cellular storage will now suffice.

- 4.2.5 The principle of the on-site drainage system is that all road and yard water will be passed though suitable oil interceptors before being stored in the underground tank, whereas roof water from the buildings will be delivered to the tank without passing through the interceptors.
- 4.2.6 The outlet from the drainage system will pass through a Hydrobrake which will limit the flow to 25 I/s before being delivered to the River Aire via a 225mm diameter pipe, thrust bored beneath the dual carriageway of the Aire Valley Road.
- 4.2.7 The surface water drainage system will also be designed in accordance with Sewers for Adoption (6th Edition) with sufficient capacity for a 1 in 30 year event. The system will allow minor surcharging during a 1 in 100 event, but no surface water will be permitted to leave the site. As can be seen from the hydraulic calculations added at <u>Appendix III</u>, the drainage system shown can achieve this aim between the site and the River Aire.
- 4.2.8 All relevant authorities will be kept fully informed regarding the detailed design of the surface water drainage system. It is normal practice for detailed surface water drainage design to be subject to the approval of the local planning authority subsequent to the grant of planning permission and this will be sought from City of Bradford Metropolitan District Council at the appropriate time.
- 4.2.9 Consequently, it is not considered that there will be any significant flooding caused either within the site or in the surrounding area by future site surface water.

4.3 Foul Sewerage

- 4.3.1 As advised by YWS in the Pre-Planning Sewerage advice and confirmed at a meeting held at Western House, Bradford on 26 November 2013, a foul sewer connection may be made to any of the 1400/1350/900mm diameter public combined sewers crossing the site.
- 4.3.2 As part of the detailed design undertaken to discharge the planning conditions of the extant permission (13/04217/FUL), a foul sewer system was devised which connects to the 1350mm diameter public combined sewer at the eastern end of the site as shown on Drawing No SH11087-020. At the appropriate time, application will be made

to YWS for consent to discharge foul sewage from the proposed development to the public sewer system.

4.3.3 All relevant authorities will be kept fully informed regarding the detailed design of the foul sewerage system. It is normal practice for detailed foul water drainage design to be subject to the approval of the local planning authority subsequent to the grant of planning permission and this will be sought from City of Bradford Metropolitan District Council at the appropriate time.

4.4 Groundwater Flooding

4.4.1 It is unlikely that there is any significant risk of groundwater flooding at the site.

4.5 Allowance for Climate Change

4.5.1 Climate change has been taken account of in calculating the storage volumes for the SuDS-based drainage system in line with the EA publication *Flood risk assessments: climate change allowances,* dated 19 February 2016 – see <u>Appendix III</u>.

4.6 Residual Risk

4.6.1 The site is situated in Flood Zone 1 and the site development is unlikely to warrant the adoption of any warning or evacuation procedure or the incorporation of flood resilient materials into the design.

4.7 Sequential Test

4.7.1 The proposed development lies within in NPPF Flood Zone 1 and thus the Sequential Test is not required.

5 CONCLUSIONS

- 5.1.1 The site is entirely situated in Flood Zone 1 with no significant risk of fluvial flooding. The proposed commercial land use fully complies with the planning guidance relating to flood risk and drainage.
- 5.1.2 Surface water run-off will be dealt with on site by appropriate SuDS related techniques, namely attenuation storage. The outflow will be directed to the River Aire at the Greenfield run-off rate. The feasibility of such a system has been established by the surface water drainage design described above.
- 5.1.3 There is no evidence of any significant risk of groundwater flooding.
- 5.1.4 Foul water will be discharged to public combined sewer.
- 5.1.5 Climate change has been allowed for in the storage calculations.
- 5.1.6 No warning or evacuation procedures or the incorporation of flood resilient materials will be necessary.
- 5.1.7 The Sequential Test is not a requirement for the development which will be entirely located in Flood Zone 1.
- 5.1.8 With regard to flood risk, therefore, the site is suitable for the proposed development.

APPENDIX I

Environment Agency Correspondence

Lymer, James

From: Sent: To: Subject: Attachments:	Beech, Cheryl [Cheryl.Beech@environment-agency.gov.uk] 13 August 2013 13:57 Lymer, James Your Enquiry: RFI/2013/26659 Standard_Notice sept 2012.pdf; VAT Receipt.pdf; Flood History Map.pdf; Flood Map.pdf; Node Point Locations.pdf; NPPF TG Climate Change extract.pdf; River Aire Model Results.pdf; River Worth Model Results - Defended.pdf; River Worth Model Results - Undefended.pdf
---	---

Our Ref: RFI/2013/26659

Your Ref:

Dear James

RE: Land off Marley Road, Keighley

Thank you for your request of 29 July 2013 regarding the above site.

Supporting Information

The Flood Map

Please see the see enclosed extract from the Flood Map.

The Flood Map provides information on flooding from rivers and the sea for England and Wales. The Flood Map also has information on flood defences and the areas benefiting from those flood defences.

The Flood Map shows the following:

1. Flood Zone 3 (dark blue area on the enclosed map): natural flood plain area that could be affected by flooding from rivers and/or the sea – not taking into account the presence of any flood defences

- For flooding from rivers the map indicates the extent of a flood with a 1% (1 in 100) chance of happening each year;
- For flooding from the sea the map shows the extent of a flood with a 0.5% (1 in 200) chance of happening each year.

2. Flood Zone 2 (light blue area): natural flood plain area that could be affected by flooding from rivers and/or the sea – not taking into account the presence of any flood defences. Flood Zone 2:

- indicates the extent of a flood with a 0.1% (1 in 1000) chance of happening each year.
- and/or indicates the greatest recorded historic flood, whichever is greater.

3. Flood defences built in the last five years to protect against river floods with a 1% (1 in 100) chance of happening each year, together with some natural or constructed entities which retain, store or channel water and which may protect against smaller floods.

4. Areas benefiting from flood defences - areas that benefit from the flood defences shown, in the event of a river flood with a 1% (1 in 100) chance of happening each year, or a flood from the sea

with a 0.5% (1 in 200) chance of happening each year. If the defences were not there, these areas would flood.

Flood History

To the best of our knowledge there is no known flood history for this site. However, in close proximity to this location we do have some flood history available (see enclosed map).

Water causing flooding can come from different places, for example from rivers or the sea; surface water (i.e. rainwater flowing over or accumulating on the ground before it is able to enter rivers or the drainage system); overflowing or backing up of sewers or drainage systems which have been overwhelmed or from groundwater rising up from underground aquifers.

Currently the Environment Agency can only supply flood risk data relating to the risk of flooding from rivers or the sea. However you should be aware that in recent years, there has been an increase in flood damage caused by surface water flooding or drainage systems that have been overwhelmed. Local Authorities and/or Water Companies may be able to provide some knowledge on the risk of flooding from sources other than rivers and the sea and we are working with these organisations to improve knowledge and understanding of surface water flooding.

Modelling - Lower River Aire Modelling – Knostrop Weir to confluence with River Ouse

See attached information from the Lower Model Update study (produced by Atkins in 2008).

Extracts consist of

- A spreadsheet showing:
 - results for peak water levels for the 0.5% (1 in 200yr), 1% (1 in 100yr), 2% (1 in 50yr), 4% (1 in 25yr) and 10% (1 in 10) annual chance events for the defended scenario and for peak water levels for the 1% (1 in 100yr) for the undefended scenario;
 - results for the 1% (1 in 100yr) peak water levels for the 2025 and 2115 Climate Change Scenario (+10% Flow combined with 200yr Tidal event);
- an associated map showing the location of the model node points.

Please note: there are no results available from this study for the 0.1% (1 in 1000yr) scenario.

Climate Change

See attached extract from the National Planning Policy Framework Technical Guidance by Communities and Local Government.

LIDAR Data

Light Detection and Ranging (LIDAR) is an airborne mapping technique, which uses a laser to measure the distance between the aircraft and the ground. This technique results in the production of an accurate, cost-effective terrain model suitable for assessing flood risk and other environmental applications.

The Environment Agency owns two LIDAR systems, which are installed in a survey aircraft along with its other operational remote sensing instruments.

The aircraft is positioned and navigated using Global Positioning System (GPS) corrected to known ground reference points. The aircraft typically flies at a height of about 800 metres above

ground level and a scanning mirror allows a swath width of about 600 metres to be surveyed during a flight.

To get a license for the data you will need to contact our Science Group, stating the area you are interested in (preferably an OS Grid Reference, or a map with the area outlined). There may be a charge for this data.

Low resolution Data is returned as an ASCII grid, which can easily be converted to a surface model for use in most GIS applications, and is provided in 2km x 2km tiles, at a resolution of 2m.

High resolution Data is also returned as an ASCII grid, in 0.5km x 0.5km tiles, at a resolution between 0.125 and 0.5m.

For current catalogue of coverage see: <u>http://www.geomatics-group.co.uk/GeoCMS/order.aspx</u>

To obtain the data and license agreement, please contact:

Environment Agency Geomatics Phoenix House Lower Bristol Road Bath BA2 9ES Tel: 01225 487658 Fax: 01225 487643 E-mail: archived-lidardata@environment-agency.gov.uk Or visit the website at <u>www.geomatics-group.co.uk</u>

Unfortunately, we do not hold any information relating to groundwater flooding in this area. Mapping the risk of flooding from groundwater is complex and is currently not possible. There are no flood risk maps for groundwater. If you want to find out if a property could be at risk of flooding from groundwater or may have flooded in the past you should contact your Lead Local Flood Authority.

Greenfield surface water run off rates (to be agreed with Bradford Drainage Dept) would be expected from this development site. This applies for up to and including the 1 in 100 year (plus climate change) rainfall event.

The River Aire which is classed as main river is within 500m of the site.

We do not have information about unlicensed water abstractions.

There is one licensed abstraction within 1km of the site

NALD Abstraction Points

Licence No:	2/27/14/003
Area Code:	RIDIN
EA Area Name:	ENVIRONMENT AGENCY RIDINGS AREA
LEAP Code:	AIREL
LEAP Name:	AIRE LEAP
Original Effective Date:	01-Dec-1965
Issue No:	101
Increment No:	1
Start Date:	01-Apr-2008

Original Application No: Version Application No: Holder Name: Address Line1: Address Line2: Town: County: Postcode: Purpose Code: Use Code: Purpose Description: Sub Purpose Description Use Description: Abstraction Start: Abstraction End: Lands: Source of Supply Code: Source Description: Point Name: Point Type: NGR1: Cartesian1 Easting: Cartesian1 Northing: Aquifer Type:	General Use Relating To Secondary Category (Medium Loss) 01/01 31/12 PARKSIDE TANNERY,KEIGHLEY G GROUNDWATERS BOREHOLE - MILLSTONE GRIT - KEIGHLEY SP SE07204130 407200 441300
Cartesian1 Northing: Aquifer Type:	441300 L2714 CARBONIFEROUS MILLSTONE GRIT 2\27\14 (RIVER WORTH CATCHMENT)

We do not have any groundwater chemistry/quality monitoring points within 1km of the site

We do not have any groundwater level monitoring points within 2km of the site

There are no landfill sites within 250m of the site.

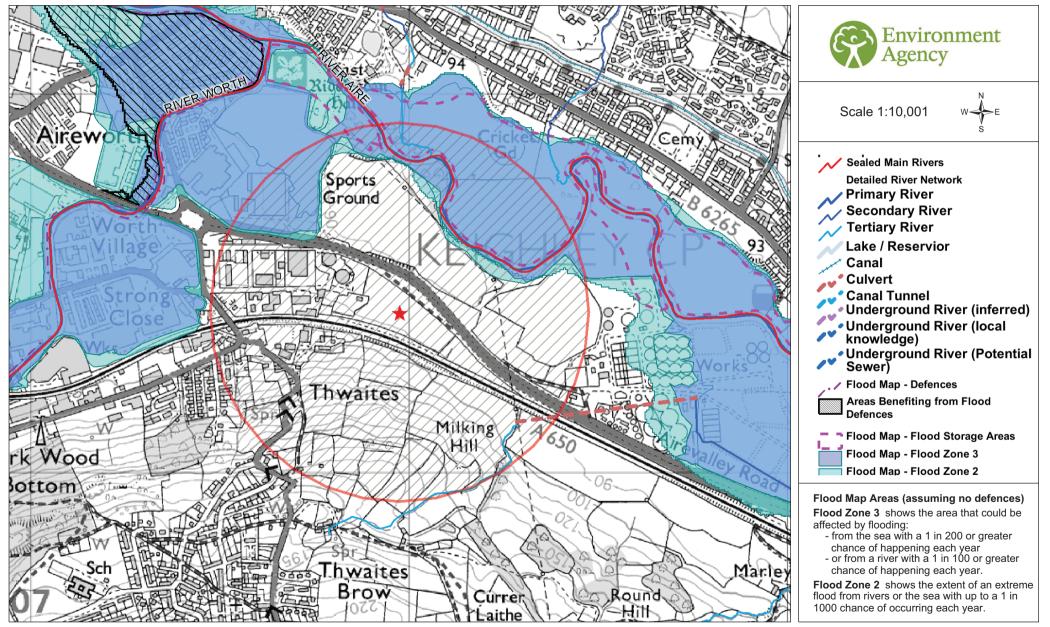
This information is provided subject to the attached notice which we advise that you should read.

We would be really grateful if you could spare five minutes to help us improve our service. Please click on the link below and fill in our survey – we use every piece of feedback we receive:

http://www.surveyshack.com/link/a3d10

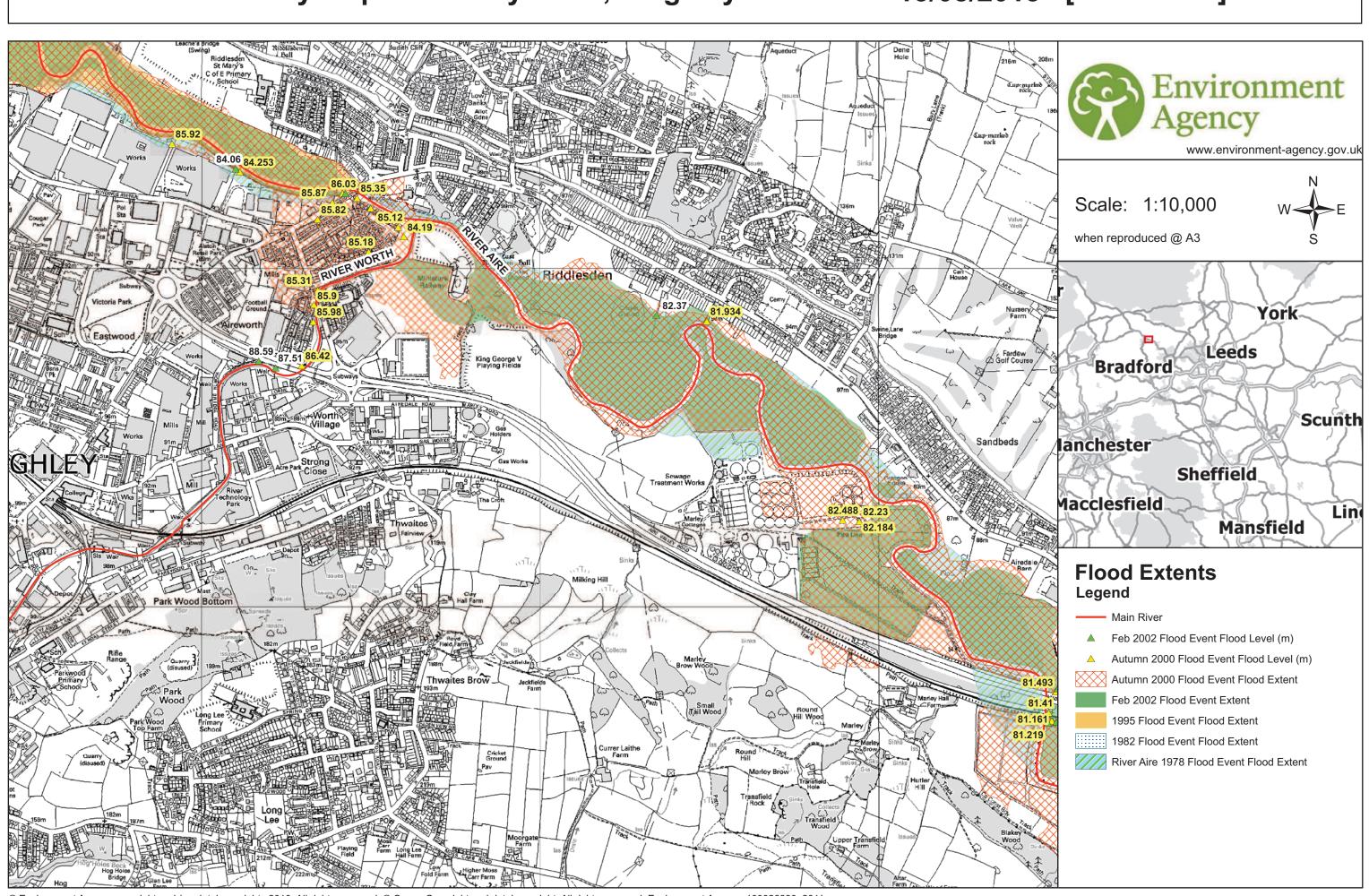
If you require any further help, please do not hesitate to contact me.

Yours sincerely


Cheryl Beech Customers and Engagement Team Direct Dial 0113 8196360 Email <u>nevorkshire@environment-agency.gov.uk</u> Please note: I only work part time - my usual working days are Tuesday, Wednesday & Thursday

• Have your say on the choices shaping the water environment. The <u>Challenges and Choices consultation</u> launches 22 June 2013.

Information in this message may be confidential and may be legally privileged. If you have received this message by mistake, please notify the sender immediately, delete it and do not copy it to anyone else.


We have checked this email and its attachments for viruses. But you should still check any attachment before opening it. We may have to make this message and any reply to it public if asked to under the Freedom of Information Act, Data Protection Act or for litigation. Email messages and attachments sent to or from any Environment Agency address may also be accessed by someone other than the sender or recipient, for business purposes.

Flood Map Centred on 407977,441419 - created on 7/8/13 - Enquiry 26659

[©] Environment Agency copyright and / or database rights 2013. All rights reserved. © Crown Copyright and database right 2013. Ordnance Survey licence number 100024198.

Flood History Map for Marley Road, Keighley - dated: 13/08/2013 [Ref: 26205]

© Environment Agency copyright and / or database rights 2010. All rights reserved. © Crown Copyright and database right. All rights reserved. Environment Agency, 100026380, 2011. Contact Us: National Customer Contact Centre, PO Box 544, Rotherham, S60 1BY. Tel: 08708 506 506 (Mon-Fri 8-6). Email: enquiries@environment-agency.gov.uk

RFI 26659 - River Worth Model Results (Level - mAOD)

Undefended

Node	10yr	25yr	50yr	75yr	100yr	100yrCC	200yr
WORT01_00729	86.929	87.061	87.242	87.363	87.377	87.629	87.524
WORT01_00631	85.837	85.94	86.074	86.22	86.166	86.387	86.3
WORT01_00541	85.166	85.294	85.485	85.547	85.6	85.852	85.738
WORT01_00438	84.879	85.078	85.333	85.354	85.452	85.736	85.601

RFI 26659 - River Worth Model Results (Level - mAOD, Flow - m³s)

Defended

NodePointName	ReturnPeriod	LevelValue	FlowValue
EA1231148	100	85.412	88.781
EA1231148	50	85.29	79.147
EA1231148	200	85.598	99.732
EA1231148	25	85.113	70.643
EA1231148	1000	87.133	145.894
EA1231148	10	84.842	58.294
EA1231148	75	85.354	85.052
EA1231148	25	85.353	70.669
EA1231148	1000	87.101	146.303
EA1231148	100	85.595	88.79
EA1231148	200	85.753	99.769
EA1231148	50	85.481	79.163
EA1231148	75	85.547	85.059
EA1231148	10	85.169	58.303
EA1231148	25	86.034	70.639
EA1231148	10	85.87	58.301
EA1231148	100	86.263	88.791
EA1231148	1000	87.087	146.536
EA1231148	200	86.38	99.772
EA1231148	50	86.151	79.161
EA1231148	75	86.22	85.049
EA1231148	200	87.524	99.766
EA1231148	50	87.242	79.163
EA1231148	100	87.377	88.793
EA1231148	25	87.118	70.635
EA1231148	10	86.929	58.306
EA1231148	1000	88.051	149.642
EA1231148	75	87.363	86.644

RFI 26659 - River Aire Model Results

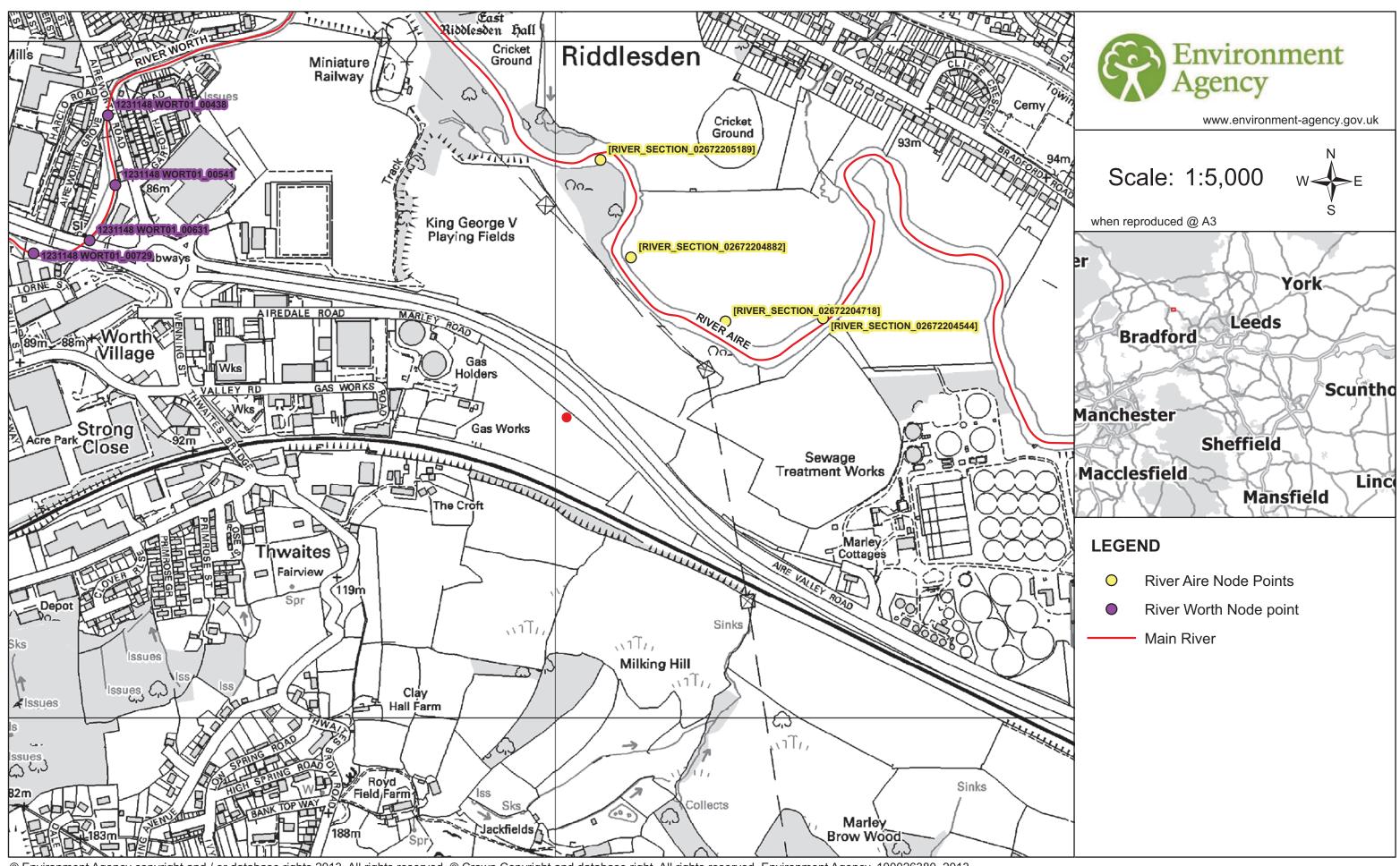
Defended

	Baseline Design Event Peak Water Levels						
Node Label	10% Annual	4% Annual	2% Annual	1.3% Annual	1% Annual	0.5% Annual	
	Chance Event	Chance Event	Chance Event	Chance Event	Chance Event	Chance Event	
	WL (mAOD)	WL (mAOD)	WL (mAOD)	WL (mAOD)	WL (mAOD)	WL (mAOD)	
2672205189	83.17	83.3	83.4	83.46	83.5	83.61	
2672204882	82.76	82.91	83.04	83.1	83.14	83.28	
2672204718	82.64	82.81	82.95	83.01	83.06	83.2	
2672204544	82.47	82.68	82.84	82.91	82.96	83.11	

	Baseline Design Events Peak Flow						
Node Label	10% Annual	4% Annual	2% Annual	1.3% Annual	1% Annual	0.5% Annual	
	Chance Event	Chance Event	Chance Event	Chance Event	Chance Event	Chance Event	
	Flow (m³/s)	Flow (m³/s)	Flow (m³/s)	Flow (m³/s)	Flow (m³/s)	Flow (m³/s)	
2672205189	147.62	170.62	188.74	197.61	204.44	225.31	
2672204882	151.5	177.19	197.56	207.7	215.62	239.33	
2672204718	151.31	176.88	197.26	207.42	215.43	239.15	
2672204544	151.02	176.46	196.88	207.19	215.23	238.94	

Undefended

	Do Nothing Option 1A Scenario Peak Water Levels							
Node Label	10% Annual	4% Annual	2% Annual	1.3% Annual	1% Annual	0.5% Annual		
	Chance Event	Chance Event	Chance Event	Chance Event	Chance Event	Chance Event		
	WL (mAOD)	WL (mAOD)	WL (mAOD)	WL (mAOD)	WL (mAOD)	WL (mAOD)		
2672205189	83.22	83.32	83.41	83.46	83.5	83.59		
2672204882	82.81	82.94	83.05	83.1	83.14	83.26		
2672204718	82.69	82.84	82.96	83.01	83.06	83.18		
2672204544	82.54	82.71	82.85	82.91	82.95	83.08		


	Do Nothing Option 1A Peak Flows					
Node Label	10% Annual	4% Annual	2% Annual	1.3% Annual	1% Annual	0.5% Annual
	Chance Event	Chance Event	Chance Event	Chance Event	Chance Event	Chance Event
	Flow (m³/s)	Flow (m³/s)	Flow (m³/s)	Flow (m³/s)	Flow (m³/s)	Flow (m³/s)
2672205189	156.03	175.19	190.62	198.78	204.84	222.8
2672204882	160.5	182.01	199.58	208.89	215.88	236.34
2672204718	160.34	181.71	199.27	208.59	215.6	236.07
2672204544	160.04	181.3	198.91	208.26	215.28	235.79

Climate Change

	2050 Climate Change Scenario Peak Water Levels					
Node Label	10% Annual	4% Annual	2% Annual	1.3% Annual	1% Annual	0.5% Annual
	Chance Event	Chance Event	Chance Event	Chance Event	Chance Event	Chance Event
	WL (mAOD)	WL (mAOD)	WL (mAOD)	WL (mAOD)	WL (mAOD)	WL (mAOD)
2672205189	83.24	83.37	83.49	83.56	83.61	83.75
2672204882	82.84	83	83.14	83.22	83.28	83.46
2672204718	82.73	82.9	83.06	83.14	83.2	83.39
2672204544	82.58	82.79	82.95	83.04	83.11	83.31

	2050 Climate Change Scenario Peak Flow					
Node Label	10% Annual	4% Annual	2% Annual	1.3% Annual	1% Annual	0.5% Annual
	Chance Event	Chance Event	Chance Event	Chance Event	Chance Event	Chance Event
	Flow (m³/s)	Flow (m³/s)	Flow (m³/s)	Flow (m³/s)	Flow (m³/s)	Flow (m³/s)
2672205189	159.3	181.85	203.64	215.28	225.32	253.08
2672204882	164.58	190.02	214.82	228.02	239.41	271.04
2672204718	164.41	189.76	214.64	227.87	239.24	270.78
2672204544	164.17	189.49	214.43	227.71	239.03	270.53

Node Point Locations - Marley Road, Keighley Date Created:

© Environment Agency copyright and / or database rights 2013. All rights reserved. © Crown Copyright and database right. All rights reserved. Environment Agency, 100026380, 2013. Contact Us: National Customer Contact Centre, PO Box 544, Rotherham, S60 1BY. Tel: 08708 506 506 (Mon-Fri 8-6). Email: enquiries@environment-agency.gov.uk

Taking climate change into account

11. Global sea level will continue to rise, depending on greenhouse gas emissions and the sensitivity of the climate system. The relative sea level rise in England also depends on the local vertical movement of the land, which is generally falling in the south-east and rising in the north and west. In preparing a Strategic Flood Risk Assessment or a site-specific flood risk assessment, the allowances for the rates of relative sea level rise shown in table 4 should be used as a starting point for considering flooding from the sea, along with the sensitivity ranges for wave height and wind speed in table 5.

	Net sea level rise (mm per year) relative to 1990				
	1990 to 2025	2025 to 2055	2055 to 2085	2085 to 2115	
East of England, east midlands, London, south-east England (south of Flamborough Head)	4.0	8.5	12.0	15.0	
South-west England	3.5	8.0	11.5	14.5	
North-west England, north-east England (north of Flamborough Head)	2.5	7.0	10.0	13.0	

Table 4: Recommended contingency allowances for net sea level rises

Notes to table 4:

- a. For deriving sea levels up to 2025, the 4mm per year, 3mm per year and 2.5mm per year rates (covering the three geographical groups respectively), should be applied back to the 1990 base sea level year. From 2026 to 2055, the increase in sea level in this period is derived by adding the number of years on from 2025 (to 2055), multiplied by the respective rate shown in the table. Subsequent time periods 2056 to 2085 and 2086 to 2115 are treated similarly.
- b. Refer to Department for Environment, Food and Rural Affairs FCDPAG3 Economic Appraisal Supplementary Note to Operating Authorities – Climate Change Impacts, October 2006, for details of the derivation of this table. In particular, Annex A1 of this Note shows examples of how to calculate sea level rise.
- c. Vertical movement of the land is incorporated in the table and does not need to be calculated separately.

- 12. The rise in sea level will change the frequency of occurrence of high water levels relative to today's sea levels, assuming no change in storminess. There may also be secondary impacts such as changes in wave heights due to increased water depths, as well as possible changes in the frequency, duration and severity of storm events. A 10 per cent sensitivity allowance should be added to offshore wind speeds and wave heights by the 2080s.
- 13. In making an assessment of the impacts of climate change on flooding from the land, rivers and sea as part of a flood risk assessment, the sensitivity ranges in table 5 may provide an appropriate precautionary response to the uncertainty about climate change impacts on rainfall intensities, river flow, wave height and wind speed.

Table 5: Recommended national precautionary sensitivity ranges for peak rainfall intensities, peak river flows, offshore wind speeds and wave heights

Parameter	1990 to 2025	2025 to 2055	2055 to 2085	2085 to 2115	
Peak rainfall intensity	+5%	+10%	+20%	+30%	
Peak river flow	+10%	+20%			
Offshore wind speed	+55	%	+10%		
Extreme wave height	+5	%	+10%		

Notes to table 5:

- a. Refer to Department for Environment, Food and Rural Affairs FCDPAG3 Economic Appraisal Supplementary Note to Operating Authorities – Climate Change Impacts, October 2006, for details of the derivation of this table.
- b. For deriving peak rainfall, for example, between 2025 and 2055 multiply the rainfall measurement (in mm per hour) by 10 per cent and between 2055 and 2085 multiply the rainfall measurement by 20 per cent. So, if there is a 10mm per hour event, for the 2025 to 2055 period this would equate to 11mm per hour; and for the 2055 to 2085 period, this would equate to 12mm per hour. Other parameters in table 5 are treated similarly.
- 14. Sensitivity testing of the flood map produced by the Environment Agency, using the 20 per cent from 2025 to 2115 allowance for peak flows, suggests that changes in the extent of inundation are negligible in well-defined floodplains, but can be dramatic in very flat areas. However, changes in the depth of flooding under the same allowance will reduce the return period of a given flood. This

means that a site currently located within a lower risk zone (e.g. Zone 2 in table 1) could in future be re-classified as lying within a higher risk zone (e.g. Zone 3a in table 1). This in turn could have implications for the type of development that is appropriate according to its vulnerability to flooding (see table 2). It will therefore be important that developers, their advisors and local authorities refer to the current flood map and the Strategic Flood Risk Assessment when preparing and considering proposals.

15. Flooding in estuaries may result from the combined effects of high river flows and high sea surges. When taking account of impacts of climate change in flood risk assessments covering tidal estuaries, it will be necessary for the allowances for sea level rise in table 4 and the allowances for peak flow, wave height and wind speed in table 5 to be combined.¹¹

¹¹ Refer to Defra FCDPAG3 Economic Appraisal Supplementary Note to Operating Authorities – Climate Change Impacts, October 2006. Annex A2 gives details of joint probability analysis. www.defra.gov.uk/environ/fcd/pubs/pagn/climatechangeupdate.pdf

Standard notice [not for use with Special Data, Personal Data or unlicensed 3rd party rights]

Information warning

We (The Environment Agency) do not promise that the Information supplied to You will always be accurate, free from viruses and other malicious or damaging code (if electronic), complete or up to date or that the Information will provide any particular facilities or functions or be suitable for any particular purpose. You must ensure that the Information meets your needs and are entirely responsible for the consequences of using the Information. Please also note any specific information warning or guidance supplied to you.

Permitted use

- The Information is protected by intellectual property rights and whilst you have certain statutory rights which include the right to read the Information, you are granted no additional use rights whatsoever unless you agree to the licence set out below.
- Commercial use of anything except EA OpenData is subject to payment of a £50 licence fee (+VAT) for each person seeking the benefit of the licence, except for use as an Environment Agency contractor or for approved media use.
- To activate this licence you do not need to contact us (unless you need to pay us a Commercial licence fee) but if you make any use in excess of your statutory rights you are deemed to accept the terms below.

Licence

We grant you a worldwide, royalty-free (apart from the £50 licence fee for commercial use), perpetual, non-exclusive licence to use the Information subject to the conditions below.

You are free to:

copy, publish, distribute and transmit the Information

adapt the Information

exploit the Information commercially, for example, by combining it with other Information, or by including it in your own product or application

You must (where you do any of the above):

acknowledge the source of the Information by including the following attribution statement: "Contains Environment Agency information © Environment Agency and database right"

ensure that you do not use the Information in a way that suggests any official status or that We endorse you or your use of the Information

ensure that you do not mislead others or misrepresent the Information or its source or use the Information in a way that is detrimental to the environment, including the risk of reduced future enhancement

ensure that your use of the Information does not breach the Data Protection Act 1998 or the Privacy and Electronic Communications (EC Directive) Regulations 2003

These are important conditions and if you fail to comply with them the rights granted to you under this licence, or any similar licence granted by us will end automatically.

No warranty

The Information is licensed 'as is' and We exclude all representations, warranties, obligations and liabilities in relation to the Information to the maximum extent permitted by law. We are not liable for any errors or omissions in the Information and shall not be liable for any loss, injury or damage of any kind caused by its use. We do not guarantee the continued supply of the Information.

Governing Law

This licence is governed by the laws of England and Wales.

Definitions

"Information" means the information that is protected by copyright or by database right (for example, literary and artistic works, content, data and source code) offered for use under the terms of this licence.

"Commercial" means:

- offering a product or service containing the Information, or any adaptation of it, for a charge, or
- internal use for any purpose, or offering a product or service based on the Information for indirect commercial advantage, by an organisation that is primarily engaged in trade, commerce or a profession.

Ms Carole Howarth City of Bradford Metropolitan District Council Development Management Jacobs Well Bradford West Yorkshire BD1 5RW Our ref: RA/2 Your ref: 13/0

RA/2013/126690/01-L01 13/04217

Date:

06 November 2013

Dear Ms Howarth

DEVELOPMENT OF THREE PLANTS TO RECOVER ENERGY FROM WASTE, WITH MATERIALS RECEPTION AND FEEDSTOCK BUILDING, OFFICES, EDUCATION/VISITOR CENTRE, PARKING AND LANDSCAPING – LAND EAST OF FORMER GAS WORKS, AIREDALE ROAD, KEIGHLEY, WEST YORKSHIRE

Thank you for consulting us on the above application that we received on 17 October 2013.

We have no objection to the proposed development subject to the following conditions and comments.

FLOOD RISK

The proposed development will only meet the requirements of the National Planning Policy Framework if the following measures as detailed in the flood risk assessment submitted with this application are implemented and secured by way of a planning condition on any planning permission.

Condition:

The development permitted by this planning permission shall be carried out in accordance with the approved flood risk assessment (FRA), dated August 2013, and the following mitigation measures detailed within the FRA:

1. Limiting the surface water run-off generated by the up to and including 1 in 100 year critical storm so that it will not exceed the run-off from the undeveloped site and not increase the risk of flooding off-site. Surface water run-off rates to sewer should be finalised with Yorkshire Water.

The mitigation measures shall be fully implemented prior to occupation and subsequently in accordance with the timing / phasing arrangements embodied within the scheme, or within any other period as may subsequently be agreed, in writing, by the local planning authority.

Reason:

To prevent flooding by ensuring the satisfactory storage of/disposal of surface water from the site.

Environment Agency Coverdale House Aviator Court, York, North Yorkshire, YO30 4GZ. Customer services line: 03708 506 506 www.environment-agency.gov.uk Cont/d.

ENVIRONMENTAL PERMIT

In this response to the planning application, we have also include information gathered via permit pre-application discussions with a consultant representative dealing with the permit application. He has given verbal permission to disclose content from our discussions. The proposal includes several activities:

1. Energy from waste plant using moving grate technology. Waste will be refuse derived fuel. The source of the refuse derived fuel is currently unknown.

2. Tyre crumb melting plant which is a tyre pyrolysis process. Shredded tyre will be introduced to the pyrolysis reactor. The biochar will be sent off site for resale. The syngas will be cleaned to remove particulates and bio-oil (for onward sale) and then re-used in the pyrolysis process as a fuel.

3. Plastics melting plant which is a process of catalytic cracking of plastics to produce a combination of oils for onwards use as fuels. The oils are purified using distillation. The cracking, which is likely to be a pyrolysis process, will also produce a bituminous waste and a syngas which is recycled via the distillation column back to the pyrolysis process.

We have used our guidance for developments requiring planning permission and environmental permits and have established that there are no show stoppers or serious concerns relating to the location of the proposed development.

We have established that there are no show stoppers because:

The site is not on a groundwater source protection zone 1.

We have established that there are no serious concerns because:

- The site is not on a groundwater source protection zone 2 (nearest 3km away);

- The site is not near on within an air quality management zone (nearest 28km away);

- The site is not within 2km² of a SSSI (equivalent to radius of 0.7km, nearest in 2.9km away);

- The site is not within 10km² of a SAC/SPA or Ramsar site (equivalent to radius 1.78km, nearest is 2.9km away).

Informatives:

Our guidance, provides information on useful sector specific issues that we would want to raise in the planning process. These include:

1. The Operator will require an environmental permit, most likely from the Environment Agency. Our current understanding is that:

a. The RDF energy plant will be covered by chapter 5.1 of the Environmental Permitting Regulations ("EPR") and as such will need to comply with the requirements of chapter IV of the Industrial Emissions Directive ("IED") (formally the Waste Incineration Directive).

b. The tyre pyrolysis process will be a 5.1 activity also, and again this will need to comply with the requirements of chapter IV of the IED. However should the Operator be able to clean the returned syngas up to the same quality as equivalent virgin fuel, they would be able to apply for the end of waste test. This could mean that the process becomes a pyrolysis activity regulated under chapter 1.2 of the EPR.

c. There is insufficient information provided at the moment to define whether the plastics melting process is a 5.1 activity or a 1.2 activity. We have asked the applicant for additional information regarding this. The implications are as per the tyre pyrolysis plant.

2. We note that the air emissions modelling data is based on the emissions from the RDF energy plant and also the tyre pyrolysis process. I note that the operator has used nitrogen oxides emission levels for the RDF energy plant, tighter than the chapter IV IED emission limit values to ensure that the impact on the Habitats site 2.9km to the north east of the site are insignificant.

In the planning application, the applicant has assumed that the emissions will be similar to those from a landfill gas engine. However these emissions will not be the same as those from an 'incineration' process. The applicant should revisit the abatement techniques on this process to look at achieving lower emissions, in particular to meet the requirements of chapter IV of the IED. The same comment may apply to the plastics melting plant, depending on any additional information that is provided for that process which will help to define what those emissions might be.

Once finalised, the applicant's modelling will be assessed as part of the permit application determination.

Incineration (and combustion) - Combined heat and power (CHP)-ready requirements:

We will require all new energy from waste plants (that don't include CHP from the outset) to be CHP-ready to a sufficient degree dictated by the likely future technically viable opportunities for heat supply in the vicinity of the plant. Environmental permit applications for these types of plants will, therefore, need to include a BAT assessment for CHP-readiness for which we will produce a guidance note. Permits for these plants are also likely to contain conditions that state opportunities to realise CHP should be reviewed from time to time. These opportunities may be created both by new building heat loads near the plant, and/or be due to changes in policy and financial incentives that make it more economically viable for the plant to be CHP.

The operator has indicated that the plant will be CHP ready and that there are potential opportunities to use the heat and energy generated.

We have not reviewed the information provided in detail as this will be done when an application is made for an Environmental Permit. Air emissions will be important for this development. The applicant should consider their impact in combination with background levels.

WATER RESOURCES

We advise the applicant to consult with Yorkshire Water regarding their capacity to supply mains water to this development. If the applicant is intending to source water from a new private abstraction they should refer to the Aire and Calder Catchment Abstraction Management Strategy (2013), available on the Environment Agency's website, for information about local water availability. We would also ask that the following standard paragraph is included:

If the applicant intends to abstract more than 20 cubic metres of water per day from a surface water source (e.g. stream or drain) or from underground strata (via borehole or well) for any particular purpose then they will need an abstraction licence from the Environment agency. There is no guarantee that a licence will be granted as this is

dependent on available water resources and existing protected rights.

WATER EFFICIENCY

We have made previous comments regarding making efficient use of water in new developments. This does not appear to have been addressed within the application documents.

We endorse the efficient use of water, especially in new developments. Our Water Demand Management Team can provide information and advice on any aspect of water conservation including water saving technologies. New developments could take economic advantage of these technologies and should be considered. Wide spread use of these and other technologies that ensure efficient use of natural resources could support the environmental benefits of future proposals and could help attract investment to the area. Further advice can be obtained from our website at <u>Environment Agency - Save Water</u>.

WATER FRAMEWORK DIRECTIVE (2000/60/EC) / WATER QUALITY

We also reiterate our previous comments regarding the Water Framework Directive, as these have not been addressed in the application documents. The applicant should have regard to their obligations under the Water Framework Directive to protect and prevent deterioration of the water environment. Appropriate mitigation measures should be considered, and where feasible implemented, to ensure compliance with the Humber River Basin Management Plan and the wider aims of the WFD. The waterbody in which the site is located is currently failing to reach its target of 'Good Ecological Potential' under the WFD, and so the consideration of appropriate mitigation measures to ensure no deterioration is particularly important (consult Annex B of the Humber RBMP for more information on this waterbody's status and measures). Furthermore, we would welcome the incorporation of any measures which not only ensure no deterioration, but also contribute to improvement of this waterbody.

WASTE HIERARCHY

We wish to ensure that there are mechanisms in place to uphold the waste hierarchy and get the best outcome in terms of resource use, and we are pleased that these issues have been considered in the application.

The concept of 'need' is a matter for the planning authority, however under the waste hierarchy we do have a duty to ensure that the waste submitted to the process is truly residual and the facility is not competing for feedstock with treatment methods which are higher up the waste hierarchy. We are aware that other countries in Europe with a more developed EFW infrastructure have been successful in achieving recycling rates in excess of 60% alongside incineration, and that in the UK we still rely on landfill.

Defra's recent document 'Energy from Waste A Guide to the Debate - February 2013' is a useful summary of the issues involved, and states that 'The potential for energy from waste to consume materials which could otherwise be managed higher up in the waste hierarchy is a legitimate concern.'

It goes on to say 'Provided the right action is taken to ensure separation and pretreatment options are optimised, it is a risk that can be effectively addressed. Energy from waste can and should support, not compete, with effective recycling.'

With this in mind, we understand that aside from the occasional removal of unsuitable materials there will be no further sorting or segregation of waste materials on site, and therefore any safeguards relating to ensuring compliance with the waste hierarchy will

be 'upstream' of the plant with the suppliers of the waste.

The applicant must therefore be able to provide information which demonstrates its assertion that only residual waste – 'mixed waste that cannot be usefully reused or recycled (and would otherwise end up in landfill)', will be used as fuel, without this we cannot be satisfied that the proposal meets the ambitions of the Waste Framework Directive and National Waste Strategy in ensuring that waste is dealt with at the optimum level within the hierarchy.

We propose that the applicant be required to submit a scheme to the planning authority setting out what arrangements will be made for the maintenance of the waste hierarchy in priority order by minimising the quantity of recyclable/reusable waste received for use as fuel through the operational lifetime of the development.

We can advise on the content of such a scheme if required.

LAND CONTAMINATION

Advice to LPA:

We consider that the controlled waters at this site are of low environmental sensitivity, therefore we will not be providing detailed site-specific advice or comments with regards to land contamination issues for this site.

The developer should address risks to controlled waters from contamination at the site, following the requirements of the National Planning Policy Framework and the Environment Agency <u>'Guiding Principles for Land Contamination'</u>.

Advice to applicant:

We recommend that developers should:

1) Follow the risk management framework provided in CLR11, Model Procedures for the Management of Land Contamination, when dealing with land affected by contamination.

2) Refer to the Environment Agency Guiding Principles for Land Contamination for the type of information that we require in order to assess risks to controlled waters from the site. The Local Authority can advise on risk to other receptors, such as human health.

3) Refer to our guiding principles on groundwater protection are set out in our document GP3 - Groundwater Protection Policy and Practice, which is intended to be used by anyone interested in groundwater and particularly those proposing an activity which may impact groundwater. GP3 is available on our website at: http://www.environment-agency.gov.uk/research/library/publications/40741.aspx

4) Refer to our website at www.environment-agency.gov.uk for more information.

If you require clarification or further advice please contact me on the details below.

Yours sincerely

Mrs Beverley Lambert Sustainable Places – Planning Advisor

Direct dial 01904 822510 Direct fax 01904 822649 Direct e-mail bev.lambert@environment-agency.gov.uk

 \bigcirc

APPENDIX II

Yorkshire Water Correspondence

Yorkshire Water Services Developer Services Sewerage Technical Team PO BOX 52 Bradford BD3 7AY

> Tel: 0845 120 8482 Fax: (01274) 372 834

Email: Technical.Sewerage@yorkshirewater.co.uk

Your Ref: Our Ref: P010785

Unit 5; Newton Business Centre

For the attention of James Lymer

Wardell Armstrong

Thorncliffe Park Chapeltown

S35 2PH

For telephone enquiries ring: Robert Illingworth on (0845)120 8482

19th August 2013

Dear Sirs,

Land off Marley Road, Keighley - Pre Planning Sewerage Enquiry - P155239

Thank you for your letter received on the 1st of August 2013 and remittance. Our official VAT receipt has been sent to you under separate cover. Please find enclosed a complimentary extract from the Statutory Sewer Map which indicates the recorded position of the public sewers.

The following comments reflect our view, with regard to the public sewer network only, based on a 'desk top' study of the site:

The local Waste Water Treatment Works (WWTW) is Marley WWTW. It is understood that this WWTW may only have limited spare capacity, if any, available. We have contacted the respective treatment team for more information regarding the impact of proposed development and will contact you when an assessment has been made.

There is a waste water treatment works, under the control of Yorkshire Water, located near to the site. Vehicular access, including with large tankers, could be required at any time.

The proximity of the existing WWTW to the site may mean a loss of amenity for future residents / workers. In order to minimise the risk of odour, noise and nuisance, industry standards recommend that habitable buildings must not be located within 400 (four hundred) metres of the existing compound. To reduce the visible impact of the installation, the erection (by the developer) of suitable screening is advised.

There are 750mm, 900mm, 1200mm, 1350mm and 1400mm diameter and 990x660mm size and 915 x 610mm size public foul/combined water sewers recorded crossing/crossing close to the site. No buildings are to be erected within 6.5 (six point five) metres, nor trees planted within 5 (five) metres of these public sewers. It may not be acceptable to raise or lower ground levels over these sewers, nor to restrict access to the manholes on these sewers. If you wish to have one or other of these sewers diverted under Section 185 of the Water Industry Act 1991 an application should be made in writing. To discuss this matter, please telephone 0114 251 8321.

Development of the site should take place with separate systems for foul and surface water drainage. The separate system should extend to the public sewer.

Foul water may discharge to the 1400/1350/900mm diameter public combined water sewer recorded crossing within the site.

The developer's attention is drawn to Requirement H3 of the Building Regulations 2000. This establishes a preferred hierarchy for surface water disposal. Consideration should firstly be given to discharge to soakaway, infiltration system and watercourse in that priority order.

Sustainable Drainage Systems (SUDS), for example the use of soakaways and/or permeable hardstanding etc, may be a suitable solution for surface water disposal appropriate in this situation. You are advised to seek comments on the suitability of SUDS in this instance from the appropriate authorities.

Where appropriate, soakaways, swales and infiltration trenches (SUDS) may be adopted as part of the public sewer network. Further information may be seen in the DEFRA publication 'Interim Code of Practice for Sustainable Drainage Systems' (ISBN 0-86017-904-4). If the developer is considering adoption of SUDS they should contact our Developer Services Team on 0845 120 84 82.

The local public sewer network does not have capacity to accept any discharge of surface water from the proposal site. The developer is advised to contact the Environment Agency/local Land Drainage Authority/Internal Drainage Board with a view to establishing a suitable watercourse for discharge.

Please note further restrictions on surface water disposal from the site may be imposed by other parties. You are strongly advised to seek advice/comments from the Environment Agency/Land Drainage Authority/Internal Drainage Board, with regard to surface water disposal from the site.

It is understood that the River Aire is located to the North of the site. This appears to be the obvious place for surface water disposal.

An off-site surface water sewer may be required which may be provided by the developer and considered for adoption under Section 104 of the Water Industry Act 1991. Please telephone 0845 120 84 82 for advice on sewer adoptions. Alternatively, the developer may in certain circumstances be able to requisition off-site sewers under Section 98 of the Water Industry Act 1991 for which an application must be made in writing. For further information, please telephone 0845 120 84 82.

Prospectively adoptable sewers and pumping stations must be designed and constructed in accordance with the WRc publication "Sewers for Adoption - a design and construction guide for developers" 6th Edition as supplemented by Yorkshire Water's requirements, pursuant to an agreement under Section 104 of the Water Industry Act 1991. An application to enter into a Section 104 agreement must be made in writing prior to any works commencing on site. Please contact our Developer Services Team (telephone 0845 120 84 82) for further information.

The public sewer network is for domestic sewage purposes. This generally means foul water for domestic purposes and, where a suitable surface water or combined sewer is available, surface water from the roofs of buildings together with surface water from paved areas of land appurtenant to those buildings. Land and highway drainage have no right of connection to the public sewer network. No land drainage to be connected/discharged to public sewer.

As a last resort, highway drainage may be accepted under certain circumstances. If it can be demonstrated, through satisfactory evidence, that SUDS are not a viable option, there are no watercourses or highway drains available and if capacity is available within the public sewer network, highway drainage discharges to the public sewer network may be permitted. In this event, the developer may be required to enter into a formal agreement with Yorkshire Water Services under Section 115 Water Industry Act 1991 to discharge non-domestic flows into the public sewer network.

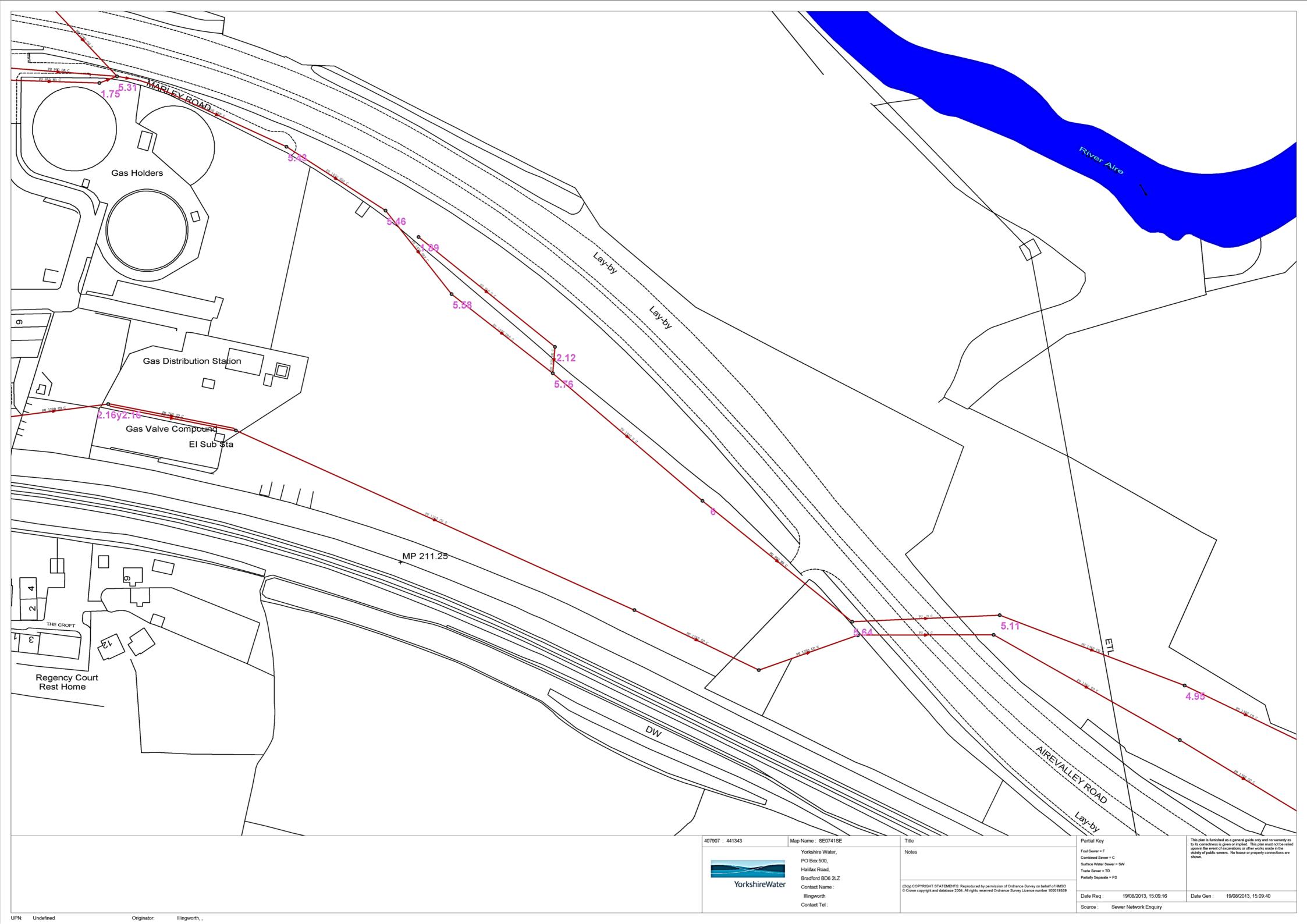
The site is within an area that may be affected by river, coastal or estuarine flooding. We would advise you to contact the Environment Agency for details.

Any new connection to an existing public sewer will require the prior approval of Yorkshire Water. You may obtain an application form from our website (www.yorkshirewater.com) or by telephoning 0845 120 84 82.

Yorkshire Water's Industrial Waste Manager must be consulted in respect of any proposed trade

YorkshireWater

effluent discharge to the public sewer.


All the above comments are based upon the information and records available at the present time. The information contained in this letter together with that shown on any extract from the Statutory Sewer Map that may be enclosed is believed to be correct and is supplied in good faith. Please note that capacity in the public sewer network is not reserved for specific future development. It is used up on a 'first come, first served' basis. You should visit the site and establish the line and level of any public sewers affecting your proposals before the commencement of any design work.

Yours faithfully

Robert Illingworth Developer Services Technician

YorkshireWater

Head of Service Transportation & Planning Service City of Bradford Metropolitan District Council Planning Office 3rd Floor Jacobs Well Bradford BD1 5RW Land & Planning Yorkshire Water Services Ltd PO Box 500 Western House Western Way Halifax Road Bradford BD6 2LZ

> Tel: (01274) 691111 Fax: (01274) 692643

For telephone enquiries ring: Z Fayyaz on (01274) 692072

E-mail Zaffer.Fayyaz@yorkshirewater.co.uk

11th November 2013

Dear Sir/Madam,

Your Ref: 13/04217/FUL Our Ref: P015359

Land East Of Former Gas Works Airedale Road Keighley West Yorkshire - Development of three plants to recover energy from waste, with materials reception and feedstock building, offices, education/visitor centre, parking and landscaping

Thank you for consulting Yorkshire Water regarding the above proposed development. We have the following comments:

The submitted site layout (on drawings 548.02 (--) 007 (revision B) dated 18/09/2013 and 548.02 (--) 003 (first issue) dated July 2013 that have been prepared by Halliday Clark Architects) indicate various new structures will be sited over the public water supply infrastructure located within the site. This could seriously jeopardise Yorkshire Water's ability to maintain the its public network and is not acceptable. We therefore OBJECT to the application as currently shown. I strongly advise that, prior to determination of this application, the site layout is amended to allow for adequate protection of the water sewer and water mains. The following points should be addressed.

i) The submitted drawing appears to show a building, water tower, pond and covered walkway proposed to be built-over the line of public sewer/ water mains crossing the site - contrary to our request.

ii) The submitted drawing should show the site-surveyed position of company infrastructure crossing the site.

iii) The submitted drawing should show the required building stand-off distances from the public sewers/ water mains - or an agreed alternative scheme.

iv) Further to the above, the Flood Risk Assessment (prepared by Wardell Armstrong - Report SH11087 dated 30 August 2013) is not satisfactory from Yorkshire Water's viewpoint. The report states surface water is proposed to drain to combined sewer crossing the site. The public sewers does not have capacity to accept surface water from the development. Also, Chapter 12 of the Environmental Statement does not cover drainage in sufficient detail and ultimately refers to the FRA. Please clarify.

For further information regarding sewers contact Developer Services Team (telephone 0845 120 84 82). For further information and advice regarding water mains contact: The Water Business Unit (Distribution Assets West), Buttershaw Depot, Western Way, Halifax Road, Bradford BD6 2LZ.

Registered Office Yorkshire Water Services Limited Western House Halifax Road Bradford BD6 2SZ Registered in England and Wales No. 2366682 www.yorkshirewater.com

Not withstanding the above, if planning permission is to be granted, the following conditions should be attached in order to protect the local aquatic environment and YW infrastructure:

Unless otherwise approved in writing by the local planning authority, no construction of buildings or other structures shall take place until measures to divert or otherwise formally close the sewers and water mains that are laid within the site have been implemented in accordance with details that have been submitted to and approved by the local Planning Authority.

(In the interest of satisfactory and sustainable drainage and to maintain the public water supply)

Unless otherwise agreed in writing by the local planning authority, no new tree planting or other obstruction (including ground cover reduction/ increase exceeding 0.5 metres) shall be located over or within 5.0 (five) metres either side of the centre line of the water mains, which cross the site.

(In order to allow sufficient access for maintenance and repair work at all times.)

The site shall be developed with separate systems of drainage for foul and surface water on and off site.

(In the interest of satisfactory and sustainable drainage)

No piped discharge of surface water from the application site shall take place until works to provide a satisfactory outfall for surface water have been completed in accordance with details to be submitted to and approved by the local planning authority before development commences.

(To ensure that the site is properly drained and surface water is not discharged to the foul sewerage system which will prevent overloading)

Surface water from vehicle parking and hardstanding areas shall be passed through an interceptor of adequate capacity prior to discharge. Roof drainage should not be passed through any interceptor.

(In the interest of satisfactory drainage)

OBSERVATIONS:

Waste Water

There is a Waste Water Treatment Works (Keighley Marley), under the control of Yorkshire Water, located near to the site.

On the Statutory Sewer Map, there is a 750mm, 900mm, 1200mm, 1350mm and 1400mm diameter and 990x660mm size and 915 x 610mm public foul/combined water sewer recorded to cross the red line site boundary. The presence of the pipes will affect the layout of the site and as such may be a material consideration in the determination of the application. A developer may, where it is reasonable to do so, require a sewerage undertaker to alter or remove a pipe where it is necessary to enable that person to carry out a proposed improvement of land. This provision is contained in section 185 of the Water Industry Act 1991 that also requires the developer to pay the full cost of carrying out the necessary works.

The applicant/agent is being contacted under separate cover on this matter and prior to determining this application you should be satisfied that due regard has been had to the impact the presence of infrastructure will have on the development. Owing to the repeal of section18 of the Building Act 1984, in this instance, Yorkshire Water feels that an appropriate planning condition is necessary to adequately protect the pipe(s) from being built over or near to. It is perceived that this will also be in the interests of future occupiers who may otherwise be dissatisfied. In this instance, a stand-off distance of 6.5 (six point) metres is required at each side of the sewer centre-line.

The development of the site should take place with separate systems for foul and surface water drainage.

Foul water domestic waste should discharge to the 900mm diameter public foul/combined water sewer recorded crossing the site. From the information supplied, it is not possible to determine if the whole site will drain by gravity to the public sewer network. If the site, or part of it, will not drain by gravity, then it is likely that a sewage pumping station will be required to facilitate connection to the public sewer network. If sewage pumping is required the rate should not exceed 8 (eight) litres per second.

On the Statutory Sewer Map, separate public surface water sewers are not recorded within the vicinity of the site and the local public sewer network does **not** have capacity to accept any discharge of surface water from the proposal site.

Sustainable Systems (SUDS), for example the use of soakaways and/or permeable hardstanding, may be a suitable solution for surface water disposal that is appropriate in this situation. The use of SUDS should be encouraged and the LPA's attention is drawn to NPPF. The developer and LPA are advised to seek comments on the suitability of SUDS from the appropriate authorities. The developer must contact the Highway Authority with regard to acceptability of highway drainage proposals.

The developer is advised to contact the relevant drainage authorities with a view to establishing a suitable watercourse for the disposal of surface water. It is noted that the River Aire is 185 metres to the North of the site.

Please note further restrictions on surface water disposal from the site may be imposed by other parties. You are strongly advised to seek advice/ comments from the Environment Agency/ Land Drainage Authority/ Internal Drainage Board, with regard to surface water disposal from the site.

An surface water sewer may be required. This may be provided by the developer and considered for adoption by means of a sewer adoption agreement under Section 104 of the Water Industry Act 1991. Alternatively, the developer may in certain circumstances be able to requisition off-site sewers under Section 98 of the Water Industry Act 1991.

The public sewer network is for domestic sewage purposes. This generally means foul water for domestic purposes and, where a suitable surface water or combined sewer is available, surface water from the roofs of buildings together with surface water from paved areas of land appurtenant to those buildings. Land and highway drainage have no right of connection to the public sewer network. Highway drainage, however, may be accepted under certain circumstances; for instance, if SUDS are not a viable option, there is no highway drain available, if there is available capacity, and if it is not detrimental to the public sewer network and the aquatic environment. In this event, the developer will be required to enter into a formal agreement with Yorkshire Water Services under Section 115 Water Industry Act 1991 to discharge non-domestic flows into the public sewer network.

Trade Effluent

Trade effluent may only be discharged to sewer with the prior consent of Yorkshire Water. A trade effluent is any liquid, other than domestic sewage, which is wholly or partly produced in the course of any business. The developer is required to consult with Yorkshire Water's Industrial Waste Section (telephone 0845 1242424) on any proposal to discharge a trade effluent to the public sewer network.

Water Supply

Company records indicate live 100mm / 4" water main cross the red line site boundary, <u>as shown on the enclosed plan</u>. The presence of the mains may affect the layout of the site and therefore I consider it to be a material consideration in the determination of this application. It is recommended that no obstruction encroaches within 3 metres on either side of the mains i.e. protected strip widths of 6 metres.

Further, no new tree planting will be permitted with 5 metres of a water main.

The exact line of the mains will have to be determined on site under Yorkshire Water Services supervision. It may be possible for the mains to be diverted under s.185 of the Water Industry Act 1991. These works would be carried out at the developer's expense. The cost of these works may be prohibitive.

If ground levels are to be significantly altered i.e. increased/ decreased by 500mm of cover, then Yorkshire Water must be consulted to avoid potential damage.

A water supply can be provided under the terms of the Water Industry Act, 1991.

There may be private mains within the site of which we hold no records.

It is important that Yorkshire Water is informed of the local planning authority's decision on this application.

Please send me a copy of the decision notice.

Yours faithfully

()

Stephanie Walden Land Use Planning Manager

APPENDIX III

Hydraulic Calculations

Aire Valley EfW Runoff and Attenuation Estimates

EXISTING SITE CHARACTERISTICS

Site Area: 34861.5m²

Impermeable area: 24403.05m² (based on 70% of site area)

Greenfield Runoff rate: 24.4 litres/second

Brownfield Runoff rate: 64.8 litres/second (based on 100y-6h storm)

PROPOSED SITE CHARACTERISTICS

Impermeable area: $28765.5m^2$ (= 24720.4m² EfW plant + 4045.1m² Offices)

Surface Water Discharge Rate: 24.4 litres/second (Greenfield equivalent)

52 litres/second (Brownfield equivalent less 20% for betterment)

ESTIMATED ATTENUATION REQUIREMENTS

@ Greenfield Rates

	Discharge Rate	30y attenuation	100y+cc attenuation
EfW Plant area	19.5 litres/sec	835 m ³	1490 m ³
Offices	5 litres/sec	112 m ³	206 m ³
Total	24.5 litres/sec	947 m ³	1696 m ³

@ Brownfield Rates:

	Discharge Rate	30y attenuation	100y+cc attenuation
EfW Plant area	45 litres/sec	585 m ³	1100 m ³
Offices	7 litres/sec	97 m ³	182 m ³
Total	52 litres/sec	682 m ³	1282 m ³

ATTENUATION REQUIRED WITH DISCHARGE RATE RESTRICTED TO EXISTING BROWNFIELD RATES LESS 20%

<u>30 YEAR</u>

EfW Plant Area

últero Dadnage,	Variables						
Drafmagal	FSR Rainfa	H		✓ Cv	(Summer)	0.750	
	Return Perio	d (years)	30	Cv	(Winter)	0.840	
	2.25		A Second Second	Imp	ermeable Area (ha)	2.470	
Variables	Region	England and	Wales		imum Allowable Discharge	45.0	
Results	Мар	M5-60 (mm)	18.000	(I/s)	k.		
Design	-	Ratio R	0.300	Infil	tration Coefficient (m/hr)	0.00000	
Overview 2D				Saf	ety Factor	2.0	
Overview 3D				Clim	nate Change (%)	0	
Vt							
			Ar	nalyse	OK Can	cel	Help

unafinacia.	Results
undingers.	Global Variables require approximate storage of between 428 m ³ and 741 m ³ .
Variables	These values are estimates only and should not be used for design purposes.
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

<u>30 YEAR</u>

Offices

Maro Diamagei	Variables						
णक्रमात्रहाई,	FSR Rainfa	H		87	Cv (Summer)	0.750	
	Return Perio	d (years)	30	_	Cv (Winter)	0.840	
					Impermeable Area (ha)	0.400	
Variables	Region	England and	Wales		Maximum Allowable Discharge	7.0	
Results	Мар	M5-60 (mm)	18.000		(l/s)		
Design		Ratio R	0.300		Infiltration Coefficient (m/hr)	0.00000	
Overview 2D					Safety Factor	2.0	
Overview 3D					Climate Change (%)	0	7
Vt							
				Analy	yse OK Can	cel	Help

Maro 1	Results
ਪੱਸ਼ਿਵਾਰ ਹਸਤਸਾਸ਼ਦਾਰ	Global Variables require approximate storage of between 71 m ³ and 122 m ³ . These values are estimates only and should not be used for design purposes.
Variables	-
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

100 YEAR+CC

EfW Plant Area

त्विकाळ शिक्षवीलाल्ड्राइ	Variables						
धालगावलुहो,	FSR Rainfa	H			Cv (Summer)	0.750	
	Retum Perio	d (years)	100	_	Cv (Winter)	0.840	
					Impermeable Area (ha)	2.470	
Variables	Region	England and	Wales	.	Maximum Allowable Discharge	45.0	
Results	Мар	M5- <mark>60</mark> (mm)	18.000		(/s)		
Design		Ratio R	0.300		Infiltration Coefficient (m/hr)	0.00000	
Overview 2D					Safety Factor	2.0	
Overview 3D					Climate Change (%)	20	1
Vt							
				Analy	vse OK Can	cel	Help

ultero Defineres	Results
Dednagis,	Global Variables require approximate storage of between 847 m ³ and 1354 m ³ . These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

100 YEAR+CC

Offices

ultero Dadhago	Variables						
Dradmagick	FSR Rainfa	11			Cv (Summer)	0.750	
	Return Perio	d (years)	100	_	Cv (Winter)	0.840	
			1.45.0		Impermeable Area (ha)	0.400	
Variables	Region	England and	Wales	۲	Maximum Allowable Discharge	7.0	
Results	Мар	M5-60 (mm)	18.000		(/s)		
Design		Ratio R	0.300		Infiltration Coefficient (m/hr)	0.00000	6
Overview 2D					Safety Factor	2.0	
Overview 3D	1				Climate Change (%)	20	
Vt							
				Analy	rse OK Cano	cel	Help

🖌 Quick Storage	: Estimate
Micro Drainage.	Results
Dramage.	Global Variables require approximate storage of between 140 m ³ and 223 m ³ .
	These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help
	Enter Climate Change between -100 and 600

ATTENUATION REQUIRED WITH DISCHARGE RATE RESTRICTED TO GREENFIELD RATES

<u>30 YEAR</u>

EfW Plant Area

unano Defineres	Variables					
Decimacial	FSR Rainfa		<u>8</u>	Cv (Summer)	0.750	Ĩ
	Return Perio	d (years)	30	Cv (Winter)	0.840	ī
			3	Impermeable Area (ha)	2.470	Ĩ
Variables	Region	England and	Wales ·	Maximum Allowable Discharge	19.5	ī
Results	Мар	M5-60 (mm)	18.000	(/s)		
Design		Ratio R	0.300	Infiltration Coefficient (m/hr)	0.00000	
Overview 2D				Safety Factor	2.0	
Overview 3D				Climate Change (%)	0	
Vt						
			An	alyse OK Ca	ncel H	lelp

unanneos)	Results
nathairs.	Global Variables require approximate storage of between 636 m ³ and 1034 m ³ . These values are estimates only and should not be used for design purposes.
Variables	-
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

<u>30 YEAR</u>

Offices

ដំពីទាល់ បានពាតឲ្យទ	Variables					
Draimaters	FSR Rainfa	1	2	Cv (Summer)	0.750	
	Return Perio	d (years)	30	Cv (Winter)	0.840	
				Impermeable Area (ha)	0.400	
Variables	Region	England and	Wales •	Maximum Allowable Discharge	5.0	
Results	Мар	M5-60 (mm)	18.000	(/s)		
Design		Ratio R	0.300	Infiltration Coefficient (m/hr)	0.00000	
Overview 2D				Safety Factor	2.0	
Overview 3D				Climate Change (%)	0	
Vt						
			Ana	alyse OK Car	ncel	Help

uneno	Results
undina gist.	Global Variables require approximate storage of between 84 m ³ and 140 m ³ . These values are estimates only and should not be used for design purposes.
Variables	-
Results	
Design	
Overview 2D	
Overview 3D	-
Vt	
	Analyse OK Cancel Help

100 YEAR +CC

EfW Plant Area

unano de la como de la	Variables	Variables										
Dramaga	FSR Rainfa	H .	*	Cv (Summer)	0.750							
	Return Perio	d (years)	100	Cv (Winter)	0.840							
				Impermeable Area (ha)	2.470	Ĩ.						
Variables	Region	England and	Wales 👻	Maximum Allowable Discharge	19.5							
Results	Мар	M5-60 (mm)	18.000	(l/s)								
Design		Ratio R	0.300	Infiltration Coefficient (m/hr)	0.00000							
Overview 2D	-			Safety Factor	2.0							
Overview 3D				Climate Change (%)	20							
Vt												
			Ana	lyse OK Can	cel	Help						

unero Dadhacci	Results
Definaçie.	Global Variables require approximate storage of between 1181 m ³ and 1801 m ³ . These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

100 YEAR+CC

Offices

últero Dedhaga	Variables	Variables										
Drafmagal	FSR Rainfa	H		Cv (Summer)	0.750							
	Return Perio	d (years)	100	Cv (Winter)	0.840							
			100	Impermeable Area (ha)	0.400							
Variables	Region	England and	Wales 🖣	Maximum Allowable Discharge	5.0							
Results	Мар	M5-60 (mm)	18.000	(/s)								
Design		Ratio R	0.300	Infiltration Coefficient (m/hr)	0.00000							
Overview 2D	-			Safety Factor	2.0							
Overview 3D	-			Climate Change (%)	20]						
Vt												
			Ana	alyse OK Car	ncel	Help						

unafinaçai.	Results
<u>Definaçıs</u> .	Global Variables require approximate storage of between 161 m ³ and 250 m ³ . These values are estimates only and should not be used for design purposes.
Variables	-
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

Calculation Sheet

REF:

CLIENT:				PRO	JECT	:				JOB NO.:				c	ALC	. REF.	NO.:								
																		1	PAG	E:			OF		
CALCULATION				CAL	C. BY	:					СН	ECKE	D BY	:				A	PPR	OVED	BY:				
				(NA	ME A	ND SI	GNAT	FURE)		(NA	ME	AND	SIGN	ATUF	RE)		(NAN	1E AN	D SIG	5NA1	fure)		
				D,	ATE:							DATE	:						DA	TE:					
Following the	e Ratio	nale N	Netho	od as	des	cribe	d by	the	e Wa	alling	gfor	d Pr	oce	dure	-										
Qp = C i A																									
Qp = runc	off (litre	s/seco	ond)																						
C = runoff																									
i = rainfall			m/hr)		=	9.8																		+	
A = area (=	2.44																			
If the units a	e as fo	llows	then t	he e	quat	ion b	eco	mes	Qp	= 2.	78C	iΑ;													
			_					(20				_									_	
Runoff coeffi	cient C	= Cv (r, as s	stanc	ard	value	es o	r U.7	'5 ar	1d 1.	30 a	ire (used	tor	cv a	nd C	r re.	spe	TIV	ely.				_	
If the above v	raluce f	for C a		nd th	0.00	uatio	n b	200	neci																
II the above	alues i	UICa	ile use		e eq	uatic		ecoi	nes.																
Qp = 3.61	Cv i A																								
= 2.7	1; 1									_															
= 2.7	IIA									_															
= 2.7	71 x	9.8	x 2	44								-				-									
- 2.	, T	5.0	~ 2																						
= 6	4.80	litres	/seco	nd																					
											-														
																								1	
				_									ļ												
							_																		
																								_	
																								+	
													ļ												
												-													
																								+	
										-						-					1				
																								1	

Calculation Sheet

REF:

ENT:						PRC	DIEC	T:			101	3 NO	.:					CALC. REF. NO.:						
																		PA	GE:			O	:	
CULATION						CAL	.C. B	Y:			СН	ECKE	D BY:					APF	ROV	ED BY	:			
Ra	infall I	ntens	sity			(NA	ME	AND SIGNAT	URE)		(N/	AME	AND S	SIGNA	TURE	:)		(NA	ME A	AND S	IGNA	FURE	JRE)	
						C	OATE	:			DATE:						DATE:							
																	_						_	
<u>Following</u>	the	Wall	ingto	ord P	roce	edu	re																_	
M5-60 =			18 n	nm																			-	
Ratio r =			0.3																					
Duration	(D)=		360 n	ninute	es																			
Z1 = 1.7																								
M5- 360		= M5	5-60 x	(Z1																	-			
			2.2 n																					
· · · · · · · · · · · · · · · · · · ·			5																					
Return Pe	eriod	= 1	00																					
Z2= 1.3																								
M100	360						Z2																	
			32.2			82																		
		=	58.	7 m	m																			
																					-			
Rainfall in	tensit	y (m	m/hr)	=	MT													_						
		_			D/	60																		
		_				_																	_	
				=																			_	
					6.	υU				$\left \right $														Parat B (1997) B (
				=	6	9.78	R	mm/hr													-			
				-	•																-			
																		-						
																		-						
			-															_						
																	_							
																							-	
																					-			
																		-			-			

Wardell Armstrong LLP		Page 1
Sir Henry Doulton House		
Forge Lane, Etruria		
Stoke-on-Trent ST1 5BD		
Date 01/08/2013 10:36	Designed by eskelley	I Dranga
File	Checked by	
Micro Drainage	Source Control 2013.1.1	
	ICP SUDS Mean Annual Flood	
	Input	
Return	() /	Soil 0.450 rban 0.000 mban Bogian 2
	SAAR (IIIII) 1040 REGION NU	inder Kegion 5
	Results l/s	
	QBAR Rural 24.4	
	QBAR Urban 24.4	
	Q100 years 50.7	
	Q1 year 21.0	
	Q30 years 42.8	
	Q100 years 50.7	

Wardell Armstrong LLP	Page 1	
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	<u> </u>
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage
XP Solutions	Network 2016.1	

<u>Network Design Table for Storm</u>

« - Indicates pipe capacity < flow

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	17.092	0.114	149.9	0.031	3.00	0.0	0.600	0	150	Pipe/Conduit	•
S2.000	16.904	0.114	148.3	0.033	3.00	0.0	0.600	0	150	Pipe/Conduit	ð
S3.000	47.141	0.364	129.5	0.218	5.00	0.0	0.600	0	225	Pipe/Conduit	ď
S1.001	23.135	0.116	199.4	0.041	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S4.000	11.653	0.530	22.0	0.063	5.00	0.0	0.600	0	100	Pipe/Conduit	ď
S1.002	31.453	0.031	1000.0	0.000	0.00	0.0	0.600	[]	1	Pipe/Conduit	ď
S5.000	33.357	0.361	92.4	0.028	3.00	0.0	0.600	0	150	Pipe/Conduit	0
S1.003	39.205	0.038	1031.7	0.038	0.00	0.0	0.600	[]	1	Pipe/Conduit	ď
S6.000	36.057	0.399	90.4	0.050	3.00	0.0	0.600	0	150	Pipe/Conduit	0
S1.004	73.143	0.076	962.4	0.158	0.00	0.0	0.600	[]	1	Pipe/Conduit	ď

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
S1.000	46.44	3.35	86.900	0.031	0.0	0.0	0.0	0.82	14.5	3.9
S2.000	46.46	3.34	86.900	0.033	0.0	0.0	0.0	0.82	14.5	4.2
s3.000	38.32	5.68	87.075	0.218	0.0	0.0	0.0	1.15	45.6	22.6
S1.001	37.20	6.10	86.711	0.323	0.0	0.0	0.0	0.92	36.7	32.5
S4.000	39.99	5.12	87.250	0.063	0.0	0.0	0.0	1.65	13.0	6.8
S1.002	35.81	6.66	86.220	0.386	0.0	0.0	0.0	0.94	645.1	37.4
s5.000	45.66	3.53	87.000	0.028	0.0	0.0	0.0	1.05	18.5	3.5
S1.003	34.23	7.37	86.189	0.452	0.0	0.0	0.0	0.92	635.0	41.9
S6.000	45.51	3.57	87.000	0.050	0.0	0.0	0.0	1.06	18.7	6.2
S1.004	31.76	8.65	86.151	0.660	0.0	0.0	0.0	0.95	657.8	56.8
			C	1982-201	6 XP Solut	tions				

Wardell Armstrong LLP		Page 2
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	<u> </u>
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Digiliada
XP Solutions	Network 2016.1	1

<u>Network Design Table for Storm</u>

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.005	66.903	0.067	998.6	0.308	0.00	0.0	0.600	[]	1	Pipe/Conduit	ď
s7.000	33.568	0.067	501.0	0.053	5.00	0.0	0.600	0	150	Pipe/Conduit	ď
S1.006	33.822	0.034	994.8	0.129	0.00	0.0	0.600	[]	1	Pipe/Conduit	•
S8.000 S8.001	23.664 7.058		1029.7 1000.0	0.000	3.00 0.00		0.600 0.600	0 0	600 600	Pipe/Conduit Pipe/Conduit	∂ ●
S1.007	35.654	0.036	990.4	0.130	0.00	0.0	0.600	0	600	Pipe/Conduit	ര്
	47.815 44.589 13.398	0.220	149.9 202.7 150.5	0.027 0.017 0.119	3.00 0.00 0.00		0.600 0.600 0.600	0 0 0		Pipe/Conduit Pipe/Conduit Pipe/Conduit	0 5
S1.008	18.086	0.100	180.9	0.083	0.00	0.0	0.600	0	300	Pipe/Conduit	•
S10.000	27.765	0.489	56.8	0.011	3.00	0.0	0.600	0	225	Pipe/Conduit	ð
S11.000	17.109	0.114	150.1	0.039	3.00	0.0	0.600	0	150	Pipe/Conduit	ð

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S1.005	29.81	9.84	86.075	0.968	0.0	0.0	0.0	0.94	645.6	78.1	
s7.000	36.79	6.26	87.600	0.053	0.0	0.0	0.0	0.44	7.8	5.3	
S1.006	28.93	10.44	86.008	1.150	0.0	0.0	0.0	0.94	646.9	90.1	
S8.000 S8.001	45.68 45.05		86.000 85.977	0.000 0.000	0.0	0.0	0.0		212.2 215.4	0.0	
S1.007	27.88	11.22	85.970	1.280	0.0	0.0	0.0	0.77	216.4	96.7	
S9.000 S9.001 S9.002	43.91 40.26 39.61	5.03	87.000 86.681 86.386	0.027 0.044 0.163	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.82 0.70 1.06	14.5 12.4 42.3	3.2 4.8 17.5	
S1.008	27.55	11.47	85.929	1.526	0.0	0.0	0.0	1.17	82.4«	113.9	
S10.000	46.79	3.27	87.300	0.011	0.0	0.0	0.0	1.74	69.2	1.4	
S11.000	46.43	3.35	87.000	0.039	0.0	0.0	0.0	0.82	14.5	4.9	
			©1	982-201	6 XP Solut	ions					

Wardell Armstrong LLP		Page 3
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	4
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Dialinatic
XP Solutions	Network 2016.1	

<u>Network Design Table for Storm</u>

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S10.001	32.790	0.033	993.6	0.011	0.00	0.0	0.600	[]	1	Pipe/Conduit	ď
S10.002	6.952	0.007	993.1	0.035	0.00	0.0	0.600	[]	1	Pipe/Conduit	ð
S12.000	28.147	0.154	182.8	0.037	3.00	0.0	0.600	0	150	Pipe/Conduit	0
S10.003	12.011	0.012	1000.0	0.000	0.00	0.0	0.600	[]	1	Pipe/Conduit	ď
S10.004	19.457	0.019	1024.1	0.016	0.00	0.0	0.600	[]	1	Pipe/Conduit	
S13.000	52.909	0.353	149.9	0.050	3.00	0.0	0.600	0	150	Pipe/Conduit	ð
S13.001	37.767	0.218	173.2	0.045	0.00	0.0	0.600	0	150	Pipe/Conduit	Ť
S13.002	8.829	0.059	149.6	0.021	0.00	0.0	0.600	0	225	Pipe/Conduit	
S10.005	17.343	0.017	1020.2	0.025	0.00	0.0	0.600	[]	1	Pipe/Conduit	ð
S10.006	36.039	0.036	1001.1	0.049	0.00	0.0	0.600	[]	1	Pipe/Conduit	Ť
S10.007	66.221	0.102	649.2	0.030	0.00	0.0	0.600	[]	1	Pipe/Conduit	ď
S14.000	50.038	0.334	149.8	0.071	3.00	0.0	0.600	0	150	Pipe/Conduit	ð
S14.001	24.426	1.113	21.9	0.063	0.00	0.0	0.600	0	150	Pipe/Conduit	ď
S15.000	38.318	0.036	1064.4	0.024	3.00	0.0	0.600	0	600	Pipe/Conduit	ð
S15.001	26.079	0.026	1000.0	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	ĕ

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
S10.001	44.07	3.93	86.436	0.061	0.0	0.0	0.0	0.94	647.2	7.3	
S10.002	43.61	4.05	86.403	0.096	0.0	0.0	0.0	0.94	647.4	11.3	
S12.000	45.24	3.63	87.000	0.037	0.0	0.0	0.0	0.74	13.1	4.5	
S10.003	42.83	4.27	86.396	0.133	0.0	0.0	0.0	0.94	645.1	15.4	
S10.004	41.61	4.62	86.384	0.149	0.0	0.0	0.0	0.93	637.4	16.8	
S13.000	43.52	4.08	87.300	0.050	0.0	0.0	0.0	0.82	14.5	5.9	
S13.001	40.66	4.91	86.947	0.095	0.0	0.0	0.0	0.76	13.4	10.5	
S13.002	40.22	5.04	86.730	0.116	0.0	0.0	0.0	1.07	42.4	12.6	
s10.005	39.27	5.35	86.365	0.290	0.0	0.0	0.0	0.93	638.6	30.8	
S10.006	37.48	6.00	86.348	0.339	0.0	0.0	0.0	0.94	644.8	34.4	
S10.007	35.16	6.94	86.312	0.369	0.0	0.0	0.0	1.17	802.7	35.1	
S14.000	43.74	4.02	87.000	0.071	0.0	0.0	0.0	0.82	14.5	8.4	
S14.001	43.05	4.21	86.666	0.134	0.0	0.0	0.0	2.16	38.2	15.6	
S15.000	44.32	3.87	85.990	0.024	0.0	0.0	0.0	0.74	208.7	2.9	
S15.001	42.24	4.44	85.954	0.024	0.0	0.0	0.0	0.76	215.4	2.9	
			©1	982-201	6 XP Solut	ions					

Wardell Armstrong LLP		Page 4
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	<u> </u>
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage
XP Solutions	Network 2016.1	

<u>Network Design Table for Storm</u>

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)		Design
S10.008	5.394	0.005	1078.8	0.067	0.00	0.0	0.600	0	600	Pipe/Conduit	0
S16.000	26.869	0 134	200.5	0.027	3.00	0 0	0.600	0	150	Pipe/Conduit	ð
	13.366		19.5	0.030	0.00		0.600	0		Pipe/Conduit	
										± .	
S1.009	4.770	0.057	83.7	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	8
											_
			93.9	0.056	3.00		0.600	0		Pipe/Conduit	0
S17.001	39.836	1.179	33.8	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S1.010	15.992		199.9	0.067	0.00	0.0	0.600	0	225	Pipe/Conduit	e
S1.011	54.714	0.274	199.7	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	8
S1.012	68.096	0.340	200.3	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ē
S1.013	70.010	0.350	200.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ē
S1.014	38.504	0.400	96.3	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ě
S1.015	63.957	1.253	51.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ě
S1.016	76.713	0.500	153.4	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	- ĕ
S1.017	77.541	0.500	155.1	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ
S1.018	10.652		99.6	0.000	0.00		0.600	0		Pipe/Conduit	ĕ
										±	-

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S10.008	34.89	7.07	85.867	0.594	0.0	0.0	0.0	0.73	207.2	56.1
S16.000	45.24		87.000	0.027	0.0	0.0	0.0	0.71	12.5	3.3
S16.001	44.85	3.73	86.866	0.057	0.0	0.0	0.0	2.29	40.5	6.9
S1.009	27.50	11.52	85.829	2.177	0.0	0.0	0.0	1.72	121.6«	162.1
S17.000	46.16	3.41	87.300	0.056	0.0	0.0	0.0	1.04	18.3	7.0
S17.001	44.94	3.71	86.951	0.056	0.0	0.0	0.0	2.26	89.8	7.0
S1.010	27.14		85.772	2.300	0.0	0.0	0.0	0.92	36.6«	
S1.011	26.01	12.80	85.692	2.300	0.0	0.0	0.0	0.92	36.6«	169.1
S1.012	24.74	14.03	85.418	2.300	0.0	0.0	0.0	0.92	36.6«	169.1
S1.013	23.59	15.30	85.078	2.300	0.0	0.0	0.0	0.92	36.6«	169.1
S1.014	23.18	15.78	84.728	2.300	0.0	0.0	0.0	1.33	53.0«	169.1
S1.015	22.74	16.36	84.328	2.300	0.0	0.0	0.0	1.84	73.0«	169.1
S1.016	21.88	17.58	83.075	2.300	0.0	0.0	0.0	1.05	41.9«	169.1
S1.017	21.08	18.81	82.575	2.300	0.0	0.0	0.0	1.05	41.6«	169.1
S1.018	21.00	18.95	82.075	2.300	0.0	0.0	0.0	1.31	52.1«	169.1

©1982-2016 XP Solutions

Wardell Armstrong LLP		Page 5
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	<u> </u>
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage
XP Solutions	Network 2016.1	

Conduit Sections for Storm

NOTE: Diameters less than 66 refer to section numbers of hydraulic conduits. These conduits are marked by the symbols:- [] box culvert, \/ open channel, oo dual pipe, ooo triple pipe, 0 egg.

Section numbers < 0 are taken from user conduit table

	Conduit Type	Dimn.	Dimn.	Slope		Radius	Area
1	[]	1200	600	90.0	125	0.833	0.689

Wardell Armstrong LLP		Page 6
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	<u> </u>
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage
XP Solutions	Network 2016.1	1

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	87.900	1.000	Open Manhole	1050	S1.000	86.900	150				
S20	87.950	1.050	Open Manhole	1050	S2.000	86.900	150				
SCP1	88.000	0.925	Open Manhole	1050	S3.000	87.075	225				
S2	88.300	1.589	Open Manhole	1050	S1.001	86.711	225	S1.000	86.786	150	
								s2.000	86.786	150	
								s3.000	86.711	225	
			Open Manhole	1050	S4.000	87.250	100				
S3	88.300	2.080	Open Manhole		S1.002	86.220	1	S1.001	86.595	225	
								S4.000	86.720	100	
			Open Manhole		S5.000	87.000	150				
S3J	88.300	2.111	Junction	0	S1.003	86.189	1	S1.002	86.189	1	
								S5.000	86.639	150	
			Open Manhole	1050	S6.000	87.000	150				
S4	88.300	2.149	Open Manhole	3000	S1.004	86.151	1	S1.003	86.151	1	
								S6.000	86.601	150	
			Open Manhole	3000	S1.005	86.075	1	S1.004	86.075	1	
SCP3			÷	1050	s7.000	87.600	150				
S6	88.300	2.292	Open Manhole	3000	S1.006	86.008	1	S1.005	86.008	1	
								s7.000	87.533	150	1075
	88.400		-	1500	S8.000	86.000	600				
	88.250		-	1500	S8.001	85.977	600	S8.000	85.977	600	
S7	88.250	2.280	Open Manhole	3000	S1.007	85.970	600	S1.006	85.974	1	4
								S8.001	85.970	600	
			Open Manhole	1050	S9.000	87.000	150				
S51			-	1050	S9.001	86.681	150	S9.000	86.681	150	
S46			Open Manhole	1050	S9.002	86.386	225	S9.001	86.461	150	
S8	88.300	2.371	Open Manhole	1500	S1.008	85.929	300	S1.007	85.934	600	305
					- 1 0 0 0 0			S9.002	86.297	225	293
			Open Manhole		S10.000	87.300	225				
			Open Manhole		S11.000	87.000	150	- 1 0 0 0 0			
S32	88.300	1.864	Open Manhole	3000	S10.001	86.436	1	S10.000	86.811		
~ ~ ~					a10 00-			S11.000	86.886	150	
			Open Manhole		S10.002	86.403		S10.001	86.403	1	
			Open Manhole	-	S12.000	87.000	150				
S33J	88.300	1.904	Junction	0	S10.003	86.396	1	S10.002	86.396	1	
					a10 5-			S12.000	86.846	150	
			Open Manhole		S10.004	86.384		S10.003	86.384	1	
S39	88.200	0.900	Open Manhole	1050	S13.000	87.300	150				

Wardell Armstrong LLP	Page 7	
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	4
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage
XP Solutions	Network 2016.1	

	Manhole Schedules for Storm													
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)			
S36	88.350	1.403	Open Manhole	1050	s13.001	86.947	150	s13.000	86.947	150				
S37	88.350	1.621	Open Manhole		S13.002	86.730	225	S13.001	86.729	150				
S35J	88.000	1.635	Junction	0	S10.005	86.365	1	S10.004	86.365	1				
								S13.002	86.671	225				
S38	88.300	1.952	Open Manhole	3000	S10.006	86.348	1	S10.005	86.348	1				
S40	88.300	1.988	Open Manhole	3000	S10.007	86.312	1	S10.006	86.312	1				
S43	88.300	1.300	Open Manhole	1050	S14.000	87.000	150							
S44	88.300	1.634	Open Manhole	1050	S14.001	86.666	150	S14.000	86.666	150				
S41	88.000	2.010	Open Manhole	1500	S15.000	85.990	600							
S42	88.000	2.046	Open Manhole	1500	S15.001	85.954	600	S15.000	85.954	600				
S45	88.300	2.747	Open Manhole	3000	S10.008	85.867	600	S10.007	86.210	1	343			
								S14.001	85.553	150				
								S15.001	85.928	600	61			
S26	88.300	1.300	Open Manhole	1050	S16.000	87.000	150							
S27	88.100	1.234	Open Manhole	1050	S16.001	86.866	150	S16.000	86.866	150				
S9	88.300	2.471	Open Manhole	1500	S1.009	85.829	300	S1.008	85.829	300				
								S10.008	85.862	600	333			
								S16.001	86.179	150	200			
S28	88.350	1.050	Open Manhole	1050	S17.000	87.300	150							
S29	88.350	1.399	Open Manhole	1050	S17.001	86.951	225	S17.000	87.026	150				
S10	88.300	2.528	Open Manhole	1200	S1.010	85.772	225	S1.009	85.772	300				
								S17.001	85.772	225				
S11	87.500	1.808	Open Manhole	1200	S1.011	85.692	225	S1.010	85.692	225				
S12	87.000	1.582	Open Manhole	1050	S1.012	85.418	225	S1.011	85.418	225				
S13	87.000	1.922	Open Manhole	1200	S1.013	85.078	225	S1.012	85.078	225				
S14	86.800	2.072	Open Manhole	1200	S1.014	84.728	225	S1.013	84.728	225				
S15	85.800	1.472	Open Manhole	1050	S1.015	84.328	225	S1.014	84.328	225				
S16	84.500	1.425	Open Manhole	1050	S1.016	83.075	225	S1.015	83.075	225				
S17	84.000	1.425	Open Manhole	1050	S1.017	82.575	225	S1.016	82.575	225				
S18	83.500	1.425	Open Manhole	1050	S1.018	82.075	225	S1.017	82.075	225				
SS19	83.500	1.532	Open Manhole	3000		OUTFALL		S1.018	81.968	225				
	I	I	1	ļ	I			I			I			

Manhole Schedules for Storm

©1982-2016 XP Solutions

Wardell Armstrong LLP	Page 8	
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	4
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Diamaye
XP Solutions	Network 2016.1	L

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	0	150	S1	87.900	86.900	0.850	Open Manhole	1050
S2.000	0	150	S20	87.950	86.900	0.900	Open Manhole	1050
S3.000	0	225	SCP1	88.000	87.075	0.700	Open Manhole	1050
S1.001	0	225	S2	88.300	86.711	1.364	Open Manhole	1050
S4.000	0	100	SCP2	88.250	87.250	0.900	Open Manhole	1050
S1.002	[]	1	S3	88.300	86.220	1.480	Open Manhole	3000
S5.000	0	150	S21	88.300	87.000	1.150	Open Manhole	1050
S1.003	[]	1	S3J	88.300	86.189	1.511	Junction	
S6.000	0	150	S22	88.300	87.000	1.150	Open Manhole	1050
S1.004 S1.005	[]	1 1	S4 S5	88.300 88.300	86.151 86.075		Open Manhole Open Manhole	

Downstream Manhole

PN	Length (m)	Slope (1:X)			I.Level (m)	-	MH Connection	MH DIAM., L*W (mm)
S1.000	17.092	149.9	S2	88.300	86.786	1.364	Open Manhole	1050
S2.000	16.904	148.3	S2	88.300	86.786	1.364	Open Manhole	1050
s3.000	47.141	129.5	S2	88.300	86.711	1.364	Open Manhole	1050
S1.001	23.135	199.4	s3	88.300	86.595	1.480	Open Manhole	3000
S4.000	11.653	22.0	S3	88.300	86.720	1.480	Open Manhole	3000
S1.002	31.453	1000.0	S3J	88.300	86.189	1.511	Junction	
S5.000	33.357	92.4	S3J	88.300	86.639	1.511	Junction	
S1.003	39.205	1031.7	S4	88.300	86.151	1.549	Open Manhole	3000
S6.000	36.057	90.4	S4	88.300	86.601	1.549	Open Manhole	3000
	73.143 66.903			88.300 88.300			Open Manhole Open Manhole	

©1982-2016 XP Solutions

Wardell Armstrong LLP						
Unit 5, Newton Business Park	Keighley					
Newton Chambers Road	Energy from Waste	4				
Sheffield S35 2PH	Surface Water	— Micro				
Date 29/10/15	Designed by TDi					
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage				
XP Solutions	Network 2016.1					

<u>Upstream Manhole</u>

-			C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
0	150	SCP3	88.600	87.600	0.850	Open Manhole	1050
[]	1	S6	88.300	86.008	1.692	Open Manhole	3000
0	600	S24	88.400	86.000	1.800	Open Manhole	1500
0	600	S25	88.250	85.977	1.673	Open Manhole	1500
0	600	s7	88.250	85.970	1.680	Open Manhole	3000
0	150	S50	88.100	87.000	0.950	Open Manhole	1050
0	150	S51	88.000	86.681	1.169	Open Manhole	1050
0	225	S46	88.000	86.386	1.389	Open Manhole	1050
0	300	S8	88.300	85.929	2.071	Open Manhole	1500
0	225	S30	88.300	87.300	0.775	Open Manhole	1050
0	150	S31	88.250	87.000	1.100	Open Manhole	1050
[] []	1 1	S32 S33	88.300 88.300	86.436 86.403		-	3000 3000
	Sect 0 [] 0 0 0 0 0 0 0 0 0 0 0 0 0	Sect (mm) 0 150 [] 1 0 600 0 600 0 600 0 150 0 150 0 150 0 225 0 300 0 225 0 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150	Sect (mm) Name 0 150 SCP3 [] 1 S6 0 600 S24 0 600 S25 0 600 S7 0 150 S50 0 150 S51 0 300 S8 0 225 S30 0 150 S31 [] 1 S32	Sect (mm) Name (m) 0 150 SCP3 88.600 [] 1 S6 88.300 0 1 S6 88.400 0 600 S24 88.400 0 600 S7 88.250 0 600 S7 88.200 0 150 S51 88.000 0 300 S8 88.300 0 225 S30 88.300 0 150 S1 88.250 0 300 S8 88.300 0 225 S30 88.300 0 150 S31 88.250 10 150 S31 88.250	Sect (mm) Name (m) (m) 0 150 SCP3 88.600 87.600 [] 1 S6 88.300 86.008 0 600 S24 88.400 86.000 0 600 S25 88.250 85.977 0 600 S7 88.250 85.970 0 150 S50 88.100 87.000 0 150 S51 88.000 86.681 0 300 S8 88.300 85.929 0 225 S30 88.300 87.300 0 150 S31 88.250 87.000 1 S32 88.300 86.436	Sect (mm) Name (m) (m) (m) 0 150 SCP3 88.600 87.600 0.850 [] 1 S6 88.300 86.008 1.692 0 600 S24 88.400 86.000 1.800 0 600 S25 88.250 85.977 1.673 0 600 S7 88.250 85.970 1.680 0 150 S50 88.100 87.000 0.950 0 150 S51 88.000 86.681 1.169 0 225 S46 88.000 86.386 1.389 0 300 S8 88.300 85.929 2.071 0 225 S30 88.300 87.300 0.775 0 150 S31 88.250 87.000 1.100 [] 1 S32 88.300 86.436 1.264	Sect (mm) Name (m) (m) (m) Connection 0 150 SCP3 88.600 87.600 0.850 Open Manhole [] 1 S6 88.300 86.008 1.692 Open Manhole 0 600 S24 88.400 86.000 1.800 Open Manhole 0 600 S25 88.250 85.977 1.673 Open Manhole 0 600 S7 88.250 85.970 1.680 Open Manhole 0 150 S50 88.100 87.000 0.950 Open Manhole 0 150 S51 88.000 86.681 1.169 Open Manhole 0 225 S46 88.000 86.386 1.389 Open Manhole 0 300 S8 88.300 87.300 0.775 Open Manhole 0 225 S30 88.250 87.000 1.100 Open Manhole 1 531

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)		
s7.000	33.568	501.0	S6	88.300	87.533	0.617	Open Manhole	3000		
S1.006	33.822	994.8	S7	88.250	85.974	1.676	Open Manhole	3000		
	23.664 7.058			88.250 88.250			Open Manhole Open Manhole			
S1.007	35.654	990.4	S8	88.300	85.934	1.766	Open Manhole	1500		
	47.815 44.589	149.9 202.7		88.000 88.000			Open Manhole Open Manhole			
S9.002	13.398	150.5	S8	88.300	86.297		Open Manhole			
S1.008	18.086	180.9	S9	88.300	85.829	2.171	Open Manhole	1500		
S10.000	27.765	56.8	S32	88.300	86.811	1.264	Open Manhole	3000		
S11.000	17.109	150.1	S32	88.300	86.886	1.264	Open Manhole	3000		
S10.001 S10.002	32.790 6.952		S33 S33J	88.300 88.300			Open Manhole Junction	3000		
	©1982-2016 XP Solutions									

Wardell Armstrong LLP	Page 10	
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Diamaye
XP Solutions	Network 2016.1	I

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S12.000	0	150	S34	88.250	87.000	1.100	Open Manhole	1050
S10.003	[]	1	S33J	88.300	86.396	1.304	Junction	
S10.004	[]	1	S35	88.300	86.384	1.316	Open Manhole	3000
- 1 0 0 0 0								
S13.000	0	150		88.200			Open Manhole	1050
S13.001	0	150	S36	88.350	86.947	1.253	Open Manhole	1050
S13.002	0	225	S37	88.350	86.730	1.395	Open Manhole	1050
S10.005	[]	1	S35J	88.000	86.365	1.035	Junction	
S10.006	[]	1	S38	88.300	86.348	1.352	Open Manhole	3000
S10.007	[]	1	S40	88.300	86.312	1.388	Open Manhole	3000
S14.000	0	150	S43	88.300	87.000	1.150	Open Manhole	1050
S14.001	0	150	S44	88.300	86.666	1.484	Open Manhole	1050
							-	
S15.000	0	600	S41	88.000	85.990	1.410	Open Manhole	1500
S15.001	0	600	S42	88.000	85.954	1.446	Open Manhole	1500
							1	
S10.008	0	600	S45	88.300	85.867	1.833	Open Manhole	3000
							-	

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)		MH DIAM., L*W (mm)
S12.000	28.147	182.8	S33J	88.300	86.846	1.304	Junction	
				88.300 88.000	86.384 86.365	1.316 1.035	Open Manhole Junction	3000
S13.000 S13.001 S13.002	37.767	173.2	S37	88.350 88.350 88.000		1.471	Open Manhole Open Manhole Junction	
S10.005 S10.006 S10.007	36.039	1001.1	S40	88.300	86.348 86.312 86.210	1.388	Open Manhole Open Manhole Open Manhole	3000
S14.000 S14.001					86.666 85.553		Open Manhole Open Manhole	1050 3000
S15.000 S15.001			S42 S45	88.000 88.300	85.954 85.928		Open Manhole Open Manhole	1500 3000
S10.008	5.394	1078.8		88.300 1982-20	85.862 16 XP S		Open Manhole .s	1500

Wardell Armstrong LLP		Page 11
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	L'
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage
XP Solutions	Network 2016.1	L

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S16.000 S16.001	0	<mark>150</mark> 150	S26 S27	88.300 88.100	<mark>87.000</mark> 86.866		Open Manhole Open Manhole	1050 1050
S1.009	0	300	S9	88.300	85.829	2.171	Open Manhole	1500
S17.000	0	150	S28	88.350	87.300	0.900	Open Manhole	1050
S17.001	0	225	S29	88.350	86.951	1.174	Open Manhole	1050
S1.010 S1.011	0	225 225	S10 S11	88.300 87.500	85.772 85.692		Open Manhole Open Manhole	1200 1200
S1.012	0	225	S12	87.000	85.418		Open Manhole	1050
S1.013	0	225	S13	87.000	85.078	1.697	Open Manhole	1200
S1.014	0	225	S14	86.800	84.728	1.847	Open Manhole	1200
S1.015	0	225	S15	85.800	84.328	1.247	Open Manhole	1050
S1.016	0	225	S16	84.500	83.075		Open Manhole	1050
S1.017	0	225	S17	84.000	82.575		Open Manhole	1050
S1.018	0	225	S18	83.500	82.075	1.200	Open Manhole	1050

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S16.000 S16.001			S27 S9	88.100 88.300	86.866 86.179		Open Manhole Open Manhole	
S1.009	4.770	83.7	S10	88.300	85.772	2.228	Open Manhole	1200
S17.000 S17.001			S29 S10	88.350 88.300	87.026 85.772		Open Manhole Open Manhole	1050 1200
S1.011 S1.012 S1.013	15.992 54.714 68.096 70.010 38.504	199.7 200.3 200.0	S12 S13 S14	87.500 87.000 87.000 86.800 85.800	85.692 85.418 85.078 84.728 84.328	1.357 1.697 1.847 1.247	Open Manhole Open Manhole Open Manhole Open Manhole	1050 1200 1200 1050
S1.016 S1.017	63.957 76.713 77.541 10.652	153.4 155.1	S17 S18	84.500 84.000 83.500 83.500	83.075 82.575 82.075 81.968	1.200 1.200	Open Manhole Open Manhole Open Manhole	1050 1050 1050 3000

Wardell Armstrong LLP		Page 12
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	4
Sheffield S35 2PH	Surface Water	Micro
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Diamaye
XP Solutions	Network 2016.1	l

Area Summary for Storm

Number 1.000 2.000 3.000 1.001 4.000 1.002 5.000 1.003 6.000 1.004	Type - - - - - - -	Name - - - -	(%) 100 100 100 100 100	Area (ha) 0.031 0.033 0.218	Area (ha) 0.031 0.033	(ha) 0.031 0.033
2.000 3.000 1.001 4.000 1.002 5.000 1.003 6.000	- - -	- - -	100 100 100	0.033 0.218	0.033	
2.000 3.000 1.001 4.000 1.002 5.000 1.003 6.000	- - -	- - -	100 100 100	0.033 0.218	0.033	
3.000 1.001 4.000 1.002 5.000 1.003 6.000	- - -	- -	100 100	0.218		0.033
1.001 4.000 1.002 5.000 1.003 6.000	- - -	-	100			
4.000 1.002 5.000 1.003 6.000	- -	-			0.218	0.218
1.002 5.000 1.003 6.000	-		1 () ()	0.041	0.041	0.041
5.000 1.003 6.000		-		0.063	0.063	0.063
1.003 6.000			100	0.000	0.000	0.000
6.000	-	-	100	0.028	0.028	0.028
		-	100	0.038	0.038	0.038
1 004	-	-	100	0.050	0.050	0.050
1.004	-	-	100	0.158	0.158	0.158
1.005	-	-	100	0.308	0.308	0.308
7.000	-	-	100	0.053	0.053	0.053
1.006	-	-	100	0.129	0.129	0.129
8.000	-	-	100	0.000	0.000	0.000
8.001	-	-	100	0.000	0.000	0.000
1.007	-	-	100	0.130	0.130	0.130
9.000	-	-	100	0.027	0.027	0.027
9.001	-	-	100	0.017	0.017	0.017
9.002	_	_	100	0.119	0.119	0.119
1.008	_	-	100	0.083	0.083	0.083
10.000	_	_	100	0.011	0.011	0.011
11.000	_	-	100	0.039	0.039	0.039
10.001	_	_	100	0.011	0.011	0.011
10.002	_	_	100	0.035	0.035	0.035
12.000	_	_	100	0.037	0.037	0.037
10.003	_	_	100	0.000	0.000	0.000
10.003	_	_	100	0.000	0.000	0.016
13.000	_	_	100	0.010	0.010	0.010
13.000	_	_	100			
				0.045	0.045	0.045
13.002	-	-	100	0.021	0.021	0.021
10.005	-	-	100	0.025	0.025	0.025
10.006	-	-	100	0.049	0.049	0.049
10.007	-	-	100	0.030	0.030	0.030
14.000	-	-	100	0.071	0.071	0.071
14.001	-	-	100	0.063	0.063	0.063
15.000	-	-	100	0.024	0.024	0.024
15.001	-	-	100	0.000	0.000	0.000
10.008	-	-	100	0.067	0.067	0.067
16.000	-	-	100	0.027	0.027	0.027
16.001	-	-	100	0.030	0.030	0.030
1.009	-	-	100	0.000	0.000	0.000
17.000	-	-	100	0.056	0.056	0.056
17.001	-	-	100	0.000	0.000	0.000
1.010	-	-	100	0.067	0.067	0.067
1.011	-	-	100	0.000	0.000	0.000
1.012	-	-	100	0.000	0.000	0.000
1.013	-	-	100	0.000	0.000	0.000
1.014	-	-	100	0.000	0.000	0.000
1.015	-	-	100	0.000	0.000	0.000
1.016	-	-	100	0.000	0.000	0.000
1.017	-	-	100	0.000	0.000	0.000
		@1 ^ /	32-20	16 XP So	lutions	

Wardell Armstrong LLP		Page 13
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	4
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage
XP Solutions	Network 2016.1	

Area Summary for Storm

Pipe Number		PIMP Name		Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.018	-	-	100	0.000 Total 2.300	0.000 Total 2.300	0.000 Total 2.300

©1982-2016 XP Solutions

Wardell Armstrong	LLP						Pa	age 14
Unit 5, Newton Bus	iness Park		Keighle	У				
Newton Chambers Ro	ad		Energy	from Wast	ce			4
Sheffield S35 2PH			Surface	Water		Micco		
Date 29/10/15			Designe	d by TDi				
File SH11087-2016	08 03.mdx		Checked	by TDi				Drainage
XP Solutions			Network	2016.1				
Hydro-	-Brake Optin			ls for St DS/PN:	<u>s1.010, Volu</u>	me (m³):	4.6	
	-							
					0201-2400-2000			
			.gn Head (,		2.000		
		Design	n Flow (l/			24.0		
			Flush-Fl	-	Calcu			
			2		se upstream st	2		
		0	Applicati		Su	rface		
			np Availab Lameter (m			Yes 201		
			t Level (,	8	5.772		
	Minimum Ou	tlet Pipe D:		,	0	225		
		d Manhole D:				1800		
Control	Points	Hood (m) El	ov. (1/a)	Contr	ol Points	Head (m)	Flow	(1/2)
Control	FOILICS	neau (III) FI	Ow (1/S)	CONCE	OI FOINTS	nead (III)	FIOM	(1/5)
Design Point	(Calculated)	2.000	24.0		Kick-Flo®	1.248		19.2
	Flush-Flo™	0.583	24.0	Mean Flow	over Head Range			20.9

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)								
0.100	6.9	0.800	23.6	2.000	24.0	4.000	33.4	7.000	43.8
0.200	19.0	1.000	22.5	2.200	25.1	4.500	35.4	7.500	45.3
0.300	22.3	1.200	20.1	2.400	26.2	5.000	37.2	8.000	46.7
0.400	23.4	1.400	20.2	2.600	27.2	5.500	39.0	8.500	48.1
0.500	23.9	1.600	21.6	3.000	29.1	6.000	40.7	9.000	49.5
0.600	24.0	1.800	22.8	3.500	31.4	6.500	42.3	9.500	50.8

Wardell Armstrong LLP		Page 15
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	<u> </u>
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Digiliada
XP Solutions	Network 2016.1	I

Offline Controls for Storm

Weir Manhole: S6, DS/PN: S1.006, Loop to PN: S8.000

Discharge Coef 0.544 Width (m) 1.000 Invert Level (m) 86.610

Weir Manhole: S40, DS/PN: S10.007, Loop to PN: S15.000

Discharge Coef 0.544 Width (m) 1.000 Invert Level (m) 86.610

©1982-2016 XP Solutions

Wardell Armstrong LLP		Page 16
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	4
Sheffield S35 2PH	Surface Water	- Com
Date 29/10/15	Designed by TDi	Micro
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage
XP Solutions	Network 2016.1	
Storage	e Structures for Storm	
<u>Porous Car Par</u>	k Manhole: SCP1, DS/PN: S3.000	
Infiltration Coefficient Base	(m/br) = 0.0000 Width $(m) = 40.0$	
Membrane Percolation		
	on (l/s) 600.0 Slope (1:X) 1000.0	
	y Factor2.0 Depression Storage (mm)5Porosity0.30Evaporation (mm/day)3	
I	Porosity 0.30 Evaporation (mm/day) 3	
Invert Le	evel (m) 87.700 Membrane Depth (mm) 100	
<u>Porous Car Par</u>	k Manhole: SCP2, DS/PN: S4.000	
Infiltration Confficient De-	(m/hm) 0 00000 Width (m) 04 0	
Infiltration Coefficient Base Membrane Percolation		
	on (1/s) 166.7	
	y Factor 2.0 Depression Storage (mm) 5	
I	Porosity 0.30 Evaporation (mm/day) 3	
Invert Le	evel (m) 87.750 Membrane Depth (mm) 0	
<u>Complex Mar</u>	nhole: SCP3, DS/PN: S7.000	
	<u>Porous Car Park</u>	
Infiltration Coefficient Base	e (m/hr) 0.00000 Width (m) 25.0	
Membrane Percolation		
Max Percolatio	on (l/s) 138.9 Slope (1:X) 1000.0	
	y Factor 2.0 Depression Storage (mm) 5	
	Porosity 0.30 Evaporation (mm/day) 3	
Invert Le	evel (m) 87.600 Membrane Depth (mm) 0	
<u>In</u>	filtration Trench	
Infiltration Coofficiant Deco	(m/hr) 0.00000 Trench Width (m) 1.	0
Infiltration Coefficient Base Infiltration Coefficient Side		
Safety	-	
-	prosity 0.30 Cap Volume Depth (m) 0.00	
	rel (m) 86.900 Cap Infiltration Depth (m) 0.00	0
<u>Cellular Stora</u>	ge Manhole: S25, DS/PN: S8.001	
Inv Infiltration Coefficier Infiltration Coefficier		
Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²)	Inf. Area (m²)
0.000 200.0 0.0 0.66	0 200.0 0.0 0.661 0.0	0.0
	ſ	
©198	2-2016 XP Solutions	

Wardell Armstrong LLP	Page 17	
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	<u> </u>
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage
XP Solutions	Network 2016.1	1

Cellular Storage Manhole: S42, DS/PN: S15.001

Invert Level (m) 85.954 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²) I	nf. Area (m²)
0.000	150.0	0.0	0.660	150.0	0.0	0.661	0.0	0.0

ardell An	mstrc	ong LLP						Page	18
nit 5, Ne	ewton	Business	Park		Keighley				
ewton Cha	ambers	Road			Energy from	n Waste		4	~
heffield	S35 2	PH			Surface Wat	cer		N/I	
ate 29/10)/15				Designed by		ICLO		
ile SH11()87-20	16 08 03.	mdx		Checked by				ainago
P Solutio					Network 201				
<u>l year</u> Num	Retur Mani F	Areal Hot hole Headlos oul Sewage p Input Hydro of Online Co Rainfall R	Reducti Hot Start I ss Coeff per hect ographs ontrols Model egion E	Lon Facto art (mins Level (mm E (Global tare (l/s 0 Number 1 Number <u>Syn</u> ngland ar d Risk Wa	Simulation Crit r 1.000 Addit) 0 I) 0) 0.500 Flow pa) 0.500 Flow pa) 0.000 per of Offline (c of Storage Str thetic Rainfall FSR M5-60 nd Wales Rat arning (mm)	ts by Maximum tional Flow - % MADD Factor * 10 Inlet er Person per Da Controls 2 Numbe ructures 5 Numbe	of Total Flow)m ³ /ha Storage : Coeffiecient ay (1/per/day) er of Time/Area er of Real Time (Summer) 0.750 (Winter) 0.840 300.0	0.000 2.000 0.800 0.000 a Diagrams e Controls	÷ 0
				Ine	DTS Status DVD Status rtia Status		ON OFF OFF		
	US/MH	Return B	Period(s Seriod(s Seturn	rofile(s s) (mins) (years hange (% Climate	DVD Status rtia Status)) 15, 30, 60, 1) First (X)	Summ 20, 240, 360, 4 First (Y)	OFF OFF er and Winter	Overflow	
PN	US/MH Name	Return B	Period(s Seriod(s Seturn	rofile(s s) (mins) (years hange (%	DVD Status rtia Status)) 15, 30, 60, 1) First (X)	20, 240, 360, 4	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20	Overflow Act.	
PN 51.000		Return E Cl	Period(s Seriod(s Seturn	rofile(s s) (mins) (years hange (% Climate	DVD Status rtia Status)) 15, 30, 60, 1) First (X) Surcharge	20, 240, 360, 4 First (Y)	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z)		Level
	Name	Return E Cl Storm	ration(Period(s imate C Return Period	rofile(s s) (mins) (years hange (% Climate Change	DVD Status rtia Status)) 15, 30, 60, 1) First (X) Surcharge	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z)		Level (m)
S1.000 S2.000 S3.000	Name S1 S20 SCP1	Return E Cl Storm 15 Summer 15 Summer 60 Winter	ration(eriod(s imate C Return Period 1 1 1	rofile(s s) (mins) (years hange (% Climate Change +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z)		Level (m) 86.957 86.959 87.156
S1.000 S2.000 S3.000 S1.001	Name S1 S20 SCP1 S2	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter	ration(eriod(s imate C Return Period 1 1 1 1	rofile(s s) (mins) (years hange (% Climate Change +0% +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z)		Level (m) 86.957 86.959 87.156 86.824
S1.000 S2.000 S3.000 S1.001 S4.000	Name S1 S20 SCP1 S2 SCP2	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 60 Summer	ration(eriod(s imate C Return Period 1 1 1 1 1	rofile(s s) (mins) (years hange (% Climate Change +0% +0% +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z)		Level (m) 86.957 86.959 87.156 86.824 87.290
S1.000 S2.000 S3.000 S1.001 S4.000 S1.002	Name \$1 \$20 \$CP1 \$2 \$CP2 \$3	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 60 Summer 60 Winter	Return Period (s imate C Return Period 1 1 1 1 1 1	rofile(s s) (mins) (years hange (% Climate Change +0% +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z)		Level (m) 86.957 86.959 87.156 86.824 87.290 86.305
S1.000 S2.000 S3.000 S1.001 S4.000	Name S1 S20 SCP1 S2 SCP2	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 60 Summer	ration(eriod(s imate C Return Period 1 1 1 1 1	rofile(s s) (mins) (years hange (% Climate Change +0% +0% +0% +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z)		Level (m) 86.957 86.959 87.156 86.824 87.290
S1.000 S2.000 S3.000 S1.001 S4.000 S1.002 S5.000	Name \$1 \$20 \$CP1 \$2 \$CP2 \$3 \$21	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 60 Winter 15 Summer	Return Period (s imate C Period 1 1 1 1 1 1 1 1 1 1 1 1	rofile(s s) (mins) (years hange (% Climate Change +0% +0% +0% +0% +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z)		Level (m) 86.957 86.959 87.156 86.824 87.290 86.305 87.046 86.282 87.063
S1.000 S2.000 S3.000 S1.001 S4.000 S1.002 S5.000 S1.003 S6.000 S1.004	Name \$1 \$20 \$CP1 \$2 \$32 \$31 \$31 \$22 \$4	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter	Return Period (s imate C Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rofile(s s) (mins) (years hange (% Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/15 Summer 100/15 Summer	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z)		Level (m) 86.957 86.959 87.156 86.824 87.290 86.305 87.046 86.282 87.063 86.263
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005	Name S1 S20 SCP1 S2 SCP2 S3 S21 S3J S22 S4 S5	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 60 Winter	Return Period (s imate C Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rofile(s s) (mins)) (years hange (% Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z)		Level (m) 86.957 86.959 87.156 86.824 87.290 86.305 87.046 86.282 87.063 86.263 86.263
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000	Name S1 S20 SCP1 S2 SCP2 S3J S22 S4 S5 SCP3	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 360 Winter	Return Period (s imate C Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rofile(s s) (mins)) (years hange (% Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Summer 100/15 Summer 100/15 Summer 100/10 Summer 100/10 Summer 100/12 Winter	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z) Overflow	Act.	Level (m) 86.957 86.959 87.156 86.824 87.290 86.305 87.046 86.282 87.063 86.263 86.263 86.241 87.629
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006	Name S1 S20 SCP1 S2 SCP2 S3J S21 S3J S22 S4 S5 SCP3 S6	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 60 Winter 60 Winter 60 Winter	Return Period (s imate C Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rofile(s s) (mins)) (years hange (% Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Summer 100/15 Summer 100/15 Summer 100/15 Summer 100/20 Winter 30/120 Winter	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z)	Act.	Level (m) 86.957 86.959 87.156 86.824 87.290 86.305 87.046 86.282 87.063 86.263 86.263 86.241 87.629 86.230
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006 \$8.000	Name S1 S20 SCP1 S2 SCP2 S3J S21 S3J S22 S4 S5 SCP3 S6 S24	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 360 Winter 240 Winter	Return Period (s imate C Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rofile(s s) (mins)) (years hange (% Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Summer 100/15 Summer 100/15 Summer 100/10 Winter 100/120 Winter 30/120 Winter	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z) Overflow	Act.	Level (m) 86.957 86.959 87.156 86.824 87.290 86.305 87.046 86.282 87.063 86.263 86.263 86.241 87.629 86.230 86.224
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006 \$8.000 \$8.001	Name S1 S20 SCP1 S2 SCP2 S3J S22 S4 S5 SCP3 S6 S24 S25	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 360 Winter 240 Winter	Return Period (s imate C Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rofile(s s) (mins)) (years hange (% Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Summer 100/15 Summer 100/15 Summer 100/15 Summer 100/10 Winter 30/120 Winter 30/120 Winter	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z) Overflow	Act.	Level (m) 86.957 86.959 87.156 86.824 87.290 86.305 87.046 86.282 87.063 86.263 86.263 86.241 87.629 86.230 86.224 86.224
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006 \$8.000 \$8.001 \$1.007	Name S1 S20 SCP1 S2 SCP2 S3J S21 S3J S22 S4 S5 SCP3 S6 S24 S25 S7	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 360 Winter 240 Winter 240 Winter 120 Winter	Return Period (s imate C Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rofile(s s) (mins)) (years hange (% Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DVD Status rtia Status)) 15, 30, 60, 1)) First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Summer 100/15 Summer 100/15 Summer 100/15 Summer 100/10 Winter 30/120 Winter 30/120 Winter 30/120 Winter	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z) Overflow	Act.	Level (m) 86.957 86.959 87.156 86.824 87.290 86.305 87.046 86.282 87.063 86.263 86.263 86.241 87.629 86.230 86.224 86.224
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006 \$8.000 \$8.001	Name S1 S20 SCP1 S2 SCP2 S3J S22 S4 S5 SCP3 S6 S24 S25	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 360 Winter 240 Winter	Return Period (s imate C Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rofile(s s) (mins)) (years hange (% Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DVD Status rtia Status First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Summer 100/15 Summer 100/15 Summer 100/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter 100/15 Summer	20, 240, 360, 4 First (Y) Flood	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z) Overflow	Act.	Level (m) 86.957 86.959 87.156 86.824 87.290 86.305 87.046 86.282 87.063 86.263 86.263 86.241 87.629 86.230 86.224 86.224
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006 \$8.000 \$8.001 \$1.007 \$9.000	Name S1 S20 SCP1 S2 SCP2 S3J S21 S3J S22 S4 S5 SCP3 S6 S24 S25 S7 S50	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 260 Winter 240 Winter 240 Winter 120 Winter 15 Summer	Return Period (s imate C Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rofile(s s) (mins)) (years hange (% Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DVD Status rtia Status First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Summer 100/15 Summer 100/15 Summer 100/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter 100/15 Summer 100/15 Summer 100/15 Summer	20, 240, 360, 4 First (Y) Flood 100/240 Winter	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z) Overflow	Act.	Level (m) 86.957 86.959 87.156 86.824 87.290 86.305 87.046 86.282 87.063 86.263 86.263 86.241 87.629 86.230 86.224 86.224 86.224 86.224
S1.000 S2.000 S3.000 S1.001 S4.000 S1.002 S5.000 S1.003 S6.000 S1.004 S1.005 S7.000 S1.006 S8.000 S8.001 S1.007 S9.000 S9.001	Name S1 S20 SCP1 S2 S22 S3J S22 S4 S5 SCP3 S6 S24 S25 S7 S50 S51 S46	Return E Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 240 Winter 240 Winter 120 Winter 15 Summer 15 Summer 15 Summer	Return Period (s imate C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rofile(s s) (mins)) (years hange (% Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DVD Status rtia Status First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Summer 100/15 Summer 100/15 Summer 100/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter 100/15 Summer 100/15 Summer 100/15 Summer	20, 240, 360, 4 First (Y) Flood 100/240 Winter 100/240 Winter	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z) Overflow	Act.	Level (m) 86.957 86.959 87.156 86.824 87.290 86.305 87.046 86.282 87.063 86.263 86.263 86.241 87.629 86.230 86.224 86.224 86.224 86.224 86.224 86.224
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006 \$8.000 \$8.001 \$1.007 \$9.000 \$9.001 \$9.002	Name S1 S20 SCP1 S2 S22 S3J S22 S4 S5 SCP3 S6 S24 S25 S7 S50 S51 S46	Return F Cl Storm 15 Summer 15 Summer 60 Winter 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 15 Summer 60 Winter 240 Winter 240 Winter 120 Winter 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	Return Period (s imate C Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rofile(s s) (mins)) (years hange (% Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DVD Status rtia Status First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Summer 100/15 Summer 100/120 Winter 30/120 Winter 30/15 Summer 30/15 Summer 30/15 Summer	20, 240, 360, 4 First (Y) Flood 100/240 Winter 100/240 Winter	OFF OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20 First (Z) Overflow	Act.	Level (m) 86.957 86.959 87.156 86.824 87.290 86.305 87.046 86.282 87.063 86.263 86.263 86.263 86.241 87.629 86.230 86.224 86.224 86.224 86.224 86.224 86.224 86.224 86.224 86.224

Wardell Armstrong LLP		Page 19
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	4
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage
XP Solutions	Network 2016.1	

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
				•				
S1.000	S1	-0.093	0.000	0.29		3.9	OK	2
S2.000	S20	-0.091	0.000	0.31		4.1	OK	
S3.000	SCP1	-0.144	0.000	0.26		11.5	OK	
S1.001	S2	-0.112	0.000	0.50		16.7	OK	
S4.000	SCP2	-0.060	0.000	0.31		3.7	OK	
S1.002	S3	-0.515	0.000	0.05		19.2	OK	
S5.000	S21	-0.104	0.000	0.20		3.6	OK	
S1.003	S3J	-0.506	0.000	0.04		21.4	OK*	
S6.000	S22	-0.087	0.000	0.36		6.4	OK	
S1.004	S4	-0.487	0.000	0.05		27.7	OK	
S1.005	S5	-0.433	0.000	0.06		35.7	OK	
S7.000	SCP3	-0.121	0.000	0.08		0.6	OK	
S1.006	S6	-0.378	0.000	0.09	0.0	38.0	OK	
S8.000	S24	-0.376	0.000	0.00		0.1	OK	
S8.001	S25	-0.353	0.000	0.04		7.0	OK	
S1.007	s7	-0.345	0.000	0.10		14.8	OK	
S9.000	S50	-0.099	0.000	0.23		3.2	OK	
S9.001	S51	-0.085	0.000	0.36		4.4	OK	2
S9.002	S46	-0.124	0.000	0.41		15.1	OK	2
S1.008	S8	-0.006	0.000	0.25		17.8	OK	
S10.000	S30	-0.202	0.000	0.02		1.4	OK	
S11.000	S31	-0.085	0.000	0.36		4.9	OK	

Wardell Armstrong LLP	Page 20	
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	<u> </u>
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage
XP Solutions	Network 2016.1	

PN	US/MH Name	Storm		Climate Change		t (X) harge	First Flo		First (Z) Overflow	Overflow Act.	Water Level (m)
S10.001	S32	15 Winter	1	+0%	100/60	Winter					86.476
S10.002	S33	15 Winter	1	+0%	100/60	Winter					86.465
S12.000	S34	15 Summer	1	+0%	100/15	Summer					87.065
S10.003	S33J	15 Winter	1	+0%							86.461
S10.004	S35	15 Winter	1	+0%	100/60	Winter					86.456
S13.000	S39	15 Summer	1	+0%	30/15	Summer	100/15	Winter			87.373
S13.001	S36	15 Winter	1	+0%	30/15	Summer					87.045
S13.002	S37	15 Winter	1	+0%	100/60	Winter					86.819
S10.005	S35J	15 Winter	1	+0%							86.446
S10.006	S38	15 Winter	1	+0%	100/60	Winter					86.428
S10.007	S40	15 Winter	1	+0%	100/60	Winter			30/240 Winter	17	86.370
S14.000	S43	15 Summer	1	+0%	30/15	Summer	100/15	Winter			87.090
S14.001	S44	15 Winter	1	+0%	30/15	Summer					86.730
S15.000	S41	120 Winter	1	+0%	30/240	Winter	100/240	Winter			86.207
S15.001	S42	120 Winter	1	+0%	30/120	Winter	100/240	Winter			86.207
S10.008	S45	120 Winter	1	+0%	30/60	Winter					86.210
S16.000	S26	15 Summer			100/15						87.056
S16.001	S27	15 Summer	1	+0%	100/60	Winter					86.906
S1.009	S9	240 Winter	1	+0%	1/15	Summer					86.220
S17.000	S28	15 Summer			100/15						87.368
S17.001	S29	15 Summer	1	+0읭	100/60	Winter					86.996
S1.010	S10	240 Winter	1	+0%	1/15	Summer					86.234
S1.011		120 Winter		+0%							85.824
S1.012		120 Winter		+0%							85.549
S1.013		120 Winter		+0읭							85.209
S1.014		120 Winter		+0읭							84.834
S1.015		120 Winter		+0%							84.415
S1.016		120 Winter		+0읭							83.195
S1.017		120 Winter		+0읭							82.695
S1.018	S18	120 Winter	1	+0%							82.190

		US/MH	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow		Level
I	PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S10	.001	S32	-0.560	0.000	0.02		6.3	OK	
S10	.002	S33	-0.538	0.000	0.02		7.8	OK	
S12	.000	S34	-0.085	0.000	0.38		4.8	OK	
S10	.003	S33J	-0.535	0.000	0.02		10.7	OK*	
S10	.004	S35	-0.528	0.000	0.04		11.4	OK	
S13	.000	S39	-0.077	0.000	0.41		5.8	OK	1
S13	.001	S36	-0.052	0.000	0.72		9.4	OK	
S13	.002	S37	-0.136	0.000	0.32		11.1	OK	
S10	.005	S35J	-0.519	0.000	0.05		23.5	OK*	
S10	.006	S38	-0.520	0.000	0.06		26.6	OK	
S10	.007	S40	-0.542	0.000	0.04	0.0	28.0	OK	
S14	.000	S43	-0.060	0.000	0.59		8.3	OK	1
S14	.001	S44	-0.086	0.000	0.38		13.7	OK	

Wardell Armstrong LLP		Page 21
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	Drainage
File SH11087-2016 08 03.mdx	Checked by TDi	Diamaye
XP Solutions	Network 2016.1	

		Surcharged		/		Pipe		
	US/MH	Depth		•	Overflow			Level
PN	Name	(m)	(m³)	Cap.	(l/s)	(l/s)	Status	Exceeded
s15.000	S41	-0.383	0.000	0.01		0.8	OK	1
S15.001	S42	-0.347	0.000	0.05		6.7	OK	1
S10.008	S45	-0.257	0.000	0.05		10.5	OK	
S16.000	S26	-0.094	0.000	0.28		3.4	OK	
S16.001	S27	-0.110	0.000	0.16		6.0	OK	
S1.009	S9	0.091	0.000	0.38		23.0	SURCHARGED	
S17.000	S28	-0.082	0.000	0.40		7.1	OK	
S17.001	S29	-0.180	0.000	0.08		7.2	OK	
S1.010	S10	0.237	0.000	0.70		22.7	SURCHARGED	
S1.011	S11	-0.093	0.000	0.64		22.7	OK	
S1.012	S12	-0.094	0.000	0.64		22.7	OK	
S1.013	S13	-0.094	0.000	0.64		22.7	OK	
S1.014	S14	-0.119	0.000	0.45		22.7	OK	
S1.015	S15	-0.138	0.000	0.32		22.7	OK	
S1.016	S16	-0.105	0.000	0.56		22.7	OK	
S1.017	S17	-0.105	0.000	0.56		22.7	OK	
S1.018	S18	-0.110	0.000	0.52		22.7	OK	

lardell A	rmstro	ng LLP							Page	22
Init 5, N	ewton	Business	Park		Keighl	ey				
lewton Ch	ambers	Road			Energy	/ from		4		
Sheffield	S35 2	PH			Surfac				-v	
ate 29/1					Design					
,	-, -	16 08 03.	mdv		Checke	-			Dr	ainag
		10 00 03.	IIIUX							
IP Soluti	ons				Networ	CK 2010	o.⊥			
<u>30 yea</u>	<u>Retu</u>	rn Period	Summa	ry of Ci	ritical	Result	s by Maximu	m Level (Ran)	<u>k 1) for</u>	Storm
			Hot Sta	lon Facto) 0	Addit	lonal Flow - % ADD Factor * 1	of Total Flow Om³/ha Storage t Coeffiecient	2.000	
		hole Headlo: oul Sewage p				flow per	r Person per D	ay (l/per/day)	0.000	
								er of Time/Area er of Real Time	-	
				Svnt	thetic Ra	infall	Details			
		Rainfall	Model	<u>0 y 11</u>				(Summer) 0.750		
		R	egion E	ngland ar				(Winter) 0.840		
			_							
		Margin f	for Floo		arning (m			300.0		
				Analys	15 Timest DTS Stat	-	Second Increme	ent (Extended) ON		
					DVD Stat			ON		
				Ine	rtia Stat			OFF		
			_				~	· · · · · · · · · · · ·		
		Du		rofile(s)		60 12		ner and Winter 480, 960, 1440		
) (years)		60, IZ	0, 240, 360, 4	1, 30, 100		
				hange (%)				0, 0, 20		
				-						
										Water
	US/MH		Return	Climate	First	(X)	First (Y)	First (Z)	Overflow	
PN	Name	Storm	Period	Change	Surcha	rge	Flood	Overflow	Act.	(m)
S1.000	S1	30 Winter	30	+0%			100/240 Winter			87.157
S2.000 S3.000	S20 SCP1	30 Winter 30 Summer	30 30	+0응 +0응	30/15 s 30/15 s					87.158 87.471
S3.000 S1.001	SCP1 S2	30 Summer 30 Winter	30	+0% +0%	30/15 8					87.471
S1.001 S4.000	SCP2	15 Winter	30	+03 +08	30/15 8					87.502
S4.000 S1.002		240 Winter	30	+0%	100/60 \$					86.652
S1.002	S21	15 Summer	30	+0%	100/60 0					87.076
s1.003		240 Winter	30	+0%	,,					86.652
S6.000	s22	15 Summer	30	+0%	100/15 \$	Summer				87.111
S1.004		240 Winter	30	+0%	100/60 \$					86.652
s1.005		240 Winter	30	+0%	100/30 V					86.651
S7.000		120 Winter	30	+0%	100/120 V					87.656
S1.006		240 Winter	30	+0%	30/120 V			30/120 Winter	20	86.650
S8.000	S24	240 Winter	30	+0%	30/120 V	Vinter				86.650
	00	240 Winter	30	+0응	30/120 V	Vinter				86.650
S8.001			50							00.000
S8.001 S1.007 S9.000	S7	240 Winter 15 Summer	30 30	+0% +0%	30/120 V	Vinter				86.651 87.086

87.086

86.823

86.647

86.654

87.334

87.115

S9.000

S9.001

S9.002

S1.008

S50 15 Summer

S51 15 Summer

S46 240 Winter

S8 240 Winter

S10.000 S30 15 Summer S11.000 S31 15 Summer

+0% 100/15 Summer

+0% 100/120 Summer

+0% 100/15 Summer

30/15 Summer

©1982-2016 XP Solutions

+0% 100/15 Summer 100/240 Winter

+0% 30/15 Summer 100/240 Winter

30

30

30

30

30

30

+0%

Wardell Armstrong LLP		Page 23
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	<u> </u>
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Diamaye
XP Solutions	Network 2016.1	1

US/MH	Depth	Volume	•				Level
Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1	0.107	0.000	0.49		6.6	SURCHARGED	2
S20	0.108	0.000	0.52		7.0	SURCHARGED	
SCP1	0.171	0.000	0.95		41.4	SURCHARGED	
S2	0.200	0.000	1.67		56.2	SURCHARGED	
SCP2	0.152	0.000	1.13		13.8	SURCHARGED	
S3	-0.168	0.000	0.06		22.8	OK	
S21	-0.074	0.000	0.49		8.7	OK	
S3J	-0.137	0.000	0.04		22.5	OK*	
S22	-0.039	0.000	0.87		15.6	OK	
S4	-0.099	0.000	0.05		28.8	OK	
S5	-0.023	0.000	0.06		36.0	OK	
SCP3	-0.094	0.000	0.30		2.2	OK	
S6	0.042	0.000	0.08	0.1	34.9	SURCHARGED	
S24	0.050	0.000	0.00		0.1	SURCHARGED	
S25	0.073	0.000	0.05		8.8	SURCHARGED	
S7	0.081	0.000	0.12		17.9	SURCHARGED	
S50	-0.064	0.000	0.55		7.8	OK	
S51	-0.008	0.000	0.90		10.9	OK	2
S46	0.036	0.000	0.27		10.0	SURCHARGED	2
S8	0.425	0.000	0.33		23.6	SURCHARGED	
S30	-0.191	0.000	0.05		3.4	OK	
S31	-0.035	0.000	0.88		11.9	OK	
	Name S1 S20 SCP1 S2 S22 S3J S21 S3J S22 S4 S55 SCP3 S6 S24 S25 S7 S50 S51 S46 S8 S30	US/MH Depth Name (m) S1 0.107 S20 0.108 SCP1 0.171 S2 0.200 SCP2 0.152 S3 -0.168 S21 -0.074 S3J -0.137 S22 -0.039 S4 -0.099 S5 -0.023 SCP3 -0.094 S6 0.042 S24 0.050 S25 0.073 S7 0.081 S50 -0.064 S51 -0.008 S46 0.036 S8 0.425 S30 -0.191	Name(m)(m³)S10.1070.000S200.1080.000SCP10.1710.000S20.2000.000SCP20.1520.000S3-0.1680.000S21-0.0740.000S3J-0.1370.000S4-0.0990.000S5-0.0230.000S240.0500.000S250.0730.000S51-0.0640.000S51-0.0080.000S51-0.0080.000S460.0360.000S51-0.0140.000S51-0.0080.000S460.0360.000S30-0.1910.000	US/MH Depth Volume Flow / Cap. S1 0.107 0.000 0.49 S20 0.108 0.000 0.52 SCP1 0.171 0.000 1.67 S2 0.200 0.000 1.67 SCP2 0.152 0.000 1.613 S3 -0.168 0.000 0.49 S3J -0.171 0.000 0.49 S3J -0.152 0.000 1.67 S22 0.200 0.000 0.06 S21 -0.074 0.000 0.49 S3J -0.137 0.000 0.04 S22 -0.039 0.000 0.04 S24 -0.099 0.000 0.00 S4 -0.094 0.000 0.00 S24 0.050 0.000 0.00 S50 -0.064 0.000 0.55 S51 -0.008 0.000 0.27 S8 0.425 0.000	US/MHDepthVolume (m³)Flow / Cap.Overflow (l/s)S10.1070.0000.49S200.1080.0000.52SCP10.1710.0000.95S20.2000.0001.67SCP20.1520.0001.13S3-0.1680.0000.04S21-0.0740.0000.49S3J-0.1370.0000.04S22-0.0390.0000.87S4-0.0990.0000.05S5-0.0230.0000.08S240.0500.0000.00S250.0730.0000.05S70.0810.0000.12S50-0.0640.0000.27S80.4250.0000.33S30-0.1910.0000.05	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	US/MH Name Depth (m) Volume (m ³) Flow / Cap. Overflow (l/s) Flow (l/s) Status S1 0.107 0.000 0.49 6.6 SURCHARGED S20 0.108 0.000 0.52 7.0 SURCHARGED SCP1 0.171 0.000 0.95 41.4 SURCHARGED S2 0.200 0.000 1.67 56.2 SURCHARGED S2 0.200 0.000 1.13 13.8 SURCHARGED S3 -0.168 0.000 0.06 22.8 0K S21 -0.074 0.000 0.49 8.7 0K S3J -0.137 0.000 0.49 8.7 0K S4 -0.099 0.000 0.87 15.6 0K S4 -0.099 0.000 0.87 15.6 0K S5 -0.023 0.000 0.30 2.2 0K S6 0.042 0.000 0.30 2.2 0K

Wardell Armstrong LLP		Page 24
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	<u> </u>
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Diginarie
XP Solutions	Network 2016.1	

PN	US/MH Name	St	corm		Climate Change			First Flo		First Overf		Overflow Act.	Water Level (m)
S10.001	S32	240	Winter	30	+0%	100/60	Winter						86.625
S10.002	S33	240	Winter	30	+0%	100/60	Winter						86.625
S12.000	S34	15	Summer	30	+0%	100/15	Summer						87.117
S10.003	S33J	240	Winter	30	+0%								86.625
S10.004		240	Winter	30	+0읭	100/60							86.626
S13.000	S39		Winter	30	+0읭	30/15	Summer	100/15	Winter				87.580
S13.001	S36		Winter	30	+0응	30/15	Summer						87.404
S13.002	S37		Winter	30		100/60	Winter						86.869
S10.005			Winter	30	+0읭								86.626
S10.006	S38	240	Winter	30	+0%	100/60	Winter						86.626
S10.007	S40		Winter	30	+0읭	100/60	Winter			30/240	Winter	17	86.626
S14.000	S43	15	Summer	30	+0응	30/15	Summer	100/15	Winter				87.459
S14.001	S44	15	Winter	30	+0%	30/15	Summer						87.031
S15.000	S41	240	Winter	30	+0%	30/240	Winter	100/240	Winter				86.626
S15.001	S42	240	Winter	30	+0%	30/120	Winter	100/240	Winter				86.627
S10.008	S45	240	Winter	30	+0%	30/60	Winter						86.627
S16.000	S26	15	Summer	30	+0%	100/15	Summer						87.096
S16.001	S27	15	Summer	30	+0%	100/60	Winter						86.937
S1.009	S9	240	Winter	30	+0%	1/15	Summer						86.642
S17.000	S28	15	Summer	30	+0%	100/15	Summer						87.437
S17.001	S29	15	Summer	30	+0%	100/60	Winter						87.020
S1.010	S10	240	Winter	30	+0%	1/15	Summer						86.644
S1.011	S11	240	Winter	30	+0%								85.828
S1.012	S12	240	Winter	30	+0%								85.554
S1.013	S13	240	Winter	30	+0%								85.214
S1.014	S14	240	Winter	30	+0%								84.837
S1.015	S15	240	Winter	30	+0%								84.418
S1.016	S16	240	Winter	30	+0%								83.199
S1.017	S17	240	Winter	30	+0응								82.700
S1.018	S18	240	Winter	30	+0%								82.194

		US/MH	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow		Level
	PN	Name	(m)	(m ³)	Cap.	(1/s)	(1/s)	Status	Exceeded
2	510.001	S32	-0.411	0.000	0.01		3.7	OK	
2	510.002	S33	-0.378	0.000	0.01		5.7	OK	
5	512.000	S34	-0.033	0.000	0.93		11.7	OK	
S	510.003	S33J	-0.371	0.000	0.01		7.9	OK*	
2	510.004	S35	-0.358	0.000	0.03		8.8	OK	
2	513.000	S39	0.130	0.000	0.82		11.5	SURCHARGED	1
S	313.001	S36	0.307	0.000	1.51		19.6	SURCHARGED	
2	513.002	S37	-0.086	0.000	0.69		23.5	OK	
2	510.005	S35J	-0.339	0.000	0.04		17.3	OK*	
2	510.006	S38	-0.322	0.000	0.05		19.9	OK	
2	510.007	S40	-0.286	0.000	0.03	0.0	20.5	OK	
\$	314.000	S43	0.309	0.000	1.18		16.7	SURCHARGED	1
2	514.001	S44	0.215	0.000	0.76		27.7	SURCHARGED	
			C	1982-20	016 XP	Solution	ns		

Wardell Armstrong LLP		Page 25
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	4
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Digiliga
XP Solutions	Network 2016.1	

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
s15.000	S41	0.036	0.000	0.01		1.2	SURCHARGED	1
S15.001	S42	0.073	0.000	0.05		5.7		1
S10.008	S45	0.160	0.000	0.08		16.5	SURCHARGED	
S16.000	S26	-0.054	0.000	0.68		8.2	OK	
S16.001	S27	-0.079	0.000	0.45		16.6	OK	
S1.009	S9	0.513	0.000	0.45		27.7	SURCHARGED	
S17.000	S28	-0.013	0.000	0.99		17.3	OK	
S17.001	S29	-0.156	0.000	0.20		17.3	OK	
S1.010	S10	0.647	0.000	0.74		24.0	SURCHARGED	
S1.011	S11	-0.089	0.000	0.68		24.0	OK	
S1.012	S12	-0.089	0.000	0.68		24.0	OK	
S1.013	S13	-0.089	0.000	0.67		24.0	OK	
S1.014	S14	-0.116	0.000	0.48		24.0	OK	
S1.015	S15	-0.135	0.000	0.34		24.0	OK	
S1.016	S16	-0.101	0.000	0.59		24.0	OK	
S1.017	S17	-0.100	0.000	0.59		24.0	OK	
S1.018	S18	-0.106	0.000	0.55		24.0	OK	

Wardell A								raye	26
		Business	Park		Keighley				
lewton Ch					Energy from			2	<u> </u>
heffield		2PH			Surface Wat	cer		M	
ate 29/1	0/15				Designed by	v TDi			ainac
'ile SH11	087-20	016 08 03.	mdx		Checked by	TDi		UI	ainac
P Soluti	ons				Network 201	6.1			
Nur	Man F nber of	Areal Hot hole Headlo oul Sewage Input Hydr of Online Co Rainfall F	Reduct: Hot Start I ss Coeff per hect ographs ontrols Model tegion E	lon Facto art (mins Level (mm E (Global care (l/s 0 Numk 1 Number <u>Syn</u> ngland au d Risk W	Simulation Crif or 1.000 Addi) 0 I) 0.500 Flow per) 0.500 Flow per) 0.000 per of Offline (c of Storage Str <u>thetic Rainfall</u> FSR M5-60 nd Wales Rat arning (mm)	tional Flow - % MADD Factor * 10 Inlet er Person per Da Controls 2 Numbe ructures 5 Numbe	of Total Flow m ³ /ha Storage Coeffiecient y (l/per/day) er of Time/Area er of Real Time (Summer) 0.750 (Winter) 0.840 300.0	0.000 2.000 0.800 0.000 a Diagrams e Controls	0
		Return 1	uration(Period(s	rofile(s) 15, 30, 60, 1)	Summ 20, 240, 360, 4	OFF er and Winter 80, 960, 1440 1, 30, 100 0, 0, 20		
	US/MH		Return	Climate	First (X)	First (Y)	First (7)	Overflow	
DN	Name			Change	Surcharge	Flood			Water Level
PN		Storm					Overflow	Act.	
S1.000		360 Winter	100	+20%		100/240 Winter	OVEILIOW		Level (m) 87.902
S1.000 S2.000	S20	360 Winter 240 Winter	100 100	+20%	30/15 Summer		OVEIIIOW		Level (m) 87.902 87.929
S1.000 S2.000 S3.000	S20 SCP1	360 Winter 240 Winter 360 Winter	100 100 100	+20% +20%	30/15 Summer 30/15 Summer		OVEILLOW		Level (m) 87.902 87.929 87.887
S1.000 S2.000 S3.000 S1.001	S20 SCP1 S2	360 Winter 240 Winter 360 Winter 240 Winter	100 100 100 100	+20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer		UVEITIOW		Level (m) 87.902 87.929 87.887 87.928
S1.000 S2.000 S3.000 S1.001 S4.000	S20 SCP1 S2 SCP2	360 Winter 240 Winter 360 Winter 240 Winter 240 Winter	100 100 100 100 100	+20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer		UVEITIOW		Level (m) 87.902 87.929 87.887 87.928 87.904
S1.000 S2.000 S3.000 S1.001 S4.000 S1.002	S20 SCP1 S2 SCP2 S3	360 Winter 240 Winter 360 Winter 240 Winter 240 Winter 240 Winter	100 100 100 100 100 100	+20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer		UVEITIOW		Level (m) 87.902 87.929 87.887 87.928 87.904 87.993
S1.000 S2.000 S3.000 S1.001 S4.000 S1.002 S5.000	S20 SCP1 S2 SCP2 S3 S21	360 Winter 240 Winter 360 Winter 240 Winter 240 Winter 240 Winter 240 Winter	100 100 100 100 100 100	+20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer		UVEITIOW		Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997
S1.000 S2.000 S3.000 S1.001 S4.000 S1.002 S5.000 S1.003	\$20 \$CP1 \$2 \$CP2 \$3 \$21 \$3J	360 Winter 240 Winter 360 Winter 240 Winter 240 Winter 240 Winter 240 Winter 120 Winter	100 100 100 100 100 100 100	+20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Winter		UVEITIOW		Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997 86.789
S1.000 S2.000 S3.000 S1.001 S4.000 S1.002 S5.000 S1.003 S6.000	\$20 \$CP1 \$2 \$CP2 \$3 \$21 \$3J \$22	360 Winter 240 Winter 360 Winter 240 Winter 240 Winter 240 Winter 120 Winter 240 Winter	100 100 100 100 100 100 100 100	+20% +20% +20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Winter		OVEILIOW		Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997 86.789 88.007
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004	\$20 \$CP1 \$2 \$CP2 \$3 \$21 \$3J \$22 \$4	360 Winter 240 Winter 360 Winter 240 Winter 240 Winter 240 Winter 120 Winter 240 Winter 240 Winter 240 Winter	100 100 100 100 100 100 100 100 100	+20% +20% +20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/15 Summer 100/15 Summer		UVEITIOW		Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997 86.789 88.007 87.998
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005	\$20 \$CP1 \$2 \$3 \$21 \$3J \$22 \$4 \$5	360 Winter 240 Winter 360 Winter 240 Winter 240 Winter 240 Winter 120 Winter 240 Winter 240 Winter 240 Winter 240 Winter	100 100 100 100 100 100 100 100 100 100	+20% +20% +20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Winter 100/15 Summer 100/60 Summer 100/30 Winter		OVEILIOW		Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997 86.789 88.007 87.998 87.998
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000	\$20 \$CP1 \$2 \$CP2 \$3 \$21 \$3J \$22 \$4 \$5 \$CP3	360 Winter 240 Winter 360 Winter 240 Winter 240 Winter 240 Winter 120 Winter 240 Winter 240 Winter 240 Winter 240 Winter 240 Winter	100 100 100 100 100 100 100 100 100 100	+20% +20% +20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Winter 100/60 Summer 100/30 Winter 100/120 Winter			Act.	Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997 86.789 88.007 87.998 87.998 87.919
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006	\$20 \$CP1 \$2 \$CP2 \$3 \$21 \$3J \$22 \$4 \$5 \$CP3 \$6	360 Winter 240 Winter 360 Winter 240 Winter	100 100 100 100 100 100 100 100 100 100	+20% +20% +20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Winter 100/60 Summer 100/60 Summer 100/30 Winter 100/120 Winter 30/120 Winter		30/120 Winter	Act.	Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997 86.789 88.007 87.998 87.998 87.919 87.997
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006 \$8.000	\$20 \$CP1 \$2 \$33 \$21 \$3J \$22 \$4 \$5 \$CP3 \$6 \$24	360 Winter 240 Winter 360 Winter 240 Winter	100 100 100 100 100 100 100 100 100 100	+20% +20% +20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Winter 100/60 Summer 100/120 Winter 30/120 Winter 30/120 Winter			Act.	Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997 86.789 88.007 87.998 87.998 87.919 87.997 87.999
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006 \$8.000 \$8.001	\$20 \$CP1 \$2 \$CP2 \$3 \$21 \$3J \$22 \$4 \$5 \$CP3 \$6 \$24 \$25	360 Winter 240 Winter 360 Winter 240 Winter	100 100 100 100 100 100 100 100 100 100	+20% +20% +20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Winter 100/60 Summer 100/120 Winter 30/120 Winter 30/120 Winter			Act.	Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997 86.789 88.007 87.998 87.998 87.919 87.999 87.999
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006 \$8.000 \$8.001 \$1.007	\$20 \$CP1 \$2 \$CP2 \$3 \$21 \$3J \$22 \$4 \$5 \$CP3 \$6 \$24 \$25 \$7	360 Winter 240 Winter 360 Winter 240 Winter	100 100 100 100 100 100 100 100 100 100	+20% +20% +20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Winter 100/15 Summer 100/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter			Act.	Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997 86.789 88.007 87.998 87.998 87.919 87.999 87.999 87.999
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006 \$8.000 \$8.001 \$1.007 \$9.000	\$20 \$CP1 \$2 \$CP2 \$3 \$21 \$3J \$22 \$4 \$5 \$CP3 \$6 \$24 \$25 \$7 \$50	360 Winter 240 Winter 360 Winter 240 Winter	100 100 100 100 100 100 100 100 100 100	+20% +20% +20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Winter 100/15 Summer 100/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter 100/15 Summer	100/240 Winter		Act.	Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997 86.789 88.007 87.998 87.998 87.919 87.999 87.999 87.999 87.999 88.011
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006 \$8.000 \$8.001 \$1.007 \$9.000 \$9.001	\$20 \$CP1 \$2 \$CP2 \$3 \$21 \$3J \$22 \$4 \$5 \$CP3 \$6 \$24 \$25 \$7 \$50 \$51	360 Winter 240 Winter 360 Winter 240 Winter	100 100 100 100 100 100 100 100 100 100	+20% +20% +20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Winter 100/15 Summer 100/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter 100/15 Summer 100/15 Summer	100/240 Winter		Act.	Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997 86.789 88.007 87.998 87.998 87.919 87.999 87.999 87.999 87.999 87.999 88.011 88.002
\$1.000 \$2.000 \$3.000 \$1.001 \$4.000 \$1.002 \$5.000 \$1.003 \$6.000 \$1.004 \$1.005 \$7.000 \$1.006 \$8.000 \$8.001 \$1.007 \$9.000	\$20 \$CP1 \$2 \$CP2 \$3 \$21 \$3J \$22 \$4 \$5 \$CP3 \$6 \$24 \$25 \$7 \$50 \$51 \$46	360 Winter 240 Winter 360 Winter 240 Winter	100 100 100 100 100 100 100 100 100 100	+20% +20% +20% +20% +20% +20% +20% +20%	30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/60 Summer 100/60 Winter 100/15 Summer 100/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter 30/120 Winter 100/15 Summer 100/15 Summer	100/240 Winter		Act.	Level (m) 87.902 87.929 87.887 87.928 87.904 87.993 87.997 86.789 88.007 87.998 87.998 87.919 87.999 87.999 87.999 87.999 88.011

88.017

88.016

S11.000 S31 240 Winter

S10.000

S8 240 Winter S30 240 Winter

100

100

+20% 100/120 Summer

+20% 100/15 Summer

Wardell Armstrong LLP		Page 27
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	4
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Diamaye
XP Solutions	Network 2016.1	1

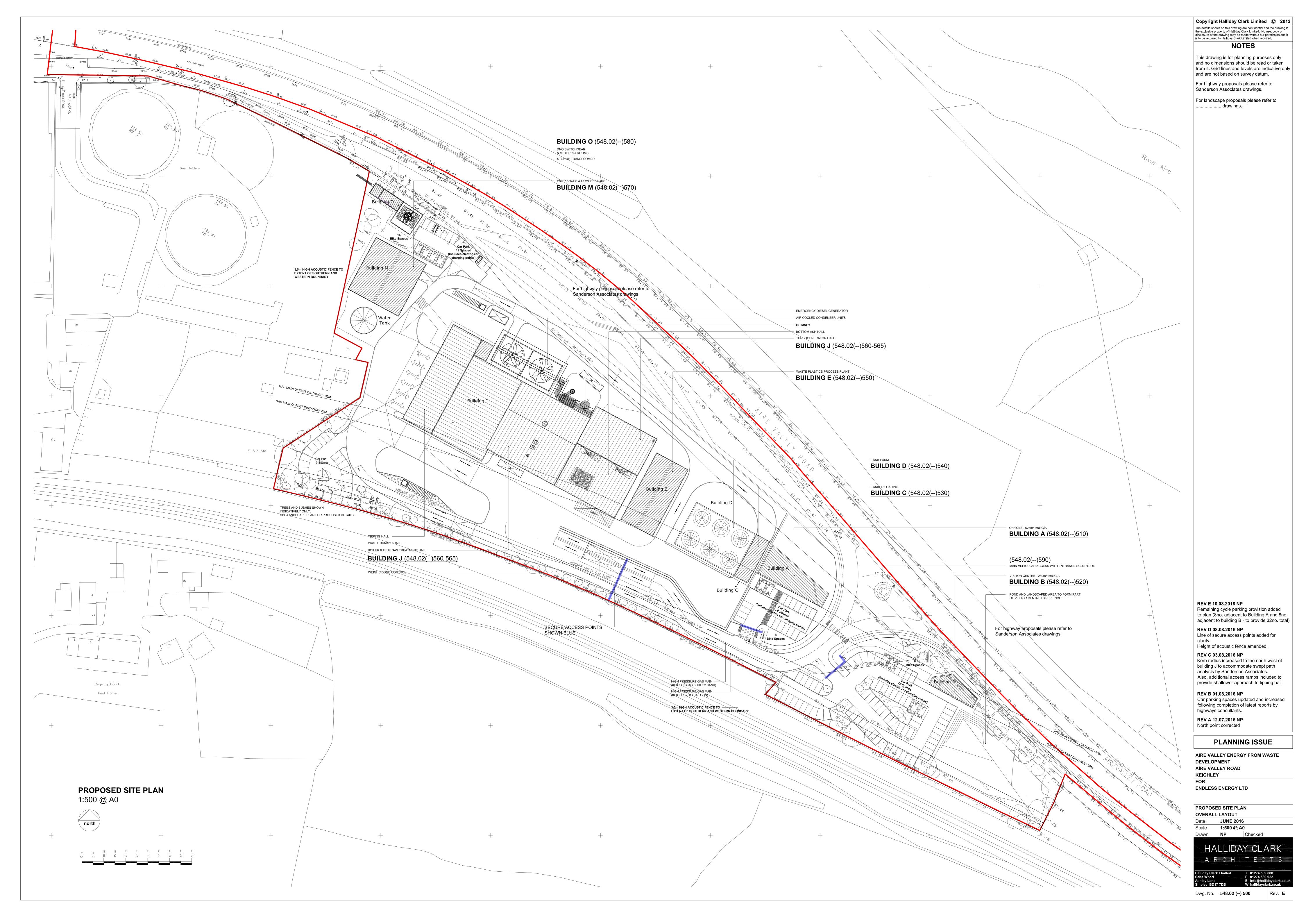
PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	0.852	1.809	0.17		2.2	FLOOD	2
S2.000	S20	0.879	0.000	0.23		3.2	FLOOD RISK	
S3.000	SCP1	0.587	0.000	0.37		16.2	FLOOD RISK	
S1.001	S2	0.992	0.000	0.92		31.0	SURCHARGED	
S4.000	SCP2	0.554	0.000	0.50		6.1	SURCHARGED	
S1.002	S3	1.173	0.000	0.09		35.6	SURCHARGED	
S5.000	S21	0.847	0.000	0.15		2.7	SURCHARGED	
S1.003	S3J	0.000	0.000	0.10		56.6	SURCHARGED*	
S6.000	S22	0.857	0.000	0.27		4.8	FLOOD RISK	
S1.004	S4	1.247	0.000	0.08		43.8	SURCHARGED	
S1.005	S5	1.323	0.000	0.10		54.2	SURCHARGED	
S7.000	SCP3	0.169	0.000	0.95		7.1	SURCHARGED	
S1.006	S6	1.389	0.000	0.14	3.3	58.2	SURCHARGED	
S8.000	S24	1.399	0.000	0.02		2.0	SURCHARGED	
S8.001	S25	1.422	0.000	0.01		2.0	FLOOD RISK	
S1.007	S7	1.429	0.000	0.41		62.9	FLOOD RISK	
S9.000	S50	0.861	0.000	0.18		2.6	FLOOD RISK	
S9.001	S51	1.171	1.877	0.41		4.9	FLOOD	2
S9.002	S46	1.391	1.828	0.41		15.2	FLOOD	2
S1.008	S8	1.791	0.000	1.09		77.1	FLOOD RISK	
S10.000	S30	0.492	0.000	0.02		1.1	FLOOD RISK	
S11.000	S31	0.866	0.000	0.28		3.8	FLOOD RISK	

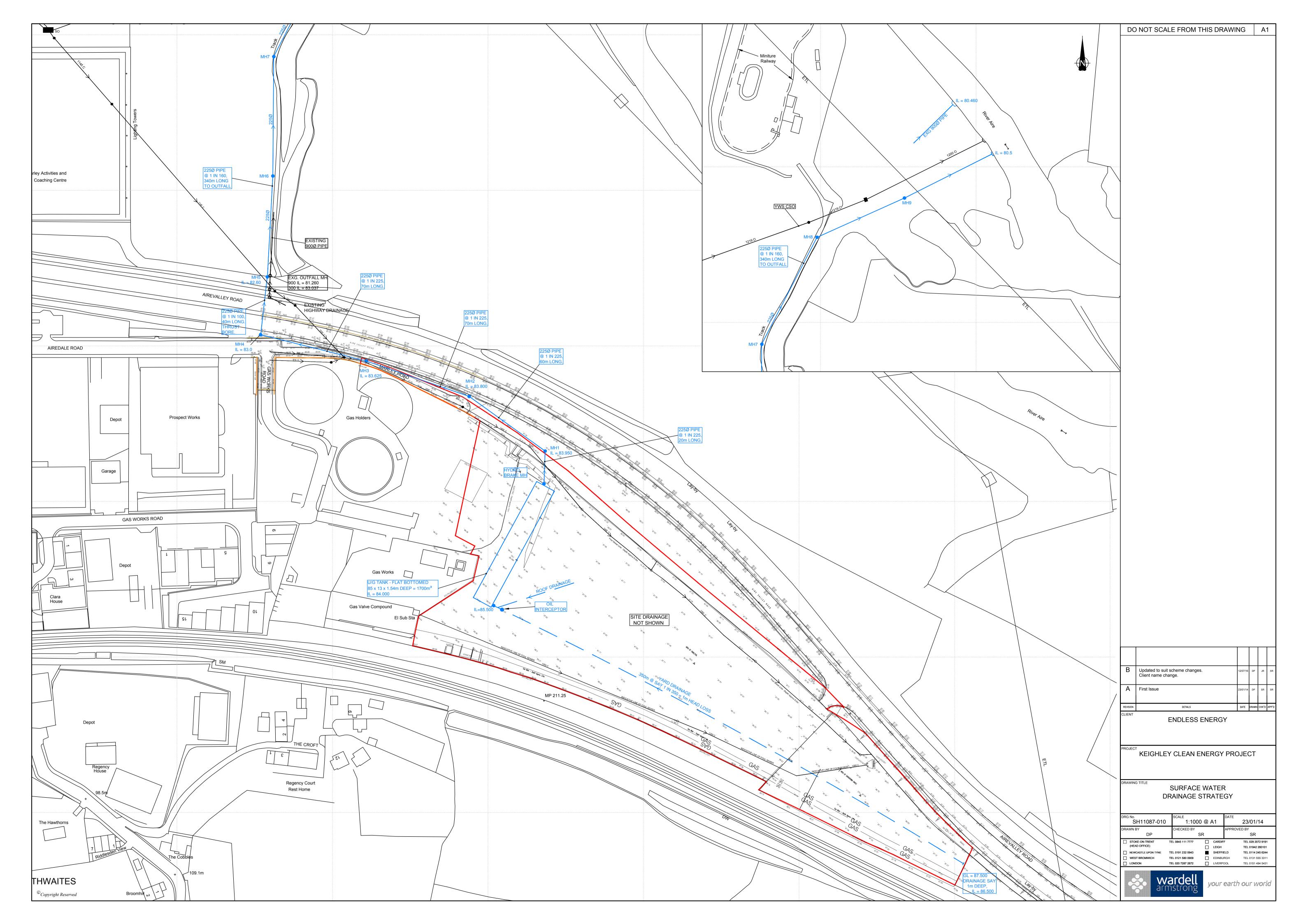
Wardell Armstrong LLP		Page 28
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	4
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Drainage
XP Solutions	Network 2016.1	

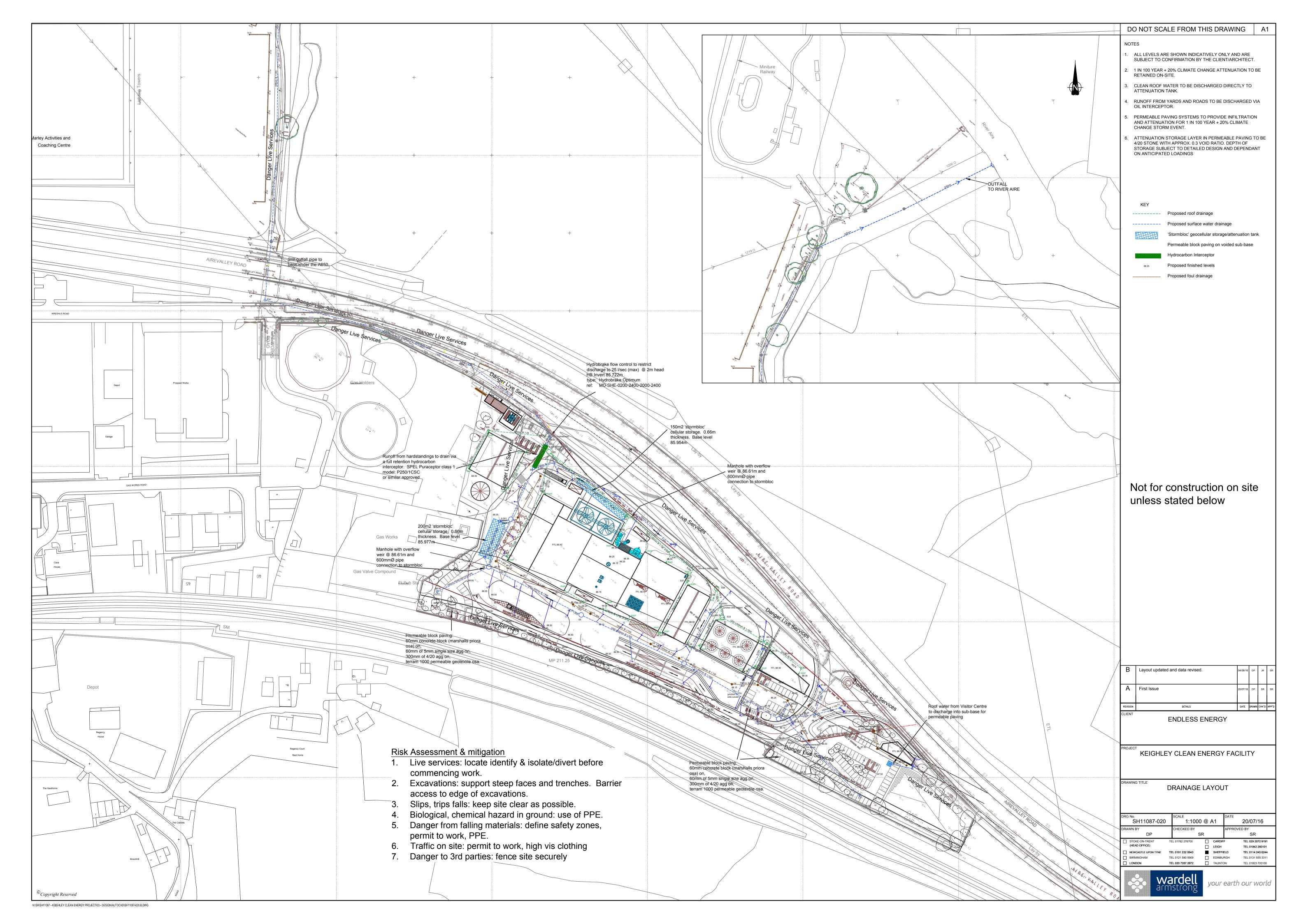
PN	US/MH Name	Storm		Climate Change		t (X) harge	First Flo		First (Z) Overflow	Overflow Act.	Water Level (m)
S10.001	S32	240 Winter	100	+20%	100/60	Winter					88.012
S10.002	S33	240 Winter	100	+20%	100/60	Winter					88.012
S12.000	S34	240 Winter	100	+20%	100/15	Summer					88.015
S10.003	S33J	120 Winter	100	+20%							86.996
S10.004	S35	240 Winter	100	+20%	100/60	Winter					88.011
S13.000	S39	15 Winter	100	+20%	30/15	Summer	100/15	Winter			88.200
S13.001	S36	240 Winter	100	+20%	30/15	Summer					88.036
S13.002	S37	240 Winter	100	+20%	100/60	Winter					88.017
S10.005	S35J	120 Winter	100	+20%							86.965
S10.006	S38	240 Winter	100	+20%	100/60	Winter					88.013
S10.007	S40	240 Winter	100	+20%	100/60	Winter			30/240 Winter	17	88.014
S14.000	S43	15 Winter	100	+20%	30/15	Summer	100/15	Winter			88.300
S14.001	S44	240 Winter	100	+20%	30/15	Summer					88.043
S15.000	S41	240 Winter	100	+20%	30/240	Winter	100/240	Winter			88.004
S15.001	S42	240 Winter	100	+20%	30/120	Winter	100/240	Winter			88.003
S10.008	S45	240 Winter	100	+20%	30/60	Winter					88.027
S16.000	S26	240 Winter	100	+20%	100/15	Summer					88.023
S16.001	S27	240 Winter	100	+20%	100/60	Winter					88.026
S1.009	S9	240 Winter	100	+20%	1/15	Summer					88.026
S17.000	S28	240 Winter	100	+20%	100/15	Summer					88.019
S17.001	S29	240 Winter	100	+20%	100/60	Winter					88.012
S1.010	S10	240 Winter	100	+20%	1/15	Summer					88.019
S1.011	S11	240 Winter	100	+20%							85.832
S1.012	S12	240 Winter	100	+20%							85.557
S1.013	S13	240 Winter	100	+20%							85.216
S1.014	S14	240 Winter	100	+20%							84.839
S1.015	S15	240 Winter	100	+20%							84.420
S1.016	S16	240 Winter	100	+20%							83.202
S1.017	S17	240 Winter	100	+20%							82.702
S1.018	S18	240 Winter	100	+20%							82.196

			Surcharged	Flooded			Pipe		
		US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
	PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
S	10.001	S32	0.976	0.000	0.01		5.1	FLOOD RISK	
S	10.002	S33	1.009	0.000	0.01		7.2	FLOOD RISK	
S	12.000	S34	0.865	0.000	0.28		3.6	FLOOD RISK	
S	10.003	S33J	0.000	0.000	0.03		16.6	SURCHARGED*	
S	10.004	S35	1.027	0.000	0.04		11.0	FLOOD RISK	
S	13.000	S39	0.750	0.153	0.95		13.5	FLOOD	1
S	13.001	S36	0.939	0.000	0.70		9.1	SURCHARGED	
S	13.002	S37	1.062	0.000	0.33		11.2	SURCHARGED	
S	10.005	S35J	0.000	0.000	0.08		34.7	SURCHARGED*	
S	10.006	S38	1.065	0.000	0.06		24.7	FLOOD RISK	
S	10.007	S40	1.102	0.000	0.04	27.3	24.3	FLOOD RISK	
S	14.000	S43	1.150	0.225	1.35		19.0	FLOOD	1
S	14.001	S44	1.227	0.000	0.36		12.9	FLOOD RISK	
			(01982-2	016 XP	Solutio	ns		

Wardell Armstrong LLP		Page 29
Unit 5, Newton Business Park	Keighley	
Newton Chambers Road	Energy from Waste	4
Sheffield S35 2PH	Surface Water	Micco
Date 29/10/15	Designed by TDi	
File SH11087-2016 08 03.mdx	Checked by TDi	Digiliarde
XP Solutions	Network 2016.1	


		Surcharged				Pipe		_
	US/MH	Depth		Flow /	Overflow			Level
PN	Name	(m)	(m³)	Cap.	(l/s)	(l/s)	Status	Exceeded
015 000	0.4.1	1 414	2 000	0 1 2		20 C	EI 00 D	1
S15.000	S41	1.414	3.989	0.13		20.6	FLOOD	1
S15.001	S42	1.449	3.242	0.18		22.8	FLOOD	1
S10.008	S45	1.560	0.000	0.12		24.8	FLOOD RISK	
S16.000	S26	0.873	0.000	0.22		2.6	FLOOD RISK	
S16.001	S27	1.010	0.000	0.15		5.5	FLOOD RISK	
S1.009	S9	1.897	0.000	0.42		25.7	FLOOD RISK	
S17.000	S28	0.569	0.000	0.31		5.4	SURCHARGED	
S17.001	S29	0.836	0.000	0.06		5.4	SURCHARGED	
S1.010	S10	2.022	0.000	0.76		24.7	FLOOD RISK	
S1.011	S11	-0.085	0.000	0.70		24.7	OK	
S1.012	S12	-0.086	0.000	0.70		24.7	OK	
S1.013	S13	-0.087	0.000	0.70		24.7	OK	
S1.014	S14	-0.114	0.000	0.49		24.7	OK	
S1.015	S15	-0.133	0.000	0.35		24.7	OK	
S1.016	S16	-0.098	0.000	0.61		24.7	OK	
S1.017	S17	-0.098	0.000	0.61		24.7	OK	
S1.018	S18	-0.104	0.000	0.56		24.7	OK	


Wardell Armstrong LLP			Page 1
Sir Henry Doulton House	Keighley		5
Forge Lane, Etruria	Energy from Wast	Ly .	
Stoke-on-Trent ST1 5BD	Foul Water		Mirro
Date October 2015	Designed by TDi		Drainage
File	Checked by		Drainiage
Micro Drainage	Network 2015.1		
FOUL	SEWERAGE DES	<u>SIGN</u>	
Design	Criteria for 151029	<u>9.FWS</u>	
	51029 Manhole Si		
Industrial Flow (l/s/ha) 0. Industrial Peak Flow Factor 6. Flow Per Person (l/per/day) 0. Persons per House 3. Domestic (l/s/ha) 0. Domestic Peak Flow Factor 6.	0 Mini 0 Maxi 0 Min Design Dep 0 Min Vel for	ow / Climate Change (% mum Backdrop Height (m mum Backdrop Height (m oth for Optimisation (m Auto Design only (m/s for Optimisation (1:X) 0.200) 1.500) 1.200) 1.00
	ed with Level Sof		.) 500
Noticeto	aign Table for 151	020 EWS	
	sign Table for 151		
PN Length Fall Slope Ar (m) (m) (1:X) (h		e k HYD DIA l/s) (mm) SECT (mm)	Auto Design
1.000 30.257 0.378 80.0 0.5		0.0 1.500 o 150	ef A
1.001 31.455 0.315 100.0 0. 1.002 56.823 0.568 100.0 0.		0.0 1.500 o 150 0.0 1.500 o 150	ሆ ሆ
1.003 12.793 0.128 100.0 0.5		0.0 1.500 o 150	ď
1.004 43.331 0.433 100.0 0.0		0.0 1.500 o 150 0.0 1.500 o 150	ሆ ሆ
1.005 20.441 0.204 100.0 0.0 1.006 37.774 0.378 100.0 0.0		0.0 1.500 o 150 0.0 1.500 o 150	ď
1.007 16.687 0.167 100.0 0.1		0.0 1.500 o 150	ď
1.008 21.650 0.217 100.0 0.0		0.0 1.500 o 150	ď
1.009 29.214 0.292 100.0 0.0	0 0	0.0 1.500 o 150	ď
2.00021.6290.43350.00.52.00111.5100.47124.40.6		0.0 1.500 o <mark>150</mark> 0.0 1.500 o 150	0 0
Ne	work Results Tabl	<u>le</u>	
PN US/IL ΣArea ΣBase (m) (ha) Flow (l/s)		P.Dep P.Vel Vel Ca (mm) (m/s) (m/s) (1/s	
1.000 86.500 0.500 0.6	0 0.0	14 0.36 0.98 17	.3 0.3
1.001 86.122 1.000 0.0	0 0.0	20 0.41 0.88 15	
1.002 85.807 1.500 0.0	0 0.0	25 0.47 0.88 15	
1.003 85.239 2.000 0.0 1.004 85.111 2.000 0.0	0 0.0 0 0.0	29 0.51 0.88 15 29 0.51 0.88 15	
1.005 84.678 2.000 0.0	0 0.0	29 0.51 0.88 15	
1.006 84.474 2.000 0.0	0 0.0	29 0.51 0.88 15	
1.007 84.096 2.500 0.0	0 0.0	32 0.55 0.88 15	.5 1.5
1.00883.9292.5000.61.00983.7122.5000.6	0 0.0 0 0.0	32 0.55 0.88 15 32 0.55 0.88 15	
2.000 86.500 0.500 0.6 2.001 86.067 0.500 0.6	0 0.0 0 0.0	130.421.2421110.541.7831	
©19	2-2015 XP Solution	ons	


Wardell Armstrong LLP	Page 2	
Sir Henry Doulton House	Keighley	
Forge Lane, Etruria	Energy from Waste	L.
Stoke-on-Trent ST1 5BD	Foul Water	Micro
Date October 2015	Designed by TDi	Drainage
File	Checked by	Diamage
Micro Drainage	Network 2015.1	
Outfall Outfall C Pipe Number Name 1.009 11 <u>Free Flowing C</u>	Outfall Details for 151029.FWS C. Level I. Level Min D,L W (m) (m) 88.000 83.420 0.000 0 Outfall Details for 151029.FWS C. Level I. Level Min D,L W (m) (m) (mm) 87.000 85.596 0.000 0	

DRAWINGS

				Manhole Shedule				Manhole Shedule							
Manhole Number	Easting	Northing	Cover Level	Connected Pipes	Depth To Invert	Manhole Size	Manhole & Cover Type	Manhole Number	Easting	Northing	Cover Level	Connected Pipes	Depth To Invert	Manhole Size	Manhole & Cover Type
S1	408123.372	441345.937	87.625	S 1.000 IL:86.900 DIA:0.250	0.725	1.050	E; D400	S21	408073.416	441382.975	88.300	S 5.000 IL:87.000 DIA:0.250	1.300	1.050	E; D400
				S 1.000 IL:86.786 DIA:0.250				S22	408040.166	441405.366	88.300	S 6.000 IL:87.000 DIA:0.250	1.300	1.050	E; D400
S2	408107.136	441340.597	88.300	S 2.000 IL:86.786 DIA:0.250 S 3.000 IL:86.711 DIA:0.250 S 1.001 IL:86.711 DIA:0.250	1.589	1.050	E; D400	S24	407895.207	441442.152	88.400	S 8.000 IL:86.000 DIA:0.600	2.400	1.500	B; D400
S3	408084.160	441337.887	88.345	S 1.001 IL:86.595 DIA:0.250 S 4.000 IL:86.720 DIA:0.250	2.125	3.060	B; D400	S25 	407905.419		88.250 88.300	S 8.000 IL:85.977 DIA:0.600 S 8.001 IL:85.977 DIA:0.600 S 16.000 IL:87.000 DIA:0.250	2.273	1.500	B; D400 E; D400
				S 1.002 IL:86.220 DIA:1.250								S 16.000 IL:86.866 DIA:0.250			
S3J	408057.089	441353.887	87.009	S 1.002 IL:86.189 DIA:1.250 S 5.000 IL:86.639 DIA:0.250 S 1.003 IL:86.189 DIA:1.250	2.111	???	???	S27	407922.504		88.100	S 16.001 IL:86.866 DIA:0.250	1.234	1.050	E; D400
				S 1.003 IL:86.151 DIA:1.250				S28	407885.359	441500.723	88.350	S 17.000 IL:87.300 DIA:0.250	1.050	1.050	E; D400
S4	408023.286	441373.617	90.175	S 6.000 IL:86.601 DIA:0.250 S 1.004 IL:86.151 DIA:1.250	4.024	1.800	B; D400	S29	407897.609	441523.342	88.350	S 17.000 IL:87.026 DIA:0.250 S 17.001 IL:86.951 DIA:0.250	1.399	1.050	E; D400
S5	407957.127	441404.807	90.175	S 1.004 IL:86.075 DIA:1.250 S 1.005 IL:86.075 DIA:1.250	4.100	3.060	B; D400	S30	408098.609	441370.377	88.300	S 10.000 IL:87.300 DIA:0.250	1.000	1.050	E; D400
				S 1.005 IL:86.008 DIA:1.250				S31	408069.067	441371.745	88.250	S 11.000 IL:87.000 DIA:0.250	1.250	1.050	E; D400
S6	407897.736	441435.608	91.033	S 7.000 IL:87.533 DIA:1.250 S 7.000 IL:87.533 DIA:0.250 S 1.006 IL:86.008 DIA:1.250	5.025	3.060	B; D400	S32	408076.490	441387.159	90.386	S 10.000 IL:86.811 DIA:0.250 S 11.000 IL:86.886 DIA:0.250 S 10.001 IL:86.436 DIA:1.250	3.950	3.060	B; D400
S7	407911.885	441466.328	90.125	S 1.006 IL:85.974 DIA:1.250 S 8.001 IL:85.970 DIA:0.600 S 1.007 IL:85.970 DIA:0.600	4.155	3.060	B; D400	S33	408047.879	441403.177	90.328	S 10.001 IL:86.403 DIA:1.250 S 10.002 IL:86.403 DIA:1.250	3.925	3.060	B; D400
S8	407926.509	441498.845	88.300	S 1.007 IL:85.934 DIA:0.600 S 9.002 IL:86.297 DIA:0.250 S 1.008 IL:85.929 DIA:0.300	2.371	1.500	B; D400	S33J	408046.502	441409.992	87.216	S 10.002 IL:86.396 DIA:1.250 S 12.000 IL:86.846 DIA:0.250 S 10.003 IL:86.396 DIA:1.250	4.275	???	???
				S 1.008 IL:85.829 DIA:0.300				S34	408033.281	441385.143	88.250	S 12.000 IL:87.000 DIA:0.250	1.250	1.050	E; D400
S9	407935.027	441514.800	88.300	S 10.008 IL:85.862 DIA:0.600 S 16.001 IL:86.179 DIA:0.250 S 1.009 IL:85.829 DIA:0.300	2.471	1.500	B; D400	S35	408044.192	441421.778	90.309	S 10.003 IL:86.384 DIA:1.250 S 10.004 IL:86.384 DIA:1.250	3.925	3.060	B; D400
S10	407937.212	441519.040	88.300	S 1.009 IL:85.772 DIA:0.300 S 17.001 IL:85.772 DIA:0.250 S 1.010 IL:85.772 DIA:0.250	2.528	1.800	B; D400	S35J	408029.041	441433.986	87.159	S 10.004 IL:86.365 DIA:1.250 S 13.002 IL:86.671 DIA:0.250 S 10.005 IL:86.365 DIA:1.250	4.131	???	???
S11	407928.768	441532.622	87.517	S 1.010 IL:85.692 DIA:0.250 S 1.011 IL:85.692 DIA:0.250	1.825	1.200	B; D400	S36	408007.281	441392.742	88.350	S 13.000 IL:86.947 DIA:0.250 S 13.001 IL:86.947 DIA:0.250	1.403	1.050	E; D400
S12	407885.162	441565.669	87.243	S 1.011 IL:85.418 DIA:0.250 S 1.012 IL:85.418 DIA:0.250	1.825	1.200	B; D400	S37	408025.041	441426.073	88.350	S 13.001 IL:86.729 DIA:0.250 S 13.002 IL:86.730 DIA:0.250	1.621	1.050	E; D400
S13	407821.755	441590.500	87.000	S 1.012 IL:85.078 DIA:0.250 S 1.013 IL:85.078 DIA:0.250	1.922	1.200	B; D400	S38	408015.262	441444.517	90.273	S 10.005 IL:86.348 DIA:1.250 S 10.006 IL:86.348 DIA:1.250	3.925	3.060	B; D400
S14	407753.766	441607.202	86.800	S 1.013 IL:84.728 DIA:0.250 S 1.014 IL:84.728 DIA:0.250	2.072	1.200	B; D400	S39	407958.525	441413.291	88.200	S 13.000 IL:87.300 DIA:0.250	0.900	1.050	E; D400
S15	407757.904	441645.482	86.153	S 1.014 IL:84.328 DIA:0.250 S 1.015 IL:84.328 DIA:0.250	1.825	1.200	B; D400								
S16	407761.599	441709.333	84.900	S 1.015 IL:83.075 DIA:0.250 S 1.016 IL:83.075 DIA:0.250	1.825	1.200	B; D400								
S17	407762.338	441786.042	84.400	S 1.016 IL:82.575 DIA:0.250 S 1.017 IL:82.575 DIA:0.250	1.825	1.200	B; D400								
S18	407797.958	441854.918	83.900	S 1.017 IL:82.075 DIA:0.250 S 1.018 IL:82.075 DIA:0.250	1.825	1.200	B; D400								
S20	408112.376	441356.668	87.950	S 2.000 IL:86.900 DIA:0.250	1.050	1.050	E; D400								

Manhole Shedule								
Manhole Number	Easting	Northing	Cover Level	Connected Pipes	Depth To Invert	Manhole Size	Manhole & Cover Type	
S40	407988.466	441468.616	90.237	S 10.006 IL:86.312 DIA:1.250 S 10.007 IL:86.312 DIA:1.250	3.925	3.060	B; D400	
S41	407985.668	441468.120	88.215	S 15.000 IL:85.990 DIA:0.600	2.225	1.500	B; D400	
S42	407955.727	441492.033	88.179	S 15.000 IL:85.954 DIA:0.600 S 15.001 IL:85.954 DIA:0.600	2.225	1.500	B; D400	
S43	407910.813	441441.225	88.300	S 14.000 IL:87.000 DIA:0.250	1.300	1.050	E; D400	
S44	407934.614	441485.240	88.300	S 14.000 IL:86.666 DIA:0.250 S 14.001 IL:86.666 DIA:0.250	1.634	1.050	E; D400	
S45	407936.449	441509.597	90.225	S 10.007 IL:86.210 DIA:1.250 S 14.001 IL:85.553 DIA:0.250 S 15.001 IL:85.928 DIA:0.600 S 10.008 IL:85.867 DIA:0.600	4.672	3.060	B; D400	
S46	407939.394	441502.518	88.000	S 9.001 IL:86.461 DIA:0.250 S 9.002 IL:86.386 DIA:0.250	1.614	1.050	E; D400	
S50	408014.967	441450.123	88.100	S 9.000 IL:87.000 DIA:0.250	1.100	1.050	E; D400	
S51	407978.852	441481.635	88.000	S 9.000 IL:86.681 DIA:0.250 S 9.001 IL:86.681 DIA:0.250	1.319	1.050	E D400	
SCP1	408137.580	441304.604	88.000	S 3.000 IL:87.075 DIA:0.250	0.925	1.050	E; D400	
SCP2	408088.508	441348.698	88.250	S 4.000 IL:87.250 DIA:0.250	1.000	1.050	E; D400	
SCP3	407869.156	441418.002	88.600	S 7.000 IL:87.600 DIA:0.250	1.000	1.050	E; D400	
SS19	407792.785	441864.229	83.500	S 1.018 IL:81.968 DIA:0.250	1.532	2.300	???	

	Manhole Shedule									
Manhole Number	Easting	Northing	Cover Level	Connected Pipes	Depth To Invert	Manhole Size	Manhole & Cover Type			
F1	407930.927	441493.939	88.200	F 1.000 IL:86.500 DIA:0.150	1.700	1.200	B; D400			
F2	407916.378	441467.410	88.200	F 1.000 IL:86.122 DIA:0.150 F 1.001 IL:86.122 DIA:0.150	2.078	1.200	B; D400			
F3	407902.239	441439.312	88.200	F 1.001 IL:85.807 DIA:0.150 F 1.002 IL:85.807 DIA:0.150	2.393	1.200	B; D400			
F4	407951.843	441411.594	88.250	F 1.002 IL:85.239 DIA:0.150 F 1.003 IL:85.239 DIA:0.150	3.011	1.200	B; D400			
F5	407963.071	441405.462	88.250	F 1.003 IL:85.111 DIA:0.150 F 1.004 IL:85.111 DIA:0.150	3.139	1.200	B; D400			
F6	408001.827	441386.084	88.150	F 1.004 IL:84.678 DIA:0.150 F 1.005 IL:84.678 DIA:0.150	3.472	1.200	B; D400			
F7	408020.060	441376.845	88.250	F 1.005 IL:84.474 DIA:0.150 F 1.006 IL:84.474 DIA:0.150	3.776	1.200	B; D400			
F8	408053.992	441360.247	88.150	F 1.006 IL:84.096 DIA:0.150 F 1.007 IL:84.096 DIA:0.150	4.054	1.200	B; D400			
F9	408070.672	441359.756	88.250	F 1.007 IL:83.929 DIA:0.150 F 1.008 IL:83.929 DIA:0.150	4.321	1.200	B; D400			
F10	408089.886	441349.781	88.250	F 1.008 IL:83.712 DIA:0.150 F 1.009 IL:83.712 DIA:0.150	4.538	1.200	B; D400			
F11	408103.504	441323.934	88.000	F 1.009 IL:83.420 DIA:0.150	4.580	1.200	B; D400			
F12	408166.290	441307.996	88.155	F 2.000 IL:86.500 DIA:0.150	1.655	1.200	B; D400			
F13	408147.514	441318.734	87.800	F 2.000 IL:86.067 DIA:0.150 F 2.001 IL:86.067 DIA:0.150	1.733	1.200	B; D400			
F14	408145.064	441329.980	87.251	F 2.001 IL:85.596 DIA:0.150	1.655	1.200	B; D400			

DO NOT SCALE FROM THIS DRAWING	A1
--------------------------------	----

REVISION		DETAILS			DATE	DRAWN	снк'р	APP'D
CLIENT	HALTON GROUP							
PROJEC	KEIGHLE	Y CLEAN E	ENERGY		JJE	ст	-	
		11	\mathcal{N}	-				
DRAWING	GTITLE	ANHOLE S	CHEDUI	ES				
DRG №. S	H11087-021	SCALE N	тs	DATE	09	/08/	16	
DRAWN E	ЗҮ	CHECKED BY		APPROVED BY				
(HEA	KE-ON-TRENT D OFFICE) CASTLE UPON TYNE T BROMWICH DON	TEL 0845 111 7777 TEL 0191 232 0943 TEL 0121 580 0909 TEL 020 7287 2872	CARDIFI	EL D RGH	GH TEL 0131 555 3311			4 1
	LONDON TEL 020 7287 2872 TAUNTON TEL 01823 703100 Wardell your earth our world							