

Trowbridge Bioresources Centre

Site ID: 11799

SITE CONDITION REPORT - H5

July 2021

Revision	Date	Description	Author	Checked by	Reviewed by
01	July 2021	H5 SCR	E.Wilson	Rob Gordon	Rob Gordon

1.0 SITE DETAILS		
Name of the applicant	Wessex Water Services Limited	
Activity address	Trowbridge Water Recycling Centre Off Bradford Road Trowbridge Wiltshire BA14 9BJ United Kingdom	
National grid reference	Approximate Bioresources Centre: ST848587 (coordinates: 384760, 158790)	
Document reference and dates for Site Condition Report at permit application and surrender	Reference: Site Condition Report H5 July 2021 Application Date: July 2021	
Document references for site plans (including location and boundaries)	Stantec Industrial Emissions Directive Compliance Action Plan, Environmental Qualitative Risk Assessment, Trowbridge Bioresources Centre, Report Reference: EQRA 331101341, version 0.1, June 2021. Figure 2.1 Site Setting – Regional Figure 2.2 Site Setting – Local Figure 3.1 Sludge Treatment Process Flow Diagram Figure 3.2 Plan of Current Water Recycling Assets (& shows site surfacing) Figure 4.1 Site investigation borehole locations Figure 4.2 Surface Water Features	

2.0 Condition of the land at permit issue			
 Environmental setting including: geology hydrogeology surface waters 	The environmental setting of the WRC has been detailed in the Environmental Quantitative Risk Assessment (EQRA) completed for the site (Stantec, 2021). The Trowbridge site is located at the north- westerly extent of Trowbridge town and is approximately 12 km to the south-east of central Bath (NGR: 384760, 158790). The Bioresources Centre covers an area of approximately 1.28 ha which includes the main sludge assets at the WRC and the road to the south-eastern area where the skip storage is located.		
	The Bioresources Centre is comprised of both the anaerobic digestion and associated activities (as operated by Wessex Water Services Limited (WWSL) and which are within the 'installation boundary') and the Combined Heat Plant (CHP) and Gas to Grid activities as operated by Wessex Water Enterprises Limited (WWEL) (and which are		

within the 'EPA/HB3602TR boundary') as shown on Figure 3.2.
Geological, hydrogeological and hydrological information detailed within the EQRA is based upon previous Site Investigation (SI) reports completed for various developments across the WRC.
Locations of the previous SI and available British Geological Survey (BGS) borehole logs are presented on Figure 4.1. Site Investigation Locations are as follows:
Structural soils (2004) - Two boreholes (BH1 and BH2) - Three trial pits (TP101 – TP103) Located adjacent to the post digested tanks [E1 and E2].
CJ Associates (2008) - Three boreholes (BH1, BH1R BH2) - One trial pit (TP1) Located beneath the APD3 [B6], sludge reception tank [K] and strained transfer tank [Q].
Geotechnics (2008) - 16 boreholes (BH1 to BH16) Located to the south of the Bioresources Centre and the majority along the eastern / south-eastern boundary of the Site.
 BWB (2012) Two boreholes (BH1 and BH2) Six trial pits (TP1 to TP6) Located to the south-west of Mesophilic Digester 1 [C1], east of the waste gas burner (CHP) [Y] and around the sludge reception tank [K] and pre-thickened tank [Z].
ESG (2016) - Four boreholes (BH01 – BH04 including BH02A, BH04A and BH04B) Located by the filter beds.
ESG (2017) - One borehole (BH101) - Three trial pits (HDP01 to HDP03) Located in the liming plant area.
BWB (2020) - Three boreholes (BH01 to BH03) - Seven trial pits (HP01 to HP07) Located to the east of the filter beds.

BGS Borehole Logs

- One borehole (ST85NW10) Located within the WRC along the road between the sludge assets and cake skips.

Geology

Made Ground

Mapping indicates no Made Ground is present at the Site. However, Made Ground was recorded during site investigations. The Made Ground is described as sandy silty gravel and sandy slightly gravelly clay and is generally present at a thickness of between 0.65 m to 3 m across the Site (including in the main part of the Bioresources Centre in the north-west part of the Site). However, significantly thicker Made Ground (up to 7 m) was recorded along the east / south-east boundary of the Site adjacent to the valley containing the River Biss. This is where an earthworks / former refuse tip were identified on historical mapping and reflects how this area has been built up above the original ground levels.

Superficial Quaternary Deposits: Alluvium

The available mapping / site investigation data indicate that no superficial deposits are present at the Site, however alluvium follows the River Biss 30m to the east of the Site.

Kellaways Formation / Oxford Clay Formation

Bedrock at the Site is the Kellaways Formation / Oxford Clay Formation. This is described as sandy clay with occasional laminated mudstone layers at depth and is recorded at between 10 and 20 m thick beneath the Site. However, a 2 m thick sandstone unit within the Kellaways Formation was recorded by BWB (2020) at BH01 and BH02 at around 18.5 mbgl (c. 17.5 m AOD).

Cornbrash Formation / Forest Marble Formation

The Cornbrash Formation was recorded in the ESG (2017) boreholes to the east of the lagoons at depths of 17.65 mbgl (BH01) and 17.77 mbgl (BH02A) and is identified as weak thickly bedded grey fine to medium grained clayey limestone. Weathering and discontinuities are present within this unit.

Only one BGS borehole (ST85NW10) is available to a depth of 61 m located in the centre of the Site. This borehole recorded 30 m of blue/green/grey clay immediately beneath the ground (Kellaways Formation / Oxford Clay Formation). Beneath this lies 2 m of 'very hard stone and clay' which is potentially identified as the Cornbrash

Formation. Underlying this is 19 m of 'stone and clay with harder seams of clay' which is potentially identified as the Forest Marble Formation. Hydrogeology Aquifer Designations The alluvium to the east of the Site is classified as a Secondary A aquifer. This is due to permeable layers they contain being capable of supporting water supplies at a local scale. The Kellaways Formation / Oxford Clay Formation is classified as unproductive strata due to the low permeability of the layers that are considered to have negligible significance for water supply. However, the underlying Cornbrash Formation and Forest Marble Formation are classified as Secondary A Aquifers. This is due to permeable layers they contain being capable of supporting water supplies at a local scale. Aquifer Testing It is noted that the site investigation undertaken by BWB in 2012 (BWB, 2012) included a rising and falling head permeability test within BH03 where a piezometer was installed within the Made Ground unit. The rising head test calculated permeability values of 0.018 - 0.021 m/d and the falling head test values of 0.031 - 0.042 m/d, which indicative of low permeability materials. Source Protection Zones There are no Source Protection Zones within 500 m of the Site; the nearest is over 2 km to the north-east. Licenced Groundwater Abstractions The EQRA reports no licenced groundwater abstractions within 4 km of the Site. Further information is provided within the EQRA (Stantec, 2021). Groundwater Observations There are four boreholes that include dual installations (one shallow installation that monitors within the Made Ground; and one deep that monitors within the Kellaways / Oxford Clay). The data suggests that groundwater levels in these units tend to be very similar (several may indicate a small downwards hydraulic gradient from the Made Ground to the Kellaways / Oxford Clay).

There is one borehole that includes a dual installation with a shallower installation that monitors within the Kellaways / Oxford Clay and a deeper installation that monitors in the Cornbrash. The data suggests that there is downwards hydraulic gradient from the Kellaways / Oxford Clay to the Cornbrash.
Groundwater levels measured in the Kellaways / Oxford Clay in the main part of the Biosresources area to the west of the Site are typically around 38 to 42 m AOD.
Groundwater levels measured in the Made Ground and Kellaways / Oxford Clay in the north east of the Site are typically 34 to 36 m AOD.
Groundwater levels measured in the Made Ground and Kellaways / Oxford Clay along the eastern / south-eastern boundary are typically around 32 to 34 m AOD.
The groundwater strike and level data would appear to suggest that there is no Site wide shallow groundwater present within the Made Ground. It is considered likely that the groundwater levels that have been measured within the Made Ground and Kellaways / Oxford Clay reflect the general low permeability nature of these units. Isolated areas of groundwater may be present associated with more permeable areas of Made Ground.
Groundwater levels along the eastern / south-eastern boundary of the Site are several metres lower than in the main part of the Bioresources area to the west of the Site. This is where the presence of thicker Made Ground has been identified; the lower groundwater levels are to a degree assumed to reflect the lower elevation of the underlying Kellaways / Oxford Clay.
Further information on groundwater is included in the EQRA (Stantec, 2021).
Surface Waters (Hydrology) Surface water in the area is expected to generally drain to the south-east from the higher ground where the Site is located towards the River Biss (i.e. following the local topography). The River Biss lies approximately 100 m east of the Site and flows northwards towards the River Avon where they meet approximately 900 m north of the Site. As outlined above, drains lie along the southern and eastern boundaries of

	the Site. The southern boundary flows to the east towards the eastern drain / River Biss, however, during the site visit the confluence area by the Site's entry road to the south- east was too overgrown to confirm whether the southern drain converges with the eastern drain or River Biss. The eastern drain lies runs along the base of the valley (at the break in slope) parallel with the River Biss and flows towards the north-east where is discharges into the River Biss downstream of the Site. Four surface water lagoons lie immediately to the north of the Site. The most eastern two are surrounded by an embankment (approximately 1-2m high) and hence lie at a greater elevation than the sludge assets within the Bioresources Centre. These ponds are currently not in use. The western two lagoons lie immediately adjacent to the liming area (as shown on Figure 4.1) and are used for fishing/wildlife.
Pollution history including:	Pollution Incidents
 pollution incidents that may have affected land historical land-uses and associated contaminants any visual/olfactory evidence of existing contamination evidence of damage to pollution prevention measures 	There are two historic pollution incidents recorded with the EA within 500 m of the Site. Both are associated with WW operations at the Site and relate to sewage materials impacting the River Biss to the south-east of the Site). WW and EA records for both incidents indicate sewage was discharged to the river following equipment failure in 2001 (which led to a minor impact on water) and after a lightning strike causing loss of power in 2003 (which led to a significant impact on water)
	Records of pollution incidents are provided within the Groundsure Environmental Data Report included in the EQRA (Stantec, 2021) Appendix A.
	Historical land-uses & associated contaminants
	Historical mapping is provided in Appendix B and Appendix C of the EQRA (Stantec, 2021). Potentially contaminative activities / features are listed in the Groundsure Environmental Data Report provided in Appendix A of the EQRA.
	Sewage Works Sewage Works was constructed at the Site some point between 1901 and 1922 in what is currently the eastern part of the Site only. Tanks are listed as potentially contaminative land-use on site from 1922-1939.
	Following this, the land along the eastern edge of the Site (i.e. along the side of the valley containing the River Biss) was built up

between 1924 and 1956-1960 as displayed by earthwork markings on the maps. This was extended further south along the south-east edge of the Site between 1956-1960 and 1985-1987. During this time the sewage works were extended to the west between 1968- 1971 and 1974-1977 in the south-west corner of the Site and again between 1979 and 1985- 1987 to cover the entire current Site area with the initial eastern area remaining as filter beds. Prior to this time the area appears to have been predominately agricultural.
Drainage Network
The drain that lies along the eastern boundary of the Site is identified in 1924 (and may have been constructed as part of the work that raised the land along the eastern edge of the Site at this time); there is an outfall (this is now the final effluent outfall) from the Site to this drain. This was first detailed on mapping from 1968 – 1971. The drain along the southern boundary of the Site is first identified in 1979; prior to this an area of vegetation was in this location.
The four lagoons that are currently located to the north of the Site were initially constructed between 1979 and 1985-87 as five ponds, however between 2010 and 2020 the three western ponds were altered into two ponds.
Waste Management Licences/Landfills There are four historical landfill sites within 500 m of the Site and the closest is 185 m to the north-east of the Site. There are a further two refuse tips within 500m of the Site.
There are five licensed waste management facilities located within 500 m of the WRC. The three closest are located on site for the combustion of biogas, liquid treatment and sewage sludge treatment. These are operated by Wessex Water Enterprises Limited.
A refuse tip was located in the north-east corner of the Site from between 1936-1939 to 1974-1977, to the north of the filter beds. A further refuse tip was also present (to the north of where the current lagoons are) from between 1956-1960 to 1968-1971.
Potential Contaminants
Potential contaminants associated with the identified potential sources of contamination on site and in the surrounding area include: Metals, petroleum hydrocarbons - associated with fuel tank(s) and pumping stations; PAHs, polychlorinated biphenyls (PCBs) (associated with generators and electricity substations),

	Metals, asbestos and ground gas (carbon dioxide, carbon monoxide) - from areas of infilling and sewage treatment.
	Further detail on the potential sources of contamination (PSC) and contaminants associated with current and historical use of the site and other potential sources of contamination (PSC) identified within 50m of the site (250m for infilled ground/ landfill) with an accompanying PSC Plan is included in the memorandum titled, <i>Potential Sources of Contamination Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report</i> (Stantec, 2021) presented as Appendix A of this document.
	Visual / Olfactory Evidence of Contamination
	No olfactory evidence of contamination was identified during the January 2021 site visit.
	As detailed within the EQRA, visual evidence of contamination included spillages from the return liquor pumping station and leaks from the return liquor balance tanks.
	Made Ground including ash was identified in BH02, HP05 and HP06 during the BWB 2020 ground investigation (GI) between 0 and 3.0m below ground level (bgl); however, this is located northeast of the current Bioresources Centre. Ash was not recorded in any other GI however macadam and clinker were noted in BH01 and BH02A/BH04 respectively in ESG 2016 boreholes which are located in the same area as BH02 mentioned above recording the ash.
	Evidence of Damage to Pollution Prevention Measures
	Within the EQRA, Table 3.1 Main Assets Associated with Sludge Treatment (collected during site visit) indicates that some failure has occurred at the BC. This included: (1) corrosion holes near the top of the Post Digested Tank [E1 and E2], Sludge Reception Tank [K], Post Thickened Tank [P] and Strained Transfer Tank [Q] limiting their use.
Evidence of historic contamination, for example, historical site investigation, assessment, remediation and verification reports (where	Out of the 7 previous GI reports existing for the Site, the following include geo- environmental chemical testing:
available)	- Geotechnics (2008).
	- ESG (2017).
	- BWB (2020).
	- BWB (2012).

	 Detectable concentrations of metals, asbestos, Aliphatic and Aromatic fraction Total Petroleum Hydrocarbons (including some BTEX), PCBs and polycyclic aromatic hydrocarbons (PAH) were observed in these investigations. For detail on contamination encountered during previous GI at the site see the Potential Sources of Contamination Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report (Stantec, 2021) presented in Appendix A of this document.
Baseline soil and groundwater reference data	For detail of the soil and groundwater reference data at the Site see the Potential Sources of Contamination Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report (Stantec, 2021) presented in Appendix A of this document.
	As presented in Table 1.9 of the report in Appendix A there are potential contaminants (predominantly metals and PAHs and TPHs) associated with both the Bioresources Centre activities, at the Site and the wider WRC. There is sufficient data for soil and groundwater within the wider WRC to determine baseline data of the Site even though this is limited data for the Bioresources Centre.
Supporting information• Source information incidents• Historical Ordnance • Site reconnaissance • Historical investigati reports • Baseline soil and group	identifying environmental setting and pollution Survey plans ion / assessment / remediation / verification bundwater reference data

3.0 Permitted activities	
Permitted activities	WRC comprising Sludge Treatment Process outlined in the EQRA Section 3.1 Figure 3.1 Sludge Treatment Process Flow Diagram (Stantec, 2021).
Non-permitted activities undertaken	Not Applicable
 Document references for: plan showing activity layout; and environmental risk assessment. 	Stantec Industrial Emissions Directive Compliance Action Plan Environmental Qualitative Risk Assessment, Trowbridge Sludge Treatment Centre, Report Reference: EQRA 331101341, version 0.1, July 2021.
	Figure 2.1 Site Setting – Regional Figure 2.2 Site Setting – Local Figure 3.1 Sludge Treatment Process Flow Diagram

Figure 3.2 Plan of Current Water Recycling
Centre Assets
Table 3.1 Main assets associated with Sludge
Treatment
Section 6.0 EQRA.

Note:

In Part B of the application form you must tell us about the activities that you will undertake at the site. You must also give us an environmental risk assessment. This risk assessment must be based on our guidance (*Environmental Risk Assessment - EPR H1*) or use an equivalent approach.

It is essential that you identify in your environmental risk assessment all the substances used and produced that could pollute the soil or groundwater if there were an accident, or if measures to protect land fail.

These include substances that would be classified as 'dangerous' under the Control of Major Accident Hazards (COMAH) regulations and also raw materials, fuels, intermediates, products, wastes and effluents.

If your submitted environmental risk assessment does not adequately address the risks to soil and groundwater we may need to request further information from you or even refuse your permit application.

4.0 Changes to the activity		
Have there been any changes to the activity boundary?	This application is for a new installation comprising existing activities.	
Have there been any changes to the permitted activities?	If yes, provide a description of the changes to the permitted activities	
Have any 'dangerous substances' not identified in the Application Site Condition Report been used or produced as a result of the permitted activities?	If yes, list of them	
 Checklist supporting information Plan showing any changes to the boundary (where relevant) Description of the changes to the permitted activities (where relevant) List of 'dangerous substances' used/produced by the permitted activitie that were not identified in the Application Site Condition Report (where relevant) 		

5.0 Measures taken to protect land		
Use records that prevention measu assess whether th	you collected during the life of the permit to summarise whether pollution ires worked. If you can't, you need to collect land and/or groundwater data to he land has deteriorated.	
Checklist of supporting information	 Inspection records and summary of findings of inspections for all pollution prevention measures Records of maintenance, repair and replacement of pollution prevention measures 	

6.0 Pollution incide	ents that may have had an impact on land, and their remediation
Summarise any investigated and r reference data to	pollution incidents that may have damaged the land. Describe how you emedied each one. If you can't, you need to collect land and /or groundwater assess whether the land has deteriorated while you've been there.
Checklist of supporting information	 Records of pollution incidents that may have impacted on land Records of their investigation and remediation

7.0 Soil gas and water quality monitoring (where undertaken)

Provide details of any soil gas and/or water monitoring you did. Include a summary of the findings. Say whether it shows that the land deteriorated as a result of the permitted activities. If it did, outline how you investigated and remedied this.

Checklist	of	Description of soil gas and/or water monitoring undertaken
supporting		 Monitoring results (including graphs)
information		

8.0 Decommissioning and removal of pollution risk

Describe how the site was decommissioned. Demonstrate that all sources of pollution risk have been removed. Describe whether the decommissioning had any impact on the land. Outline how you investigated and remedied this.

Checklist c	of	Site closure plan
supporting		List of potential sources of pollution risk
information		Investigation and remediation reports (where relevant)

9.0 Reference data and remediation (where relevant)

Say whether you had to collect land and/or groundwater data. Or say that you didn't need to because the information from sections 3, 4, 5 and 6 of the Surrender Site Condition Report shows that the land has not deteriorated.

If you did collect land and/or groundwater reference data, summarise what this entailed, and what your data found. Say whether the data shows that the condition of the land has deteriorated, or whether the land at the site is in a "satisfactory state". If it isn't, summarise what you did to remedy this. Confirm that the land is now in a "satisfactory state" at surrender.

Checklist supporting	of	 Land and/or groundwater data collected at application (if collected) Land and/or groundwater data collected at surrender (where needed)
information		 Assessment of satisfactory state Remediation and verification reports (where undertaken)

10.0 Statement of site condition

Using the information from sections 3 to 7, give a statement about the condition of the land at the site. This should confirm that:

- the permitted activities have stopped
- decommissioning is complete, and the pollution risk has been removed
- the land is in a satisfactory condition.

Appendix A Potential Sources of Contamination – Supporting Information

To:	Wessex Water	From:	Stantec
File:	330201558 Wessex Water IED HRAs	Date:	July 5, 2021

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

BACKGROUND

Wessex Water Services is required to meet conditions under the Industrial Emissions Directive (IED). An Environmental Permit is required for the Bioresources Centre (the Site) located within Trowbridge Water Recycling Centre (WRC).

As part of the environmental permit application an Environmental Quantitative Risk Assessment (EQRA) (Stantec, 2021), has been undertaken for the Trowbridge Bioresources Centre. The EQRA provides a Compliance Action Plan (CAP) detailing the site specific actions required at the Trowbridge Bioresources Centre to ensure IED compliance. The EQRA will be used to identify the mitigation measures that are required to reduce the risk of pollution to ground or local water environment to comply with the IED. To support the EQRA process, a desk-top preliminary hydrogeological study for the Trowbridge Bioresources Centre has been undertaken and is presented within the EQRA.

In addition to the EQRA, an H5 Site Condition Report (SCR) (Stantec, 2021) has been completed for the Trowbridge Bioresources Centre. The purpose of the SCR is to describe and record the baseline conditions of the land and groundwater at the Site at the point of application/ start of operations.

To support the SCR, this memo documents a review of environmental data to identify potential sources of contamination at the Site and within the surroundings, resulting from historical and/ or current land uses/ activities.

This memo should be read in conjunction with the SCR and EQRA.

SITE SETTING

The Site is located at:

Trowbridge Bioresources Centre Off Bradford Road Trowbridge BA14 9BJ United Kingdom.

National Grid Reference: (approximate WRC centre): ST848587; Coordinates: 384760, 158790.

The Site is in a rural area but close to the suburbs of Trowbridge and Trowle Common. A solar farm lies adjacent to the western boundary and extends to the north beyond four lagoons which lie adjacent to the northern boundary of the Site. Drains lie adjacent to the eastern and southern boundary of the Site. To the east lies the River Biss at approximately 100 m away and flows in a northerly direction. A railway line lies to the east of the river at approximately 160 m east of the Site. The Kennet and Avon canal (Canal) lies 660 m north of the Site (at the closest point). The River Avon lies just north of the Canal at 720 m north of the Site.

Wessex Water Page 2 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

The Site is on the southern edge of a fairly flat area of higher ground. This is defined by a south-west to northeast orientated valley to the south-east of the Site (that contains the River Biss) and an east to west orientated valley to the north of the Site which contains the Canal and River Avon. The high ground is at approximately 50 m AOD with the Site at 42 m AOD and the ground dropping steeply to the south-east down the side of the valley to approximately 30 m AOD at the River Biss.

Further information on site setting, including geology, hydrogeology and hydrology is provided in the EQRA.

HISTORICAL GROUND INVESTIGATION

Reports for 7 Site Investigations (SI) have been provided for the Trowbridge WRC.

- According to BWB (2012), Structural Soils drilled two boreholes (BH1 and BH2) and excavated three trial pits (TP101 – TP103) adjacent to the post digested tanks [E1 and E2] in 2004. However, borehole / trial pit logs are not available.
- According to BWB (2012), CJ Associates drilled three boreholes (BH1, BHR1 and BH2) and excavated one trial pit (TP1) beneath the APD3 [B6], sludge reception tank [K] and strained transfer tank [Q] in 2008. However, borehole / trial pit logs are not available for BH1R or TP1.
- Geotechnics Ltd (2008) drilled 16 boreholes (BH1 to BH16) across the Site in 2008 with four located to the south of the Bioresources Centre and the majority along the eastern / south-eastern boundary of the Site.
- BWB (2012) drilled two boreholes (BH1 and BH2) and excavated six trial pits (TP1 to TP6) to the southwest of Mesophilic Digester 1 [C1], east of the waster gas burner (CHP) [Y] and around the sludge reception tank [K] and pre-thickened tank [Z] in 2012.
- ESG (2017) drilled four boreholes (BH01 BH04 including BH02A, BH04A and BH04B) by the filter beds in 2016.
- According to Sweco (2019), ESG also drilled one borehole (BH101) and excavated three trial pits (HDP01 to HDP03) in the hardstanding area to the north of the site in 2017.
- BWB (2020) drilled three boreholes (BH01 to BH03) and seven trial pits (HP01 to HP07) to the east of the filter beds in 2020.

Figure 4.1 extracted from the EQRA shows the locations of the exploratory holes completed as part of the SIs, in addition to British Geological Survey (BGS) boreholes available (BGS, 2021).

Wessex Water Page 3 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

Figure 4.1 Previous Ground Investigations Exploratory Hole Location Plan (current Bioresources Centre boundary)

Strata Encountered

A review of the strata encountered as reported on the exploratory hole logs is detailed within the EQRA Section 4, but is also summarised as follows:

Made Ground

Mapping indicates no Made Ground is present at the Site. However, Made Ground was recorded during site investigations. The Made Ground is described as sandy silty gravel and sandy slightly gravelly clay and is generally present at a thickness of between 0.65 m to 3 m across the Site (including in the main part of the Bioresources Centre in the north-west part of the Site). However, significantly thicker Made Ground (up to 7 m) was recorded along the east / south-east boundary of the Site adjacent to the valley containing the River

Wessex Water Page 4 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

Biss. This is where the earthworks / former refuse tip were identified on the historical mapping and reflects how this has been built up above the original ground levels.

No visual/olfactory evidence of contamination was noted in the exploratory hole records.

Superficial Quaternary Deposits: Alluvium

The available mapping indicates that no superficial deposits are present at the Site, however a 125 m wide strip of alluvium follows the River Biss 30m to the east of the Site.

Bedrock

Mapping shows that bedrock at the Site is the Kellaways Formation and Oxford Clay Formation (undifferentiated). The two formations are identified as 'undifferentiated' by the BGS as they are comprised of similar geology (i.e. predominately mudstone) and so available descriptions are not always sufficient to distinguish between the two or not enough information is available to tell them apart.

The Kellaways Formation comprises mudstone which is locally sandy. According to BGS (2000) the Kellaways Formation is up to 27m and is typically around 20m in the Wessex Basin. BGS (2000) shows the Oxford Clay Formation overlying the Kellaways Formation. The Kellaways Formation is underlain by a thin layer (3 - 6 m) of Cornbrash Formation which is comprised of limestone. The Forest Marble Formation further underlies this unit which is predominantly mudstone. These two units mainly outcrop to the north-west of the Site (c. 600 m), however an isolated outcrop to the south-east of the Site (c. 400 m) is also present.

The Kellaways Formation / Oxford Clay Formation is described as sandy clay with occasional laminated mudstone layers at depth and is recorded at between 10 and 20 m thick beneath the Site. However, a 2 m thick sandstone unit within the Kellaways Formation was recorded by BWB (2020) at BH01 and BH02 at around 18.5 mbgl (c. 17.5 m AOD).

The Cornbrash Formation was recorded in the ESG (2017) boreholes to the east of the lagoons at depths of 17.65 mbgl (BH01) and 17.77 mbgl (BH02A) and is identified as weak thickly bedded grey fine to medium grained clayey limestone. Weathering and discontinuities are present within this unit.

Further information on the geology encountered during these GI at the Bioresources Centre and wider WRC is provided in the EQRA.

Geo-Environmental Analysis

Out of the 7 SI reports existing for the Site, the following include geo-environmental chemical testing:

- Geotechnics (2008)
- BWB Consulting (2012)
- ESG Ltd (2017)
- BWB Consulting (2020)

Wessex Water Page 5 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

Table A1 presented in Appendix A summarises the geo-environmental soil samples available for review.

Soil Analysis

Laboratory analysis results from Geotechnics (2008) reported that BTEX (benzene, toluene, ethylbenzene and xylene) were only identified in BH2 and BH8. A range of Polyaromatic hydrocarbons (PAHs) were identified in all boreholes with the greatest concentration of PAH 16 Total recorded at BH4 (85,000 μ g/kg) and the smallest at BH13 (27 μ g/kg). Other than the BTEX detected in BH2 and BH8 no other volatile organic compounds were detected. No asbestos was detected.

Detected maximum and minimum concentrations identified during the 2008 SI are summarised in Table 1.1.

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
Total Sulphate	510 mg/kg	BH4 at 1.0m	17000 mg/kg	BH13 at 1.0m
Boron Water Soluble	<3.5 mg/kg	BH2 at 1.0m, BH4 at 1.0m, BH8 at 1.0m, BH10 at 0.5m, BH13 at 1.0m and BH16 at 1.0m	14 mg/kg	BH6 at 4.0m
Arsenic	9 mg/kg	BH8 at 1.0m	54 mg/kg	BH2 at 1.0m
Barium	59 mg/kg	BH16 at 1.0m	1500 mg/kg	BH2 at 1.0m
Beryllium	<0.4 mg/kg	BH13 at 1.0m	5.8 mg/kg	BH2 at 1.0m
Cadmium	<0.3 mg/kg	BH10 at 0.5m, BH13 at 1.0m and BH16 at 1.0m	3.3 mg/kg	BH2 at 1.0m
Chromium	21 mg/kg	BH13 at 1.0m	150 mg/kg	BH5 at 3.5m
Copper	<0.6 mg/kg	BH16 at 1.0m	290 mg/kg	BH6 at 4.0m
Lead	9 mg/kg	BH16 at 1.0m	590 mg/kg	BH6 at 4.0m
Mercury	<0.6 mg/kg	BH4 at 1.0m, BH10 at 0.5m, BH11 at 8.0m, BH13 at 1.0m and BH16 at 1.0m	1.7 mg/kg	BH5 at 3.5m
Nickel	<0.9 mg/kg	BH13 at 1.0m	71 mg/kg	BH2 at 1.0m
Vanadium	25 mg/kg	BH13 at 1.0m	51 mg/kg	BH2 at 1.0m
Zinc	22 mg/kg	BH13 at 1.0m	1300 mg/kg	BH2 at 1.0m
Nitrate (soluble) as NO3	<1 mg/kg	BH13 at 1.0m	440 mg/kg	BH5 at 3.5m
Easily Liberated Sulphide	<15 mg/kg	BH2 at 1.0m, BH4 at 1.0m, BH5 at 3.5m, BH6 at 4.0m, BH8 at 1.0m, BH11 at 8.0m, BH13 at 1.0m and BH16 at 1.0m	27 mg/kg	BH10 at 0.5m
Elemental Sulphur	<70 mg/kg	BH2 at 1.0m, BH6 at 4.0m, BH8 at 1.0m, BH10 at 0.5m, BH11 at	350 mg/kg	BH5 at 3.5m

Table 1.1 Summa	y of Detected	Contaminant	Concentrations,	Geotechnics 2008
-----------------	---------------	-------------	-----------------	------------------

Wessex Water Page 6 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
		8.0m, BH13 at 1.0m and BH16 at 1.0m		
pH Value	6.61 pH	BH13 at 1.0m	8.26 pH	BH10 at 0.5m
EPH (DRO) (C10-C40)	38 mg/kg	BH13 at 1.0m	3300 mg/kg	BH5 at 3.5m
GRO (C4-C10)	17 μg/kg	BH4 at 1.0m, BH5 at 3.5m, BH6 at 4.0m, BH10 at 0.5m, BH11 at 8.0m, BH13 at 1.0m and BH16 at 1.0m	84 µg/kg	BH2 at 1.0m
Sum of BTEX	<10 µg/kg	BH4 at 1.0m, BH5 at 3.5m, BH6 at 4.0m, BH10 at 0.5m, BH11 at 8.0m, BH13 at 1.0m and BH16 at 1.0m	84 μg/kg (including benzene, toluene and m and p-xylene)	BH2 at 1.0m
PAH 16 Total	27 µg/kg	BH13 at 1.0m	85,000 µg/kg	BH4 at 1.0m
VOC Toluene	<5 µg/kg	BH4 at 1.0m, BH5 at 3.5m, BH6 at 4.0m, BH8 at 1.0m, BH10 at 0.5m, BH11 at 8.0m, BH13 at 1.0m and BH16 at 1.0m	9 µg/kg	BH2 at 1.0m

Analytical results from the recovered trial pit soil samples by BWB (2012) were found below the Limit of Detection (LoD) for PCBs and PAHs at TP2 (0.4m depth), TP3 (1.2m depth) and TP5 (1.1m depth). However, TPH>C6-C40 was detected at TP3 (0.9m depth). Chloride and sulphate were both detected at TP2, TP4 and TP5 at depths of 1.9m, 0.6m and 1.2m respectively. MTBE and BTEX at TP2, TP3 and TP5 were all below the LoD. At TP5, Total PAHs was below the LoD, however TP3 recorded a concentration of 204 μ g/kg due to detection of 8 PAHs (pyrene recorded maximum of 32.2 μ g/kg). Asbestos was not identified at TP3 or TP5. WAC testing has been carried out at TP2, TP3 and TP5.

The maximum and minimum concentrations detected are summarised in Table 1.2.

Table 1.2 Summar	y of Detected	Contaminant	Concentrations,	BWB 2012
------------------	---------------	-------------	-----------------	----------

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
Asbestos	None Detected	TP3 at 0.9m, TP5 at 0.4m	None Detected	TP3 at 0.9m, TP5 at 0.4m
рН	4.84	TP2 at 1.9m	8.22	TP5 at 1.1m
Mineral oil >C10-C40	32.7 mg/kg	TP2 at 0.4m	52 mg/kg	TP3 at 1.2m
Organic Carbon, Total	0.357 %	TP5 at 1.1m	0.568 %	TP3 at 1.2m
TPH >C6-C40	<10 mg/kg	TP5 at 0.4m	164 mg/kg	TP3 at 0.9m
Sulphate, Total	1120 mg/kg	TP2 at 1.9m	1200 mg/kg	TP4 at 0.6m

Wessex Water Page 7 of 12

Reference:	Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information
	for H5 Site Condition Report, Version 1.

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
Water Soluble Sulphate as SO4 2:1 Extract	0.0423 g/l	TP2 at 1.9m	0.625 g/l	TP4 at 0.6m
Chloride (soluble)	6.46 mg/kg	TP2 at 1.9m	21.9 mg/kg	TP4 at 0.6m
Naphthalene	<9 µg/kg	TP5 at 0.4m	12.5 µg/kg	TP3 at 0.9m
Phenanthrene	<15 µg/kg	TP5 at 0.4m	25.2 µg/kg	TP3 at 0.9m
Fluoranthene	<17 µg/kg	TP5 at 0.4m	38 µg/kg	TP3 at 0.9m
Pyrene	<15 µg/kg	TP5 at 0.4m	32.2 µg/kg	TP3 at 0.9m
Benz(a)anthracene	<14 µg/kg	TP5 at 0.4m	27.7 µg/kg	TP3 at 0.9m
Chrysene	<10 µg/kg	TP5 at 0.4m	19 µg/kg	TP3 at 0.9m
Benzo(b)fluoranthene	<15 µg/kg	TP5 at 0.4m	29.1 µg/kg	TP3 at 0.9m
Benzo(a)pyrene	<15 µg/kg	TP5 at 0.4m	20.8 µg/kg	TP3 at 0.9m
PAH, Total Detected USEPA 16	<118 µg/kg	TP5 at 0.4m	204 µg/kg	TP3 at 0.9m

Laboratory analysis results from BWB 2020 boreholes reported that asbestos was detected at BH02 at 1.0m depth, BH03 at 3.5m depth and HP07 at 1.02m and 0.4m depth. This was chrysotile at <0.001% at all locations. A range of speciated PAHs were detected in 12 out of 20 samples with the greatest concentrations recorded at BH03 at a depth of 3.5m (Total PAH at 115 mg/kg). This included a measurement of 20mg/kg of fluoranthene. No BTEX or MTBE were detected in any soil samples. Total Petroleum Hydrocarbons (TPH) for Aliphatic (EC5 - EC35) were present above the laboratory LoD (<10 mg/kg) at BH02 (1.0m depth), BH03 (3.5m depth), BH01 (0.7m depth), HP06 (0.6m depth) and HP07 (0.2m and 0.4m depth). The same locations, except for BH01, recorded concentrations above the LoD for Aromatic TPHs (EC5 – EC35) also, with the addition of HP01 (0.1m depth), HP04 (0.1m depth), HP05 (0.2m and 0.5m depth) and HP06 (0.1m depth). Most heavy metals were detected in all samples, except for chromium, mercury and selenium which were predominantly below the LoD or at very low concentrations.

The maximum and minimum concentrations detected are summarised in Table 1.3.

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
Asbestos	Not Detected	BH02 at 4.0m, BH03 at 7.5m, BH01 at 0.7m and 3.0m, HP01 – HP06 at all depths	<0.001% (Chrysotile)	BH02 at 1.0m, BH03 at 3.5m, HP07 at 0.2m and 0.4m
рН	7.4	HP05 at 0.5m	9.6	BH02 at 1.0m
Total Organic Carbon	0.4%	HP04 at 0.5m	3.8%	BH01 at 0.7m

Table 1.3 Summary of Detected Contaminant Concentrations, BWB 2020

Wessex Water Page 8 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
Speciated Total EPA-16 PAHs	<0.8 mg/kg	BH01 at 3.0m, BH02 at 4.0m, HP01, HP03, HP04 at 0.5m, HP05 at 0.5m	115 mg/kg	BH03 at 3.5m
TPH-CWG - Aliphatic (EC5 - EC35)	<10 mg/kg	BH02 at 4.0m and BH03 at 7.5m, BH01 at 3.0m, HP01 – HP05, HP06 at 0.1m	700 mg/kg	HP06 at 0.6m
TPH-CWG - Aromatic (EC5 - EC35)	<10 mg/kg	BH02 at 4.0m and BH03 at 7.5m, BH01, HP01, HP03, HP04 at 0.5m and HP05 at 0.5m	430 mg/kg	HP06 at 0.6m
Antimony (aqua regia extractable)	<1.0 mg/kg	BH03 at 7.5m, HP01 at 0.1m and 0.6m, HP03 at 0.5m, HP04 at 0.1m,	27 mg/kg	BH03 at 3.5m
Arsenic (aqua regia extractable)	9 mg/kg	HP03 at 0.5m	64 mg/kg	BH01 at 0.7m
Barium (aqua regia extractable)	36 mg/kg	HP03 at 0.5m	940 mg/kg	BH03 at 3.5m
Cadmium (aqua regia extractable)	<0.2 mg/kg	BH02 at 4.0m, BH03 at 7.5m, BH01 at 3.0m, HP01 at 0.6m, HP03 at 0.5m, HP04 at 0.5m, HP05 at 0.5m	4.3 mg/kg	BH01 at 0.7m
Chromium (aqua regia extractable)	19 mg/kg	HP01 at 0.3m	200 mg/kg	BH02 at 1.0m
Copper (aqua regia extractable)	13 mg/kg	HP01 at 0.3m and 0.6m	1100 mg/kg	BH01 at 0.7m
Lead (aqua regia extractable)	17 mg/kg	HP04 at 0.5m	910 mg/kg	BH01 at 0.7m
Mercury (aqua regia extractable)	<0.3 mg/kg	BH02 at 4.0m, BH03 at 7.5m, HP01 at 0.1m and 0.6m, HP03, HP04, HP05 at 0.5m, HP06 at 0.1m, HP07 at 0.2m	5 mg/kg	BH01 at 0.7m
Molybdenum (aqua regia extractable)	0.55 mg/kg	HP03 at 0.5m	9.7 mg/kg	BH01 at 0.7m
Nickel (aqua regia extractable)	10 mg/kg	HP01 at 0.3m	87 mg/kg	BH02 at 1.0m
Vanadium (aqua regia extractable)	22 mg/kg	HP06 at 0.1m	87 mg/kg	BH02 at 1.0m
Zinc (aqua regia extractable)	57 mg/kg	HP01 at 0.6m	1900 mg/kg	BH03 at 3.5m

Wessex Water Page 9 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

Laboratory analysis results from ESG 2017 boreholes reported that asbestos was detected at BH02A at 1.2m depth and BH03 at 1.0m depth. PCBs were detected at BH03 and BH04B with PCB52 detected at BH04B and PCB153, PCB138 and PCB180 detected at BH03. WAC testing has been carried out at BH02A, BH03 and BH04B. A range of speciated PAHs were detected in four of the samples at BH02A at 1.2m depth, BH03 at 0.1m and 1.0m depth and BH04B at 1.2m depth. The greatest concentrations were recorded at BH03 at a depth of 1.0m. All monoaromatics and oxygenates (i.e., BTEX and MTBE) were recorded below their respective LoD's. Most heavy metals were detected in all samples, except for chromium III, chromium VI, phenol, GRO (C6-C10) and cyanide (complex and total) which were below their LoD.

The maximum and minimum concentrations detected are summarised in Table 1.4.

Table 1.4 Summary	v of Detected	Contaminant	Concentrations.	ESG 2017
		oontannant	•••••••••••••••••••••••••••••••••••••••	

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
Asbestos	Not Detected	BH03 at 0.1m and BH04B at 1.2m	Amosite and Chrysotile	BH02A at 1.2m and BH03 at 1.0m
PCB52	<5.8 and <6.4 µg/kg	BH02A at 1.2m and BH03 at 1.0m	190 µg/kg	BH04B at 1.2m
PCB153	<5.7 and <6.4 µg/kg	BH02A at 1.2m and BH04B at 1.2m	9.4 µg/kg	BH03 at 1.0m
PCB138	<5.7 and <6.4 µg/kg	BH02A at 1.2m and BH04B at 1.2m	10.6 µg/kg	BH03 at 1.0m
PCB180	<5.7 and <6.4 µg/kg	BH02A at 1.2m and BH04B at 1.2m	8.4 µg/kg	BH03 at 1.0m
Naphthalene	< 0.09 mg/kg	BH04B at 1.2m and BH03 at 0.1m	0.14 mg/kg	BH03 at 1.0m
Acenaphthylene	< 0.09 mg/kg	BH04B at 1.2m	0.88 mg/kg	BH03 at 1.0m
Acenaphthene	< 0.09 mg/kg	BH04B at 1.2m and BH03 at 0.1m	0.21 mg/kg	BH03 at 1.0m
Fluorene	< 0.09 mg/kg	BH04B at 1.2m and BH03 at 0.1m	0.22 mg/kg	BH03 at 1.0m
Phenanthrene	0.10 mg/kg	BH04B at 1.2m	3.08 mg/kg	BH03 at 1.0m
Anthracene	< 0.09 mg/kg	BH04B at 1.2m	1.36 mg/kg	BH03 at 1.0m
Fluoranthene	0.28 mg/kg	BH04B at 1.2m	11.70 mg/kg	BH03 at 1.0m
Pyrene	0.25 mg/kg	BH04B at 1.2m	9.75 mg/kg	BH03 at 1.0m
Benzo[a]anthracene	0.22 mg/kg	BH04B at 1.2m	8.14 mg/kg	BH03 at 1.0m
Chrysene	0.17 mg/kg	BH04B at 1.2m	5.82 mg/kg	BH03 at 1.0m
Benzo[b]fluoranthene	0.26 mg/kg	BH04B at 1.2m	10.42 mg/kg	BH03 at 1.0m
Benzo[k]fluoranthene	0.10 mg/kg	BH04B at 1.2m	3.60 mg/kg	BH03 at 1.0m

Wessex Water Page 10 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
Benzo[a]pyrene	0.20 mg/kg	BH04B at 1.2m	8.22 mg/kg	BH03 at 1.0m
Indeno[1,2,3-cd]pyrene	0.20 mg/kg	BH04B at 1.2m	9.03 mg/kg	BH03 at 1.0m
Dibenzo[a,h]anthracene	< 0.09 mg/kg	BH04B at 1.2m	2.02 mg/kg	BH03 at 1.0m
Benzo[g,h,i]perylene	0.16 mg/kg	BH04B at 1.2m	6.82 mg/kg	BH03 at 1.0m
Coronene	< 0.09 mg/kg	BH04B at 1.2m	1.81 mg/kg	BH03 at 1.0m
Total (USEPA16) PAHs	< 2.49 mg/kg	BH04B at 1.2m	81.35 mg/kg	BH03 at 1.0m
SO4 (H2O sol) mg/l	39 mg/l	BH03 at 2.0m	332 mg/kg	BH03 at 3.8m
Total Sulphur.	0.031 %	BH01 at 2.1m	1.01 mg/kg	BH03 at 3.8m
SO4 (acid sol)	312 mg/kg	BH03 at 2.0m	2070 mg/kg	BH03 at 3.8m
Boron (H20 Soluble)	1.2 mg/kg	BH04B at 1.2m	8.1 mg/kg	BH04B at 3.4m
Arsenic (MS)	5.9 mg/kg	BH01 at 2.1m	20.4 mg/kg	BH03 at 0.1m
Cadmium (MS)	<0.2 mg/kg	BH01 at 2.1m and BH03 at 2.0m	1.62 mg/kg	BH03 at 1.0m
Chromium (MS)	28 mg/kg	BH01 at 2.1m	63.8 mg/kg	BH04B at 1.2m
Copper (MS)	12.3 mg/kg	BH01 at 2.1m	673.4 mg/kg	BH04B at 3.4m
Lead (MS)	8.7 mg/kg	BH01 at 2.1m	286.6 mg/kg	BH03 at 1.0m
Mercury (MS)	<0.5 mg/kg	BH01 at 2.1m and BH03 at 2.0m	0.6 mg/kg	BH03 at 1.0m
Nickel (MS)	18.5 mg/kg	BH03 at 2.0m	38.4 mg/kg	BH03 at 0.1m
Selenium (MS)	<0.5 mg/kg	BH01 at 2.1m, BH03 at 2.0m and BH04B at 1.2m	0.9 mg/kg	BH02A at 11.2m and BH03 at 0.1m
Zinc (MS)	78.9 mg/kg	BH01 at 2.1m	404.3 mg/kg	BH03 at 0.1m
pH units (AR)	7.3	BH01 at 2.1m	10.2	BH04B at 1.2m
Cyanide (Free) (AR)	<0.6 mg/kg	BH01 at 2.1m, BH02A at 11.2m, BH03 at 1.0m and BH04B at 1.2m and 3.4m	0.7 mg/kg	BH03 at 2.0m
Tot.Moisture @ 105C	13 %	BH04B at 1.2m	23.2%	BH03 at 2.0m
TPH Band (>C10-C16)	<11 mg/kg	BH04B at 1.2m	15 mg/kg	BH03 at 1.0m
TPH Band (>C10-C40)	81 mg/kg	BH02A at 11.2m	973 mg/kg	BH03 at 1.0m
TPH Band (>C16-C21)	<13 mg/kg	BH02A at 11.2m, BH03 at 2.0m and BH04B at 3.4m	97 mg/kg	BH03 at 1.0m
TPH Band (>C21-C35)	<12 mg/kg	BH01 at 2.1m	766 mg/kg	BH03 at 1.0m

Wessex Water Page 11 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
TPH by GCFID (AR)	13 mg/kg	BH01 at 2.1m	975 mg/kg	BH03 at 1.0m
Acid Neut. Capacity	4.45 Mol/kg	BH02A at 11.2m	9.13 Mol/kg	BH04B at 1.2m
Chloride:(2:1)	5 mg/l	BH03 at 2.0m	29 mg/l	BH01 at 2.1m
L.O.I. % @ 450C	1.6%	BH04B at 1.2m	6.8%	BH03 at 1.0m
Total Organic Carbon	0.27 %M/M	BH01 at 2.1m	6.02 %M/M	BH03 at 0.1m

No data was provided by Wessex Water on the composition of the sludge and cake at the Bioresources Centre so no comparison can be undertaken between the concentrations recorded during the site investigations to provide a baseline.

Leachability Samples

Leachability analysis was undertaken on samples taken by BWB (2020) at BH01, BH02, HP01 and HP03 – HP07 in November 2011. The results showed that all petroleum hydrocarbons, speciated and Total PAHs and monoaromatics and oxygenates (i.e., BTEX and MTBE) were recorded below their respective LoDs. Cyanide (total and free) was not detected in any sample. Total phenols were only detected at its LoD in HP06 at 0.6m and HP07 at 0.4m. Most heavy metals were detected excluding hexavalent chromium, mercury and selenium which were below their LoD in all samples. A range of concentrations are reported for the metals and general inorganics as displayed in Table 1.5. pH was recorded as pH 7.6 - 8.1.

Table 1.5 Summary of Detected Contaminant Concentrations in Leachate, BWB	2020
---	------

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
рН	7.6	HP07 at 0.4m	8.1	BH01 at 0.7m
Sulphate as SO4	2.6 mg/l	HP03 at 0.1m	426 mg/l	HP07 at 0.4m
Ammoniacal Nitrogen as N	<15 µg/l	HP01 at 0.6m	3100 µg/l	BH01 at 3.0m
Total Phenols (monohydric)	<10 µg/l	All depths at BH01, BH02, HP01, HP03 – HP05 and HP06 at 0.1m	19 µg/l	HP06 at 0.6m
Arsenic (dissolved)	<1.0 µg/l	HP03 at 0.1m, BH02 at 4.0m, HP04 at 0.5m HP05 at 0.1m and 0.5m, and HP07 at 0.4m	9.7 µg/l	HP06 at 0.6m
Boron (dissolved)	20 µg/l	HP06 at 0.1m	710 µg/l	BH01 at 3.0m
Cadmium (dissolved)	<0.08 µg/l	All depths at BH01, BH02, HP01, HP03 – HP06	0.09 µg/l	HP07 at 0.4m

Wessex Water Page 12 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
Chromium (III)	<1.0 µg/l	BH01 at 3.0m, BH02 at 4.0m and HP04 at 0.5m	5.1 µg/l	BH01 at 0.7m
Chromium (dissolved)	<0.4 µg/l	BH01 at 3.0m	5.1 µg/l	BH01 at 0.7m
Copper (dissolved)	6.8 µg/l	HP04 at 0.5m	17 µg/l	HP05 at 0.1m and HP06 at 0.1m
Lead (dissolved)	<1.0 µg/l	HP01 at 0.6m	9.7 µg/l	HP06 at 0.6m
Nickel (dissolved)	0.8 µg/l	HP06 at 0.1m	4.0 µg/l	BH02 at 4.0m
Zinc (dissolved)	8.4 µg/l	BH01 at 3.0m	70 µg/l	HP07 at 0.4m

Leachability analysis was undertaken on samples taken by ESG (2017) at BH03 and BH04B and recorded few determinands greater than their LoDs. BTEX, MTBE, cadmium, mercury, selenium, ammoniacal nitrogen as N, cyanide (free and total), phenol, TPH Band >C10-C16 and GRO >C6->C10 were all recorded below their LoD. However, multiple PAHs and metals were detected as shown in Table 1.6 with the majority of maximum concentrations recorded at BH03.

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
pH units	7.5	BH03 at 0.1m	7.8	BH04B at 1.2m
Total Sulphur as SO4 (Dissolved)	6.1 mg/l	BH03 at 0.1m	8.8 mg/l	BH04B at 1.2m
Nickel as Ni (Dissolved)	<0.001 mg/l	BH04B at 1.2m	0.002 mg/l	BH03 at 0.1m
Chromium as Cr (Dissolved)	<0.001 mg/l	BH03 at 0.1m	0.002 mg/l	BH04B at 1.2m
Copper as Cu (Dissolved)	0.004 mg/l	BH04B at 1.2m	0.024 mg/l	BH03 at 0.1m
Lead as Pb (Dissolved)	0.002 mg/l	BH04B at 1.2m	0.006 mg/l	BH03 at 0.1m
Zinc as Zn (Dissolved)	0.016 mg/l	BH04B at 1.2m	0.05 mg/l	BH03 at 0.1m
Arsenic as As (Dissolved)	0.004 mg/l	BH03 at 0.1m and BH04B at 1.2m	0.004 mg/l	BH03 at 0.1m and BH04B at 1.2m
Boron as B (Dissolved)	0.03 mg/l	BH04B at 1.2m	0.04 mg/l	BH03 at 0.1m
Ammoniacal Nitrogen as NH4	<0.01 mg/l	BH03 at 0.1m	0.01 mg/l	BH04B at 1.2m
TPH Band >C16-C21	<0.01 mg/l	BH04B at 1.2m	0.01 mg/l	BH03 at 0.1m
TPH Band (>C21-C35)	0.02 mg/l	BH04B at 1.2m	0.03 mg/l	BH03 at 0.1m
TPH GC	0.03 mg/l	BH04B at 1.2m	0.06 mg/l	BH03 at 0.1m
Naphthalene	0.096 µg/l	BH04B at 1.2m	0.236 µg/l	BH03 at 0.1m
Acenaphthylene	<0.010 µg/l	BH04B at 1.2m	0.026 µg/l	BH03 at 0.1m

Table 1.6 Summary of Detected Contaminant Concentrations in Leachate, ESG 2017

Wessex Water Page 13 of 12

Reference:	Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information
	for H5 Site Condition Report, Version 1.

Contaminant	Minimum	Exploratory Hole Location & Depth (m bgl)	Maximum	Exploratory Hole Location & Depth (m bgl)
Acenaphthene	0.021 µg/l	BH04B at 1.2m	0.765 µg/l	BH03 at 0.1m
Fluorene	0.015 µg/l	BH04B at 1.2m	0.368 µg/l	BH03 at 0.1m
Phenanthrene	0.070 µg/l	BH04B at 1.2m	0.738 µg/l	BH03 at 0.1m
Anthracene	0.014 µg/l	BH04B at 1.2m	0.161 µg/l	BH03 at 0.1m
Fluoranthene	0.052 µg/l	BH04B at 1.2m	0.228 µg/l	BH03 at 0.1m
Pyrene	0.043 µg/l	BH04B at 1.2m	0.161 µg/l	BH03 at 0.1m
Benzo[a]anthracene	0.030 µg/l	BH04B at 1.2m	0.050 µg/l	BH03 at 0.1m
Chrysene	0.018 µg/l	BH04B at 1.2m	0.046 µg/l	BH03 at 0.1m
Benzo[b]fluoranthene	0.022 µg/l	BH04B at 1.2m	0.043 µg/l	BH03 at 0.1m
Benzo[k]fluoranthene	<0.010 µg/l	BH04B at 1.2m	0.019 µg/l	BH03 at 0.1m
Benzo[a]pyrene	0.013 µg/l	BH04B at 1.2m	0.032 µg/l	BH03 at 0.1m
Indeno[1,2,3-cd]pyrene	<0.010 µg/l	BH04B at 1.2m	0.026 µg/l	BH03 at 0.1m
Dibenzo[a,h]anthracene	<0.010 µg/l	BH04B at 1.2m	<0.010 µg/l	BH03 at 0.1m
Benzo[g,h,i]perylene	<0.010 µg/l	BH04B at 1.2m	0.024 µg/l	BH03 at 0.1m
Total (USEPA16) PAHs	<0.444 µg/l	BH04B at 1.2m	<2.933 µg/l	BH03 at 0.1m

Groundwater Samples

Groundwater samples were taken by BWB (2020) at BH02 (deep) and BH03 (shallow and deep) in November 2011. The results showed that phenols and volatile free fatty acids were below the LoD in all three samples. BTEX and MTBE were below the LoD at BH03 (S) which was the only sample analysed for these. PAHs were only detected at BH03 (S) with a Total PAH concentration of 318 μ g/l (with all 16 PAHs being detected). Petroleum hydrocarbons were only analysed for at BH03 (S) and recorded detections of both aliphatic (C5 – C35) and aromatic (C5 – C35) at concentrations of 390 μ g/l and 1400 μ g/l. All metals were detected in all three locations except for hexavalent chromium, beryllium, cadmium and mercury (excluding BH02 (D) for mercury). A range of concentrations are reported for major anions and cations as displayed in Table 1.7. pH was recorded as pH 7.3 – 7.7.

Table 1.7 Summar	y of Detected	Contaminant	Concentrations,	BWB 202	0
------------------	---------------	-------------	-----------------	----------------	---

Contaminant	Minimum	Exploratory Hole Location	Maximum	Exploratory Hole Location
рН	7.3	BH03 (S)	7.7	BH02 (D)
Total EPA-16 PAHs	<0.16 µg/l	BH02 (D) and BH03 (D)	318 µg/l	BH03 (S)
TPH-CWG - Aliphatic (C5 - C35)	390 µg/l	BH03 (S)	390 µg/l	BH03 (S)

Wessex Water Page 14 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

Contaminant	Minimum	Exploratory Hole Location	Maximum	Exploratory Hole Location
TPH-CWG - Aromatic (C5 - C35)	1400 µg/l	BH03 (S)	1400 µg/l	BH03 (S)
Thiocyanate as SCN	240 µg/l	BH02 (D)	330 µg/l	BH03 (D)
Sulphate as SO4	104 mg/l	BH03 (S)	803 mg/l	BH02 (D)
Sulphide	<5.0 µg/l	BH02 (D) and BH03 (D)	120 µg/l	BH03 (S)
Chloride	22 mg/l	BH03 (S)	840 mg/l	BH02 (D)
Ammoniacal Nitrogen as N	190 µg/l	BH03 (D)	4800 µg/l	BH03 (S)
Total Nitrogen (Kjeldahl)	6.6 mg/l	BH03 (S)	6.6 mg/l	BH03 (S)
Total Organic Carbon (TOC)	11.3 mg/l	BH02 (D)	33.7 mg/l	BH03 (S)
Nitrate as N	0.05 mg/l	BH02 (D)	0.09 mg/l	BH03 (S)
Nitrate as NO3	0.41 mg/l	BH03 (S)	0.41 mg/l	BH03 (S)
Chemical Oxygen Demand (Total)	120 mg/l	BH02 (D)	1900 mg/l	BH03 (S)
BOD (Biochemical Oxygen Demand) (Total) - PL	7.1 mg/l	BH03 (S)	56 mg/l	BH02 (D)
Boron (dissolved)	420 µg/l	BH03 (S)	3900 µg/l	BH02 (D)
Calcium (dissolved)	78 mg/l	BH02 (D)	130 mg/l	BH03 (D)
Iron (dissolved)	0.038 mg/l	BH03 (S)	0.17 mg/l	BH02 (D)
Magnesium (dissolved)	7.3 mg/l	BH03 (S)	21 mg/l	BH02 (D)
Potassium (dissolved)	12 mg/l	BH03 (S)	23 mg/l	BH02 (D)
Sodium (dissolved)	100 mg/l	BH03 (S)	920 mg/l	BH02 (D)
Chromium (total)	6.8 µg/l	BH03 (S)	8.4 µg/l	BH03 (D)
Lead (total)	7 μg/l	BH03 (S)	43 µg/l	BH02 (D)
Mercury (total)	<0.05 µg/l	BH03 (S)	0.15 µg/l	BH02 (D)
Nickel (total)	27 µg/l	BH02 (D)	80 µg/l	BH03 (S)
Selenium (total)	4 µg/l	BH03 (S)	8.7 µg/l	BH02 (D)
Zinc (total)	220 µg/l	BH02 (D)	6800 µg/l	BH03 (S)
Antimony (dissolved)	1.3 µg/l	BH02 (D)	4 µg/l	BH03 (S)
Arsenic (dissolved)	2.98 µg/l	BH03 (S)	5.56 µg/l	BH02 (D)
Barium (dissolved)	37 μg/l	BH02 (D)	68 µg/l	BH03 (S)
Manganese (dissolved)	120 µg/l	BH02 (D)	1800 µg/l	BH03 (S)
Vanadium (dissolved)	1.2 µg/l	BH03 (D)	5.5 µg/l	BH02 (D)
Copper (total)	11 μg/l	BH03 (S)	63 µg/l	BH02 (D)

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

Groundwater was sampled by ESG (2017) at four boreholes on 6 February 2017. PAHs were only detected at BH04B where pyrene was recorded at 0.012 μ g/l, all others were below the LoD. Phenol, sulphide and cyanide were not detected in any samples. TPH Bands (>C21 - C35) was detected at BH01, BH02A and BH04B at 0.04 mg/l and TPH GC was detected in all four samples with a maximum concentration of 0.06 mg/l at BH02A and BH04B. Major cations and anions and metals were detected in most samples with the maximum and minimums displayed in Table 1.8.

Contaminant	Minimum	Exploratory Hole Maximum Location		Exploratory Hole Location
pH units	7.4 pH	BH04B	7.8 pH	BH02A
Conductivity uS/cm @ 25C	4000 µS/cm	BH03 and BH04B	5200 µS/cm	BH01
Chloride as Cl	490 mg/l	BH04B	1070 mg/l	BH01
Total Sulphur as SO4 (Total)	625 mg/l	BH02A	1310 mg/l	BH03 and BH04B
Total Sulphur as SO4 (Dissolved)	694 mg/l	BH02A	1490 mg/l	BH04B
Magnesium as Mg (Dissolved)	14 mg/l	BH02A	72 mg/l	BH04B
Nickel as Ni (Dissolved)	0.004 mg/l	BH01 and BH02A	0.008 mg/l	BH04B
Chromium as Cr (Total)	0.002 mg/l	BH01 and BH02A	0.037 mg/l	BH03
Cadmium as Cd (Dissolved)	<0.0001 mg/l	BH04B	0.0004 mg/l	BH01
Copper as Cu (Dissolved)	0.002 mg/l	BH02A and BH04B	0.003 mg/l	BH01 and BH03
Lead as Pb (Dissolved)	<0.001 mg/l	BH01, BH03 and BH04B	0.002 mg/l	BH02A
Zinc as Zn (Dissolved)	0.009 mg/l	BH04B	0.105 mg/l	BH01 and BH03
Arsenic as As (Dissolved)	0.001 mg/l	BH04B	0.005 mg/l	BH02A
Boron as B (Dissolved)	2.54 mg/l	BH02A	4.0 mg/l	BH03
Mercury as Hg (Dissolved)	<0.0001 mg/l	BH03 and BH04B	0.0001 mg/l	BH01 and BH02A
Selenium as Se (Dissolved)	0.001 mg/l	BH04B	0.099 mg/l	BH02A
Ammoniacal Nitrogen as N	0.16 mg/l	BH04B	1.0 mg/l	BH02A
Nitrate as NO3 (Kone Calc)	<0.9 mg/l	BH04B	47.4 mg/l	BH02A
Nitrate as N	<0.2 mg/l	BH04B	10.7 mg/l	BH02A
TPH Band (>C21-C35)	<0.01 mg/l	BH03	0.04 mg/l	BH01, BH02A and BH04B
TPH GC	0.02 mg/l	BH03	0.06 mg/l	BH02A and BH04B

Table 1.8 Summary of Detected Contaminant Concentrations, ESG 2017

A prior groundwater sample was taken at BH01 on 8 December 2016. The following was recorded:

- Reference: Potential Sources of Contamination Trowbridge Water Recycling Centre, Bioresources Centre Supporting Information for H5 Site Condition Report, Version 1.
 - Selenium (0.006 mg/l), ammoniacal nitrogen as NH4 (0.03 mg/l), ammoniacal nitrogen N (0.02 mg/l), nitrate as NO3 (50.5 mg/l) and nitrate as N (11.4 mg/l) were all detected.
 - Phenol was detected at a concentration of 0.0029 mg/l.
 - Only two PAHs were detected which were acenaphthene (0.012 μg/l) and benzo[a]anthracene (0.011 μg/l)
 - TPH: >C16 C21 and >C21 C35 were detected at concentrations of 0.01 mg/l and 0.013 mg/l respectively.

It should be noted that a great deal of emphasis may be placed on the limited chemical data that is available and the reported data should not be assumed to represent groundwater quality at the Site. The chemical data is for samples collected by third parties; sample collection and storage procedures are not known and could affect the validity of the results. Furthermore, chemical concentrations vary spatially and with time.

The laboratory analysis reports are appended to the individual SI Reports, presented as Appendix B to E of this memo (Stantec, 2021).

POTENTIAL SOURCES OF CONTAMINATION (PSCs)

PSCs identified on site and within 50m of the Trowbridge Bioresources Centre (250m for potentially infilled ground) are summarised in Table 1.9 and illustrated in Figure 1. This has been completed by reviewing the site history presented in the EQRA and using information, including historical mapping included in the Environmental Data Report (Groundsure, 2021) and online sources (Data.gov.uk, 2021).

Table 1.9 Potential Sources of Contamination (PSCs)

PSC Plan ID	PSC on site or within 50m radius, 250m radius for potentially infilled land	Distance to site	Status / Year	Potential Contaminants	
1	Trowbridge Bioresources Centre. Infrastructure includes digesters, APDs, strain presses and boiler including fuel oil storage tank. Potential for infilling of former tanks and infrastructure bases during development of bioresources centre (see EQRA Figure 3.3 For Current Bioresources Centre Assets).	On-Site	Present	Metals, petroleum hydrocarbons, VOCs including BTEX, MTBE - associated with fuel tank(s) and pumping stations	
1a	Wider Trowbridge WRC Sewage works and unspecified tanks (PSC 1b) (c.1922) in the east. WRC expands slightly to the southwest in c.1968-1971 and 1974-1977 and again between 1979 and 1985-1987 to cover the entire Site area. Potential for infilling of former tanks and infrastructure bases over various phases of redevelopment. Made Ground including ash was identified in BH02, HP05 and HP06 during the BWB 2020 GI between 0 and 3 mbgl; however, this is located northeast of the current Bioresources Centre. Ash was not recorded in any other GI however macadam and clinker were noted in BH01 and BH02A/BH04 respectively in ESG 2016 boreholes which are located in the	Adjacent	1901 - 1922 to present	Phenols, PAHs, pathogens, polychlorinated biphenyls (PCBs) (associated with generators and electricity substations), Asbestos and ground gas (carbon dioxide, carbon monoxide, methane, hydrogen sulphide) - from areas of infilling and sewage treatment,	
	same area as BH02 mentioned above recording the ash (see Figure 4.1 for locations.			tanks	
	Unspecified Tanks		1974 to 1985		
1b	Sewage Works	On-site	1922 – 1939, 1973 - 1974 to 1985 - 1987	Metals, petroleum hydrocarbons, VOCs, including BTEX, MTBE - associated with fuel tank(s) and pumping stations Phenols, PAHs, pathogens, PCBs, ground	
1c	Filter Tanks	On site. 77m south.	1939	gas (carbon dioxide, carbon monoxide, methane, hydrogen sulphide) – associate with sludge beds	
1d	Electricity Substation	On-site	Present	Petroleum Hydrocarbons (heavy fractions) and PCBs	
2	Refuse Heap	138m northeast	1956	BTEX, PAHs, Volatile Organic Compound - Toluene.	
Landfills within 250m; pollution incidents within 50m (Groundsure, 2020) (Data.gov.uk, 2021)					

Wessex Water

Page 18 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

2	BGS Recorded Historical Landfill approximately 185m northeast of Site at Bradford Road, Trowbridge. No other information is supplied.
2	Environment Agency Recorded Historical Landfill approximately 135m northeast of Site at Bradford Road received industrial and commercial waste and was operated by Trowbridge Urban District Council. No dates of issue or surrender are supplied.
2	Local Authority Recorded 2 Historical Landfills approximately 119m north and 196m east of Site and from historic mapping. No other information is supplied.
N/A	Pollution incidents – none recorded within 50m
British	Geological Survey (BGS) Online Records (artificial ground within 250m)
N/A	None recorded in published mapping.
Enviro	nmental Permitting / Exemptions (50m radius) (Groundsure, 2020)
N/A	Environmental Permits held at the Site for Biological Treatment (issued 1993), Combustion of Biogas (issued 2014) and Sewage Sludge Treatment (issued 2011) for 250,000 tonnes.
N/A	One storage of waste exemption (S1 & S2) is held for the storage of waste in secure containers at Trowbridge WRC.

Wessex Water

Page 19 of 12

Reference: Potential Sources of Contamination – Trowbridge Water Recycling Centre, Bioresources Centre – Supporting Information for H5 Site Condition Report, Version 1.

Figure 1 Potential Sources of Contamination (PSC) Plan

RECOMMENDATIONS FOR BASELINE DATA

A number of potential sources of contamination (PSCs) have been identified on Site. As presented in Table 1.9, there are potential contaminants (predominantly metals, PAHs and TPHs) associated with both the Bioresources Centre activities at the Site and the wider WRC. There is sufficient data for soil and groundwater within the wider STW to determine baseline data of the Site even though this is limited data for the Bioresources Centre.

REFERENCES

Stantec, Industrial Emissions Directive Compliance Action Plan Environmental Quantitative Risk Assessment, Trowbridge Bioresource Centre, Reference: EQRA331101341, version 1.0, June 2021 (Stantec, 2021).

Stantec, Trowbridge Water Recycling Centre, Site Condition Report – H5, version 1.0, June 2021 (Stantec, 2021).

Groundsure Report, Location 384772, 158795, Reference: EPL000376/ GS-7354642, 9th December 2020 (Groundsure, 2020).

Open access Environment Agency Data on gov.uk (Data.gov.uk, 2021).

Geology of Britain viewer. https://www.bgs.ac.uk Geological Survey (BGS). Last accessed 28 June 2021 (BGS, 2021).

BGS, 2000. Geological Survey of England and Wales 1:63,360/1:50,000 geological map series, New series, Sheet 281 Frome Solid and Drift, 2000.

BWB, 2012. Trowbridge STW Ground Investigation and Factual Report, April 2012.

BWB, 2020. Trowbridge WRC, Trowbridge Ground Investigation Factual Report, December 2020.

ESG, 2017. Trowbridge STW, Wiltshire Factual Report Ground Investigation, February 2017.

Geotechnics Limited, 2008. Contaminated Land Improvement Review Trowbridge STW Factual Report for Wessex Water Services Limited, June 2008.

Sweco UK Limited, 2019. Site Condition Report Trowbridge Water Recycling Centre, June 2019.

QUALITY ASSURANCE

Version 1	
Author: Elizabeth Wilson	
Checker: Rob Gordon	
Reviewer:	
Appendix A – Data Tables

Exploratory	Sample	Strata	Suites of	Analysis				
Hole ID	Depth		Metals	Asbestos	BTEX, GRO, DRO	PAHs	VOCs	
Geotechnics 2	2008	•	1		4			
BH2	1.0 m	MG	Х	Х	Х	Х	Х	
BH4	1.0 m	MG	Х	Х	Х	Х	Х	
BH5	3.5 m	KF/OC	Х	Х	Х	Х	х	
BH6	4.0 m	MG	Х	Х	Х	Х	х	
BH8	1.0 m	MG	Х	Х	Х	Х	х	
BH10	0.5 m	MG	Х	Х	Х	Х	х	
BH11	8.0 m	KF/OC	Х	Х	Х	Х	Х	
BH13	1.0 m	KF/OC	Х	Х	Х	Х	Х	
BH16	1.0 m	KF/OC	Х	Х	Х	Х	х	
BWB 2012								
Exploratory Hole ID	Sample Depth	Strata	LOI, Mineral Oil, TOC, PCBs, Total PAHs	рН	Sulphate, chloride	TPHs, PAHs, asbestos	BTEX	WAC
TP2	0.4 m	MG	Х	Х			х	Х
	1.9 m	KF/OC		Х	Х			
TP3	0.9 m	MG				Х		
	1.2 m	MG	Х	Х			х	Х
TP4	0.6 m	MG		Х	Х			
	2.5 m	MG						
TP5	0.4 m	MG				Х		
	1.1 m	MG	Х				х	Х
TP6	1.20 m	KF/OC		Х	Х			
ESG 2017	_							
Exploratory Hole ID	Sample Depth	Strata	рН	Sulphate, Sulphur	Metals, Cyanides, Sulphate, GRO, Phenol, TPHs, BTEX, MTBE, PAHs	Asbestos	TOC, PCBs	WAC
BH01	21m	KE/OC	X	x	x			

Table A1 Historical GI Geo-Environmental Analysis

Design with community in mind Potential Sources of Contamination_Trowbridge Bioresources Centre.001

BH02A	1.2 m	MG	Х	Х	х	х	Х	Х
BH03	0.1 m	Topsoil	x		Х	х		
BH03	1.0 m	MG	х		Х	Х	X	Х
BH03	2.0 m	MG – KF/OC boundary	х	х	X			
BH03	3.8 m	KF/OC	Х	Х				
BH04B	1.2 m	MG	Х		Х	Х	Х	Х
BH04B	3.4 m	KF/OC	Х		Х			
BWB 2020								
Exploratory Hole ID	Sample Depth	Strata	Metals, TOC Cyanide	Asbestos	PAHs	BTEX, TPHs		
BH02	1.0 m	MG	Х	Х	Х	Х		
BH02	2.0 m	MG	Х	Х	Х	Х		
BH03	3.5 m	MG	Х	Х	Х	Х		
BH03	7.5 m	MG – KF/OC boundary	х	х	x	X		
BH01	0.7 m	MG	Х	Х	Х	Х		
BH01	3.0 m	KF/OC	Х	Х	Х	Х		
HP01	0.1 m	MG	Х	Х	Х	Х		
HP01	0.3 m	MG	Х	Х	Х	Х		
HP01	0.6 m	KF/OC	Х	х	Х	Х		
HP03	0.1 m	MG	х	х	Х	Х		
HP03	0.5 m	KF/OC	Х	Х	Х	Х		
HP04	0.1 m	MG	Х	х	Х	Х		
HP04	0.5 m	MG	Х	х	Х	Х		
HP05	0.2 m	MG	Х	х	Х	Х		
HP05	0.5 m	MG	Х	Х	Х	Х		
HP06	0.1 m	MG	Х	Х	Х	Х		
HP06	0.6 m	MG	Х	Х	Х	Х		
HP07	0.2 m	MG	х	Х	Х	Х		
HP07	0.4 m	MG	Х	Х	Х	Х		

TPH CWG - Total Petroleum Hydrocarbons Criteria Working Group; PAHs - polycyclic aromatic hydrocarbons, TOC - Total Organic Carbon, BTEX - Benzene Toluene Ethylbenzene and Xylene.

KF = Kellaways Formation, OC = Oxford Clay Formation.

Table A2 Historical Groundwater Quality Analysis

ESG 2017								
Exploratory Hole ID	Sample Depth	Strata	Metals,	Phenol	PAHs	TPHs	Nitrate, Ammoniacal	Conductivity, pH

			Cyanide, Sulphide				nitrogen, sulphur	
BH01	-	-	x	x	x	x	x	x
BH02A	-	-	x	x	x	x	x	x
BH03	-	-	х	x	х	x	х	x
BH04B	-	-	x	х	x	x	x	x
BWB 2020								
Exploratory Hole ID	Sample Depth	Strata	General Inorganics	Metals	PAHs	Phenols	Volatile free fatty acids	Petroleum hydrocarbons, monoaromatics % oxygenates
BH02 (D)	-	-	х	x	x	x	x	
BH03 (D)	-	-	x	x	x	x	x	
BH03 (S)	-	-	x	x	x	x	x	x

Table A3 Historical Leachability Quality Analysis

BWB 2020								
Exploratory Hole ID	Sample Depth	Strata	General Inorganics	Metals	PAHs	Phenols	Volatile free fatty acids	Petroleum hydrocarbons, monoaromatics % oxygenates
BH01	0.7	MG	x	x	х	x	х	x
BH01	3.0	KF/OC	x	х	x	x	x	x
HP01	0.6	KF/OC	х	х	x	x	x	x
HP03	0.1	MG	х	x	х	x	x	x
HP04	0.5	MG	х	x	x	x	x	x
HP05	0.1	MG	х	х	x	x	x	x
HP05	0.5	MG	х	x	х	x	x	x
HP06	0.1	MG	х	x	x	x	x	x
HP06	0.6	MG	x	x	x	x	x	x
HP07	0.4	MG	x	x	x	x	x	x

Appendix B – Geotechnics, 2008

Appendix C – ESG Ltd, 2017

Appendix D – BWB Consulting, 2012

Appendix E – BWB Consulting, 2020

Contaminated Land Improvement Review

Trowbridge STW

Factual Report

for

Wessex Water Services Limited

Project Number : PE080558

June 2008

Issuing office :

South West Office Geotechnics Limited The Geotechnical Centre 8 Orchard Court Heron Road, Sowton Exeter EX2 7LL T: 01392 412 446 F:01392 362 159 mail@exeter.geotechnics.co.uk

Head Office Coventry Geotechnics Limited The Geotechnical Centre 203 Torrington Avenue Tile Hill Coventry CV4 9AP T: 024 7669 4664 F: 024 7669 4642 mail@geotechnics.co.uk North West Office Geotechnics Limited The Geotechnical Centre Unit I, Borders Industrial Park River Lane, Saltney Chester CH4 8RJ T: 01244 671 117 F: 01244 671 112 mail@chester.geotechnics.co.uk Scottish Office Geotechnics Limited The Geotechnical Centre Block I, Unit 8 Duckburn Business Park Dunblane FK I5 0EW T: 01786 823 328 F:01786 823 345 mail@dunblane.geotechnics.co.uk Contaminated Land Improvement Review

Factual Report

TROWBRIDGE STW

for Wessex Water Services Limited

> **Project No: PE080558** June 2008

LIST OF CONTENTS

Page No

I

T

I

| | |

I

3

1.0	INTRO	DDUCTION
2.0	OBJEC	T AND SCOPE OF THE INVESTIGATION
3.0	PRESE	NTATION
4.0	THE S 4.1 4.2	ITE Location Description
5.0	PROC 5.1 5.2 5.3 5.4	EDURE Commissioning General Boreholes Instrumentation and Monitoring
6.0	LABO 6. I	RATORY TESTING Contamination

APPENDICES

- APPENDIX I The Brief
- APPENDIX 2 Site Location Plan
- APPENDIX 3 Borehole Records
- APPENDIX 4 Exploratory Hole Location Plan
- APPENDIX 5 Monitoring Results
- APPENDIX 6 Laboratory Test Results Contamination
- APPENDIX 7 Investigation Techniques and General Notes

Ground Investigation Contaminated Land Improvement Review at Trowbridge STW

Factual Report

I.0 INTRODUCTION

A geoenvironmental investigation was undertaken by Geotechnics Ltd at the site of an operational Sewage Treatment Works (STW) in Trowbridge, Wiltshire. The investigation was carried out to the instructions of the Client, Wessex Water Services Ltd. This report describes the work undertaken and presents the data obtained.

2.0 OBJECT AND SCOPE OF THE INVESTIGATION

The object of the investigation was to obtain information on the ground and groundwater conditions relating to potential contamination, and migration of contaminants, across the site within the limitations posed by exploratory hole numbers, locations, depths, methods adopted and the scope of approved in situ and laboratory testing. The Client's Brief for the project and Geotechnics Limited's response is included in Appendix 1. The investigation comprised Rotary Boreholes, in situ and laboratory testing and reporting. A geoenvironmental interpretation and evaluation of the data obtained was not commissioned.

3.0 **PRESENTATION**

A description of the site and a summary of the procedures followed during the investigation process are presented in Sections 4 to 6. The factual data so obtained are presented in Appendices 2 to 6 of this report.

In addition, data in electronic PDF format is presented separately on disk.

Attention is drawn to the General Notes and Investigation Procedures presented in Appendix 7 to aid an understanding of the procedures followed and the context in which the report should be read.

4.0 THE SITE

4.1 Location

The site is located approximately Ikm north west of Trowbridge town centre, Wiltshire. It lies approximately 500m east of the A363 between Trowbridge and Bradford-on-avon, Wiltshire. The approximate Ordnance Survey National Grid Reference for the centre of the site is ST 848 587 and an extract from the relevant I:50,000 Scale O.S. Map (Sheet No. 173) is included as Appendix 2.

4.2 Description

The site is approximately rectangular in shape covering an area of around 250m by 400m. The site generally slopes gently down toward the south east, with local undulations.

The site comprises many STW structures and lagoons and an historic landfill to the north east and south east edges of the site. The site is surrounded by a chain link perimeter fence, with many hedges, trees and drainage ditches.

Agricultural pasture land surrounds the site on all sides, with the River Biss and associated flood plain approximately 50m to the south east. Access to the site is via a track from the west leading from the A363.

Some areas are inaccessible by heavy plant due to soft ground or the presence of structures.

5.0 PROCEDURE

5.1 Commissioning

The work was awarded following submission of a proposal for ground investigation of the site in accordance with the Client's requirements (see Appendix I).

5.2 General

The procedures followed in this site investigation are based on BS 5930 (1999) - Code of Practice for Site Investigations. The borehole records are included in Appendix 3 and their approximate positions are shown on the Exploratory Hole Location Plan in Appendix 4.

The Exploratory Hole locations were selected by Geotechnics Ltd and the client to provide general coverage of the site perimeter to identify whether there is subsurface contamination present and to determine whether its source is on or off site. Levels shown on the Exploratory Hole Records were estimated from the Survey Drawing provided by the Client and the depths quoted are in metres below ground level.

A walkover visual search of the site for a Victorian culvert was carried out within the site boundary. However, no evidence of the culvert was found during the visit.

5.3 Rotary Boreholes

Fifteen (15 No.) 140mm diameter boreholes (numbered BHI to BHRII, and BHI3 to BHI6) were sunk utilising open hole rotary with ODEX casing techniques to a depth of 8.00m below ground level. The work was carried out between the 19th March and 25th March. An inspection pit was excavated at each borehole location using hand tools to a depth not exceeding 1.20m below ground level to check for the presence of underground services.

The drilling equipment on this particular contract utilised compressed air as the flushing medium. Some strata descriptions in the open hole sections of the borehole records are the Drilling Foreman's estimate based on sediment and chipping returns in the flushing medium. The rate of penetration is also used as an indicator of the type of material being drilled, particularly where there is loss of flush returns. Definitive classification in terms of geology or degree of disturbance is not usually possible from these sources.

In some boreholes the ground was particularly soft and the material was pushed aside by the air flush rather than collected and flushed to the ground surface. As a result some boreholes had little return material to sample, and the description is based on drillers' observations. Groundwater observations are included on the borehole records where appropriate.

On completion standpipes were installed in boreholes BH2, BH4, BH5, BH6, BH8, BH9, BH10 and BH13 to BH16 (See section 5.4). The boreholes BH1, BH3, BH7, and BH11 were backfilled with bentonite on completion.

Borehole BH12 was cancelled due to inaccessibility as a result of localised flooding.

Borehole records are presented in Appendix 3.

5.4 Instrumentation and Monitoring

Long term monitoring of the gas and groundwater levels was made possible by the installation of standpipes as follows:

Exploratory Hole	Standpipe Slotted pipe & Filter Zone
	(m)
BH2	1.00 to 8.00
BH4	1.00 to 8.00
BH5	1.00 to 8.00
BH6	1.00 to 8.00
BH8	1.00 to 8.00
BH9	1.00 to 8.00
BHIO	1.00 to 8.00
BH13	1.00 to 8.00
BH14	1.00 to 8.00
BH15	1.00 to 8.00
BH16	1.00 to 8.00

Monitoring of the gas and groundwater levels at the site commenced on April 3^{rd} 2008 and comprised 5 further visits on the 10^{th} , 16^{th} , and 23^{rd} April, and the 1^{st} and 9^{th} May 2008.

At each position a record of the groundwater level in each instrument was taken

In addition to the groundwater levels the following parameters were measured and recorded in each standpipe using a GA2000 and Gas Data LSmxi Gas Analysers:

- Concentrations (% Vol) of CH₄, O₂, CO₂, along with (% LEL) CH₄.
- Flow Rate
- Differential Pressure
- Barometric Pressure

The results of the monitoring are presented in Appendix 5.

6.0 LABORATORY TESTING

6.1 Contamination

Selected samples of soil and groundwater were tested at the laboratories of ALcontrol Geochem for a number of determinands in order to check on potential site contamination. The determinands were specified by the Client.

The results are presented in Appendix 6.

Noches

Ben Tucker BSc (Hons) **Graduate Engineer**

Matthew Yates BSc(Hons), CGeol, FGS Principal Engineer

APPENDIX I The Brief

WESSEX WATER Trowbridge STW (Site Id.13318), Trowbridge

<u>1.</u> EXECUTIVE SUMMARY

Wessex Water conducted a Preliminary Environmental Site Assessment (ESA) at Trowbridge Sewage Treatment Works (STW) located at off Bradford Road, Trowbridge (Site 1d.13318). The Preliminary Environmental Site Assessment (ESA) was completed as part of an internal environmental due diligence audit of selected WW facilities.

Purpose

To evaluate the environmental condition of the site under Part IIA of the Environmental Protection Act (1990) and determine the potential for risk to the environment or human health associated with the continued use of the site as a STW facility.

Identified Sources of Site Contamination

Onsite sources of potential contamination were identified to include the following:

- Fuel storage facilities there is one diesel above ground fuel tank and one tank used to store waste oil.
- The old landfill site;
- Areas used for old sludge beds;
- Substations on site;
- Waste/flytipping on the site;
- Site operations associated with STW facility.

No potential off-site sources of contamination were identified.

Preliminary Risk Assessment

With respect to the findings of the Preliminary ESA, the following areas of potential environmental or human health risk are discussed.

Landfill site – the material within the landfill site is largely unknown. There is a risk of leachate generated from the decomposition of the material entering the groundwater and possibly the surface water. There is also the potential for the generation and migration of landfill gases.

WESSEX WATER

Trowbridge STW (Site Id.13318), Trowbridge

- Fuel tanks there are 2 above ground storage tanks on site. One is used to collect waste oil and the other is for the storage of diesel for use on site. There is a potential risk of localised soil contamination and the diesel mixing with surface water run off.
- STW Facility the presence of likely contaminants in soils underlying the STW are considered to pose a minimal risk to human health, given the low sensitivity of land use and reduced potential for human exposure due to restricted site access to trained personnel.

Conclusion & Recommendations

In summary, the findings of the Preliminary ESA indicate that the site is considered as suitable for the continued land use as a STW facility. If however the surrounding land were to be redeveloped for a more sensitive use then more detailed investigation should be undertaken to confirm whether any further remediation would be required.

To ensure that human health risks and environmental impacts associated with future site operations are minimised, the following recommendations are made:

- All waste on site should be removed in the appropriate manner.
- Filter bed media should be analysed prior to disposal to ensure that it is not contaminated. Disposal on site may then be an option.
- The diesel tank has a double skin but should be bunded. This should also include the dispensing pump. This will reduce spillages to the area and localised contamination. Checks should be made to ensure complaince with The Control of Pollution (Oil Storage) (England) Regulations 2001.
- The landfill site should be sampled both for landfill gases and leachate to establish whether they are still being generated from the decomposition of materials.

geotechnics

geotechnical and geoenvironmental specialists

www.geotechnics.co.uk

ACS AND CHARGE OF DESCRIPTION OF DES

Wessex Water Claverton Down Road Claverton Down Bath BA2 7WW

Your Ref :

Our Ref

Date

FAO: Paul Slade Email: Paul.slade@wessexwater.co.uk

: MY/OE070004

: 01 February 2008

Dear Sirs

Geotechnical Investigation Quotes: Contaminated Land Improvement Review

Further to your email dated 23rd January 2008 and following a meeting with yourself, we have pleasure in enclosing our revised quotes for carrying out the works as discussed. The works have been based on the following:

- Bowerhill: Provide a crew to obtain shallow soil samples from around the perimeter of the pond and water samples taken within the pond for metals testing. Letter report allowed for.
- Wells STW: Cable percussion boreholes to be located around the hillock towards the middle of the site. Window samples within the sludge dumping area towards the south-west part of the site. This area may be accessible using a man-handleable wheeled rig. Alternative equipment (jack-hammer window sampling kit) would be mobilised as an alternative should ground conditions require. Parts of this area of the site have not been visited and additional plant may be required to gain access.
- Trowbridge: Based on providing a tractor mounted rotary drilling rig to carry out open-hole (with ODEX casing to keep boreholes open to allow standpipe installation) drilling. Engineer supervision includes for walkover search of Victorian culvert.
- Westbury: Three days worth of window sampling, some boreholes to be installed with standpipes.
- Paulton: Provide a crew to obtain soil samples from the south-eastern end of the site. Letter report allowed for.
- Yeovil: Cable percussion boreholes to be located across the site to investigate potential contamination from off-site and on-site sources. Geoenvironmental input from our environmental department has been allowed for.
- Glastonbury: Hand pitting around suspected hydrocarbon leak 0 based on excavating through grass areas.
 Cable percussion and window sample boreholes through the site, some with standpipe installations.

All installations would be dual purpose gas and water monitoring standpipes. Geotechnics Ltd would need to be informed of the exact requirements from Wessex Water regarding proposed exploratory hole locations and borehole requirements.

We assume that access is available for the various rigs, together with unlimited headroom. Most sites should be readily accessible for the rigs we have quoted for. However, some areas of some sites may be boggy, in particular the Yeovil site. We have allowed for using floatation tyres on the cable percussion rig, however it is possible that an excavator/tractor may need to assist in moving around the site.

Head Office The Geotechnical Centre 203 Torrington Avenue Tile Hill Coventry CV4 9AP Ti 024 1569 4564 7: 024 7669 4542 Horth West Office The Geotechnical Centre Unit 1. Borders Industrial Park River Lane. Saltney Chester CH4 8RJ T: 01244 671117 F: 01244 671122 South West Office The Geotechnical Centre 8 Orchard Court Heron Road, Sowton Exeter EX2 71.1. 7: 01392 412446 5: 01392 362159

Soottish Office The Geotechnical Centre Block 1, Unit 8 Duckburn Business Park Ounblane, FK15 OEW Scotland, Tr 01786 823328 F: 01786 823345

Septecartics Limited, Registered in England No. 1757/90 at The Georechnical Centre, 203 Terrington Avenue, Tile Hill, Coventry CM4 34P

At Wells, we understand that vegetation clearance and access would be made available for drilling between the small river and the sludge landfill.

As detailed on the enclosed Conditions of Offer, the Employer, or his appointed representative, will be responsible for notifying Geotechnics Ltd of the location of any services, utilities or buried structures present on the site. No work can be started on site until such information is made available. In the absence of such information we would be pleased to undertake enquiries with the statutory undertakers or, in the case of private sites, organise an on-site services search by a specialist company. The costs for undertaking these services can be provided if required. It should be recognised that the information from a specialist company can be provided in CAD format to become a permanent record for inclusion in the site H&S File for the project.

We ask you to note that it is company policy to excavate service inspection pits to 1.2m at all borehole locations unless instructed in writing by the Client/Engineer not to do so. Any such written instruction would relieve Geotechnics Ltd of any liability for damage to underground apparatus.

Mobilisation to site can currently take place within around two weeks following receipt of a written instruction to proceed. Some of the activities such as providing a pitting crew can be mobilised more quickly, usually within 1 week.

We hope you find our offer of interest, however, should you have any queries or require further information, please do not hesitate to contact us.

Yours faithfully

Matthew Yates for GEOTECHNICS LIMITED – South West Office email: myates@geotechnics.co.uk Enc

APPENDIX 2 Site Location Plan

© Crown Copyright Reserved, OS License Number: 100020449

Contaminated Land Improvement Review Trowbridge STW for Wessex Water Services Limited

APPENDIX 3 Borehole Records

DATA SHEET - Symbols and Abbreviations used on Records

Sample	25	Strata		
В	Bulk disturbed sample	Made Ground	Туре І	
BLK	Block sample			
С	Core sample		Type 2	
D	Small disturbed sample (tub/jar)			
E	Environmental test sample	Topsoil		
ES	Environmental soil sample			
EW	Environmental water sample	Cobbles and Boulders		°.°.
G	Gas sample	Cobbles and Doulders		200
L	Liner sample	Gravel		
Ρ	Piston sample (PF - failed piston sample)	Graver		
TW	Thin walled push in sample	Sand		
U -	Open Tube - 102mm diameter with blows to take sample. (UF - failed U sample)			×
V	Vial sample	Silt		× × × ×
W	Water sample			× ×,
Insitu T	esting / Properties	Clay		
s	Standard Penetration Test (SPT)			
C	SPT with cone	Peat		3172
VN	Strength from Insitu Vane			NIZ.
HV	Strength from Hand Vane	Note: Composite soil ty	pes shown by combined syn	nbols
PP	Strength from Pocket Penetrometer			
(4	All other strengths from undrained triaxial testing)	Chalk		
w%	Water content			
N	SPT Result	Limestone		
-/-	Blows/penetration (mm) after 150mm seating.			
-*/-	Total blows/penetration (mm)	Sandstone		
()	Extrapolated value			
Potom		Coal		
ROD	Rock Quality Designation			
	(% of intact core >100mm)	Mudstone		
FRACTU	JRE Maximum			* * * * *
SPACIN	G (mm) Minimum	Siltstone		× × × × × × × × × × × × × × ×
	Non-intact core			* * * * * * * * * *
(where of	core recovery is unknown it is assumed to be at	Matamarahia Back		
Group		Metamorphic Rock	Fine Grained	
Water S			Medium Grained	
Depth V	Vater Rose To			$\sim \sim$
Instrun	nentation		Coarse Grained	\approx
		Igneous Rock	Fine Grained	+ + + +
Seal			Medium Grained	+ + + + + + + +
				+ + + +
Filter			Coarse Grained	•••••
			_	
Seal	li		jei	EEIMEE

CONTAMINATED LAND IMPROVEMENT REVIEW - TROWBRIDGE STW Project Engineer WESSEX WATER SERVICES LIMITED

Borehole Project No

BH1 PE080558

Client wessex water services limited Ground Level 34.45 m Addition Drilling Properties/Sampling Strata Scale 1:50													m AOD			
Drilling)	Denth	Properties/S	ampling	3	Strata	a ation			Dearri	tion			<u> </u>	Scale	1:50
Core Ru	n/Depth	Cased & (to Water)	TCR/SCR% Max/Min	RQD %		Genera	nuon I			Descrip Detail	NUON			Depth	Legend	m AOD
0.50						Black claye ash. to su coars brick [MADE Black ** [MADE	c and da ay grave Grave bround se of po c and c: GROUNI c soil a GROUNI	ark brown ally sand L is angued fine to ottery, g iinker. D] and black	very l of llar co llass,					G.L. 		34.45
3.00		- 3.00				Yello	ow and o	Trey CLAY	**					3.90		30.55
		- - - - -				Grey bands	CLAY an 3 **	nd limest	one					4.90		29.55
						F	End of I	Drillhole	•					8.00		26.45
		-												-		
Drilling					Progre	SS Denth	Denth to					r	in	Denth	Rom	arks on
Depth 1.20 3.00 8.00	Dia 0.30 0.14 0.11	Inspect ODEX Ro Rotary	Technique tion Pit otary Open Hole	Crew AB-OVC AB-OVC AB-OVC	G.L. 8.00	Cased 3.00	Water	Date 25/03/08 25/03/08	Time 08:00 18:00	Struck	Cased	Rose to	Mins	Sealed	Groui None en during	ndwater countered boring.
Remar Symbols a abbreviatid explained accompan key sheet. All dimens are in met	ks and ons are on the ying ions res.	Borehol Inspect Borehol E sampl ** = Dr	e set out by ion pit hand e backfilled e consists of illers' descr	Geotech excavat with an : 1 x 1 iption	nics L ed to risings L plas	imited 1.20m c and be tic jar	and the lepth to entonite c, 1 x 2	area wa o check f o on comp 250ml gla	s CAT or pre letion ss jar	scanned sence c , 1 x 2	l prior of buri 20ml vi	to exc ed serv al.	avation	Figur		NS 1 of 1 02/07/2008

Project contaminated land improvement review Engineer - TROWBRIDGE STW

WESSEX WATER SERVICES LIMITED

Borehole BH Project No PEO

Ground Level 35.30

BH2 PE080558

m AOD

Client wessex water services limited

Drilling Properties/Sampling						J	Strata Scale 1:								:50		
Core Rur	n/Depth	Depth Cased & (to Water)	Type TCR/SCR%	Length Max/Min	RQD %		Descrip Genera	otion N			Desc r ip Detail	otion			Depth	Legend	Level m AOD
0.50		- E - E - E - E - E - E					Black claye of as angu fine clink and g root	k and da ey very sh. Gra lar to a to coan ker, br: glass wi lets. E GROUNN	ark brown gravelly avel is subrounde rse of ick, char ith rare	sand d coal					G.L.		35.30 34.30
							Brown [MAD]	n to ye E GROUNI	llow clay	**					-		
4.50		- 4.50					Dark plast [MAD]	soil f: tic ** E GROUNI	ill glass	and					3.40		31.90
		-					Grey band:	CLAY w: s **	ith limes	tone					5.20		30.10
								End of 1	Drillhole						8.00		27.30
Drilling	1					Progre	299				Groun	ndwate	r				
Depth	Dia		Technique	e	Crew	Depth of Hole	Depth Cased	Depth to Water	Date	Time	Depth	Depth	Rose to	in Mins	Depth Sealed	Rema	rks on dwater
1.20 4.50 8.00	0.30 0.14 0.11	Inspect ODEX Ro Rotary	ion Pit otary Open Ho	le	AB-OVO AB-OVO AB-OVO	G.L. 8.00	4.50	Dry	25/03/08 25/03/08	08:00 18:00		Cased		61 1101	Joanod	None enc during h	countered
Remarl Symbols ar abbreviatio explained o accompany key sheet. All dimensi are in metr	KS nd ons are on the ying ions es.	Borehol Inspect E sampl ** = Dr A 50mm upright 1.00m,	e set c ion pit e consi rillers' standpi c lockak bentoni	out by (hand e sts of descr: pe was ble proj te sea	Geotech excavat : 1 x 1 iption instal tective l up to	nics L ed to L plas led to cover groun	imited 1.20m o tic jan 8.00m . Deta: d leve	and the depth to r, 1 x 3 with a il as fo l.	e area wa o check f 250ml gla slotted ollows fr	s CAT or pre ss jar sectio om bas	scanned sence c , 1 x 2 n from e of ho	l prior of buri 20ml vi 1.00m ole: gr	to exc ed serv al. to 8.00 avel fi	avatior ices. m and w lter up	Figur		1 of 1 02/07/2008

CONTAMINATED LAND IMPROVEMENT REVIEW - TROWBRIDGE STW Project Engineer WESSEX WATER SERVICES LIMITED

Borehole Project No

BH3 PE080558

Client	WESSE	X WATER	SERVIC	ES LIM	ITED									Ground	Level 35	.50	m AOD
Drilling	J	Donth	Prope	rties/Sa	ampling)	Strata	a 			Scale 1:50						:50
Core Ru	n/Depth	Cased & (to Water)	<u>ıype</u> <u>TCR/S</u> CR%	Length Max/Min	RQD		Descrip <u>Gen</u> era	ntion			Descrip Detail	tion			Depth	Legend	Level m AOD
		-					Black	soil a	and fill	**					G.L.		35.50
							[MADE	GROUNI	D]						ŧ I		
0.50		_ E													F I		
															t I		
1.00		— E -													<u>⊢</u>		
							Black	and da	ark brown	L					1.20		34.30
		-					claye of as	ey very sh. Gra	gravelly avel is	' sand					-		
							angul fine	to coar	subrounde rse of br	ick,					Ę		
2.00		D					potte	er, gla ery with	ass and h rare								
							root] [MADE	lets. E GROUNI	D]						Ę		
															ĒI		
		-													÷ I		
3.00		3.00													F I		
															É I		
		-													+		
4.00		D													E I		
															ŧ I		
															E I		
															t I		
		-													-		
5.40		D					Grey	and ye	llow CLAY	with					_ 5.40		30.10
							limes	stone ba	ands **						Ę		
		-													-		
		[Ę		
															÷		
		-													÷ I		
															E I		
		-													+		
															Ę		
		-													ŧ I		
		-					E	Ind of I	Drillhole	1					8.00		27.50
															É I		
		-													+		
															Ę		
		E													<u>+</u>		
		F													Ļ		
		E I													Ēl		
		F													+		
Drilling					<u> </u>	Progra	200				Group	dwata	r				
Denth) Dia	-	Technique	2	Crew	Depth	Depth	Depth to	Date	Time	Depth	Depth	Rose to	in	Depth	Rema	rks on
1.20	0.30	Inspect	ion Pit		AB-OVC	ot Hole G.L.	Cased	Water	20/03/08	08:00	Struck	Cased		Mins	Sealed	Groun None enc	dwater ountered
3.00 8.00	0.14 0.11	ODEX Ro Rotary	tary Open Ho	le	AB-OVC	8.00	3.00		20/03/08	18:00						during b	oring.
		Borehol	e set c	ut by (Geotech	nics L	imited	and the	e area wa	s CAT	scanned	l prior	to exc	avatio	n.		
Remar	KS nd	Inspect Borehol	ion pit e backf	illed v	excavat with ar	ed to	and be	epth to	o check f e on comp	or pre	sence c	ot buri	ed serv	lces.	Figur	e	1 of 1
abbreviatio explained	ons are on the	** = Dr	e consi illers'	descr:	iption	ы ртаз	LIC Jar	, т ж 2	23UMI GIA	ss jar	, 1 X 2	LUML VI	a1.		-34		02/07/2008
accompan key sheet.	ying														ட	निद्यनि	त्नीहरू
All dimens	ions															ر ک	

Project contaminated land improvement review Engineer - TROWBRIDGE STW

WESSEX WATER SERVICES LIMITED

Borehole BH Project No PEO

Ground Level 36.40

BH4 PE080558

m AOD

Client wessex water services limited

Drilling Properties/Sampling						Strata						Scale 1:50				
Core Run/Dept	Depth h Cased &	Type TCR/SCR%	Length Max/Min	RQD %		Descrip Genera	ntion			Desc r ip Detail	otion			Depth	Legend	Level m AOD
0.50						Black claye of as angu fine clink concr up to pocke [MADE Dark [MADE	and da by very sh. Gra lar to s to coan cer, gla cete wit o cobble ts of s GROUNI soil an GROUNI	ark brown gravelig subrounde rse of br ass and th occasi e sized sandy cla D] nd fill *	sand d ick, onal y.				/	G.L.		36.40
3.00						Yello fill [MADE Black [MADE	ow and 1 ** E GROUNI c fill a E GROUNI	orown cla D] and glass D]	y **					2.40		34.00
						Grey bands	CLAY w	ith limes	tone					3.40		33.00
															Σ	
						E	End of I	Drillhole						8.00		28.40
Drilling	+				Progre	ess	. .	T		Grour	ndwate	r			-	
Depth Dia 1.20 0.30 3.00 0.14 8.00 0.11	Inspect ODEX Ro Rotary	Technique ion Pit tary Open Ho	le	Crew AB-OVO AB-OVO AB-OVO	Depth of Hole G.L. 8.00	Depth Cased 3.00	Depth to Water	Date 20/03/08 20/03/08	Time 08:00 18:00	Depth Struck 6.00	Depth Cased 3.00	Rose to	in Mins	Depth Sealed	Rema Groun	rks on dwater
Remarks Symbols and abbreviations are explained on the accompanying key sheet. All dimensions	Borehol Inspect E sampl ** = Dr A 50mm upright 1.00m,	e set o ion pit consi illers' standpi lockab bentoni	ut by 0 hand e sts of: descri pe was le prot te seal	eotech xcavat 1 x 1 ption instal ective up to	nics L ed to L plas led to cover groun	imited 1.20m d tic jar 8.00m . Detai d level	and the lepth to , 1 x 2 with a l as fo	e area wa o check f 250ml gla slotted ollows fr	s CAT or pre ss jar sectio om bas	scanned sence d , 1 x 2 n from e of ho	d prior of buri 20ml vi 1.00m ole: gr	to exc ed serv al. to 8.00 avel fi	avation ices. m and v lter up	Figur		1 of 1 02/07/2008

CONTAMINATED LAND IMPROVEMENT REVIEW - TROWBRIDGE STW Project Engineer WESSEX WATER SERVICES LIMITED

Borehole Project No

Ground Level 35.75

BH5 PE080558

m AOD

Client WESSEX WATER SERVICES LIMITED

Drilling	g		Prope	rties/Sa	ampling	9	Strata	a			Description					Scale 1:50		
Core Ru	in/Depth	Depth Cased & (to Water)	Type TCR/SCR%	Length Max/Min	RQD %		Descrip Genera	ntion			Descrip Detail	otion			Depth	Legend	Level m AOD	
0.50		 E					Soft sligh grave angul fine clink with	dark b htly same ally cla tar to s to coas to coas tar, as rare re	rown and ndy sligh ay. Grav subrounde rse of br h and gla cotlets.	black tly el is d ick, ss					G.L.		35.75 35.35	
1.00		D					[MADE Firm dark sligh Grave	GROUN orange grey s tly gr al is s	brown an lightly s avelly cl ubangular	d andy ay. fine]	1.40		34.35	
							and m brick occas pocke [MADE	edium of and given and giv	of chalk, lass with gravel si ash. D]	zed								
2.50		- D 				-	Soft sligh grave subar fine clink	brown a htly same ally clangular to coast ter, brit	and grey ndy sligh ay. Grav to subrou rse of ick and g	tly el is nded lass.								
3.50		- - D					of as [MADE	GROUN	D]	CKETS				/	3.30		32.45	
							Grey limes	CLAY and stone back	nd yellow ands **									
		E																
															‡ ‡			
		<u>-</u> -													<u>-</u> -			
		E F													F F			
		Ē							Duillele						8.00		27.75	
		E					E E	and OL 1	TTTUOT6						Ē			
		Ę													I -			
		Ę													I.			
		Ē													Ē			
		-													F			
		L													t T			
		F													<u> </u>			
Depth	j Dia		Technique	2	Crow	Depth	Depth	Depth to	Dato	Time	Depth	Depth	Rose to	in	Depth	Rema	arks on	
1.20	0.30	Inspect	ion Pit	:	AB-OVC	of Hole G.L.	Cased	Water	20/03/08	08:00	Struck	Cased	1.000 10	Mins	Sealed	Grour	ndwater countered	
3.00 8.00	0.14 0.11	ODEX Ro Rotary	Open Ho	le	AB-OVO	8.00	3.00		20/03/08	18:00						during (arilling.	
Remar	ks	Borehol Inspect	e set c ion pit	hand of	Geotech excavat	nics L ed to	imited 1.20m d	and the	e area wa o check f 250ml ~l~	s CAT or pre	scanne sence	d prior of buri	to exc ed serv	avation vices.	n.			
Symbols a abbreviati	and ons are	** = Dr A 50mm	standpi	descr: .pe was	iption instal	lled to	8.00m	with a	slotted	sectio	, <u> </u>	1.00m	to 8.00)m and w	Figu with	ire	1 of 1 02/07/2008	
explained accompar key sheet	on the tying	upright 1.00m,	lockah bentoni	le pro	tective 1 up to	e cover o groun	. Detai d level	l as fo	ollows fr	om bas	e of h	ole: gr	avel fi	lter u	o to L	<u>किंद</u>	ലുന്ന	
All dimens are in met	sions tres.															لحصب		

Project contaminated land improvement review - trowbridge stw Engineer WESSEX WATER SERVICES LIMITED

Borehole Project No

BH6 PE080558

m AOD

Level

m AOD 36.30

35.20

32.70

31.20

30.80

30.10

28.30

Client V

Drilling

Core Run/

0.50

1.00

2.00

3.00

4.00

4.50

5.50

Drilling

Depth

1.20 4.50 8.00

key sheet. All dimensions are in metres.

WESSE	X WATER	SERVIC	ES LIM	ITED		Current							Ground	Level 36	.30	m A
	Depth	Type	ties/Sa	ampling)	Descrir	a			Descrin	tion				Scale	1:50
n/Depth	Cased & (to Water)	TCR/SCR%	Max/Min	NUD %		Genera				Detail				Depth	Legend	i k
						Soft sligh grave angul fine glass many occas [MADI	dark b htly same ally cla lar to s to coas s and c pockets sional s GROUN	rown and ndy sligh ay. Grav subrounde rse of br linker wi s of ash rootlets. D]	black tly el is d ick, th with	Betwee	en 1.00	-1.10m:	firm	G.L.		
						Blac! [MADI	c fill GROUN	** D]								
												- 3.60	V			
	- D 					Dark [MADI	brown (E GROUN)	clay ** D]					- - - - - - - -			
	- 4.50 - - -													- 5.10		
						Black claye of as angul fine glass charc pocke sandy root] [MADI	to da: by very sh. Gra lar to s to coa: s, clini coal wi bets of g y clay w lets. E GROUNI	rk brown gravelly avel is subrounde rse of br ker and th occasi grey slig with rare D]	very sand dick, onal htly					5.50		
						Grey	CLAY *	*								
						Grey **	CLAY a	nd limest	one					8.00		
						I	End of 1	Drillhole		-						
Progr						ess Denth	Depth to			Groun Depth	Denth	r 	jn	Depth	Rem	harks o
Dia Technique Crew Dig Of H 0.30 Inspection Pit AB-0V0 G 0.14 ODEX Rotary AB-0V0 B 0.11 Rotary Open Hole AB-0V0 G					of Hole G.L. 8.00	Cased 4.50	Water	Date 20/03/08 20/03/08	Time 08:00 18:00	Struck 3.00	Cased	Rose to	Mins	Sealed	Grou	Indwa

Borehole set out by Geotechnics Limited and the area was CAT scanned prior to excavation. Inspection pit hand excavated to 1.20m depth to check for presence of buried services. E sample consists of: 1 x 1L plastic jar, 1 x 250ml glass jar, 1 x 20ml vial. ** = Drillers' description Remarks Symbols and Figure A 50mm standpipe was installed to 8.00m with a slotted section from 1.00m to 8.00m and with upright lockable protective cover. Detail as follows from base of hole: gravel filter up to 1.00m, bentonite seal up to ground level. abbreviations are explained on the accompanying

1 of 1 02/07/2008

geolecimies

Remarks on

Groundwater

CONTAMINATED LAND IMPROVEMENT REVIEW - TROWBRIDGE STW Project Engineer WESSEX WATER SERVICES LIMITED

Borehole Project No

BH7 PE080558

Client wessex water services LIMITED Ground Level 38.30 m AOD Drilling Properties/Sampling Strata Scale 1:50 Core Bun/Death Depth Cased & Core Bun/Death Type Length ROD Description Description																	
Drilling	9	Depth	Proper	ties/Sa	mpling		Strata	a ntion			Docorin	tion				Scale 1:	50
Core Ru	n/Depth	Cased & (to Water)	TCR/SCR%	Length Max/Min	RQD %		Genera				Descrip				Depth	Legend	m AOD
0.50							Firm sligh grave subar and g root] [MADE	orange htly san ally cla ngular f glass wi lets g GROUNN	brown ndy sligh ay. Grav fine of b ith occas	tly el is rick ional	Below pocket rare c lithor	1.00m: ts of b cobbles relicts	with lack as of met	h and a	G.L.		38.30
2.00							Black [MADE	c clay a E GROUNI	and fill D]	**				/	-		
2.00							Black sandy clay. to su coars and a [MADE	c and by y slight Grave ubrounde se of by ash. SGROUNN	rown slig tly grave el is ang ed fine t rick, cli	htly lly ular o nker					2.10		36.20
4.00		-					Grev	and ve		**					5.30		33.00
5.50							Grey	and ye.	LIOW CLAY	••				ţ	-		
		-												+	-		
6.00		- 6.00													8.00		30.30
							E	Ind of 1	Drillhole								30.30
	~					Dra					6				- - - - - - - - - - - - - - - - - - -		
Drilling	9					Progre	Denth	Denth to			Grour	Depth	r	in	Depth	Remar	ks on
Depth 1.20 6.00 8.00	Dia 0.30 0.14 0.11	Inspect ODEX Ro Rotary	Technique ion Pit tary Open Hol	le	Crew AB-OVC AB-OVC AB-OVC	G.L. 8.00	Cased 6.00	Water	Date 19/03/08 19/03/08	Time 08:00 18:00	Struck	Cased	Rose to	Mins	Sealed	Ground Damp at a 4.00m dep	water around oth.
		Borehol	e set o	ut by (leotech	nics T	imited	and the	area wa	S CAT	scanner	1 prior	to era	avation			
Remar Symbols a abbreviati explained accompar key sheet All dimens are in met	ks and ons are on the hying sions tres.	Inspect Borehol E sampl ** = Dr	ion pit backfi e consis illers'	hand o illed s sts of descr:	vith ar iption	Led to risings L plas	and be	lepth to entonite c, 1 x 2	o check f o cn comp 250ml gla	or pre letion ss jar	scanned sence c . 1 x 2	of buri	ed serv	ices.	Figur		of 1 2/07/2008

CONTAMINATED LAND IMPROVEMENT REVIEW - TROWBRIDGE STW Project Engineer WESSEX WATER SERVICES LIMITED

Borehole Project No

Ground Level 38.70

Client WESSEX WATER SERVICES LIMITED BH8 PE080558

m AOD

Drilling			Prope	rties/Sa	ampling	J	Strata	a			Scale 1:50						
Core Run	ore Run/Depth Cased & Type (to Water) TCR/SCR			Length Max/Min	RQD %		Descrip Genera	ntion			Descrip Detail	tion			Depth	Legend	Level m AOD
0.50		- E					Firm sligh grave angul fine and h rootl [MADE	orange htly same ally cla lar to s to coan prick with lets. E GROUNN	brown ndy sligh ay. Grav subrounde rse of gl ith occas	tly el is d ass ional	Below pocket sand c	1.00m: cs of b of ash.	with m rown cl	any ayey	G.L.		38.70
1.50							Black grave Grave subro mediu and c roots [MADE	c clayes elly san bunded is um of gi clinker s and ro GROUNN	y very nd of ash ngular to tine and lass, bri with rar ootlets. D]	ck e							37.20
5.00																	
6.00		- 6.00															
7.00							Grey	and ye	llow CLAY	**					- 7.00 		31.70
							F	End of 1	Drillhole	I					8.00	<u>]</u>	30.70
Drilling						Progre	285				Grour	ndwate	r				
Depth	Dia	-	Technique	9	Crew	Depth of Hole	Depth	Depth to	Date	Time	Depth	Depth	Rose to	in Mires	Depth	Rema	rks on
1.20 6.00 8.00	0.30 0.14 0.11	Inspect ODEX Ro Rotary	ion Pit tary Open Ho	le	AB-OVC AB-OVC AB-OVC	G.L. 8.00	6.00	vvater	19/03/08 19/03/08	08:00 18:00	STRUCK	Cased		IVIINS	Sealed	Groun None enc during b	ountered oring.
Remark Symbols ar abbreviatio explained c accompany key sheet. All dimensi are in metro	(S nd ns are on the ying ons es.	Borehol Inspect E sampl ** = Dr A 50mm upright 1.00m,	e set c ion pit e consi illers' standpi lockab bentoni	hand of sts of descr: pe was le prot te sea	Geotech excavat : 1 x 1 iption instal tective l up to	nics L ed to L plas led to cover ground	imited 1.20m c tic jar 8.00m . Detai d level	and the lepth to c, 1 x 2 with a il as fo L.	e area wa o check f 250ml gla slotted ollows fr	s CAT or pre ss jar sectio om bas	scanned sence c , 1 x 2 n from e of ho	d prior of buri 20ml vi 1.00m ole: gr	to exc ed serv al. to 8.00 avel fi	avatior ices. m and v lter ug	Figur		1 of 1 02/07/2008

CONTAMINATED LAND IMPROVEMENT REVIEW - TROWBRIDGE STW Project Engineer

Properties/Sampling

Strata

WESSEX WATER SERVICES LIMITED

Borehole Project No

Ground Level 40.35

BH9 PE080558

m AOD

Scale 1:50

Client WESSEX WATER SERVICES LIMITED

Drilling

	Description Detail	Depth
orange		_ G.L

Core Rur	n/Depth	Depth Cased & (to Water)	Type TCR/SCR%	Length Max/Min	RQD %		Descrip Genera	ntion			Desc r ip Detai l	tion			Depth	Legend	Level m AOD
0.50							Firm brown sligh Grave subro of br - lit occas	to sti: h slight htly gra- el is an bunded s rick, fi- choreli sional p	ff orange tly sandy avelly cl ngular to fine to m lint and cts with pockets o	ay. Medium meta					G.L.		40.35
		-					root	lets.							1 40		29 OF
1.50		D						s GROUN	D]	brown				/	1.40		38.95
2.00		- - - - - - - - - - -					slig grave angul fine glass root] [MADE	to coa: and a lar to a to coa: and a lets. GROUN	ndy sligh ay. Grav subrounde rse of br sh with r D]	tly el is d ick, are							
3.00		- - - - - - -															
4.00		- - - - - - -															
5.00		- - - - - - - - -															
		- - - -															
6.00 6.00		- 6.00 D															
		-					Brown	and a	rov CLAY	**					6.70		33.65
		-					210#1	i una g							-		
		-													-		
		-													-		
		-													8.00		32.35
		-					E	and of 1	Drillhole	1					-	-	
		-													-		
		-													+		
		- -													F		
		- -													-		
		-													-		
		-													-		
Drilling	1					Progre	ess				Grour	ndwate	r				
Depth	Dia	-	Technique		Crew	Depth of Hole	Depth Cased	Depth to Water	Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed	Remar G r ound	ks on water
1.20 6.00 8.00	0.30 0.14 0.11	Inspect ODEX Ro Rotary	ion Pit tary Open Ho	le	AB-OVC AB-OVC AB-OVC	G.L. 8.00	6.00		19/03/08 19/03/08	08:00 18:00	3.00						
		Borehol	e set o	ut by C	Geotech	nics L	imited	and the	e area wa	s CAT	scanned	l prior	to exc	avatio	n.		
Remar	ks nd	Inspect E sampl	ion pit e consi	hand ests of	excavat : 1 x 1	ed to L plas	1.20m d tic jar	lepth to , 1 x 1	o check f 250ml gla	or pre ss jar	sence d , 1 x 2	of buri 20ml vi	ed serv	vices.	Figur	re 1	of 1
abbreviatio explained	ons are on the	<pre>** = Dr A 50mm upright</pre>	standpi	descri pe was le prot	instal	led to	8.00m	with a	slotted	sectio	n from e of he	1.00m	to 8.00	m and w lter	with		2/07/2008
key sheet.	ying	1.00m,	bentoni	te seal	L up to	groun	d level	L						u		olech	ਗੀਵਤ
An uniteris	10113															7	7

CONTAMINATED LAND IMPROVEMENT REVIEW - TROWBRIDGE STW Project Engineer WESSEX WATER SERVICES LIMITED

Borehole Project No

BH10 PE080558

Client	WESSE	X WATER	SERVIC	ES LIM	ITED									Ground	Level 41	.30	m AOD
Drilling	9	Denth	Prope	rties/Sa	ampling	3	Strata) 			Scale 1:50						:50
Core Ru	n/Depth	Cased & (to Water)	iype TCR/SCR%	Length Max/Min	RQD %		Description Description General Detail									Legend	Level m AOD
0.50		- E E 					Firm brown sligh Grave subro of br litho rootl [MADE	to stin a slight atly gra al is an ounded s rick and orelicts .ets. 2 GROUND	Ef orange tly sandy avelly cl ngular to fine to c d meta - s with ra	ay. oarse re					G.L.		41.30
2.00		- D					Soft sligh clay. to su coars ash a [MADE	brown a atly sau Brounde se of b and clin GROUNN	and black ndy grave el is ang ed fine t rick, gl nker. D]	lly ular o ass,					1.40		39.90
4.00		- - - - - - - - - - - - - - - - - - -															
6.00		- 6.00 - D					Grey	and ye	llow CLAY	**					6.70		34.60
							F	Ind of 1	Drillhole						8.00		33.30
Drilling]	ļ		ļ		Progre	ess				Grour	ndwate	r				<u> </u>
Depth	Dia		Technique	Э	Crew	Depth of Hole	Depth Cased	Depth to Water	Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed	Rema G r oun	rks on dwater
1.20 6.00 8.00	0.30 0.14 0.11	Inspect ODEX Rc Rotary	ion Pit tary Open Ho	: Dle	AB-OVC AB-OVC AB-OVC	G.L. 8.00	6.00		19/03/08 19/03/08	08:00 18:00						Damp at 3.00m de	around pth.
Remar Symbols a abbreviation explained accompan key sheet. All dimens are in met	ks and ons are on the nying sions tres.	Borehol Inspect E sampl ** = Dr A 50mm upright 1.00m,	e set c ion pit e consi illers' standpi lockab bentoni	but by hand sts of descr pe was ple pro- te sea	Geotech excavat 1 x 1 iption instal tective 1 up to	inics L ed to L plas led to cover groun	imited 1.20m d tic jar 8.00m . Detai d level	and the lepth to , 1 x : with a .1 as fo	e area wa o check f 250ml gla slotted ollows fr	s CAT or pre ss jar sectio om bas	scanned sence c , 1 x 2 n from e of ho	l prior of buri 20ml vi 1.00m ole: gr	to exc ed serv al. to 8.00 avel fi	avation ices. m and w lter up	Figur		1 of 1 02/07/2008

CONTAMINATED LAND IMPROVEMENT REVIEW - TROWBRIDGE STW Project Engineer WESSEX WATER SERVICES LIMITED

Borehole Project No

BH11 PE080558

Client WESSEX WATER SERVICES LIMITED Ground Level 42.95

m AOD

Drilling	g		Prope	rties/Sa	ampling	3	Strata									S	Scale 1:50	
Core Ru	n/Depth Cased & Type Leng (to Water) TCR/SCR% Max/W			Length Max/Min	RQD %		Descrip Genera	ntion			Descrip Detail	otion			Depth	ı	Legend	Level m AOD
		-					Dark	soil *	*						G.I			42.95
0.50							Eirm	GROUNI	D]					/	0.2	20		42.75
0.50		- 5					brown	slight	tly sandy	av.					F			
1.00		Е					Grave	l is an ounded i	ngular to fine to c	oarse					1.0	00		41.95
		-					brick with	rare ro	t and cli potlets.	nker					Æ			
1.30		_ D					[MADE	GROUN	D]]	' 			
							Black claye of as subar	and bi y very h. Gra	rown very gravelly avel is to subrou	sand								
		-					fine clink	to coan er, br:	rse of ick, glas	sand					ŧ			
		-					fragn organ	ic mate	f decompo erial.	sing					F			
		Ę					[MADE	GROUN	נס						Ę			
		-													F			
															ŧ			
		-													Ē			
4 00		- - D													Ę			
1.00															F			
		Ē													Ę			
		Ē													ŧ			
		-													F			
		F													ŧ			
		F													F			
		Ę													Ę			
6.00		6.00				-									F			
		Ē					Grey	and ye	llow CLAY	**					- 6.3	30		36.65
															ŧ			
		-													F			
		-													ŧ			
		F													F			
8 00																0		34 95
0.00							I	and of 1	Drillhole	:						/0		54.95
		Ē													Ę			
															ŧ			
		-													F			
		-													ŧ			
		F													F			
		Ę													Ę			
Drilling						Progre	200				Groun	dwate	ar .		<u> </u>			
Depth	Dia	-	Technique	Э	Crew	Depth of Hole	Depth	Depth to Water	Date	Time	Depth	Depth	Rose to	in Mine	Depth Sealed		Remar	ks on water
1.20	0.30	Inspect	ion Pit	:	AB-OVO	G.L.	6.00	**4(6)	19/03/08	08:00	CITACK	0000		GINN	Could	I A	Damp at	around
8.00	0.11	Rotary	Open Ho	ole	AB-OVO				, 00,00	_0.00								
		Pore'- 7	0.555		loch'		imir - 3	and +1		a (1) T		a		lamet -	<u> </u>			
Remar	ks	Borehol Borehol	e set c ion pit e backf	hand illed	eotech excavat with ar	nics L ed to	imited 1.20m d and be	and the lepth to ntonite	e area wa o check f e on comp	s CAT or pre letion	scanned sence d	ı prior of buri	ed serv	vices.	n. _			_
Symbols a abbreviati	and ons are	E sampl ** = Dr	e consi illers'	sts of descr	: 1 x 1 iption	L plas	tic jar	, 1 x 2	250ml gla	ss jar	, 1 x 2	20ml vi	al.		Fig	gure		of 1 2/07/2008
accompar key sheet	nying															<u>רב</u> ר		ഫിദ്ദ
All dimens	sions tres.														Ľ	حر	التحمد	

Project contaminated land improvement review Engineer - trowbridge stw

WESSEX WATER SERVICES LIMITED

Borehole B Project No P

BH13 PE080558

Client Ground Level 42.50 m AOD WESSEX WATER SERVICES LIMITED 1:50 Drilling Properties/Sampling Scale Strata Type Length Depth Description Description Level RQD Core Run/Depth Cased & Depth Legend m AOD Detail Wa TCR/SCR% Max/Min General % 42.50 G.L. Concrete ** [MADE GROUND] 42.35 0.15 Hardcore ** [MADE GROUND] 0.50 Е Stiff orange brown and 1.00 Е grey indistinctly structured slightly sandy CLAY. 1.50 1.50 3.00 D 3.10 39.40 Soft grey slightly sandy CLAY. 5.60 36.90 Grey CLAY limestone bands Below 5.60m: with rare ø subangular fine to V coarse gravel of limestone. 7.00 D 8.00 34.50 End of Drillhole Drilling Progress Groundwater Depth Depth to Remarks on Depth Depth Depth Depth in Depth Rose to Dia Technique Crew Date Time of Hole Water Mins Cased Struck Cased Sealed Groundwater 0.30 Inspection Pit AB-OV 25/03/08 08:00 1.20 G.L 5.90 1.50 0.14 ODEX Rotary 0.11 Rotary Open Hole 1.50 AB-OVO 8.00 1.50 25/03/08 18:00 AB-OV 8.00 Borehole set out by Geotechnics Limited and the area was CAT scanned prior to excavation. Inspection pit hand excavated to 1.20m depth to check for presence of buried services. E sample consists of: 1 x 1L plastic jar, 1 x 250ml glass jar, 1 x 20ml vial. Remarks Symbols and Figure 1 of 1 abbreviations are A 50mm standpipe was installed to 8.00m with a slotted section from 1.00m to 8.00m and with flush lockable protective cover. Detail as follows from base of hole: gravel filter up to 1.00m, bentonite seal up to ground level. 02/07/2008 explained on the accompanying geolechnics key sheet. All dimensions are in metres.
BOREHOLE RECORD - Rotary

WESSEX WATER SERVICES LIMITED

Client

Project contaminated land improvement review Engineer - trowbridge stw

WESSEX WATER SERVICES LIMITED

Borehole BI Project No PE

Ground Level 42.20

BH14 PE080558

m AOD

1:50 Drilling Properties/Sampling Strata Scale Type Length Depth Description Description Level RQD Core Run/Depth Cased & Depth Legend m AOD Detail TCR/SCR% Max/Min General Wa % G.L. 42.20 Soil ** [TOPSOIL] 0.20 42.00 Firm to stiff orange mottled blue - grey slightly sandy CLAY with rare rootlet traces. 0.50 Е 1.00 Е 1.50 1.50 1.90 40.30 Grey CLAY with yellow bands ** 3.40 38.80 Grey CLAY with limestone bands ** _ 8.00 34.20 End of Drillhole Drilling Progress Groundwater Depth Depth to Depth Depth Depth Remarks on Depth in Rose to Depth Date Dia Technique Crew Time of Hole Water Cased Mins Cased Struck Sealed Groundwater 0.30 Inspection Pit AB-OV 25/03/08 08:00 None encountered 1.20 G.L 0.14 ODEX Rotary 0.11 Rotary Open Hole AB-OVC 1.50 8.00 1.50 25/03/08 18:00 during boring. 8.00 Borehole set out by Geotechnics Limited and the area was CAT scanned prior to excavation. Inspection pit hand excavated to 1.20m depth to check for presence of buried services. E sample consists of: 1 x 1L plastic jar, 1 x 250ml glass jar, 1 x 20ml vial. Remarks Symbols and Figure 1 of 1 A 50mm standpipe was installed to 8.00m with a slotted section from 1.00m to 8.00m and with upright lockable protective cover. Detail as follows from base of hole: gravel filter up to 1.00m, bentonite seal up to ground level. abbreviations are 02/07/2008 explained on the accompanying geolechnics key sheet. All dimensions are in metres.

BOREHOLE RECORD - Rotary

Project contaminated land improvement review Engineer - TROWBRIDGE STW

WESSEX WATER SERVICES LIMITED

Borehole BH' Project No PEOS

BH15 PE080558

Client w	IESSE	X WATER	SERVIC	ES LIM	ITED									Ground	Level 4	3.20	m AOD
Drilling		Danth	Prope	rties/Sa	ampling	3	Strata	à							1	Scale 1	:50
Core Run/E	Depth	Cased & (to Water)	Type TCR/SCR%	Length Max/Min	RQD %		Descrip Genera	ntion			Descrip Detail	otion			Depth	Legend	Level m AOD
0.50							Firm mottl sligh rare	to stif ed blue atly san rootlet	ff orange - grey ndy CLAY traces.	with					G.L.		43.20
1.50		1.50															
							Grey bands	CLAY w:	ith limes	tone					3.30		39.90
							E	and of I	Drillhole						8.00		35.20
		- - -													-		
Drilling	D:-	-	Toolar'		Cree	Progre Depth	Depth	Depth to	D-+	T:	Grour Depth	ndwate Depth	r Ross to	in	Depth	Rema	arks on
1.20 0 1.50 0).30).14	Inspect ODEX Ro	iecnnique	:	AB-OVC	of Hole G.L. 8.00	Cased 1.50	Water	Date 20/03/08 20/03/08	08:00 18:00	Struck	Cased	nuse to	Mins	Sealed	Grour None en during 1	ndwater countered coring.
8.00 0	.11	Rotary	Open Ho	ole	AB-OVC											_	-
Remarks Symbols and abbreviations explained on accompanying key sheet. All dimension are in metres.	are the g	Borehol Inspect E sampl ** = Dr A 50mm upright 1.00m,	e set c ion pit e consi illers' standpi lockab bentoni	out by (hand of sts of descr: pe was ole prot te sea	Geotech excavat iption instal tective up to	entics L ed to L plas led to cover ground	imited 1.20m d tic jar 8.00m . Detai d level	and the lepth to r, 1 x 2 with a .1 as fo	e area wa o check f 250ml gla slotted ollows fr	s CAT or pre ss jar sectio om bas	scanned sence c , 1 x 2 n from e of ho	d prior of buri 20ml vi 1.00m ole: gr	to exc ed serv al. to 8.00 avel fi	avation ices. m and v lter u	Figu		1 of 1 02/07/2008

BOREHOLE RECORD - Rotary

Project contaminated land improvement review Engineer - TROWBRIDGE STW

WESSEX WATER SERVICES LIMITED

Borehole BH Project No PE

BH16 PE080558

Client	WESSE	X WATER	SERVIC	ES LIM	ITED									Ground	Level 42	.20	m AOD
Drilling	9		Prope	rties/Sa	ampling)	Strata	1								Scale 1	:50
Core Ru	n/Depth	Depth Cased &	Туре	Length	RQD		Descrip	tion			Descrip	tion			Depth	Legend	
		(to Water)	TCR/SCR%	∮ IVIAX/IVIITI	%		Genera				Detail				G.L.	-	42.20
		-					Hardc [MADE	ore gra	avel ** Dl						-		
0 50		-					Firm	to sti	ff orange						0.30		41.90
0.50							mottl	ed blue	e grey						Ē		
		E					sligh rare	tly sai rootlei	ndy CLAY [.] t traces.	with					E	·	
1.00		_ E													-		•
		-													1 40		40.80
		-					Grey	and ye	llow CLAY	**					- 1.40		40.00
1.50		1.50													F		
		<u> </u>													E I		
		_													-		
		_													<u> </u>		
		-													F		•
		-													2.90		39.30
		<u> </u>					Grey	CLAY w	ith limes	tone					-		
		E					Sands								£		
		E													‡		
		F													‡		
		E I													E		
		E													<u></u>		
		t l													‡		
		-													-		•
		-													F		•
		E I													E I		
		_													-		•
		-													-		
		-													F		
		<u> </u>													E I		
		-															
		_													-		•
		-													-		
		-													F		
		E I													E I		
		-													±		•
		-													-		
		Ξ													-]]	
		E I													8.00		34.20
		E					E	and of 1	Drillhole						L		
		t I													‡		
		F													†		
		E													Ę		
		F													⊢ ∣		
		t I													‡		
		F													‡		
		E													Ę		
		E													Ł		
Drilling						Progra	200				Group	dwate	r				ļ
Denth	<u>J</u> D:-	-	Looka:		Crow	Depth	Depth	Depth to	Data	Time	Depth	Depth	Boso to	in	Depth	Rema	rks on
Depth		Ingpost				of Hole	Cased	Water			Struck	Cased	nuse to	Mins	Sealed	Groun	dwater
1.50	0.30	ODEX Ro	tary		AB-OVC	G.L. 8.00	1.50		25/03/08 25/03/08	18:00						during b	oring.
8.00	0.11	Rotary	Open Ho	oie	AB-OVC												
Remar	ke	Borehol Inspect	e set c ion pi+	ut by thand	Geotech excavat	nics L	imited	and the	e area wa o check f	s CAT :	scanned sence	l prior of buri	to exc ed serv	avatio ices	n.		
Symbols a	and	E sampl	e consi	sts of	: 1 x 1	L plas	tic jar	, 1 x 3	250ml gla	ss jar	, 1 x 2	20ml vi	al.		Figur	e	1 of 1
abbreviati explained	ons are on the	A 50mm	standpi	pe was	instal	led to	8.00m	with a	slotted	section	n from	1.00m	to 8.00	m and w	with		02/07/2008
accompar key sheet	nying	1.00m,	ockable bentoni	te sea	l up to	ground	d level	as iol: •	LOWS ITOM	Dase (or nole	e: grav	ei filt	er up f	ະວ ດາ-	ᠴᢆᡨᠴ	ഫിദ്ദ
All dimens	sions														ولع	القصمت	
are in met	res.																

APPENDIX 4 Exploratory Hole Location Plan

				-		*		
Not To Scale Project No:	Drawing Title Exploratory H Taken from a dra	Project: Contaminate Trowbridge (teron Road, Sowton, XEFTER Devon, EX2 7LL Client: Wessex Wat	DEDIC		WS 1	BH1	KEY:
	:: Hole Location	d Land Impr STW	er Services	وإساقع		Water Sa	Borehole	
Date: June 2008 File Name:	on Plan by the client	ovement Revie	Email mail@exeter.geotechni www.geotechnics.co.uk Limited	Phone: (01392) 412446		mple Location	Location	
		ME	(s.co.ilk					

APPENDIX 5 Monitoring Results

Project comm												
TROWE	RIDGE STW	IMPROVEME	NI KEVIEW	-			Bore	ehole	BH2			
Client wesse	X WATER SERV	ICES LIMIT	ED				Shee	et No.	1 (1 of 2)			
Installation	Details											
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 8.00m 1.00 - 25 Mar	ipe 8.00m ch 2008			Diamete Cover T Ground	er ype Level	50mm Uprig	ht lockable	e protective cover			
Date	Time	Depth to Water (m bgl)	Current Hole Depth (m)	Explosive Gas CH4 (% VOL)	Explosive Gas CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Nitrogen N2 (% VOL)	Remarks			
10-Apr-2008 16-Apr-2008 23-Apr-2008 1-May-2008 9-May-2008		2.53	7.52 7.48 7.50 7.35		0 0 0	1.9 3.5 4.0 0.0	19.2 19.2 17.5 17.1 20.5	78.9 79.00 78.9 79.5				
Remarks												
								ناع	aonaquinnaa			

roject contaminated land improvement review - Project No PE080558												
Project CONTA TROWE	MINATED LAND BRIDGE STW	IMPROVEMENT REVI	Project No Borehole	PE080558 BH2								
Client wesse	EX WATER SERV	ICES LIMITED			Sheet No.	1 (2 of 2)						
Installation	Details											
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 8.00m 1.00 - 25 Marc	ipe 8.00m ch 2008		Diameter Cover Type Ground Level	50mm Upright lockable	e protective cover						
Date	Time	Barometric Pressure	Diff. Pressure	Flow Rate (Peak/Stable)	Rema	rks						
		(mBars)	(mBars)	(l/hr)								
3-Apr-2008		1028	-	+0.01								
10-Apr-2008		994	+000.25	-0.0								
16-Apr-2008		1014	+000.07	-0.0								
23-Apr-2008		1013	+0.00	-0.00								
1-May-2008		1001	-000.10	+0.0								
9-May-2008		1007	+000.11	-0.0								

ezimbeleeg

Form 003/

Remarks

Project CONTA TROWE	MINATED LAND RIDGE STW	IMPROVEME	NT REVIEW	-			Proje Bore	ect No e hole	PE080558 BH4		
Client wesse	X WATER SERV	ICES LIMIT	ED				Shee	et No.	1 (1 of 2)		
Installation	Details										
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp. E 8.00m 1.00 - 20 Marc	ipe 8.00m ch 2008			Diamete Cover T Ground	er İype Level	50mm Uprig	ht lockabl	e protective cover		
Date	Time	Depth to Water (m bgl)	Current Hole Depth (m)	Explosive Gas CH4 (% VOL)	Explosive Gas CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Nitrogen N2 (% VOL)	Remarks		
3-Apr-2008 10-Apr-2008 23-Apr-2008 1-May-2008 9-May-2008		3.15	7.80 7.70 7.46 7.49 7.43 7.41			1.3 7.6 0.9 8.4 8.6 0.3	19.5 12.8 19.8 12.4 11.3 20.2	79.0 79.3 79.2 80.1 79.5	Tap left open.		
Remarks											
								민	aanaquiunqa		

			nitoning n	istrument r	00010	
Project conta	AMINATED LAND BRIDGE STW	IMPROVEMENT REVI	Project No Borehole	PE080558 BH4		
Client wess	EX WATER SERV	ICES LIMITED			Sheet No.	1 (2 of 2)
Installation	Details					
Installation T Depth to Bas Filter Zone Date Installed	ype standp e 8.00m 1.00 - 20 Mar	ipe 8.00m ch 2008	[(Diameter Cover Type Ground Level	50mm Upright lockabl	e protective cover
Date	Time	Barometric Pressure	Diff. Pressure	Flow Rate (Peak/Stable)	Rema	arks
		(mBars)	(mBars)	(l/hr)		
3-Apr-2008		1028				
10-Apr-2008		993	+000.21			
16-Apr-2008		1015	+000.32	-0.0		
23-Apr-2008		1013	000.12	-0.0		
1-May-2008		1001	-000.04	+0.0		
9-May-2008		1006	+000.21	-0.0		
1						

Esimbelee

Form 003/

Remarks

Project conta	Oject CONTAMINATED LAND IMPROVEMENT REVIEW - Project No PE080558										
TROWE Client WESSE	BRIDGE STW	ICES LIMIT	ED				Bore Shee	e hole et No.	BH5 1 (1 of 2)		
Installation	Details	-									
Installation Ty Depth to Base Filter Zone Date Installed	/pe standp e 8.00m 1.00 - 20 Mar	ipe 8.00m ch 2008			Diamete Cover T Ground	er İype Level	50mm Uprig	ht lockable	e protective cover		
Date	Time	Depth to Water (m bgl)	Current Hole Depth (m)	Explosive Gas CH4 (% VOL)	Explosive Gas CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Nitrogen N2 (% VOL)	Remarks		
3-Apr-2008 10-Apr-2008 23-Apr-2008 1-May-2008 9-May-2008		2.90	7.90 7.63 7.59 7.50 7.52			0.8 4.1 4.0 0.9 0.0	19.8 14.3 14.1 14.6 19.0 20.5	79.3 81.6 81.8 81.4 80.1 79.5			
Remarks	Remarks										

Project CONTAMINATED LAND IMPROVEMENT REVIEW - Project No PE080558 TROWBRIDGE STW Borehole BH5 Client WESSEX WATER SERVICES LIMITED Sheet No. 1 (2 of 2)												
	X WATER SERV	ICES LIMITED			Sheet NO.	1 (2 OF 2)						
Installation	Details											
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standpi 2 8.00m 1.00 - 20 Marc	ipe 8.00m ch 2008		Diameter Cover Type Ground Level	50mm Upright lockable	9 protective cover						
Date	Time	Barometric Pressure	Diff. Pressure	Flow Rate (Peak/Stable)	Rema	ırks						
		(mBars)	(mBars)	(l/hr)								
3-Apr-2008		1028		+0.1								
10-Apr-2008		993	+000.17	-0.0								
16-Apr-2008		1015	+000.27	+0.0								
23-Apr-2008		1013	+000.01	-0.0								
1-May-2008		1001	+000.03	+0.0								
9-May-2008		1007	+000.22	-0.0								
	1	,	<i>k</i>									

Esimbelee

Form 003/

Remarks

Project conta TROWE	roject contaminated land improvement review - Project No PE080558 TROWBRIDGE STW Borehole BH6										
Client wesse	X WATER SERV	ICES LIMIT	ED				Shee	et No.	1 (1 of 2)		
Installation	Details										
Installation Ty Depth to Base Filter Zone Date Installed	YPE Standp: E 8.00m 1.00 - 20 Marc	ipe 8.00m ch 2008			Diamete Cover T Ground	er ype Level	50mm Uprig	ht lockable	e protective cover		
Date	Time	Depth to Water (m bgl)	Current Hole Depth (m)	Explosive Gas CH4 (% VOL)	Explosive Gas CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Nitrogen N2 (% VOL)	Remarks		
3-Apr-2008		3.55	7.90	0	0	3.7	19.0	77.1			
10-Apr-2008			7.48	0	0	9.6	7.3	83.1			
16-Apr-2008		3.31	7.36	0	0	0	20.5	79.5			
23-Apr-2008		3.31	7.29		0	13.5	0.7	85.8			
1-May-2008			7.23	0	0	7.7	10.1	82.2			
Remarks	emarks وعملية المحمد المحم المحمد المحمد r>المحمد المحمد										

			intoinig n		00010	
Project contra TROWE	AMINATED LAND BRIDGE STW	IMPROVEMENT REVI		Project No Borehole	PE080558 BH6	
Client wesse	EX WATER SERV	ICES LIMITED			Sheet No.	1 (2 of 2)
Installation	Details					
Installation Ty Depth to Base Filter Zone Date Installed	ype standp. e 8.00m 1.00 - 20 Marc	ipe 8.00m ch 2008	[((Diameter Cover Type Ground Level	50mm Upright lockabl	e protective cover
Date	Time	Barometric Pressure	Diff. Pressure	Flow Rate (Peak/Stable)	Rema	arks
		(mBars)	(mBars)	(l/hr)		
3-Apr-2008		1028		-0.01		
10-Apr-2008		993	+000.10	-0.0		
16-Apr-2008		1015	+000.10	-0.0		
23-Apr-2008		1013	-000.07	-0.0		
1-May-2008		1001	-000.02	+0.0		
9-May-2008		1007	+000.13	-0.0		

Esimbelee

Form 003/

Remarks

Project conta	Oject CONTAMINATED LAND IMPROVEMENT REVIEW - Project No PE080558											
Client wesse	X WATER SERV	ICES LIMIT	ED				Bore Shee	e hole et No.	BH8 1 (1 of 2)			
Installation	Details											
Installation Ty Depth to Base Filter Zone Date Installed	/pe standp = 8.00m 1.00 - 19 Marc	ipe 8.00m ch 2008			Diamete Cover T Ground	er ype Level	50mm Uprig	ht lockable	e protective cover			
Date	Time	Depth to Water (m bgl)	Current Hole Depth (m)	Explosive Gas CH4 (% VOL)	Explosive Gas CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Nitrogen N2 (% VOL)	Remarks			
3-Apr-2008 10-Apr-2008 23-Apr-2008 1-May-2008 9-May-2008		7.15 6.81 6.80	7.99 7.64 7.65 7.65 7.62			1.4 5.9 0.4 0.7 1.5	20.4 11.3 19.6 19.7 20.1 19.6	78.1 82.8 80 79.6 79.2 78.9				
Remarks												
								יש				

			meening n	lotramont r	00010	
Project contr TROWE	MINATED LAND BRIDGE STW	IMPROVEMENT REVI	IEW -		Project No Borehole	PE080558 BH8
Client wesse	X WATER SERV	ICES LIMITED		Sheet No.	1 (2 of 2)	
Installation	Details					
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp: E 8.00m 1.00 - 19 Marc	ipe 8.00m ch 2008	50mm Upright lockable protective cover			
Date	Time	Barometric Pressure	Diff. Pressure	Flow Rate (Peak/Stable)	Rem	arks
		(mBars)	(mBars)	(l/hr)		
3-Apr-2008		1028		-0.1		
10-Apr-2008		994	+000.12	-0.0		
16-Apr-2008		1015	+000.07	+0.0		
23-Apr-2008		1012	+000.05	-0.0		
1-May-2008		1001	+000.00	+0.0		
9-May-2008		1007	+000.10	-0.0		
		1				
		1				
		1				
		'				
		'				
		'				
		'				
		'				
		1				
		1				
		1				
		1				
		'	1			
		'	1			
		'	1			
		'	1			
		'	1			
		'	1			
		1				
		1				
		1				
		1				
		1				
		1				
		1				
		1				
		1				
		1				
			ļ			

Esimbelee

Form 003/

Project conta TROVE	MINATED LAND RIDGE STW	IMPROVEME	NT REVIEW	-			Proj	ect No	PE080558	
Client wesse	X WATER SERV	ICES LIMIT	ED				She	et No.	1 (1 of 2)	
Installation	Details									
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 8.00m 1.00 - 19 Mar	ipe 8.00m ch 2008			Diameter 50mm Cover Type Uprig Ground Level			ht lockable protective cover		
Date	Time	Depth to Water (m bgl)	Current Hole Depth (m)	Explosive Gas CH4 (% VOL)	Explosive Gas CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Nitrogen N2 (% VOL)	Remarks	
3-Apr-2008 10-Apr-2008 23-Apr-2008 1-May-2008 9-May-2008		4.03	7.80 7.45 7.47 7.38 7.37 7.38	0 0.1 0.2 0 0 0	00.23.000000000000000000000000000000000	0.4 3.3 5.4 0.3 0.1 0.0	21.0 11.1 3.0 19.8 20.3 20.5	78.5 85.6 91.6 79.9 79.6 79.50		
Remarks										

			intoinig n		00010	
Project CONTA TROWE	MINATED LAND BRIDGE STW	IMPROVEMENT REVI	IEW -		Project No Borehole	PE080558 BH9
	Detelle	ICES LIMITED			Sheet No.	1 (2 01 2)
Installation	Details					
Installation Ty Depth to Bas Filter Zone Date Installed	/PE Standp: E 8.00m 1.00 - 19 Marc	ipe 8.00m ch 2008		Diameter Cover Type Ground Level	50mm Upright lockable	protective cover
Date	Time	Barometric Pressure	Diff. Pressure	Flow Rate (Peak/Stable)	Rema	rks
		(mBars)	(mBars)	(l/hr)		
3-Apr-2008		1027		-0.01		
10-Apr-2008		993	+000.20	-0.0		
16-Apr-2008		993	+000.20	-0.0		
23-Apr-2008		1011	-000.04	-0.0		
1-May-2008		1001	+000.06	+0.0		
9-May-2008		1006	+000.19	-0.0		

geolectimics

Form 003/

Remarks

Project conta	MINATED LAND BRIDGE STW	IMPROVEME	NT REVIEW		Project No реоволля Borehole вн10		PE080558		
Client wesse	EX WATER SERV	ICES LIMIT	ED				She	et No.	1 (1 of 2)
Installation	Details								
Installation Ty Depth to Bas Filter Zone Date Installed	ype Standp: e 8.00m 1.00 - 19 Marc	ipe 8.00m ch 2008			Diamete Cover T Ground	er ype Level	50mm Uprig	ht lockable	e protective cover
Date	Time	Depth to Water (m bgl)	Current Hole Depth (m)	Explosive Gas CH4 (% VOL)	Explosive Gas CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Nitrogen N2 (% VOL)	Remarks
3-Apr-2008 10-Apr-2008 16-Apr-2008 1-May-2008 9-May-2008		5.57 5.20 5.18	(III) 7.56 7.45 7.41 7.27 7.29	(% VOL) 10.7 10.0 0.1 0.3 2.6	(% LEL) 9.7 >99.9 5.4 1.0 6.0 52	(% VOL) 1.8 6.9 4.4 0.8 0.2 1.6	(% VOL) 18.2 0.8 7.1 19.9 20 17.2	19.4 92.3 88.5 79.3 79.8 81.2	
Remarks									

Project CONTA	MINATED LAND	TMDBOWEMENT DEVU			Project No.	
TROWE	BRIDGE STW	IMPROVEMENT REVI		Borehole	BH10	
Client wesse	X WATER SERV	ICES LIMITED			Sheet No.	1 (2 of 2)
Installation	Details					
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 8.00m 1.00 - 19 Mar	ipe 8.00m ch 2008		Diameter Cover Type Ground Level	50mm Upright lockable	e protective cover
Date	Time	Barometric Pressure	Diff. Pressure	Flow Rate (Peak/Stable)	Rema	rks
		(mBars)	(mBars)	(l/hr)		
3-Apr-2008		1027		+0.0		
10-Apr-2008		993	+000.14	-0.0		
16-Apr-2008		1016	+000.14	-0.0		
23-Apr-2008		1011	+000.05	-0.0		
1-May-2008		1000	+000.08	+0.0		
9-May-2008		1007	+000.00	-0.0		
Remarks						
					<u>e</u>	

Project conta trowe	Oject contaminated land improvement review - troweridge stw								PE080558 BH13
Client wesse	X WATER SERV	ICES LIMIT	ED				She	et No.	1 (1 of 2)
Installation	Details								
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 8.00m 1.00 - 25 Marc	ipe 8.00m ch 2008			Diamete Cover T Ground	Diameter 50mm Cover Type Flush lockable prot Ground Level			protective cover
Date	Time	Depth to Water (m bgl)	Current Hole Depth (m)	Explosive Gas CH4 (% VOL)	Explosive Gas CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Nitrogen N2 (% VOL)	Remarks
3-Apr-2008 10-Apr-2008 23-Apr-2008 1-May-2008 9-May-2008		1.05 0.50 0.46	7.66 7.19 7.13 7.06 7.02	00.3	05.0	2.6 5.0 0.0 0.0	14.0 6.6 20.4 20.5	83.3 88.4 79.6 79.5	Bung not sealed. Flooded.
Remarks									
								빙	ອະຫຼອອາທຫອະ

Project CONTA	MINATED LAND				Project No	DF080558
TROWE	BRIDGE STW	IMPROVEMENT REVI	Borehole	BH13		
Client wesse	X WATER SERV	ICES LIMITED			Sheet No.	1 (2 of 2)
Installation	Details					
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp. E 8.00m 1.00 - 25 Mar	ipe 8.00m ch 2008	D C G	Diameter Cover Type Ground Level	50mm Flush lockable :	protective cover
Date	Time	Barometric Pressure	Diff. Pressure	Flow Rate (Peak/Stable)	Rema	ırks
		(mBars)	(mBars)	(l/hr)		
3-Apr-2008		1027		-2.81		
10-Apr-2008		993	+002.17	-0.0		
16 - Apr - 2008		1018	+000.03	-0.0		
1-May-2008		1001	-000.32	+0.0		
9-May-2008		1001	+000.04	-0.0		
Remarks					 	

Project conta trowe	MINATED LAND BRIDGE STW	IMPROVEME	NT REVIEW		Proje Bore	ect No e hole	PE080558 BH14			
Client wesse	X WATER SERV	ICES LIMIT	ED				She	et No.	1 (1 of 2)	
Installation	Details									
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 8.00m 1.00 - 25 Marc	ipe 8.00m ch 2008			Diamete Cover T Ground	er ype Level	50mm)e Upright lockable protective cover 2Vel			
Date	Time	Depth to Water (m bgl)	Current Hole Depth (m)	Explosive Gas CH4 (% VOL)	Explosive Gas CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Nitrogen N2 (% VOL)	Remarks	
3-Apr-2008		6.03		0	0	1.8	18.2	19.4		
10-Apr-2008			7.50	0	0	3.2	16.5	80.3		
16-Apr-2008		4.24	7.50	0	0	0.5	19.4	80.1		
23-Apr-2008		3.54	7.55	0	0	0.0	20.4	79.6		
1-May-2008			7.54	0	0	0.2	20.1	79.7		
9-May-2008			7.51	0	0	0.0	20.5	79.5		
Remarks										

			incomig in			
Project CONTA TROWE	MINATED LAND BRIDGE STW	IMPROVEMENT REVI		Project No Borehole	PE080558 BH14	
Client wesse	X WATER SERV	ICES LIMITED			Sheet No.	1 (2 of 2)
Installation	Details					
Installation Ty Depth to Base Filter Zone Date Installed	/pe standp: e 8.00m 1.00 - 25 Marc	ipe 8.00m ch 2008	C C	Diameter Cover Type Ground Level	50mm Upright lockable	protective cover
Date	Time	Barometric Pressure	Diff. Pressure	Flow Rate (Peak/Stable)	Remar	ks
		(mBars)	(mBars)	(l/nr)		
3-Apr-2008		1027		+0.01		
10 - Apr - 2008		993	+000.09	-0.0		
16-Apr-2008		1017	+000.06	+0.0		
1-May-2008		1002	+000.00	+0.0		
9-May-2008		1006	+000.04	+0.0		
Remarks					 回	

Project conta trowe	MINATED LAND BRIDGE STW	IMPROVEME	NT REVIEW		Project No PE080558 Borehole BH15		PE080558 BH15			
Client wesse	X WATER SERV	ICES LIMIT	ED				She	et No.	1 (1 of 2)	
Installation	Details									
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 8.00m 1.00 - 20 Marc	ipe 8.00m ch 2008			Diamete Cover T Ground	er ype Level	50mm De Upright lockable protective cover EVel			
Date	Time	Depth to Water (m bgl)	Current Hole Depth (m)	Explosive Gas CH4 (% VOL)	Explosive Gas CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Nitrogen N2 (% VOL)	Remarks	
10-Apr-2008 16-Apr-2008 23-Apr-2008 9-May-2008		2.48	7.61 7.63 7.61 7.62	0 0 0	0 0 0	2.2 0.4 2.4 0.1 0.0	14.4 19.3 17.4 20.3 20.5	83.4 80.3 80.2 79.6 79.5		
Pemarks										
ano								<u>ل</u>		

Project CONTA	MINATED LAND	IMPROVEMENT REVI	:ew -		Project No	PE080558
Client wesse	X WATER SERV	ICES LIMITED			Sheet No.	BH15 1 (2 of 2)
Installation	Details					
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 8.00m 1.00 - 20 Marc	ipe 8.00m ch 2008	C C	Diameter Cover Type Ground Level	50mm Upright lockable	protective cover
Date	Time	Barometric Pressure	Diff. Pressure	Flow Rate (Peak/Stable)	Rema	ks
		(mBars)	(mBars)	(l/hr)		
3-Apr-2008		1027		-0.0		
10-Apr-2008		993	-000.15	-0.0		
16-Apr-2008		1017	-000.00	-0.0		
23-Apr-2008		1011	-000.06	-0.0		
1-May-2008		1000	+000.09	+0.0		
9-May-2008		1006	+000.02	-0.0		
Remarks						
					e	eelimies

Project conta trowe	OjeCt Contaminated Land improvement review - TROWBRIDGE STW								PE080558 BH16
Client wesse	X WATER SERV	ICES LIMIT	ED				She	et No.	1 (1 of 2)
Installation	Details								
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp: E 8.00m 1.00 - 25 Marc	ipe 8.00m ch 2008			Diamete Cover T Ground	er ype Level	50mm Flush	lockable	protective cover
Date	Time	Depth to Water (m bgl)	Current Hole Depth (m)	Explosive Gas CH4 (% VOL)	Explosive Gas CH4 (% LEL)	Carbon Dioxide CO2 (% VOL)	Oxygen O2 (% VOL)	Nitrogen N2 (% VOL)	Remarks
3-Apr-2008 10-Apr-2008 23-Apr-2008 1-May-2008 9-May-2008		4.49 Flooded 1.39	7.58 7.53 7.54	0.8 0.2 0.1 0	14.8 3.0 0.0 3.0 0.0	4.2 6 0.0 0.4 0.0	15.9 13.5 20.3 20.2 20.4	78.9 80.5 79.7 79.4 79.6	Flooded over cover.
Remarks									
								<u>م</u>	

Proiect CONTA	roject contaminated land improvement review - Project No PE080558										
TROWE	BRIDGE STW				Borehole	ВН16					
Client wesse	X WATER SERV	ICES LIMITED			Sheet No.	1 (2 of 2)					
Installation	Details										
Installation Ty Depth to Base Filter Zone Date Installed	/PE Standp E 8.00m 1.00 - 25 Mar	ipe 8.00m ch 2008		Diameter Cover Type Ground Level	50mm Flush lockable y	protective cover					
Date	Time	Barometric Pressure	Diff. Pressure	Flow Rate (Peak/Stable)	Rema	rks					
		(mBars)	(mBars)	(l/hr)							
3-Apr-2008		1027		+0.0							
10-Apr-2008		993	+000.17	-0.0							
16 - Apr - 2008		1011	000.05	0.0							
1-May-2008		1011	+000.03	-0.0							
9-May-2008		1007	+000.04	-0.0							
Remarks					 Q						

APPENDIX 6 Laboratory Test Results - Contamination

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: mkt@alcontrol.co.uk website: www.alcontrol.co.uk

Geotechnics Ltd The Geotechnical Centre 8 Orchard Court Heron Road Sowton Industrial State Exeter, Devon EX2 7LL ATTN: Cathy Smith

CERTIFICATE OF ANALYSIS

15 May, 2008
08/08299/02/01
PEO80558
TROWBRIDGE STW

A total of 24 samples was received for analysis on Friday, 02 May 2008 and completed on Wednesday, 14 May 2008. Accredited laboratory tests are defined in the log sheet, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation. We are pleased to enclose our final report, it was a pleasure to be of service to you, and we look forward to our continuing association.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials- whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Signed

Diane Whittlestone Tech. Support Manager

Project Manager

Valid if signed by any of the above signatories.

Compiled By

Briony Johnson

David O'Hare

Caroline Suttie Project Coordinator Team Leader

ALcontrol Laboratories is a trading division of ALcontrol UK Limited. Registered Office: Templeborough House, Mill Close, Rotherham, S60 1BZ. Registered in England and Wales No. 4057291

		JOB NUMI	BER : 08/{	3299/02							BAT	CHN	NUMB	.: Н	-					Nume	ric values indicate	
		CLI	IENT : Geo	technics Ltd						С	Neine Nein	TRE	F/COI	.: ДШ	РЕО	30558	~					
		CONT	ACT : Cath	y Smith						U	ORD	ERN	UMB	ER ::	OE4	778				* indic	ates test subcontracted	σ
	DATE	OF RECE	EIPT : 02/0	5/08							Ę	JRNA	AROUI	 Q	6 da)	Ś						
		LOCAT	FION : TRC	WBRIDGE S	₹																	
			UKAS A	ccredited ?	>	>	ŀ		<u>`</u>		_	>	>	>			>	>	>	>		
Sample Number	Sample Identity	P/V	Depth	Sample Type	Metals ICP. 9 (S)	Boron Water Soluble (S	Beryllium (S)	Barium (S)	Vanadium (S)	Cyanide Total (S)	Cyanide Free (S)	Nitrate as NO3 Kone (S	Sulphate Total (S)	Sulphide Easily	Asbestos Screen (ID)	nH (S)	EPH (DRO) (S)	GRO BTEX MTBE GC	PAH Spec MS (S)	VOC MS (S)		
-	BH2	1KGTub	1.00	SOLID		5				×	×)		×	×							
2	BH2	JAR 250g	1.00	SOLID	×	×	\times	×	×			×	×			×	×	×	×			
e	BH2	Vial	1.00	SOLID																×		
4	BH4	1KGTub	1.00	SOLID						×	×			×	×	×						
5	BH4	JAR 250g	1.00	SOLID	×	×	×	×	×	~		×	×			×	×	×	×			
9	BH4	Vial	1.00	SOLID																×		
7	BH5	1KGTub	3.50	SOLID	×	×	×	×	^ ×	×	×	×	×	×	×	×	×	×	×			
8	BH5	Vial	3.50	SOLID																×		
6	BH6	1KGTub	4.00	SOLID	Х	×	×	×	×	×	×	×	×	×	×	×	×	×	×			
10	BHG	Vial	4.00	SOLID																×		
11	BH8	1KGTub	1.00	SOLID						×	×			×	×	×						
12	BH8	JAR 250g	1.00	SOLID	×	×	×	×	^ ×	~		×	×			×	×	×	×			
13	BH8	Vial	1.00	SOLID																Х		
14	BH10	1KGTub	0.50	SOLID			_			X	×			Х	×	X						
15	BH10	JAR 250g	0.50	SOLID	×	×	×	×	×	~		×	×			×	×	×	×			
16	BH10	Vial	0.50	SOLID			_													Х		
17	BH11	1KGTub	8.00	SOLID	Х	Х	×	X	×	X	×	×	×	Х	×	×	×	X	×			
18	BH11	Vial	8.00	SOLID			_													Х		
19	BH13	1KGTub	1.00	SOLID						×	×			×	×	~						
20	BH13	JAR 250g	1.00	SOLID	×	×	×	×	×	~		×	×			×	×	×	×			
21	BH13	Vial	1.00	SOLID																×		l
22	BH16	1KGTub	1.00	SOLID						×	×			×	×	~						

ALcontrol Laboratories TEST SCHEDULE

Laboratories	CHEDULE
ALcontrol	TEST S

JOB NUMBER : 08/8299/02

CLIENT : Geotechnics Ltd

CONTACT : Cathy Smith

LOCATION : TROWBRIDGE STW DATE OF RECEIPT: 02/05/08

BATCH NUMBER: 1

CLIENT REF/CODE : PEO80558 ORDER NU

* indicates test subcontracted Numeric values indicate additional scheduling

ŝ	
4778	
ш	•
0	(
••	
R	1
ш	
ш	
Σ	

TURNAROUND: 6 days

Number

Sample

>	VOC MS (S)		×	6
>	PAH Spec MS (S)	×		6
>	GRO BTEX MTBE GC	×		6
>	EPH (DRO) (S)	×		6
	Acetone (S)	×		6
>	pH (S)			6
	Asbestos Screen (ID)			6
>	Sulphide Easily			6
>	Sulphate Total (S)	×		6
>	Nitrate as NO3 Kone (S)	×		6
	Cyanide Free (S)			6
>	Cyanide Total (S)			6
>	Sulphur Elemental (S)	×		6
>	Vanadium (S)	×		6
>	Barium (S)	×		6
	Beryllium (S)	×		6
>	Boron Water Soluble (S)	×		6
>	Metals ICP. 9 (S)	×		6
ccredited ?	Sample Type	SOLID	SOLID	r of Tests
UKAS A	Depth	1.00	1.00	Total Number
	P/V	JAR 250g	Vial	
	Sample Identity	BH16	BH16	

23 24

ALcontrol Laboratories

Extractable Petroleum Hydrocarbons (EPH) By GC-FID

Carbon Range C10-C40 Job Number : 08/08299/02/01 Client : Geotechnics Ltd Client Ref : PEO80558 Matrix [Units] : SOLID [mg/kg]

All results expressed on a dry weight basis.

Sample No	Sample Identity	Depth	EPH	Interpretation		
2	BH2	1.0	680	PAHs/Bitumen/Tar/Humic acids		
5	BH4	1.0	570	PAHs/Bitumen/Tar		
7	BH5	3.5	3300	biodegraded diesel/bitumen/tar/pahs/carboxylic acids		
9	BH6	4.0	820	biodegraded diesel/bitumen/tar/humics		
12	BH8	1.0	390	Bitumen/Tar/humic acids		
15	BH10	0.5	100	Bitumen/Tar/humic acids		
17	BH11	8.0	1100	PAHs/Bitumen/Tar/Humic acids		
20	BH13	1.0	38	biodegraded diesel		
23	BH16	1.0	53	humic acids		

Extractable Petroleum Hydrocarbons (formally Diesel Range Organics) :- Any compound extractable in nhexane within the carbon range C10-C40, includes Aliphatic (Min Oil), Aromatic (PAHs) and naturally occurring compounds.

ALcontrol Laboratories Analytical Services Sample Descriptions

Job Number:	08/08299/02/01
Client:	Geotechnics Ltd
Client Ref :	PEO80558

Grain sizes

<0.063mm	Very Fine
0.1mm - 0.063mm	Fine
0.1mm - 2mm	Medium
2mm - 10mm	Coarse
>10mm	Very Coarse

Sample Identity	Depth (m)	Colour	Grain Size	Description	Batch
BH2	1.0	Brown	0.1mm - 2mm	Loam (topsoil) with some Stones	1
BH4	1.0	Brown	0.1mm - 0.063mm	Silty Clay Loam with some Stones	1
BH5	3.5	Brown	0.1mm - 0.063mm	Silty Clay Loam with some Stones	1
BH6	4.0	Brown	0.1mm - 2mm	Loam (topsoil) with some Glass & Stones	1
BH8	1.0	Brown	0.1mm - 2mm	Sandy Silt Loam with some Stones	1
BH10	0.5	Beige	0.1mm - 0.063mm	Silty Clay with some Stones	1
BH11	8.0	Brown	0.1mm - 0.063mm	Silty Clay Loam with some Glass & Stones	1
BH13	1.0	Beige	<0.063mm	Clay	1
BH16	1.0	Beige	<0.063mm	Clay	1

* These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials-whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample. ¹ Sample Description supplied by client

Validated✓Preliminary	ALc	ontro	l Labo T	orator able (ries A1 Of Res	nalytic sults	al Ser	vices	 ISO 17 M MCEF * Subcor 	7025 accrea RTS accred ntracted test	dited lited st
Job Number•	08/0829	99/02/01			Matrix	•	SOLID		» Shown	on prev. 1	report
Client.	Geotec	$\frac{1}{102}$	d		Locatic	•	TROW	RRIDG	E STW		
Client Def No.	DEOR	550 LU	u		Client	n. Contoot	Cothy S	unith			
Chefit Kel. No.:	PEO80.	338			Client	Contact		Sinnun			
Sample Identity	BH2	BH4	BH5	BH6	BH8	BH10	BH11	BH13	BH16		
Depth (m)	1.0	1.0	3.5	4.0	1.0	0.5	8.0	1.0	1.0	M	Ι
Sample Type	SOLID	ethc	.oD,								
Sampled Date										od C	/Un
Sample Received Date	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	ode	its
Batch	1	1	1	1	1	1	1	1	1		
Sample Number(s)	1-3	4-6	7-8	9-10	11-13	14-16	17-18	19-21	22-24		
Total Sulphate	2200	510	5500	14000	2400	610	2400	17000	580	TM129 [#] M	<100 mg/kg
Boron Water Soluble	<3.5	<3.5	9.8	14	<3.5	<3.5	5.8	<3.5	<3.5	TM129 [#]	<3.5 mg/kg
Arsenic	54	18	30	47	9	10	13	13	9	TM129 [#]	<3.0 mg/kg
Barium	1500	460	530	450	150	120	240	110	.59	$TM129_{M}^{\#}$	<6.0 mg/kg
Bervllium	5.8	0.8	1.9	4.2	0.7	0.8	0.8	<0.4	0.5	TM129	<0.4 mg/kg
Cadmium	3.3	0.8	2.1	2.5	0.8	<0.3	1.0	<0.3	<0.3	TM129	<0.3 mg/kg
Chromium	62	73	150	58	33	32	33	21	28	TM129 [#] M	<4.5 mg/kg
Copper	200	73	240	290	63	19	120	7	<6	TM129 [#] M	<6 mg/kg
Lead	310	190	310	590	96	58	130	21	9	TM129 [#] M	<2 mg/kg
Mercury	1.1	<0.6	1.7	0.9	0.9	<0.6	<0.6	<0.6	<0.6	TM129 [#]	<0.6 mg/kg
Nickel	71	23	49	56	21	16	30	<0.9	4.0	TM129 [#] M	<0.9 mg/kg
Selenium	<3	<3	<3	<3	<3	<3	<3	<3	<3	TM129 [#] M	<3 mg/kg
Vanadium	51	37	42	40	25	32	32	25	40	TM129 [#] _M	<1.5 mg/kg
Zinc	1300	400	890	940	200	110	300	22	43	TM129 [#] _M	<2.5 mg/kg
Nitrate (soluble) as NO3	230	30	440	52	60	2	81	<1	34	TM102 [#]	<1 mg/kg
Easily Liberated Sulphide	<15	<15	<15	<15	<15	27	<15	<15	<15	TM180 [#]	<15 mg/kg
Total Cyanide	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM153 [#] _M	<1 mg/kg
Free Cyanide	<1	<1	<1	<1	<1	<1	<1	<1	<1	TM153	<1 mg/kg
Asbestos Presence Screen	No Fibres Detected	No Fibres Detected	No Fibres Detected	No Fibres Detected	No Fibres Detected	No Fibres Detected	No Fibres Detected	No Fibres Detected	No Fibres Detected	TM001	NONE
Elemental Sulphur	<70	250	350	<70	<70	<70	<140	<70	<70	TM136 [#]	<70 mg/kg
pH Value	7.68	7.83	7.31	7.55	7.77	8.26	7.46	6.61	8.02	TM133 [#] _M	<1.00 pH Units
EPH (DRO) (C10-C40)	680	570	3300	820	390	100	1100	38	53	TM061 [#] _M	<35 mg/kg
EPH (DRO) (C10-C40) % Surrogate Recovery	96	95	98	96	98	98	96	100	100	TM061 [#] _M	%
GRO (C4-C10)	84	<10	<10	<10	17	<10	<10	<10	<10	TM089	<10 ug/kg
GRO (C10-C12)	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg
Benzene	14	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
Toluene	41	<10	<10	<10	17	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
Ethyl benzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
m & p Xylene	29	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
o Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#] _M	<10 ug/kg
Sum m&p and o Xylene	29	<10	<10	<10	<10	<10	<10	<10	<10	TM089	<10 ug/kg

All results expressed on a dry weight basis.

Date 15.05.2008

Validated✓Preliminary	ALcontrol Laboratories Analytical Services Table Of Results								 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test 		
Job Number: Client: Client Ref. No.:	08/08299/02/01 Geotechnics Ltd PEO80558			Matrix: Location: Client Contact			SOLID TROWBRIDGE Cathy Smith		» Shown on prev. report		
Sample Identity	BH2	BH4	BH5	BH6	BH8	BH10	BH11	BH13	BH16		
Depth (m)	1.0	1.0	3.5	4.0	1.0	0.5	8.0	1.0	1.0	М	
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	etho	LoD
Sampled Date										od C	/Uni
Sample Received Date	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	ode	its
Batch	1	1	1	1	1	1	1	1	1		
Sample Number(s)	1-3	4-6	7-8	9-10	11-13	14-16	17-18	19-21	22-24		
Sum of BTEX	84	<10	<10	<10	17	<10	<10	<10	<10	TM089	<10 ug/kg
MTBE	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/kg

All results expressed on a dry weight basis.

Date 15.05.2008
Validated Preliminary	ALcontrol Laboratories Analytical Services Table Of Results							vices	 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test 		
Job Number:	08/0829	99/02/01			Matrix	:	SOLID		» Showr	n on prev. r	eport
Client.	Geotec	hnics I t	d		Locatio	· ·n·	TROW	BRIDG	E STW		
Client Bof No .	DEUSO	558	u		Client	n. Contact	Cothy S	mith			
	I LOOU	558									
Sample Identity	BH2	BH4	BH5	BH6	BH8	BH10	BH11	BH13	BH16		
Depth (m)	1.0	1.0	3.5	4.0	1.0	0.5	8.0	1.0	1.0	M	-
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	ethc	,oD
Sampled Date										od C	/Uni
Sample Received Date	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	ode	its
Batch	1	1	1	1	1	1	1	1	1		
Sample Number(s)	1-3	4-6	7-8	9-10	11-13	14-16	17-18	19-21	22-24		
PAH by GCMS											
Naphthalene	270	200	260	420	23	22	150	<10	<10	TM074 [#] _M	<10 ug/kg
Acenaphthylene	390	830	510	170	38	22	170	<5	<5	TM074 [#] _M	<5 ug/kg
Acenaphthene	23	69	140	26	<14	<14	170	<14	<14	TM074 [#] _M	<14 ug/kg
Fluorene	64	420	210	65	14	<12	360	<12	<12	TM074 [#] _M	<12 ug/kg
Phenanthrene	1300	7000	1700	790	140	92	4300	<21	56	TM074 [#] _M	<21 ug/kg
Anthracene	610	2700	710	240	78	58	1800	<9	17	TM074 [#] _M	<9 ug/kg
Fluoranthene	3700	17000	4100	1000	470	320	11000	<25	120	TM074 [#] _M	<25 ug/kg
Pyrene	3100	13000	3500	820	420	280	7300	<22	76	TM074 [#] _M	<22 ug/kg
Benz(a)anthracene	2500	7700	2400	730	290	200	6200	17	91	$TM074^{\#}_{M}$	<12 ug/kg
Chrysene	2500	6000	2200	680	290	240	6300	10	92	$TM074^{\#}_{M}$	<10 ug/kg
Benzo(b)fluoranthene	4400	10000	4200	1000	550	440	10000	<16	97	$TM074^{\#}_{M}$	<16 ug/kg
Benzo(k)fluoranthene	2100	3500	1400	430	180	180	3300	<25	58	$TM074^{\#}_{M}$	<25 ug/kg
Benzo(a)pyrene	2600	6600	2800	600	350	250	6000	<12	75	$TM074^{\#}_{M}$	<12 ug/kg
Indeno(123cd)pyrene	1900	4000	2100	470	250	160	4000	<11	42	$TM074^{\#}_{M}$	<11 ug/kg
Dibenzo(ah)anthracene	500	1200	500	180	70	51	1300	<8	11	$\mathrm{TM074}^{\#}_{\mathrm{M}}$	<8 ug/kg
Benzo(ghi)perylene	2000	4600	2500	620	290	200	4500	<10	60	TM074 [#] _M	<10 ug/kg
PAH 16 Total	28000	85000	29000	8300	3500	2500	67000	27	790	TM074 [#] _M	<25 ug/kg

ValidatedImage: squarePreliminaryImage: square	ALcontrol Laboratories Analytical Services Table Of Results									 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test 		
Job Number:	08/0829	99/02/01			Matrix	:	SOLID		» Shown	n on prev. r	eport	
Client:	Geotecl	hnics Lt	d		Locatio	n:	TROW	BRIDG	E STW			
Client Ref. No.:	PEO80	558			Client	Contact	:Cathy S	Smith				
							T T					
Sample Identity	BH2	BH4	BH5	BH6	BH8	BH10	BH11	BH13	BH16			
Depth (m)	1.0	1.0	3.5	4.0	1.0	0.5	8.0	1.0	1.0	Me	Г	
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	etho	oD/	
Sampled Date										d C	Uni	
Sample Received Date	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	ode	ts	
Batch	1	1	1	1	1	1	1	1	1			
Sample Number(s)	1-3	4-6	7-8	9-10	11-13	14-16	17-18	19-21	22-24			
Volatile Organic Com	pounds											
Dichlorodifluoromethane	<4	<4	<4	<4	<4	<4	<4	<4	<4	TM116 [#]	<4 ug/kg	
Chloromethane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#]	<7 ug/kg	
Vinyl Chloride	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg	
Bromomethane	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 <13 ug/kg		
Chloroethane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg	
Trichlorofluoromethane	<6	<6	<6	<6	<6	<6	<6	<6	<6	$TM116^{\#}_{M}$	<6 ug/kg	
trans-1-2-Dichloroethene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#] <11 ug/k		
Dichloromethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] <10 ug/kg		
Carbon Disulphide	<7	<7	<7	<7	<7	<7	<7	<7	<7	$TM116^{\#}_{M}$	<7 ug/kg	
1.1-Dichloroethene	<10	<10	<10	<10	<10	<10	<10	<10	<10	$TM116^{\#}_{M}$	<10 ug/kg	
1.1-Dichloroethane	<8	<8	<8	<8	<8	<8	<8	<8	<8	$TM116^{\#}_{M}$	<8 ug/kg	
Methyl Tertiary Butyl Ether	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116	<11 ug/kg	
cis-1-2-Dichloroethene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg	
Bromochloromethane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg	
Chloroform	<8	<8	<8	<8	<8	<8	<8	<8	<8	TM116 [#] _M	<8 ug/kg	
2.2-Dichloropropane	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116	<12 ug/kg	
1.2-Dichloroethane	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#]	<5 ug/kg	
1.1.1-Trichloroethane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#] _M	<7 ug/kg	
1.1-Dichloropropene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#] _M	<11 ug/kg	
Benzene	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#] _M	<9 ug/kg	
Carbontetrachloride	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg	
Dibromomethane	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg	
1.2-Dichloropropane	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#] _M	<12 ug/kg	
Bromodichloromethane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#] _M	<7 ug/kg	
Trichloroethene	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#] _M	<9 ug/kg	
cis-1-3-Dichloropropene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg	
trans-1-3-Dichloropropene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#] _M	<14 ug/kg	
1.1.2-Trichloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg	
Toluene	9	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg	
1.3-Dichloropropane	<7	<7	<7	<7	<7	<7	<7	<7	<7	TM116 [#]	<7 ug/kg	

Validated 🗸 Preliminary	ALcontrol Laboratories Analytical Services Table Of Results								[#] ISO 17 ^M MCEF * Subco	 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test 			
Job Number: Client: Client Ref. No.:	08/0829 Geotect PEO80	99/02/01 hnics Lto 558	d		Matrix Locatio Client	:)n: Contact	SOLID TROW Cathy S	BRIDG Smith	» Shown	» Shown on prev. report STW			
Sample Identity	BH2	BH4	BH5	BH6	BH8	BH10	BH11	BH13	BH16				
Depth (m)	1.0	1.0	3.5	4.0	1.0	0.5	8.0	1.0	1.0	Σ			
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	etho	LoD		
Sampled Date										od (/Un		
Sample Received Date	02 05 08	02 05 08	02 05 08	02 05 08	02 05 08	02 05 08	02 05 08	02 05 08	02 05 08)od(its		
Batch	1	1	1	1	1	1	1	1	1	, č			
Sample Number(s)	1-3	4-6	7-8	9-10	11-13	14-16	17-18	19-21	22-24	1			
Volatile Organic Com	nounds	(cont)											
Dibromochloromethane	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg		
1.2-Dibromoethane	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg		
Tetrachloroethene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#]	<5 ug/kg		
1.1.1.2-Tetrachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg		
Chlorobenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg		
Ethylbenzene	<4	<4	<4	<4	<4	<4	<4	<4	<4	TM116 [#]	<4 ug/kg		
p/m-Xylene	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg		
Bromoform	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg		
Styrene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg		
1.1.2.2-Tetrachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg		
o-Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg		
1.2.3-Trichloropropane	<17	<17	<17	<17	<17	<17	<17	<17	<17	TM116 [#]	<17 ug/kg		
Isopropylbenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#]	<5 ug/kg		
Bromobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#] _M	<10 ug/kg		
2-Chlorotoluene	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg		
Propylbenzene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg		
4-Chlorotoluene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg		
1.2.4-Trimethylbenzene	<9	<9	<9	<9	<9	<9	<9	<9	<9	TM116 [#]	<9 ug/kg		
4-Isopropyltoluene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg		
1.3.5-Trimethylbenzene	<8	<8	<8	<8	<8	<8	<8	<8	<8	TM116 [#]	<8 ug/kg		
1.2-Dichlorobenzene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#] _M	<12 ug/kg		
1.4-Dichlorobenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	TM116 [#] _M	<5 ug/kg		
sec-Butylbenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg		
tert-Butylbenzene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg		
1.3-Dichlorobenzene	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#]	<6 ug/kg		
n-Butylbenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM116 [#]	<10 ug/kg		
1.2-Dibromo-3-chloropropane	<14	<14	<14	<14	<14	<14	<14	<14	<14	TM116 [#]	<14 ug/kg		
1.2.4-Trichlorobenzene	<6	<6	<6	<6	<6	<6	<6	<6	<6	TM116 [#]	<6 ug/kg		
Naphthalene	<13	<13	<13	<13	<13	<13	<13	<13	<13	TM116 [#]	<13 ug/kg		
1.2.3-Trichlorobenzene	<11	<11	<11	<11	<11	<11	<11	<11	<11	TM116 [#]	<11 ug/kg		

Validated 🗸 Preliminary	ALc	ontro	l Labo T	orator 'able (ries Ar Of Res	nalytic sults	al Ser	vices	[#] ISO 17 ^M MCEF * Subco	7025 accre RTS accred ntracted tea	dited lited st
Job Number:	08/0829	99/02/01			Matrix	:	SOLID		» Showr	1 on prev. 1	eport
Client:	Geotecl	nnics Lt	d		Locatio	n:	TROW	BRIDG	E STW		
Client Ref. No.:	PEO80	558			Client	Contact	Cathy S	Smith			
Sample Identity	BH2	BH4	BH5	BH6	BH8	BH10	BH11	BH13	BH16		
Depth (m)	1.0	1.0	3.5	4.0	1.0	0.5	8.0	1.0	1.0	М	_
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	etho	_0D
Sampled Date										od C	/Uni
Sample Received Date	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	ode	its
Batch	1	1	1	1	1	1	1	1	1		
Sample Number(s)	1-3	4-6	7-8	9-10	11-13	14-16	17-18	19-21	22-24		
Volatile Organic Com	pounds	(cont)									
Hexachlorobutadiene	<12	<12	<12	<12	<12	<12	<12	<12	<12	TM116 [#]	<12 ug/kg

All results expressed on a dry weight basis.

Validated 🗸 Preliminary	ALcontrol Laboratories Analytical Services Table Of Results							 ISO 17025 accredited MCERTS accredited Subcontracted test 			
Job Number:	08/0829	99/02/01			Matrix	:	SOLID		» Showi	1 on prev. r	eport
Client:	Geotecl	nnics Lte	d		Locatio	on:	TROW	BRIDG	E STW		
Client Ref. No.:	PEO80	558			Client	Contact	Cathy S	Smith			
Sample Identity	BH2	BH4	BH5	BH6	BH8	BH10	BH11	BH13	BH16		
Depth (m)	1.0	1.0	3.5	4.0	1.0	0.5	8.0	1.0	1.0	М	_
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	oD	
Sampled Date										od C	/Uni
Sample Received Date	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	02.05.08	ode	its
Batch	1	1	1	1	1	1	1	1	1		
Sample Number(s)	1-3	4-6	7-8	9-10	11-13	14-16	17-18	19-21	22-24		
Miscellaneous VOCs											
Acetone	<50	<50	<50	<50	<50	<50	<50	<50	<50	PENDING	<50 ug/kg

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

Job Number:	
Client:	
Client Ref. No.:	

08/08299/02/01 Geotechnics Ltd PEO80558

р -4 TZ

<u>Report</u>	Key :		Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10				
NDP	No Determination Possible	*	Subcontracted test				
NFD	No Fibres Detected	»	Result previously reported (Incremental reports only)				
#	ISO 17025 accredited	М	MCERTS Accredited				
PFD	Possible Fibres Detected	EC	Equivalent Carbon (Aromatics C8-C35)				

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

Summary of Method Codes contained within report :

<u>Summa</u>	ary of Method Codes cont	ained within report :	ISO Acc	MC Acc	Wa	Sur Coi
Method No.	Reference	Description) 17025 redited	ERTS redited	et/Dry mple 1	rogate rected
PENDING		method details are pending			WET	
TM001	In - house Method	Screening of Soils for Fibres			WET	
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)	~	~	DRY	
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.	~		DRY	
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.	~	~	DRY	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			WET	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	~		WET	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	~	~	WET	
TM102	Method 4500H, AWWA/APHA, 20th Ed., 1999	Determination of Total Oxidised Nitrogen using the Kone Analyser	~		DRY	
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS			WET	
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	~		WET	
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	~	~	WET	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer			DRY	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer	~	✓	DRY	

¹Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. NA = not applicable.

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

A IS A M S V C St

Job Number: Client: Client Ref. No.: 08/08299/02/01 Geotechnics Ltd PEO80558

<u>Report Key :</u>

<u>Kepor</u>	<u>t Key :</u>		Results expressed as (e.g.) $1.03\text{E}-07$ is equivalent to 1.03×10^{-7}
NDP	No Determination Possible	*	Subcontracted test
NFD	No Fibres Detected	»	Result previously reported (Incremental reports only)
#	ISO 17025 accredited	М	MCERTS Accredited
PFD	Possible Fibres Detected	EC	Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

Summary of Method Codes contained within report :

Mathad) 17 Tred	CEH	et/I mp	rrog rree
No.	Reference	Description	025 lited	RTS lited)ry le 1	gate cted
TM133	BS 1377: Part 3 1990	Determination of pH in Soil and Water using the GLpH pH Meter	~	~	WET	
TM136	Method 17.10, Second Site property, March 2003	Determination of Sulphur by HPLC	~		DRY	
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the "Skalar SANS+ System" Segmented Flow Analyser			WET	
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the "Skalar SANS+ System" Segmented Flow Analyser	~	~	WET	
TM180	Sulphide in waters and waste waters 1991 ISBN 01 175 7186 SCA rec. 2007 (unpublished)'	The Determination Of Easily Liberated Sulphide In Soil Samples by Ion Selective Electrode Technique	~		WET	

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35° C. **NA** = not applicable.

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

Job Number:08/08299/02/01Client:Geotechnics LtdClient Ref. No.:PEO80558

<u>Summary of Coolbox temperatures</u>

Batch No.	Coolbox Temperature (°C)
1	5.2

Alcontrol/Geochem Analytical Services EPH Range Organics (C10 - C40) Sample Identity : 200808299-2/S Date Acquired : 06/05/08 21:28:56 PM Units : mq/kq Sample Multiplier : 1.005 Dilution :

Alcontrol/Geochem Analytical Services EPH Range Organics (C10 - C40) Sample Identity : 200808299-5/S Date Acquired : 06/05/08 21:50:36 PM Units : mq/kq Sample Multiplier : 1.000 Dilution :

Alcontrol/Geochem Analytical Services EPH Range Organics (C10 - C40) Sample Identity 200808299-7/S : Date Acquired 06/05/08 22:12:16 PM : Units mq/kq : Sample Multiplier 1.004 : Dilution :

Alcontrol/Geochem Analytical Services EPH Range Organics (C10 - C40) 200808299-9/% Sample Identity : Date Acquired 06/05/08 22:33:37 PM : Units mq/kq : Sample Multiplier 1.001 : Dilution :

Alcontrol/Geochem Analytical Services EPH Range Organics (C10 - C40) Sample Identity : 200808299-12/S Date Acquired : 06/05/08 22:54:58 PM Units : mq/kq Sample Multiplier : 0.998 Dilution :

Alcontrol/Geochem Analytical Services EPH Range Organics (C10 - C40) Sample Identity : 200808299-15/S Date Acquired : 06/05/08 23:16:28 PM Units : mq/kq Sample Multiplier : 0.997 Dilution :

Alcontrol/Geochem Analytical Services EPH Range Organics (C10 - C40) Sample Identity : 200808299-17/S Date Acquired : 06/05/08 23:37:42 PM Units : mq/kq Sample Multiplier : 0.995 Dilution :

Alcontrol/Geochem Analytical Services EPH Range Organics (C10 - C40) Sample Identity : 200808299-20/S Date Acquired : 06/05/08 23:58:49 PM Units : mq/kq Sample Multiplier : 1.004 Dilution :

Alcontrol/Geochem Analytical Services EPH Range Organics (C10 - C40) Sample Identity : 200808299-23/S Date Acquired : 07/05/08 00:20:15 PM Units : mq/kq Sample Multiplier : 1.001 Dilution :


```
Data Path : C:\MSDCHEM\1\DATA\051008\
Data File : VOC033.D
Acq On : 10 May 2008 15:18
Operator : Alcontrol Labs
Sample : 200808299-003
Misc : /soil
ALS Vial : 33 Sample Multiplier: 2
```

```
Quant Time: May 12 11:29:28 2008
Quant Method : C:\MSDCHEM\1\METHODS\FASTVOC2.M
Quant Title : Volatile Organic Compounds ( EPA 624/8260 )
QLast Update : Mon May 12 11:27:21 2008
Response via : Initial Calibration
```


FASTVOC2.M Mon May 12 14:27:15 2008

```
Data Path : C:\MSDCHEM\1\DATA\051008\
Data File : VOC034.D
Acq On : 10 May 2008 15:29
Operator : Alcontrol Labs
Sample : 200808299-006
Misc : /soil
ALS Vial : 34 Sample Multiplier: 2
```

```
Quant Time: May 12 11:29:30 2008
Quant Method : C:\MSDCHEM\1\METHODS\FASTVOC2.M
Quant Title : Volatile Organic Compounds ( EPA 624/8260 )
QLast Update : Mon May 12 11:27:21 2008
Response via : Initial Calibration
```


FASTVOC2.M Mon May 12 14:27:16 2008

```
Quantitation Report (QT Reviewed)
Data Path : C:\MSDCHEM\1\DATA\051008\
Data File : VOC035.D
Acq On
         : 10 May 2008 15:40
Operator : Alcontrol Labs
Sample
         : 200808299-008
          : /soil
Misc
ALS Vial
         : 35
                Sample Multiplier: 2
Quant Time: May 12 11:45:25 2008
Quant Method : C:\MSDCHEM\1\METHODS\FASTVOC2.M
Quant Title : Volatile Organic Compounds ( EPA 624/8260 )
```


FASTVOC2.M Mon May 12 14:27:17 2008

```
Data Path : C:\MSDCHEM\1\DATA\051008\
Data File : VOC036.D
Acq On : 10 May 2008 15:50
Operator : Alcontrol Labs
Sample : 200808299-010
Misc : /soil
ALS Vial : 36 Sample Multiplier: 2
```

```
Quant Time: May 12 11:29:34 2008
Quant Method : C:\MSDCHEM\1\METHODS\FASTVOC2.M
Quant Title : Volatile Organic Compounds ( EPA 624/8260 )
QLast Update : Mon May 12 11:27:21 2008
Response via : Initial Calibration
```


FASTVOC2.M Mon May 12 14:27:18 2008

```
Data Path : C:\MSDCHEM\1\DATA\051008\
Data File : VOC037.D
Acq On : 10 May 2008 16:01
Operator : Alcontrol Labs
Sample : 200808299-013
Misc : /soil
ALS Vial : 37 Sample Multiplier: 2
Quant Time: May 12 11:29:36 2008
```

```
Quant Method : C:\MSDCHEM\1\METHODS\FASTVOC2.M
Quant Title : Volatile Organic Compounds ( EPA 624/8260 )
QLast Update : Mon May 12 11:27:21 2008
Response via : Initial Calibration
```


FASTVOC2.M Mon May 12 14:27:19 2008

```
Quantitation Report (QT Reviewed)

Data Path : C:\MSDCHEM\1\DATA\051008\

Data File : VOC038.D

Acq On : 10 May 2008 16:12

Operator : Alcontrol Labs

Sample : 200808299-016

Misc : /soil

ALS Vial : 38 Sample Multiplier: 2

Quant Time: May 12 11:29:38 2008
```

```
Quant Method : C:\MSDCHEM\1\METHODS\FASTVOC2.M
Quant Title : Volatile Organic Compounds ( EPA 624/8260 )
QLast Update : Mon May 12 11:27:21 2008
Response via : Initial Calibration
```


FASTVOC2.M Mon May 12 14:27:20 2008

```
Quantitation Report (QT Reviewed)

Data Path : C:\MSDCHEM\1\DATA\051008\

Data File : VOC039.D

Acq On : 10 May 2008 16:23

Operator : Alcontrol Labs

Sample : 200808299-018

Misc : /soil

ALS Vial : 39 Sample Multiplier: 2

Quant Time: May 12 11:46:20 2008

Ouant Method : C:\MSDCHEM\1\METHODS\FASTYOC2 M
```

```
Quant Method : C:\MSDCHEM\1\METHODS\FASTVOC2.M
Quant Title : Volatile Organic Compounds ( EPA 624/8260 )
QLast Update : Mon May 12 11:27:21 2008
Response via : Initial Calibration
```


FASTVOC2.M Mon May 12 14:27:21 2008

```
Data Path : C:\MSDCHEM\1\DATA\051008\
Data File : VOC040.D
Acq On : 10 May 2008 16:34
Operator : Alcontrol Labs
Sample : 200808299-021
Misc : /soil
ALS Vial : 40 Sample Multiplier: 2
```

```
Quant Time: May 12 11:29:42 2008
Quant Method : C:\MSDCHEM\1\METHODS\FASTVOC2.M
Quant Title : Volatile Organic Compounds ( EPA 624/8260 )
QLast Update : Mon May 12 11:27:21 2008
Response via : Initial Calibration
```



```
Data Path : C:\MSDCHEM\1\DATA\051008\
Data File : VOC041.D
Acq On : 10 May 2008 16:45
Operator : Alcontrol Labs
Sample : 200808299-024
Misc : /soil
ALS Vial : 41 Sample Multiplier: 2
```

```
Quant Time: May 12 11:46:55 2008
Quant Method : C:\MSDCHEM\1\METHODS\FASTVOC2.M
Quant Title : Volatile Organic Compounds ( EPA 624/8260 )
QLast Update : Mon May 12 11:27:21 2008
Response via : Initial Calibration
```


FASTVOC2.M Mon May 12 14:27:23 2008

APPENDIX

APPENDIX

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH₄ by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All samples received and not scheduled will be disposed of one month after the date o receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Geochem reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, an asbestos screen is done in-house on soils and if no fibres are found will be reported as NFD no fibres detected. If asbestos is detected, then identification is carried out by ALcontrol Shutler. If a sample is suspected of containing asbestos, then further preparation and analysis will be suspended on that sample until the asbestos result is known. If asbestos is present, then no further analysis will be undertaken.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. **Surrogate recoveries** Currently the only analysis, which is surrogate corrected, is PAHs on soils.
- For EPH on soils the result is not surrogate corrected, but a percentage recovery is quoted.
- 13. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 14. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 15. Total of 8 speciated phenols by HPLC includes Resorcinol, Catechol, Phenol, Napthol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 16. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 17. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

.Last Updated March 2008

APPENDIX 7

Investigation Techniques and General Notes

INTRODUCTION

The following brief review of Ground Investigation techniques, generally used as part of most Site Investigations in the UK, summarises their methodology, advantages and limitations. Detailed descriptions of the techniques are available and can be provided on request. This review should be read in conjunction with the accompanying General Notes.

TRIAL PITS

The trial pit is amongst the most simple yet effective means of identifying shallow ground conditions on a site. Its advantages include simplicity, speed, potential accuracy and cost-effectiveness. The trial pit is most commonly formed using a backacting excavator which can typically determine ground conditions to some 4 metres below ground level. Hand excavation is often used to locate, expose and detail existing foundations, features or services. In general, it is difficult to extend pits significantly below the water table in predominantly granular soils, where flows can cause instability. Unless otherwise stated, the trial pits will not have been provided with temporary side support during their construction. Under such circumstances ground conditions to some 1.20 metres can be closely inspected, subject to stability assessment, but below this depth, entrance into the pit is not permitted in the absence of shoring and hence observations will have been made from ground surface and samples taken from the excavator bucket.

Trends in strata type, level and thickness can be determined, shear surfaces identified and the behaviour of plant, excavation sides and excavated materials can be related to the construction process. They are particularly valuable in land slip investigations. Some types of insitu test can be undertaken in such pits and large disturbed or block samples obtained.

CABLE PERCUSSION BORING

The light Cable Percussion technique of soft ground boring, typically at a diameter of 150mm, is a well established simple and flexible method of boring vertical holes and generally allows data to be obtained in respect of strata conditions other than rock. A tubular cutter (for cohesive soils) or shell with a flap valve (for granular soils) is repeatedly lifted and dropped using a winch and rope operating from an "A" frame. Soil which enters these tools is regularly removed and either sampled for subsequent examination or test, or laid to one side for backfilling. Steel casing will have been used to prevent collapse of the borehole sides where necessary. A degree of disturbance of soil and mixing of layers is inevitable and the presence of very thin layers of different soils within a particular stratum may not be identified. Changes in strata type can only be detected on recognition of a change in soil samples at surface, after the interface has been passed. For the foregoing reasons, depth measurements should not be considered to be more accurate than 0.10 metre.

In cohesive soils cylindrical samples are retrieved by driving or pushing in 100mm nominal diameter tubes. In soft soils, piston sampling or vane testing may be undertaken. In granular soils and often in cohesive materials, insitu Standard Penetration Tests (SPT's) are performed. The SPT records the number of standard blows required to drive a 50mm diameter open or cone ended probe for 300mm after an initial 150mm penetration. A modified method of recording is used in more dense strata. Small disturbed samples are obtained throughout.

The technique can determine ground conditions to depths in excess of 30 metres under suitable circumstances and usually causes less surface disturbance than trial pitting.

ROTARY DRILLING

Rotary Drilling to produce cores by rotating an annular diamond-impregnated tube or barrel into the ground is the technique most appropriate to the forming of site investigation boreholes through rock or other hard strata. It has the advantage of being able to be used vertically or at an angle. Core diameters of less than 100mm are most common for site investigation purposes. Core is normally retrieved in plastic lining tubes. A flushing fluid such as air, water or foam is used to cool the bit and carry cuttings to the surface.

Examination of cores allows detailed rock description and generally enables angled discontinuity surfaces to be observed. However, vertical holes do not necessarily reveal the presence of vertical or near-vertical fissures or joint discontinuities. The core type and/or techniques used. Where open hole rotary drilling is employed, descriptions of strata result from examination at surface of small particles ejected from the borehole in the flushing medium. In consequence, no indication of fissuring, bedding, consistency or degree of weathering can be obtained. Small scale plant can be used for auger drilling to limited depths where access is constrained.

Depths in excess of 60 metres can be achieved under suitable circumstances using rotary techniques, with minimal surface disturbance.

WINDOW SAMPLING

This technique involves the driving of an open-ended tube into the ground and retrieval of the soil which enters the tube. The term "window sample" arose from the original device which had a "window" or slot cut into the side of the tube through which samples were taken. This has now been superseded by the use of a thin-walled plastic liner within a sampler which has a solid wall. Diameters range from 36 to 86mm. Such samples can be used for qualitative logging, selection of samples for classification and chemical analysis and for obtaining a rudimentary assessment of strength.

Driving devices can be hand-held or machine mounted and the drive tubes are typically in 1m lengths. The hole formed is not cased, however, and hence the success of this technique is limited when soils and groundwater conditions are such that the sides of the hole collapse on withdrawal of the sampler. Obstructions within the ground, the density of the material or its strength can also limit the depth and rate of penetration of this light-weight investigation technique. Nevertheless, it is a valuable tool where access is constrained such as within buildings or on embankments. Depths of up to 8m can be achieved in suitable circumstances but depths of 4m to 6m are more common.

EXPLORATORY HOLE RECORDS

The data obtained by these techniques are generally presented on Trial Pit, Borehole, Drillhole or Window Sample Records. The descriptions of strata result from information gathered from a number of sources which may include published geological data, preliminary field observations and descriptions, insitu test results, laboratory test results and specimen descriptions. A key to the symbols and abbreviations used accompanies the records. The descriptions on the exploratory hole records accommodate but may not necessarily be identical to those on any preliminary records or the laboratory summaries.

The records show ground conditions at the exploratory hole locations. The degree to which they can be used to represent conditions between or beyond such holes, however, is a matter for geological interpretation rather than factual reporting and the associated uncertainties must be recognised.

DYNAMIC PROBING

This technique typically measures the number of blows of a standard weight falling over a standard height to advance a cone-ended rod over sequential standard distances (typically 100mm). Some devices measure the penetration of the probe per standard blow. It is essentially a profiling tool and is best used in conjunction with other investigation techniques where site-specific correlation can be used to delineate the distribution of soft or losse soils or the upper horizon of a dense or strong layer such as rock.

Both machine-driven and hand-driven equipment is available, the selection depending upon access restrictions and the depth of penetration required. It is particularly useful where access for larger equipment is not available, disturbance is to be minimised or where there are cost constraints. No samples are recovered and some techniques leave a sacrificial cone head in the ground. As with other lightweight techniques, progress is limited in strong or dense soils. The results are presented both numerically and graphically. Depths of up to 10m are commonly achieved in suitable circumstances.

The hand-driven DCP probing device has been calibrated by the TRL to provide a profile of CBR values over a range of depths of up to 1.50m.

INSTRUMENTATION

The most common form of instrument used in site investigation is either the standpipe or else the standpipe piezometer which can be installed in investigation holes. They are used to facilitate monitoring of groundwater levels and water sampling over a period of time following site work. Normally a standpipe would be formed using rigid plastic tubing which has been perforated or slotted over much of its length whilst a standpipe piezometer would have a filter tip which would be placed at a selected level and the hole sealed above and sometimes below to isolate the zone of interest. Groundwater levels are determined using an electronic "dipmeter" to measure the depth to the water surface from ground level. Piezometers can also be used to measure permeability. They are simple and inexpensive instruments for long term monitoring but response times can limit their use in tidal areas and access to the ground surface at each instrument is necessary. Remote reading requires more sophisticated hydraulic, electronic or pneumatic equipment.

Settlement can be monitored using surface or buried target plates whilst lateral movement over a range of depths is monitored using slip indicator or inclinometer equipment.

Geotechnics Limited © The Geotechnical Centre, 203 Torrington Avenue, Tile Hill, Coventry. CV4 9AP

- 1. The report is prepared for the exclusive use of the Client named in the document and copyright subsists with Geotechnics Limited. Prior written permission must be obtained to reproduce all or part of the report. It is prepared on the understanding that its contents are only disclosed to parties directly involved in the current investigation, preparation and development of the site.
- Further copies may be obtained with the Client's written permission, from Geotechnics Limited with whom the master copy of the document will be retained.
- 3. The report and/or opinion is prepared for the specific purpose stated in the document and in relation to the nature and extent of proposals made available to Geotechnics Limited at that time. Reconsideration will be necessary should those details change. The recommendations should not be used for other schemes on or adjacent to the site without further reference to Geotechnics Limited.
- 4. The assessment of the significance of the factual data, where called for, is provided to assist the Client and his Engineer and/or Advisers in the preparation of their designs.
- 5. The report is based on the ground conditions encountered in the exploratory holes together with the results of field and laboratory testing in the context of the proposed development. The data from any commissioned desk study and site reconnaissance are also drawn upon. There may be special conditions appertaining to the site, however, which are not revealed by the investigation and which may not be taken into account in the report.
- 6. Methods of construction and/or design other than those proposed by the designers or referred to in the report may require consideration during the evolution of the proposals and further assessment of the geotechnical and any geoenvironmental data would be required to provide discussion and evaluations appropriate to these methods.
- 7. The accuracy of results reported depends upon the technique of measurement, investigation and test used and these values should not be regarded necessarily as characteristics of the strata as a whole (see accompanying notes on Investigation Techniques). Where such measurements are critical, the technique of investigation will need to be reviewed and supplementary investigation undertaken in accordance with the advice of the Company where necessary.
- 8. The samples selected for laboratory test are prepared and tested in accordance with the relevant Clauses of BS 1377 Parts 1 to 8, where appropriate, in Geotechnics Limited's UKAS accredited Laboratory, where possible. A list of tests is given.
- 9. Tests requiring the use of another laboratory having UKAS accreditation where possible are identified.
- 10. Any unavoidable variations from specified procedures are identified in the report.
- 11. Specimens are cut vertically, where this is relevant and can be identified, unless otherwise stated.

- 12. All the data required by the test procedures are recorded on individual test sheets but the results in the report are presented in summary form to aid understanding and assimilation for design purposes. Where all details are required, these can be made available.
- 13. Whilst the report may express an opinion on possible configurations of strata between or beyond exploratory holes, or on the possible presence of features based on either visual, verbal, written, cartographical, photographic or published evidence, this is for guidance only and no liability can be accepted for its accuracy.
- Classification of materials as Made Ground is based on the 14 inspection of retrieved samples or exposed excavations. Where it is obvious that foreign matter such as paper, plastic or metal is present, classification is clear. Frequently, however, for fill materials that arise from the adjacent ground or from the backfilling of excavations, their visual characteristics can closely resemble those of undisturbed ground. Other evidence such as site history, exploratory hole location or other tests may need to be drawn upon to provide clarification. For these reasons, classification of soils on the exploratory hole records as either Made Ground or naturally occurring strata, the boundary between them and any interpretation that this gives rise to should be regarded as provisional and subject to re-evaluation in the light of further data.
- 15. The classification of materials as Topsoil is generally based on visual description and should not be interpreted to mean that the material so described complies with the criteria for Topsoil used in BS 3882 (1994). Specific testing would be necessary where such definition is a requirement.
- 16. Ground conditions should be monitored during the construction of the works and the report should be reevaluated in the light of these data by the supervising geotechnical engineers.
- 17. Any comments on groundwater conditions are based on observations made at the time of the investigation, unless specifically stated otherwise. It should be noted, however, that the observations are subject to the method and speed of boring, drilling or excavation and that groundwater levels will vary due to seasonal or other effects.
- 18. Any bearing capacities for conventional spread foundations which are given in the report and interpreted from the investigation are for bases at a minimum depth of Im below finished ground level in naturally occurring strata and at broadly similar levels throughout individual structures, unless otherwise stated. The foundations should be designed in accordance with the good practice embodied in BS 8004:1986 - Foundations, supplemented for housing by NHBC Standards. Foundation design is an iterative process and bearing pressures may need adjustment or other measures may need to be taken in the context of final layouts and levels prior to finalisation of proposals.
- 19. Unless specifically stated, the investigation does not take account of the possible effects of mineral extraction or of gases from fill or natural sources within, below or outside the site.
- 20. The costs or economic viability of the proposals referred to in the report, or of the solutions put forward to any problems encountered, will depend on very many factors in addition to geotechnical or geoenvironmental considerations and hence their evaluation is outside the scope of the report.

TROWBRIDGE STW, WILTSHIRE

FACTUAL REPORT ON GROUND INVESTIGATION

Report No H6100-16

February 2017

Carried out for: Wessex Water Services Limited Claverton Down Road Calverton Down Bath

Engineer: SWECO Hanover House Queen Charlotte Street Bristol

Report No H6100-16

February 2017

Issue No Date	Status	Prepared by	Checked by	Approved by
1	Draft	NAME and QUALIFICATIONS Adam Putt BSc (Hons) FGS	NAME and QUALIFICATIONS Lynne Llewellyn BSc (Hons) CGeol FGS	NAME and QUALIFICATIONS Lynne Llewellyn BSc (Hons) CGeol FGS
December 2016	report	SIGNATURE	signature Ulewellyn	signature Ulewellyn
3	Final	NAME and QUALIFICATIONS Adam Putt BSc (Hons) FGS	NAME and QUALIFICATIONS Lynne Llewellyn BSc (Hons) CGeol FGS	NAME and QUALIFICATIONS Lynne Llewellyn BSc (Hons) CGeol FGS
February 2017	report	SIGNATURE	SIGNATURE Ulewellyn	signature Ulewellyn
		NAME and QUALIFICATIONS	NAME and QUALIFICATIONS	NAME and QUALIFICATIONS
		SIGNATURE	SIGNATURE	SIGNATURE

This Report has been prepared by ESG Limited ("ESGL") with all reasonable skill and care, within the terms and conditions of the contract between ESGL and the Client ("Contract") and within the limitations of the resources devoted to it by agreement with the Client. Any reliance upon the Report is subject to the Contract terms and conditions.

This Report is confidential between the Client and ESGL. ESGL accepts no responsibility whatsoever to third parties to whom this document, or any part thereof, is made known. Any such party relies upon the Report at their own risk. The Contracts (Rights of Third Parties) Act 1999 does not apply to this Report nor the Contract and the provisions of the said Act are hereby excluded.

This Report shall not be used for engineering or contractual purposes unless signed above by the author, checker and the approver for and on behalf of ESGL and unless the Report status is 'Final'.

Unless specifically assigned or transferred within the terms and conditions of the Contract, ESGL asserts and retains all Copyright and other Intellectual Property Rights in and over the Report and its contents. The Report may not be copied or reproduced, in whole or in part, without the written authorisation from ESGL. ESGL shall not be liable for any use of the Report for any purpose other than that for which it was originally prepared.

Whilst every effort has been made to ensure the accuracy of the data supplied and any analysis interpretation derived from it, the possibility exists of variations in the ground and groundwater conditions around and between the exploratory positions. No liability can be accepted for any such variations in these conditions. Furthermore, any recommendations are specific to the development as detailed in this Report and no liability will be accepted should they be used for the design of alternative schemes without prior consultant with ESGL

CONTENTS

		P	'age
1	INTR	ODUCTION	1
2	SITE	SETTING	1
	2.1 2.2	Location and Description Published Geology	1 1
3	FIEL	DWORK	2
	3.1 3.2	Exploratory Holes Groundwater Monitoring	2 3
4	LABO	DRATORY TESTING	3
	4.1 4.2	Geotechnical Testing Geoenvironmental Testing	3 4
REFE	RENC	ES	5

APPENDIX A FIGURES AND DRAWINGS

APPENDIX B EXPLORATORY HOLE RECORDS

APPENDIX C INSTRUMENTATION AND MONITORING

APPENDIX D IN-SITU TESTING

APPENDIX E GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX F GEOENVIRONMENTAL LABORATORY TEST RESULTS

1 INTRODUCTION

In August 2016 ESG was commissioned by SWECO, on behalf of Wessex Water Services Limited (WW) to carry out a ground investigation at Trowbridge Sewage Treatment Works (STW), Wiltshire. The investigation was required to obtain geotechnical and geoenvironmental information for a proposed upgrade to existing infrastructure.

The scope of the investigation was specified by SWECO and comprised dynamically sampled with rotary follow on cored boreholes, in situ testing and laboratory testing. The investigation was performed in accordance with the contract specification, and the general requirements of BS 5930 (2015), BS EN 1997-2 (2007), BS EN ISO 22475-1 (2006) and other relevant related standards identified below. The fieldwork took place between 30 September and 19 October 2016.

This report presents the factual records of the fieldwork and laboratory testing.

2 SITE SETTING

2.1 Location and Description

Trowbridge STW is located approximately 1.00 km northwest, at National Grid reference ST 848587, see Site Location Plan in Appendix A.

The site comprises a currently operational sewage treatment works. The site is approximately rectangular and measures approximately 320 m by 340 m. The site is dominated by a series of filter beds and lagoons around which lie several buildings and access roads associated with the sewage treatment works.

The site is bound to the north, south and west by open agricultural land. The River Biss lies approximately 70 m east of the site, beyond which lie residential dwellings.

2.2 Published Geology

The published geological map for the area, BGS Sheet 381 (1994) and the BGS Geology of Britain Viewer (2016) show the site located on Kellaway Mudstone Formation of Jurassic age. This is indicate to comprise mudstone and occasional sandstone.

3 FIELDWORK

The fieldwork was carried out in general accordance with BS 5930 (2015), BS EN 1997-2 (2007) and BS EN ISO 22475-1 (2006).

The exploratory hole locations were selected by SWECO. The locations were set out from local features. The co-ordinates and reduced levels were surveyed by JV Survey Limited to National Grid and Ordnance Datum. The exploratory hole locations are shown on the Site Plan in Appendix A.

3.1 Exploratory Holes

The exploratory holes are listed in the following table.

TABLE 1: SUMMARY OF EXPLORATORY HOLES

ТҮРЕ	QUANTITY	MAXIMUM DEPTH (m)	REMARKS
Dynamically Sampled with Rotary Follow on Coring	7	25.72	BH01 to BH04 (including BH02A, BH04A ad BH04B)

Exploratory hole location BH02 was terminated at 1.73 m depth due to an obstruction. The borehole was relocated 2.00 m north east and renamed BH02A.

Exploratory hole BH04 was terminated at 1.84 m depth due to an obstruction. The borehole was relocated 2.00 m north east and renamed BH04A.

Exploratory hole BH04A was terminated at 1.84 m depth due to an obstruction. The borehole was relocated 2.00 m south east and renamed BH04B.

The exploratory hole logs are presented in Appendix B. These provide information including the equipment and methods used, samples taken, tests carried out, water observations and descriptions of the strata encountered. Explanation of the terms and abbreviations used on the logs is given in the Key to Exploratory Hole Records in Appendix B, together with other explanatory information. The logging of soil and rock materials is in accordance with BS EN ISO 14688-1+A1 (2013) for soils and BS EN ISO 14689-1 (2003) for rocks, as amplified by BS 5930 (2015).On completion of the fieldwork geotechnical samples were transported to the Bridgend office of ESG for temporary retention, with those required for testing being transferred to the ESG

laboratories. Geoenvironmental samples were transported from site directly to the laboratory at ESG.

3.2 Groundwater Monitoring

Instrumentation installed in the exploratory holes for groundwater monitoring are shown on the logs and summarised in Appendix C. Records of monitoring carried out by ESG during and after the fieldwork period are presented in Appendix C.

3.3 In Situ Testing

In situ testing was carried out in accordance with the relevant standards as tabulated below. The testing is summarised in the following table and the results are presented in Appendix D unless noted otherwise.

Calibration certificates where appropriate are included with the results in the appendix.

ТҮРЕ	QUANTITY	REMARKS
Standard Penetration Test	54	BS EN ISO 22476-3 (2011). Results presented on logs in Enclosure A
California Bearing Ratio Tests	3	BS 1377 (1990)

TABLE 2: SUMMARY OF IN SITU TESTING

4 LABORATORY TESTING

4.1 Geotechnical Testing

Geotechnical laboratory testing was scheduled by SWECO and was carried out in accordance with BS 1377 (1990), BS EN ISO 17892 (2014) Part 1 and ISRM (2007) unless otherwise stated. The testing is summarised below and the results are presented in Appendix E.

- Ø Water Content Determination
- Atterberg Limit Determination
- Particle Size Distribution Analysis

- pH, Acid and Water Soluble Sulphate and Total Sulphur Content of Soils. Test methods are BS 1377 or others recognised in BRE Special Digest 1 (2005); they are indicated on the results report sheets in Appendix E.
- Unconsolidated Undrained Triaxial Compression Testing
- One Dimensional Oedometer Consolidation Testing
- Index Properties of Rock
- Point Load Index Test
- Shear Strength by Hand Vane

4.2 Geoenvironmental Testing

Geoenvironmental laboratory testing was scheduled by SWECO on the soil and water samples recovered during the fieldwork. The testing was carried out by the laboratory at Burton on Trent. The results are presented in Appendix F.

REFERENCES

BGS England and Wales Sheet 381 : 1994 : Frome. 1:50000 geological map (solid and drift). British Geological Survey.

BGS Geology of Britain Viewer : 2016. www.bgs.ac.uk. British Geological Survey.

BRE Special Digest 1 : 2005 : Concrete in aggressive ground. Building Research Establishment.

BS 1377 : 1990 : Methods of test for soils for civil engineering purposes. British Standards Institution.

BS 5930 : 2015 : Code of practice for ground investigations. British Standards Institution.

BS EN 1997-2 : 2007 : Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. British Standards Institution.

BS EN ISO 14688-1:2002+A1 : 2013 : Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description. British Standards Institution.

BS EN ISO 14688-2:2004+A1 : 2013 : Geotechnical investigation and testing - Identification and classification of soil - Part 2 Principles for a classification. British Standards Institution.

BS EN ISO 14689-1 : 2003 : Geotechnical investigation and testing - Identification and classification of rock - Part 1 Identification and description. British Standards Institution.

BS EN ISO 17892-1, Geotechnical investigation and testing – Laboratory Testing of soil – Determination of water content.

BS EN ISO 22475-1 : 2006 : Geotechnical investigation and testing – Sampling methods and groundwater measurements - Part 1 Technical principles for execution. British Standards Institution.

BS EN ISO 22476-3:2005+A1 : 2011 : Geotechnical investigation and testing - Field testing - Part 3 Standard penetration test. British Standards Institution.

ISRM : 2007 : The Complete ISRM Suggested Methods for Rock Characterisation, Testing and Monitoring (1974-2006). Commission on Testing Methods, International Society for Rock Mechanics (Editors Ulusay R & Hudson JA).

APPENDIX A FIGURES AND DRAWINGS

Site Location Plan	A1
Site Plan	A2

Notes: Scale 1:50 000	Project	Trowbridge STW, Wiltshire	Figure
	Project No.	H6100-16	A1
	Carried out for	Wessex Water Services Limited	

5						
~		GENER	AL NOTES	5		
	 Reproduct Wessex M Drawing Hole Loc Reference 	ed from Water Servi No. D9702 ations to f e System.	ces Lirr /0001 National	nited's Rev N Grid	o. B Co-	ordinate
/						
		LEGEND	TO SYME	IOLS		
L'AND	+ Borehol CBR Lo	e Location cation				
	Scale: 1:500 0 5m		20	25		
7	x x	x x	x	x		
	Rev Drawn D	Date Approv.		Modificatio	on Details	3
	Title	AME	INDIMENTS			
8.47		SITE	E PLA	N		
	Project					
	TROW	/BRIDGE	STW,	WIL	TS⊦	IIRE
	Client					
ABIO	WESSEX	WATER	SER\	/ICE	S LI	MITED
35.63		S	G	Ŕ	2	
100	Date 07/12/201	Drawn E	BS	Ap	oprov. I	^{зу} АР
22	Sheet Size A3	Scale 1	:500		Proj H	ect No 6100-16
38.00	Drawing No	A2				Rev 0

APPENDIX B EXPLORATORY HOLE RECORDS

Key to Exploratory Hole Records SPT Hammer Energy Ratio Report Dynamic Probing Rig Energy Ratio Report Borehole Logs Key SPT Hammer Reference JD5 DP Rig Reference BH01 to BH04 (inc. BH02A, BH04A and BH04B)

Key to Exploratory Hole Records

SAMPLES

Undisturbed U UT TW P L CBR BLK CS AMAL	Driven tube sa Driven thin wal Pushed thin wa Pushed piston Liner sample (i CBR mould sa Block sample Core sample (i Amalgamated	mple II tube sample all tube sample sample from Windowles mple from rotary core sample	 nominally 100 mm diameter and full recovery unless ot ss or similar sampler), full recovery unless otherwise stated e) taken for laboratory testing 	herwise stated
Disturbed D B	Small sample Bulk sample			
Other W G	Water sample Gas sample			
ES EW	Environmental Soil sample Water sample	chemistry sam	ples (in more than one container where appropriate)	
Comments	Sample referent made to take a	nce numbers ar a tube sample, h	re assigned to every sample taken. A sample reference of 'N nowever, there was no recovery.	R' indicates that attempt was
	Monitoring san	nples taken afte	er completion of hole construction are not shown on the explo	ratory hole logs.
TESTS				
SPT S or SPT C	Standard Pene	etration Test, op	en shoe (S) or solid cone (C)	
	The Standard given in the Fig weight in mm (presented as N drive is given (Penetration Tes eld Records coll (SW) is noted. N = ** in the Tes without the N =	st is defined in BS EN ISO 22476-3:2005+A1:2011. The incr umn; each increment is 75 mm unless stated otherwise and Where the full 300 mm test drive is achieved the total numbe st column. Where the test drive blows reach 50 the total blow prefix).	emental blow counts are any penetration under self r of blows for the test drive is count beyond the seating
IV HV PP KFH, KRH, KPI	<i>in situ</i> Vane sh Hand vane she Pocket penetro Permeability te column (one va	ear strength, pe ear strength, pe ometer test, con ests (KFH = falli alue per stage f	eak (p) and remoulded (r) ak (p) and remoulded (r) iverted to shear strength ng head, KRH = rising head; KPI = packer inflow); results pro or packer tests)	ovided in Field Records
DRILLING RECORI	DS			
The mechanical indi	ces (TCR/SCR/F	RQD & If) are de	efined in BS 5930:2015	
TCR SCR RQD If	Total Core Red Solid Core Red Rock Quality D Fracture spacin non-intact (NI)	covery, % covery, % Designation, % ng, mm. Minim is used where t	um, typical and maximum spacings are presented. The term the core is fragmented.	1
Flush returns, estima	ated percentage	with colour whe	ere relevant, are given in the Records column	
CRF AZCL NR	Core recovered Assessed zone Not recovered	d (length in m) i e of core loss	in the following run	
GROUNDWATER				
\bigtriangledown	Groundwater s Groundwater le	strike evel after standi	ing period	
Notes: See report text for full referen	nces of standards	Project Project No. Carried out for	Trowbridge STW, Wiltshire H6100-16 Wessex Water Services Limited	Key Sheet 1 of 2

INSTALLATION

Notes: See report text for full referen	ces of standards Project Trowbridge STW, Wiltshire	Kev
	interpretation. However, in certain ground conditions (eg high hydraulic head or whe present) some judgement may be necessary in considering whether the results are conditions.	re very coarse particles are representative of in situ mass
6 7	Water level observations of discernible entries during the advancing of the explorator log and in the Legend column. The term "none observed" is used where no discrete does not necessarily indicate that the hole has not been advanced below groundwate groundwater cannot be observed, for instance, drilling with water flush or overwater, than water can make its way into the borehole In addition, where appropriate, water recovering individual samples or carrying out in situ tests and at shift changes are given The borehole logs present the results of Standard Penetration Tests recorded in the	ry hole are given at the foot of the entries are identified although this er level. Under certain conditions or boring at a rate much faster levels in the hole at the time of ven in the Records column. field without correction or
5	The assessment of SCR, RQD and Fracture Spacing excludes artificial fractures	
4	The declination of bedding and joints is given with respect to the normal to the core will be the dip.	axis. Thus in a vertical borehole this
3	Evidence of the occurrence of very coarse particles (cobbles and boulders) is present of their size in relation to the exploratory hole these records may not be fully represent in the ground mass.	nted on the logs, however, because ntative of their size and frequency
2	as amplified by BS 5930:2015. For fine soils, consistency determined during description is reported for those strata available. Where the logger considers that the sample may not be representative of reason, the reported consistency is given in brackets. The reliability of the sample is as appropriate. Hence (Probably firm) indicates the logger is reasonably confident or firm) means less certainty. Where the samples available are too disturbed to allow a situ condition, no consistency is given.	where undisturbed samples are the condition in situ, for whatever indicated by Probably or Possibly the assessment, but (Possibly reasonable assessment of the in
NOTES 1	Soils and rocks are described in accordance with BS EN ISO 14688-1:2002+A1:201	and 14689-1:2003 respectively
	Arisings Concrete Grout Bentonite Sand Image: Concrete in the state in the st	Gravel Macadam
INSTALLATION LEGENDS	A legend describing the installation is shown in the rightmost column. Legends used as indicated below.	to describe the backfill materials
ESET ETM EPCE PPCE	The type of instrument installed is indicated by a code in the Legend column: Electronic settlement cell/gauge Magnetic extensometer settlement point Electronic embedment pressure cell Electronic push in pressure cell	
Settlement Points or Pressure Cells	The installation of single point instruments is indicated on the Record. The location of the Legend column.	of the measuring device is shown in
ICE	The type of instrument installed is indicated by a code in the Legend column at the b Biaxial inclinometer Inclinometer tubing for use with probe Slip indicator	ase of the tubing:
Inclinometer or Slip Indicator	The installation of vertical profiling instruments is indicated on the Record. The base column.	of tubing is shown in the Legend
SP SPIE PPIE EPIE	The type of instrument installed is indicated by a code in the Legend column at the of Standpipe Standpipe piezometer Pneumatic piezometer Electronic piezometer	lepth of the response zone:
Standpipe/ piezometer	Details of standpipe/piezometer installations are given on the Record. Legend colum depths including slotted pipe section or tip depth, response zone filter material type a	n shows installed instrument and layers of backfill.

Equipe Group

Drilled LM/PM Logged ND Checked AP Approved LL	1 Start 30/09/20 ⁻ End 04/10/20 ⁻	16 Co Ha 1.9	quipment, Methods and Ren omacchio 205 and excavated inspection pit 50m to 7.20m. Rotary coring	marks from 0.00m to 1 from 7.20m to 2	.50m dep 25.15m de	th. Dynamic sampling from	Depth from (m) 1.50 3.00 4.50 5.70 7.20	to D (m) 3.00 4.50 5.70 7.20 22.15	iameter (mm) 101 101 87 87 120	Casing Depth (m) 4.50	Ground Le Coordinat National G	evel es (m) irid		37.15 mOE E 384953.00 N 158777.00
Samples a	nd Tests					Strata Description	on							
Depth	TCR SCR RQD	lf	Records/Samples	Date Casing	Time Water		Main			Detail	Depth, I (Thickness)	evel	Legend	Backfil
0.10 - 0.20 0.10 - 0.20 0.30 - 0.40 0.30 - 0.40 0.50 - 0.60 0.50 - 0.60 - 0.50 - 0.70 - 1.00 - 1.20 - 1.20 - 1.65 - 1.20 - 1.65 - 1.50 - 3.00	ES 2 D 1 ES 4 D 3 ES 6 B 5 ES 8 B 7 SPTS D 9 L 16		N=20 (2,5/5,5,5,5) 100% rec	30/09/16	0800 Dry	Brown gravelly silty fine is subangular to subrou- chert, chalk and brick. (Very stiff light brown to CLAY. Sand is fine to m subangular to subrounc- brick and chert. (MADE Greyish brown sandy cl subangular fine to coarra and macadam. (MADE Grey slightly silty sandy to coarse GRAVEL of lit CROUND	to medium SAI nded fine to coa MADE GROUN brown sandy gr. edium. Gravel i led fine to coars GROUND ayey angular to se GRAVEL of li GROUND ' angular to suba mestone. (MAD	ND. Gravel arse of D) avelly s se of chalk, imestone angular fine E		-	(0.25) 0.25 (0.20) 0.45 (0.55) 1.00 (1.00)	+36.90 +36.70 +36.15		
- - - - - 2.00 - 2.10 - 2.10 - 2.30 - - - -	D 10 ES 11					Soft to firm yellowish br sandy silty CLAY. Sand (KELLWAY'S FORMATI	own mottled gre is fine to mediu ION)	ey slightly m.		-	2.00 (0.85)	+35.15		
- - - - - - - - - - - - - - - - - - -	SPTS L 17 D 12		N=16 (2,2/3,5,5,3) 100% rec	3.00 4.50	Dry Dry	Stiff yellowish brown m slightly sandy silty CLA (KELLWAY'S FORMAT	ottled grey and d Y. Sand is fine to (ON)	orange o medium.		-	2.85	+34.30		
- 4.50 - 4.95 - 4.50 - 5.70 - 4.50 - 5.70 - 4.50 - 4.95 - - - - -	SPTS L 18 D 13		N=16 (1,1/2,3,5,6) 100% rec	4.50 4.50	Dry Dry	Very stiff dark grey loca Occasional shell fragme FORMATION)	lly thinly lamina ents. (KELLWAY	ted CLAY. /'S		-	4.50	+32.65		000
5.70 - 6.15 5.70 - 7.20 5.70 - 7.20 5.70 - 6.15	SPTS L 19 D 14		N=23 (1,2/4,4,7,8) 100% rec	4.50 4.50	Dry Dry					-	(2.70)			
- - 7.20 - 7.65			_	4.50	Dry				_	_	7.20	+29.95		
7.20 - 7.65 7.20 - 7.65 7.20 - 7.65 7.20 - 7.65 7.65 - 9.15	NA NA NA	NA NA NA	N=50 (5,7/8,13,20,9) C 20 D 15 C 21			Very stiff dark grey loca Occasional shell fragme FORMATION)	lly thinly lamina ents. (KELLWAY	ted CLAY. ''S	8	- .03-8.05 Silty [—]	(0.45)	+29.50		0000
- - - - - - - -	100 NA NA	NA NA NA							sa	fragments	(1.50)			0000
9.15 - 10.65 - - -	100 NA NA	NA NA NA	C 22	30/09/16 4.50 03/10/16 4.50	1800 Dry 0800 Dry	Soft dark grey CLAY. (K	ELLWAY'S FOF	RMATION)	9.7	 5-9.20 AZCL -	9.15 (0.70)	+28.00		0000
- 9.15 - 10.65 Groundwater En	tries					Very stiff dark grey thin Hole continu Depth Related Remarks	y laminated slig	htly]		9.85	+27.30	ls	
No. Depth St Notes: For explana see Key to Explora	trike Remark	ks s and ab ords. All	obreviations Project	Depth Sea	aled Trov	Depths (m) Remarks vbridge STW, Wiltshire					Depths (r Borehole	n)	Duration (mins)	Tools use
reduced levels in n prackets in depth c	netres. Stratum	thickne	Projec	ct No.	H61	00-16							BH01	

Drilled LM/PM	Start	Εq	uipment, Methods and Rem	arks		Depth from to Di	ameter Casing Depth	Ground Level		37.15 mOD
Logged ND	30/09/20	16 Co Ha	macchio 205 and excavated inspection pit fr	om 0.00m to 1.50m	depth. Dynamic sampling from	(m) (m) (1.50 3.00 2.00 4.50	(mm) (m) 101 4.50	Coordinates (m)		E 384953.00
Checked AP	End	1.5	50m to 7.20m. Rotary coring fro	om 7.20m to 25.15	n depth.	4.50 4.50 4.50 5.70 5.70 7.20	101 87 87	National Grid	1	N 158777.00
Approved LL	04/10/20	16				7.20 22.15	120			
Samples and	Tests	; T		TDato T	Strata Descript	ion		=	·	7. 1.00
Depth	SCR RQD	lf	Records/Samples	Casing W	ater	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
-	+				gravelly CLAY. Grave	l is subangular fine to coarse		-	· · · · · ·	
E	!	NA			FORMATION)	S. (RELEWAT S		(1.00)		o p
E	'	NA								0]b
10.65 - 12.15			C 23							
<u>-</u>	'		1		Very stiff dark grey thi	ickly laminated slightly	subangular pieces -	10.85 +26.30		- Io I F
E	'				Gravel is subangular	fine to coarse of mudstone	calcareous -	-	· · · · ·	
– – 10.65 - 12.15	100 NA				lithorelics. Occasional sand between lamina	l partings of fine to medium		-		o] Þ
-	NA				FORMATION)	C. (ILLLWIN G		-	<u> </u>	ել
Ł	'							-		_∐ ≬Ľ
<u>F</u>	'						shell fragments -	_		∣_o∐o
12.15 - 13.65	'	-						_		¦∷ ∐.
E	!		C 24				-	-		ĽШ
F	'							-	· · · · ·	ĽΨ
E	100							_		이 p
- 12.15 - 13.65	NA NA						_	-		∣o∐o
E							-	-		IO H
	'							-		_ ° L['
	'							-		나머니
_ 13.65 - 15.15 _		NA	C 25				-	(5.80)		ΗÌ
-	'	NA					_	-		
	'							-	· · · · ·	lŏď
– – 13.65 - 15.15	100 NA							-		- No H
	NA						-	-		っ】P
E	'						-	-		뉴ኺ
Ł	'						_	-		⊻Ľ H
15.15 - 16.65	'	-						_		o <u>H</u> c
Ł	'		C 26					_	· · · · ·	IΩ H.
	'							-		KH
E	100							-		ГЧ
- 15.15 - 16.65	NA NA						_	_		네 이
E			Flush: 7.20 - 25.15 Air/mist				-	-		∣o∐c
E	'		100%				-	-	· · · · ·	o ∏ ·
40.05 40.45	'									ਿਧਿ
_ 16.65 - 18.15 _		NA NA	C 27		Very stiff dark grey thi	inly laminated CLAY.	1 =	16.65 +20.50 (0.35)	F	나라
<u>-</u>	'	NA	_					17.00 +20.15		- lo Tb
È i i i i i i i i i i i i i i i i i i i	!	650			thickly laminated MU	y calcareous very sneiiy DSTONE. (KELLWAY'S	-			
- 16.65 - 18.15	100 73	650			FORMATION)		-	(0.65)		- I~H~
F	73	000						17.05 .10.50		- lõ H
t i	'		7		Medium strong light g	rey calcareous fossiliferous	1 =	1/.00		ЬЪ
È.	'				FORMATION). Weath	hering: Trace sand infill on	_			հե
18.15 - 19.65	'		0.00		discontinuity surfaces spaced horizontal un	i. Discontinuities: Medium dulatina rough.		-		ГH
È i i i	'	230	C 28			1 000	19 45 18 70	(1.40)	┝┶┯┶┷┫	PC
F	'	450					Subvertical fracture	-		lΩ H
È	100						trace sand infill.			- K H
- 18.15 - 19.65	62 55						Some voids in fracture (up to 2 mm	10.05 ,10.10		ГЧ
E			7		Strong grey slightly ca	alcareous very fossiliferous	diameter). – 18.70-19.05 NI –	19.05 +10.10		데이
È	'				FORMATION). Weath	hering: Some clay infill up to	19.10-19.15 Band of - clavey gravel of -	-		- l o'He
-	'				7 mm thick on discont Discontinuities: close	tinuity surfaces.	limestone –			o ∏
_ 19.05-21.15 _	,,		C 29		horizontal undulating	rough.		-		o ∐'
	- <u> </u> '	 		_	Hole cont	on novt cheat				
	!					Inues on next Sneet				
Groundwater Entrie	s Bamar	•		Death Seeled	Depth Related Remarks			Chiselling Detail	ls	T- sis upod
No. Deptn Strike 1 15.00	Reman	KS		Depth Sealeu	Depths (m) Remarks	5		Depths (m)	Duration (mins)	Tools useu
Notes: For explanation	of symbol	s and ab	breviations Project		Trowbridae STW, Wiltshire			Borehole		
see Key to Exploratory reduced levels in metr	Hole Reco es. Stratum	ords. All c thickne	tepths and ss given in							
brackets in depth colur	nn.		AGS Project	No.	16100-16				BEVI	
Scale 1.50	6	,5)E3G W	Carried	out for	Nessex Water Services Limit	ed			Sheet 2 of 3	

Drilled LM/PM	Start	Eq	uipment, Methods and Rema	rks		Depth from to Dia	ameter Casing Depth	Ground Level		37.15 mOD
Logged ND	30/09/20	16 Co	macchio 205		- 4	(m) (m) (1.50 3.00	mm) (m) 101 4.50	Coordinates (m)		E 384953.00
Checked AP	End	Hai 1.5	nd excavated inspection pit fro 0m to 7.20m. Rotary coring fro	m 0.00m to 1. m 7.20m to 2	50m dep 5.15m de	th. Dynamic sampling from 3.00 4.50 epth. 4.50 5.70	101 87	National Grid		N 158777.00
Approved LL	04/10/20	16				5.70 7.20 7.20 22.15	87 120			
Samples and	l Tests	;				Strata Description		1		
Depth	TCR SCR	lf	Records/Samples	Date	Time	Main	Detail	Depth, Level	Legend	Backfill
	RQD		Necciusioup.cc	Casing	Water		-	(Thickness) (1.95)		па н.
-										Ľ缶
– – 19.65 - 21.15	100	NI					-	-		ĽФ
-	89	180 300					-	-		메이
-	12						-			- l o'Hc
<u> </u>			NA			Stiff arey to dark green thickly laminated CLAY		21.00 +16.15		
21.15 - 22.65			NA NA			Frequent pockets of black organic material (up to		21.15 +16.00		O ∐ I
-		NI 70	C 30			3 mm diameter). Rare voids (up to 3 mm diameter). (CORNBRASH FORMATION)	-	(0.50)		나라
-		140	NA			Stiff to very stiff green thickly laminated CLAY.] _	21.65 +15.50		lo Th
-	100		NA			Very stiff grey to dark green thickly laminated	1 –	(0.30)		
– 21.15 - 22.65 —	NA NA					CLAY. Frequent pockets of black organic material		21.95 +15.20		- Loff
-		NA				diameter). (CORNBRASH FORMATION)		-		БД
_		NA NA		02/10/16	1900	Weak green mottled dark green MUDSTONE. Occasional veins of dark brown organic material	-	(0.70)		ЪЪ
- 22.65 24.15				4.50	Dry	(up to 1 mm thick). Rare pockets of black organic		22.65 .14.60		L H
_ 22.05 - 24.15 _			C 31	04/10/16	0800	material (up to 2 mm diameter). (CORNBRASH FORMATION). Discontinuities: closely spaced	=	22.05 +14.50		ЧP
È.				4.50	Dry	horizontal to dipping 5 degrees planar smooth		-	\square	∣o∐c
E E						Medium strong to strong calcareous greenish grey	_	4		0 H
- 22.65 - 24.15	100 97	NI 120				interlaminated LIMESTONE AND MUDSTONE.		(1.40)		이신
	80	260				to 1 mm clay infill on discontinuity surfaces.				마문
L						Discontinuities: Closely to medium spaced	-			lo Th
						nonzontar to dipping 5 degrees planar smooth.	24.00.24.05.Vop			
24.15 - 25.15			-			Weak calcareous interlaminated LIMESTONE and	stiff greenish grey -	24.05 +13.10		
-			C 32			MUDSTONE. (CORNBRASH FORMATION). Weathering: Trace clay infill on discontinuity	clay -	-		
_	100	NI				surfaces. Discontinuities: closely spaced	Extremely weak	(1.10)		
24.15 - 25.15	100 56	70 140				horizontal to dipping 5 degrees planar smooth.	mudstone –	(1.10)		
-				04/10/16	1800		-			
-			_	4.50	15.37			25.15 +12.00		
-						END OF EXPLORATORY HOLE	-			
_							-			
-							-			
-								-		
-								-		
_							-	-		
-								-		
-							-	-		
-							-	4		
-								-		
-								-		
-								-		
							-			
<u> </u>								-		
-							-	-		
-							-			
-							-			
-							-			
-								-		
-							-	4		
-							-	-		
-								-		
-								-		
-							=	-		
Groundwater Entrie	s					Depth Related Remarks		Chiselling Detail	s	
No. Depth Strike	e Remar	ks		Depth Sea	led	Depths (m) Remarks		Depths (m)	Duration (mins) Tools used
Notes: For explanation	n of symbols	s and abb	previations Project		Tro	vbridge STW, Wiltshire		Borehole		
see Key to Exploratory reduced levels in metri	/ Hole Reco es. Stratum	ords. All d thicknes	lepths and ss given in							
brackets in depth colur	mn.	c) ESC		NO.	H61					
Scale 1:50	(4	C, EGG WV	Carried of	out for	Wes	sex Water Services Limited			Sheet 3 of 3	

Drilled ML	Start	Εqι	upment, Methods and Remain	arks		Depth from to Dia	ameter Casing Depth	Ground Level		37.16 mOD
Logged NJD	10/10/2016	Cor	nmachio Geo 205			(m) (m) (1.20 1.65	(mm) (m) 92	Coordinates (m)		E 384956.00
Checked AP	End	Har to 1	nd excavated inspection pit fro .65 m. SPT from 1.65 m to 1.	om 0.00 m to 73 m.	1.20 m. D	ynamic sampling from 1.20 m 1.65 1.73	45	National Grid		N 158791.00
	10/10/2016	Terr	minated at 1.73 m depth due	to obstruction	. Relocate	d 2 m NE to BH02A.				100701.00
	d Teete					Strate Description		4		
Samples an				Date	Time	Strata Description		Danéh Lawal	Lowend	Beekfill
Depth	SCR RQD	lf	Records/Samples	Casing	Water	Main	Detail	(Thickness)	Legena	Dacking
	ES 2			07/10/16	0800	Brown gravelly silty fine to coarse SAND. Gravel	-	(0.20)		
0.10 - 0.20	D 1			07/10/10	0000	is angular to rounded fine to medium of chert, clinker and brick. (MADE GROUND)	=	0.20 +36.96		
- 0.40 - 0.50 - 0.40 - 0.60	ES 4 B 3					Dark brown sandy silty angular to subangular fine		(0.50)		
0.70 - 0.80	ES 6					to coarse GRAVEL of limestone, clinker and brick. Occasional pockets of clay. (MADE GROUND)		0.70 +36.46		
- 0.70 - 0.80	D 5					Stiff becoming firm from 1.20 m depth grey slightly				
<u> </u>				07/10/16	1800	gravelly CLAY with orangish brown silty fine sand and dark brown sandy silt partings. Gravel is		-		
- - 1.20 - 1.65	B 7				Dry	angular to rounded fine to medium of chalk and		(0.90)		
-				10/10/16	0800 Dry	chert. (MADE GROUND)	-	-		
-	0.0770		50 (05 fee 75 ee (50 fee	10/10/10	1800 Drv			1.60 (0.05) +35.56		
1.65 - 1.73	SPIC		50 (25 for 75mm/50 for 5mm)		Dry	Medium strong light grey CONCRETE. (MADE		1.65 (8.88) +35.51 1.73 (8.88) +35.43		
-						Hole progressed by SPT.	/ -	_		
-						END OF EXPLORATORY HOLE	-	1		
-								-		
-								-		
-								-		
_										
<u> </u>								-		
-								-		
-								-		
-								-		
_										
-							-			
-							-	-		
-								-		
-								-		
_										
_							-	-		
-								-		
-							-	-		
-										
-										
_							-	1		
-								-		
_										
_								-		
-							-			
-							-	-		
-							-	-		
-								-		
_							-	-		
-							-			
F							_	-		
-							-	-		
-								-		
_										
-										
F							-	-		
-								-		
-								-		
-										
-								-		
F							-	1		
F							_	-		
F							=	-		
E								-		
									I	
Groundwater Entri	ies			Denti d	alad	Depth Related Remarks		Chiselling Detail	s Burreti	Tech
No. Depth Stri	ke Remarks			Depth Se	aled	Deptns (m) Remarks 1.20 - 1.73 SPT Hammer ID: JD3		Depths (m)	Duration (mins)	Tools used
						Er%: 70.62		1		
								1		
Notes: For explanatio	on of symbols a	nd abb	reviations Project		Trov	/bridge STW, Wiltshire		Borehole		
reduced levels in me	tres. Stratum th	icknes	s given in	No		0.16		1	BH02	
brackets in depth col	umn.	SC		NO.	H61	JU-10		1		
Scale 1:50	(c) E	.JJ WW	Carried	out for	Wes	sex Water Services Limited		1	Sheet 1 of 1	

Drilled ML Logged NJD Checked AP	Start 10/10/2016 End 11/10/2016	Equipment, Methods and Ren Commachio Geo 205 Hand excavated inspection pit 1.20 m to 11.90 m. Rotary corir	narks from 0.00 m to 1 ng from 11.90 m	1.20 m. E ı to 25.40	ynamic window sampling from m.	iameter Casing Depth (mm) (m) 102 3.00 92 3.00	Ground Level Coordinates (m) National Grid		37.09 mOD E 384957.00 N 158792.00
Samples and	Tests				Strata Description				
Depth	TCR SCR RQD	If Records/Samples	Date Casing	Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
-			10/10/16	0800	Brown very gravelly silty fine to coarse SAND. Gravel is angular to rounded fine to medium of chert, clinker and brick. (MADE GROUND) Dark brown sandy silty angular to subangular fine to coarse GRAVEL of limestone, clinker and brick. Occasional pockets of clay. Sand is fine to coarse. (MADE GROUND) Stiff grey slightly gravelly CLAY with orangish brown silty fine sand partings. Gravel is angular to		0.20 (0.20) +36.85 (0.60) 0.80 +36.25	3	
- 1.20 - 1.50 - 1.20 - 1.65 - 1.50 - 1.60	ES 1 L 14 D 2	100% rec		Dry	rounded fine to coarse of various lithologies. (MADE GROUND)	1.20-1.65 Firm and light brown 1.45 Angular cobble of clinker	(0.85)		
1.65 - 2.02 1.65 - 3.00 1.65 - 1.75 1.75 - 2.00 2.00 - 2.10	SPTC L 15 D 3 ES 4 D 5	N=20 (25 for 75mm/13,3,2,2) 100% rec		Dry Dry	Medium strong light greyish brown CONCRETE. Recovered as sandy angular to subangular fine to coarse gravel. (MADE GROUND) Stiff light brown mottled grey slightly sandy CLAY with orange silty fine sand partings. Sand is fine to	UI UNINGI.	1.65 (0.10) +35.44 1.75 (0.10) +35.34 (0.65)		
- - - - - - - 3.00 - 3.45	SPTS	N=17 (2,2/3,4,5,5)	10/10/16	1800 Dry Dry	medium. (Reworked KELLAWAYS FORMATION) Stiff brownish grey slightly sandy CLAY with orangish brown fine sand and yellow silt partings. (Reworked KELLAWAYS FORMATION)	2.80-3.40 Shell fragments. 3.00-3.40 Gypsum	2.40 +34.65 (1.00)		
- 3.00 - 4.50 - 3.00 - 3.45 - 3.40 - 3.60	L 16 D 6 ES 7	100% rec	3.00 11/10/16 3.00	Dry 0800 Dry	Very stiff grey CLAY with silty fine sand dustings. Occasional gypsum crystals and rare shell fragments. (KELLAWAYS FORMATION)	crystals.	3.40 +33.69	,	
- - - - - - - - - - - - - - - - - - -	SPTS	N=23 (2,3/4,5,7,7)	3.00	Dry					
4.50 - 4.95	D8		3.00			4.70-6.40 Orangish - brown silty fine sand - partings - - - - - - -	(3.00)		
- 6.00 - 6.45 - 6.00 - 7.50 - 6.00 - 6.45 -	SPTS L 18 D 9	N=38 (5,7/7,10,10,11) 100% rec	3.00 3.00	Dry Dry	Stiff grey sandy silty CLAY with silty fine sand	6.28 Ammonite fragments.	6.40 (0.10) +30.66 6.50 (0.10) +30.59		
· · · ·					Cuttings. Sand is time. Occasional snell fragments. (KELLAWAYS FORMATION) Very stiff grey CLAY. (KELLAWAYS FORMATION) Cutting arous conductive (CLAY, with silly fine sand)		(0.80) 7.30 +29.75		
- 7.50 - 7.95 7.50 - 9.00 7.50 - 7.95	SPTS L 19 D 10	N=37 (5,6/8,9,9,11) 100% rec	3.00 3.00	Dry Dry	Still grey sandy slity OLAT with sing mile sand dustings. Sand is fine to medium. Occasional shell fragments. (KELLAWAYS FORMATION)		(0.70) 8.00 +29.05	× · · · ×	0000
- - - -							(1.20)		0000
9.00 - 9.45 9.00 - 10.50 9.00 - 9.45	SPTS L 20 D 11	N=36 (5,6/8,8,9,11) 100% rec	3.00 3.00	Dry Dry	Very stiff grey sandy silty CLAY. Sand is fine. Occasional shell fragments. (KELLAWAYS FORMATION)	9.54 Fossi	9.20 +27.85 (0.40) 9.60 +27.45		
- 	+				Very Stim grey CLAY. (KELLAVATS FORMATION) Hole continues on next sheet		(0.70)	<u> </u>	
Groundwater Entries No. Depth Strike	Remarks		 Depth Sea	aled	Depth Related Remarks Depths (m) Remarks 0.00 - 23.99 SPT Hammer ID: JD3 Er%: 70.62		Chiselling Detai Depths (m)	ils Duration (mins) Tools use
Notes: For explanation see Key to Exploratory reduced levels in metre prackets in depth colum	of symbols and Hole Records. S. Stratum thic nn.	d abbreviations . All depths and ckness given in SG unaverage out	;t ct No.	Trov H61	vbridge STW, Wiltshire 00-16		Borehole	BH02A	

Drilled ML .ogged NJD Checked AP Approved LL	Start 10/10/201 End 11/10/201	16 Co Ha 1.;	uipment, Methods and Rema Immachio Geo 205 Ind excavated inspection pit fro 20 m to 11.90 m. Rotary coring	rks m 0.00 m to 1.2 from 11.90 m to	20 m. C o 25.40	ynamic window sampling from m.	ameter Casing Depth (mm) (m) 102 3.00 92	Ground Level Coordinates (m) National Grid		37.09 mOD E 384957.00 N 158792.00
Samples and	Tests			Data	Time	Strata Description		1		
Depth	SCR RQD	lf	Records/Samples	Casing	Water	Main	Detail	Depth, Levei (Thickness)	Legend	
- 10.50 - 10.95 10.50 - 11.90 10.50 - 10.95 	SPTS L 21 D 12		N=34 (3,4/5,8,10,11) 100% rec	3.00 3.00	Dry Dry	Stiff grey sandy silty CLAY. Occasional shell fragments. (KELLAWAYS FORMATION) Very stiff grey CLAY. (KELLAWAYS FORMATION) Stiff grey silty sandy CLAY. Sand is fine. Occasional shell fragments. (KELLAWAYS FORMATION)		10.30 +26.79 10.50 +26.59 (0.40) 10.90 +26.19 (0.50) 11.40 +25.68		
- 11.90 - 12.31 - 11.90 - 12.65 11.90 - 12.41 11.90 - 12.65 - 11.90 - 12.65	100 100 100		50 (10,14/13,14,15,8 for 35mm) C 22 D 13	11/10/16 3.00 <u>3.00</u> 12/10/16 3.00	1800 Dry Dry 0800 Dry	Very stift grey CLAY with sitty fine sand dustings. (KELLAWAYS FORMATION) Extremely weak medium to thickly bedded grey MUDSTONE with silty fine sand partings and dustings. Occasional shell fragments. (KELLAWAYS FORMATION) Discontinuities: Horizontal medium to widely	12.38 Drilling induced fracture	(0.50) 11.90 +25.19		
12.65 - 13.40 	100 99 99		C 23			spaced undulating smooth clean.	12.45-12.65 Core - recovered in - following run 12.93 Drilling ⁻ induced fracture. 13.17 Drilling -	- - - - -		
13.40 - 13.85 - 13.40 - 14.90			SPTC N=49 (4,7/10,12,13,14) C 24	3.00	Dry		Induced fracture 13.40-13.51 AZCL - - - - - - - - - - - -	- - - - -		
- 13.40 - 14.90 -	93 92 92	380						(5.25)		
14.90 - 15.33 - 14.90 - 16.40		540 1420	SPTC 50 (5,9/11,12,15,12 for 55mm) C 25	3.00	Dry		14.90-14.93 AZCL 14.91 Light brown calcareous - accretion 15.00 Light grey - calcareous -			
14.90 - 16.40 - - 16.40 - 16.77 - 16.40 - 17.90	98 97 93		SPTC 50 (6 11/12 17 21 for	3.00	Dry		accretion - 15.10 Fracture: 60 degrees planar - smooth. Possible shear surface. 15.35 Drilling - induced fracture - 15.69 Drilling - induced fracture - 15.64 Light brown -			
- 16.40 - 17.90	93 91 91		70mm) C 26			Extremely to very weak medium bedded dark grey	calcareous - accretion 16.40-16.51 AZCL 16.84-17.16 Silty - Sandy	- - - - - - - - - - - - - - - - - - -		
		 				silty sandy MUDSTONE with calcareous laminae. Frequent shell fragments increasing with depth. (KELLAWAYS FORMATION) Weak thickly bedded grey fine to medium grained		(0.62) 17.77 +19.32		
17.90 - 18.14 - 17.90 - 19.40		1160 1160 1160	SPTC 50 (20,5/35,15 for 20mm) C 27	3.00	Dry	clayey LIMÉSTONE with occasional very weak dark grey silty sandy mudstone partings. (CORNBRASH FORMATION)		(0.63) 18.40 +18.69		
17.90 - 19.40 	100 95 92	<u> </u>	-			grained LIMEŠTONE. (CORNBRĂSH FORMATION) Discontinuities: Horizontal undulating rough clean. Very weak thickly bedded grey fine to coarse	18.70-18.93 Fine to - medium grained	(0.53) 18.93 +18.16		
19.40 - 19.50 19.40 - 20.90		NI 180 410	SPTC 50 (25 for 75mm/50 for 25mm) C 28	3.00	Dry	grained clayey LIMES TONE with very closery spaced laminae and partings of extremely weak dark grey mudstone. (CORNBRASH FORMATION) Discontinuities: Very closely to medium spaced horizontal undulating rough clean.	19.13 Frace mm grey clay infill. 19.30 Drilling induced fracture. 19.36-19.40 Non- intact 19.40-19.41 AZCL	(1.25)		
		 I	+ +			Hole continues on next sheet	19.99-20.18 Largely non-intact. Trace firm grey clay infill.			⊥്ഫ
Groundwater Entries No. Depth Strike	Remark	(S	<u> </u>	Depth Seale	əd	Depth Related Remarks Depths (m) Remarks		Chiselling Detail Depths (m)	is Duration (mins)	Tools use
lotes: For explanation ee Key to Exploratory educed levels in metre rrackets in depth colum	of symbols Hole Recor s. Stratum nn.	and abl rds. All (thickne	breviations depths and ss given in AGS Project I	No.	Trov H61	/bridge STW, Willshire)0-16		Borehole	3H02A	

Drilled ML	Start	Equ	upment, Methods and Rema	irks		Depth from to Dia	ameter Casing Depth	Ground Level		37.09 mOD
Logged NJD	10/10/20	16 Cor	nmachio Geo 205			(m) (m) (0.00 11.90	mm) (m) 102 3.00	Coordinates (m)		E 384957.00
Checked AP	End	Har 1.20	nd excavated inspection pit fro 0 m to 11.90 m. Rotary coring	m 0.00 m to 1.20 m. from 11.90 m to 25.4	Dynamic window sampling from 0 m.	11.90 25.40	92	National Grid		N 158792.00
Approved LL	11/10/20	16								
Samples an	d Tests	;			Strata Descriptio					
Depth	TCR	If	Records/Samples	Date Tim	e	ain	Detail	Depth, Level	Legend	Backfill
	RQD		Records/oumpies	Casing Wate	r			(Thickness)		
19.40 - 20.90			-		Weak thickly bedded gre	v fine to medium grained	-	20.18 +16.91		: K 슈
-	99 86				clayey LIMESTONE with	occasional very weak	20.32 Drilling - induced fracture	-		ĽФ
-	86			10/10/10 100	(CORNBRASH FORMA	ION)		(0.72)		
				3.00 Dr	ý					
20.90 - 21.00]	SPTC 50 (25 for 75mm/50	13/10/16 080	Extremely to very weak i	nedium to thickly bedded	20.90-20.91 A2CL 20.91-21.32	20.90 +10.19		
-			C 29	3.00 Dr	(CORNBRASH FORMAT	ION)	spaced black	-		
F					Discontinuities: Medium horizontal undulating sm	o widely spaced ooth clean.	partings and			
20.90 - 22.40	99 99	330 750			Ū		fragments. 21.48 Drilling	(1.61)		
-	99	1560					induced fracture. 21.82 Drilling	(1.61)		
<u> </u>							induced fracture	-		
E							22.15 Drilling induced fracture.			
22.40 - 22.49		-	CDTC 50 (25 fax 75mm/50	3.00 Dr	4		22.40-22.41 AZCL	00.54 44.50		
22.40 - 23.90			for 15mm)		Very weak thinly interlan	inated to very thinly	-	22.31 +14.58		
E			C 30		weak clayey LIMESTON	E. (CORNBRASH				//
_	99				FORMATION) Discontinuities: Very close	elv to widelv spaced	_			
22.40 - 23.90	99 99		1		horizontal planar smooth	clean.	-			
E							-	1		
_							23.66 Drilling	}		ĬÓ
-				2.00			induced fracture.			ုု၀္ဂ၀
23.90 - 23.98		1	SPTC 50 (25 for 75mm/50	3.00 Dr	y			(2.89)		
-		30	C 31				-			0
-		600					-			00
23.90 - 25.40	97 87						-			
-	77							-		lo o
- 							24.90-24.94 A2CL 25.01 Drilling	-		0
-				13/10/16 180	D		induced fracture	-		
			-	3.00 Dr	END OF EXPLO	RATORY HOLE		25.40 +11.69		
E							-	1		
F							-	-		
–								-		
							-	1		
E							-	1		
_										
_							-			
-								1		
L							-			
-										
L							-			
L							-			
F							_			
								4		
-								-		
_										
_										
<u> </u>							_	4		
E .										
							_	4		
-							_	1		
L- -								1		
									<u> </u>	
Groundwater Entrie	s				Depth Related Remarks			Chiselling Detail	s	
No. Depth Strik	e Remar	ks		Depth Sealed	Depths (m) Remarks			Depths (m)	Duration (mins) Tools used
Notes: For explanatio see Key to Explorator	n of symbol y Hole Reco	s and abb ords. All d	epths and Project	Tr	owbridge STW, Wiltshire			Borehole		
reduced levels in met brackets in depth colu	es. Stratum mn.	thicknes	s given in Project I	No. He	100-16			l E	BH02A	
Scale 1:50	(c) ESG ww	w.esg.co.uk	out for W	essex Water Services Limited			1	Sheet 3 of 3	

rilled DH .ogged NJD Checked AP	Start 05/10/2016 End	Equipment, Methods and Rem Commachio Geo 205 Hand excavated inspection pit 1 to 10.25 m. Open holing from 1 m.	harks from 0.00 m to 1 0.25 m to 10.40	I.20 m. D) m. Rota	Depth from to Dia (m) (m) (m) (m) (m) (m) (m) (m) 1.20 10.40 10.40 10.40 10.40 25.40 10.40 25.40	Imeter Casing Depth mm) (m) 92 4.50 121 121	Ground Level Coordinates (m) National Grid		37.03 mOD E 384975.00 N 158798.00
Samples and	1 Tests				Strata Description		·		
Depth	TCR SCR POD	If Records/Samples	Date Casing	Time Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
0.10 - 0.20 0.10 - 0.20 0.30 - 0.40 0.50 - 0.70 - 1.00 - 1.10 1.00 - 1.10 1.20 - 2.25 1.20 - 2.00	ES 2 D 1 ES 4 D 3 B 5 ES 7 D 6 L 17 B 8	100% rec	05/10/16	0800 Dry	Very stiff dark brown gravelly silty CLAY. Gravel is angular to rounded fine to medium of chert. (TOPSOIL) Very stiff light brown becoming brownish grey from 0.60 m gravelly CLAY with low cobble content. Gravel is angular to rounded fine to coarse of chalk, chert and brick. Cobbles are angular of limestone and concrete. (MADE GROUND) Stiff greyish brown to brown clayey slightly gravelly SILT with low cobble content. Gravel is angular to rounded fine to coarse of limestone and brick. Cobbles are angular of concrete. (MADE GROUND)		0.20 (0.20) +36.83 (0.80) 1.00 +36.03 (1.00)		
- 2.00 - 2.10 2.25 - 2.70 2.25 - 3.75 2.25 - 2.70	ES 9 SPTS L 18 D 10	N=8 (1,1/2,1,2,3) 100% rec	0.00	Dry Dry	Firm becoming stiff from 2.80 m light brown mottled orange and grey sandy CLAY with orange clayey sand partings. Sand is fine to medium. (ALLUVIUM)	2.40-2.80 Very - sandy	2.00 +35.03		
- 3.75 - 4.20 3.75 - 5.30 - 3.75 - 4.20 3.80 - 3.90	SPTS L 19 D 12 ES 11	N=14 (1,3/3,4,4,3) 100% rec	0.00	Dry Dry	Stiff brownish grey slightly sandy CLAY with orange clayey sandy silt partings. Sand is fine to medium. (Weathered KELLAWAYS FORMATION) Very stiff grey CLAY with occasional silty fine sand partings. Rare shell fragments. (KELLAWAYS FORMATION)	2.80-3.05 Slightly	(1.50) 3.50 +33.53 (0.30) 3.80 +33.23		00000
- 5.30 - 5.75 5.30 - 6.80 5.30 - 5.75	SPTS L 20 D 13	N=16 (3,3/3,4,4,5) 100% rec	0.00	Dry Dry			- - - - - - - - - - - - - - - - - - -		
6.80 - 7.25 6.80 - 8.30 - 6.80 - 7.25	SPTS L 21 D 14	N=21 (2,3/4,5,6,6) 100% rec	0.00	Dry Dry	Very stiff grey slightly sandy silty CLAY with occasional calcareous accretions. (KELLAWAYS FORMATION) Very stiff grey CLAY with occasional silty fine sand partings. Rare shell fragments. (KELLAWAYS FORMATION) Very stiff grey slightly sandy silty CLAY with occasional shell fragments. (KELLAWAYS		6.20 +30.83 (0.55) 6.75 +30.28 (0.35) 7.10 +29.95	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<u>₹</u>
- 8.30 - 8.75 8.30 - 9.80 8.30 - 8.75	SPTS L 22 D 15	N=32 (2.4/6,8,8,10) 100% rec	0.00	Dry Dry	FORMATION) Very stiff grey CLAY with occasional silty fine sand partings. Rare shell fragments. (KELLAWAYS FORMATION) Very stiff grey silty sandy CLAY with moderate shell and fossil fragments. (KELLAWAYS FORMATION)		(U.00) 7.70 +29.33 (0.60) 8.30 +28.73 (0.40) 8.70 +28.3:		
- 9.80 - 10.25 9.80 - 10.25	SPTS D 16	N=27 (5,5/4,6,8,9)	0.00	Dry	Very stiff CLAY with occasional silty rine sanu partings. Rare shell fragments. (KELLAWAYS FORMATION)		(1.55)		
Groundwater Entries No. Depth Strike 1 6.18 2 6.22	s e Remarks		Depth Sea	aled	Hole continues on next sheet Depth Related Remarks Depths (m) Remarks		Chiselling Detail Depths (m)	is Duration (mins	ی) Tools us
otes: For explanation se Key to Exploratory duced levels in metr rackets in depth colu	of symbols and Hole Records. es. Stratum thic mn.	d abbreviations . All depths and ckness given in	t :t No.	Trov H61	wbridge STW, Wiltshire		Borehole	BH03	

Drilled DH Logged NJD Checked AP Approved LL	Start 05/10/20 End 07/10/20	16 Cor Har to 1 m.	uipment, Methods and Rema mmachio Geo 205 nd excavated inspection pit fro 0.25 m. Open holing from 10.2	rks m 0.00 m to 1.20 25 m to 10.40 m.	m. D Rota	Depth from to Diamondary ynamic sampling from 1.20 m 1.20 10.40 ry coring from 10.40 to 25.40 25.40	ameter Casing Depth (mm) (m) 92 4.50 121	Ground Level Coordinates (m) National Grid		37.03 mOD E 384975.00 N 158798.00
Samples and	Tests			Date	Time	Strata Description		Depth, Level	Legend	Backfill
	RQD	п	Records/Samples	Casing V	Vater	Wall		(Thickness)		_ा० म
- 10.40 - 11.15 - 10.40 - 11.15	93		C 23	05/10/16 06/10/16 4.50	1800 Dry 0800 6.18	NO RECOVERY. Very stiff grey slightly sandy silty CLAY. Sand is fine to medium. Occasional shell fragments (up to 10mm). (KELLAWAYS FORMATION)	- 10.40-10.45 AZCL	10.25 +26.74 10.40 +26.65		
 	Ő						10.87 Drilling induced fracture	(0.77)	$\frac{\times \times \times \times \times}{\times \times \times \times}$	
 	100 0		C 24			Stiff to very stiff grey thinly laminated CLAY. Rare shell fragments (up to 5mm). (KELLAWAYS FORMATION)		(0.00)		
- - - 11.90 - 12.28 - 11.90 - 13.40	0		SPTC 50 (10,12/14,14,19,3	4.50	Wet	Soft to firm arou CLAV. Occasional shall fearmants	induced fracture. – 11.65-11.87 – Moderate shell – fragments.	(0.83) 12.00 +25.0;		
-	100		for 5mm) C 25			(up to 5mm). (KELLAWAYS FORMATION)	11.89-11.90 CRF 11.90-12.55 - Reduced strength - due to CPT 12 15-12 90 -	(0.54) 12.54 +24.49		
11.90 - 13.40 	0	NA NA NA				Very stiff grey slightly sandy silty CLAY. Sand is fine to medium. Rare shell fragments (up to 5mm). (KELLAWAYS FORMATION)	Moderate shell fragments	(0.91)		
- - 13.40 - 13.75 - 13.40 - 14.90 			SPTC 50 (5,6/17,20,13 for 50mm) C 26	4.50	Wet	Soft to firm grey CLAY. (KELLAWAYS FORMATION)	13.27 Drilling induced fractures. 13.34 Drilling induced fractures. 13.40-13.49 AZCL.	13.45 +23.54 (0.40)		
 13.40 - 14.90 	94 0 0					Stiff to very stiff grey thinly laminated CLAY. Rare shell fragments (up to 5mm). (KELLAWAYS FORMATION)		13.85 +23.11	3	
- - - 14.90 - 15.23 - 14.90 - 16.40 -			SPTC 50 (13,12/15,19,16 for 30mm)	4.50	Wet		14.51 35 degree			
 14.90 - 16.40	100 0 0	NI	-C 27					(2.93)		
- - - - 16.40 - 16.77 - 16.40 - 17.90		130 350	SPTC 50 (9,11/12,15,23 for	06/10/16 4.50 4.50 07/10/16	1800 Wet Wet 0000		intact and reduced			
- - - - - - - - - - - - - - - - - - -	99 80	NA	75mm) C 28	4.50	6.22	Extremely weak grey sandy MUDSTONE. Occasional shell fragments (up to 10mm). (KELLAWAYS FORMATION)	16.42-16.47 Non- intact and reduced strength due to CPT. 16.97 Drilling induced fracture.	16.78 +20.2	5	
	80	NA NA					induced fracture. – 17.25 Drilling – induced fracture. –	(0.97)		
- 17.90 - 18.25 - 17.90 - 19.40 		390	SPTC 50 (10,12/17,17,16 for 50mm) C 29	4.50	Wet	Medium strong thinly laminated grey and light grey fine to medium grained LIMESTONE. (CORNBRASH FORMATION) Discontinuities: Medium spaced horizontal undulating rough clean		(4.45)		
 17.90 - 19.40 	97 90 84	520						18.90 +18.1		
- - - 19.40 - 19.73 - 19.40 - 20.90		100 190 390	SPTC 50 (17,8/20,19,11 for	4.50	Wet	Weak thinly bedded grey tine to medium grained clayey LIMESTONE with very closely spaced laminae and partings of extremely weak grey silty sandy mudstone. Occasional shell fragments (up to 10mm). (CORNBRASH FORMATION) Discontinuities: Closely to medium spaced	19.18 Drilling – induced fracture. – 19.23-19.34 <5 mm – firm grey clay infill. – 19.20 Prilling –			
			C 30			horizontal undulating stepped rough. Hole continues on next sheet	induced fracture. 19.40-19.43 CRF. – 19.51 Drilling – induced fracture. 19.63 Drilling –	(2.10)		
Groundwater Entries No. Depth Strike	s e Remari	ks		Depth Sealed	I	Depth Related Remarks Depths (m) Remarks 11.90 - 24.07 SPT hammer ID: JD3 Er%: 70.62	induced fracture.	Chiselling Deta Depths (m)	ils Duration (mins) Tools used
Notes: For explanation see Key to Exploratory reduced levels in metre brackets in depth colur Scale 1:50	of symbols Hole Reco es. Stratum nn.	s and abb ords. All d thicknes	s given in wesg co.uk	No. Dut for	Tro H61 Wes	vbridge STW, Wiltshire 00-16 sex Water Services Limited		Borehole	BH03 Sheet 2 of 3	

Drilled DH	Start	Equ	uipment, Methods and Rema	arks		Depth from to Di	ameter Casing Depth	Ground Level		37.03 mOD
Logged NJD	05/10/20	16 Cor	mmachio Geo 205			(m) (m) 1.20 10.40	mm) (m) 92 4.50	Coordinates (m)		E 384975.00
	End	Har to 1	nd excavated inspection pit from 10	om 0.00 m to 1 25 m to 10 40	1.20 m. D) m. Rota	ynamic sampling from 1.20 m v coring from 10.40 to 25.40	121	National Grid		N 158798 00
	07/10/20	10 m.	10.20 m. open noing nom 10.	20 111 10 10.40	in. Rota	y coming norm 10.40 to 20.40		National Grid		11 1307 30.00
Approved LL	07/10/20	16				Otwata Das avientias		4		
Samples and				Date	Time	Strata Description		Danéh Lawal	Lonond	Beeldill
Depth	SCR	lf	Records/Samples	Casing	Water	Main	Detail	(Thickness)	Legena	Dackin
- 10.40.20.00							20.12 Drilling	-		
19.40 - 20.90	100						induced fracture.	-		ျ၀၂၀
-	0						Extremely closely	-		
	0						to black			
				4.50	14/-4		carbonaceous _	-		- jočc
20.90 - 21.06			SPTC 50 (25 for	4.50	vvet	Extremely weak to very weak locally thinly	20.40 Drilling	21.00 +16.03		0
-			75mm/30,20 for 15mm) C 31			laminated greenish grey calcareous MUDSTONE.	20.50-21.12 -	-		
-						(CORNBRASH FORMATION)	Occasional closely – spaced laminae and –	•		၂၀၂၀
_	97					horizontal planar smooth.	partings			
_ 20.90 - 22.40	97 97	50					20.94 Possible <5 -	_		
-		150 200					mm firm grey clay - infill	(1.65)		- O C
-							21.24 Drilling	-		0
-							21.55 Drilling			00
- 22.40 - 22.58			SPTC 50 (25 for	4.50	Wet		21.73 Drilling			0,00
- 22.40 - 23.90			75mm/27,23 for 30mm)				induced fracture 21.81 Drilling	22.65 +14.38		
F			C 32			I ninity interlaminated to thinly interbedded very weak light grey calcareous MUDSTONE and weak	induced fracture.	-		
-	100					grey clayey LIMESTONE. (CORNBRASH	21.97 Drilling – induced fracture.—	1		o` c
22.40 - 23.90	91					FORMATION)	22.19 Drilling -	- -		0
-	80					horizontal planar smooth.	22.30 Drilling -	1		
-							22.48-22.50 -	1		ျ၀္ဂီ၀
-							Extremely closely -	-		
- - 23.90 - 24.07		30		4.50	Wet		to black	•		
23.90 - 25.40		80	SPTC 50 (25 for 75mm/25 15 for 20mm)				partings.	(2.75)		00
-		140	C 33				22.70 Drilling _ induced fracture	-		0
-							22.81 Drilling	-		
- 22.00.25.40	96						23.06-23.12 Non	-		ျပဳ္ပ
_ 23.90 - 23.40	13						intact and sandy. – 23.48 Drilling –			
-							induced fracture			
-							induced fracture	-		O_C
-				4.50	1800 Wet		23.90-23.96 AZCL 24.39-24.42 Mainly -	-		0
-						END OF EXPLORATORY HOLE	non-intact.	25.40 +11.63		
-							non-intact and			
-							25.02-25.12 Mainly			
<u> </u>							non-intact and	-		
-							25.26-25.29 Mainly _	-		
-							non-intact and sandy	-		
_										
-								-		
-							-	1		
-								-		
-							-			
-							-			
-							-	-		
-							-	-		
-							_			
_							-			
-							-	-		
-								-		
-							-	•		
-										
F							-	-		
F								-		
-							-	1		
F							_			
-										
F							-	-		
-									•	
						Death Deleted Dears		0.1.		
Groundwater Entrie No. Depth Strik	s e Remar	ks		Depth Sea	aled	Deptn Related Remarks Depths (m) Remarks		Chiselling Details Depths (m)	s Duration (mine	s) Tools used
	- Norridi					(iii)		2 0 p c 10 (11)		.,
								1		
Notore Free 1					_			-		
Notes: For explanation see Key to Explorator	n of symbols y Hole Reco	s and abb ords. All d	epths and Project		Tro	voriage SIW, Wiltshire		Borehole		
reduced levels in metro brackets in depth colu	es. Stratum mn.	thicknes	s given in Project	No.	H61	00-16			BH03	
Scale 1:50	(c) ESG ww	ww.esg.co.uk	out for	Wes	sex Water Services Limited		1	Sheet 3 of 3	

Drilled ML	Start	Equ	ipment, Methods and Rema	arks		Depth from to Di	ameter Casing Depth	Ground Level		36.99 mOD
Logged NJD	14/10/2016	Com	nmachio Geo 205			(m) (m) 1.20 1.75	(mm) (m) 92	Coordinates (m)		E 384977.00
Checked AP	End	Han m. S	id excavated trial pit from 0.0 SPT from 1.75 m to 1.84 m.	0 m to 1.20 m. [Dynami	c sampling from 1.20 m to 1.75 1.75 1.84	45	National Grid		N 158820.00
	14/10/2016	Tern	ninated at 1.84 m depth due	to obstruction. F	Relocate	ed 2 m NE to BH04A.				
Samples an	d Toete					Strata Description				
Samples an				Date	Time	Strata Description		Denth Level	Lonond	Beekfill
Depth	SCR RQD	lf	Records/Samples	Casing	Water	Main	Detail	(Thickness)	Legenu	Dackin
0.10 - 0.20 0.10 - 0.20	ES 2 D 1			14/10/16	0800	Dark brown sandy silty angular to subrounded fine to coarse GRAVEL of limestone, clinker and chert. Sand is fine to coarse (MADE GROUND)		(0.30) 0.30 +36.69		
- 0.40 - 0.50 - 0.40 - 0.50 - 0.70 0.00	ES 4 D 3					Very stiff light brown mottled grey slightly gravelly CLAY with orangish brown silty fine sand partings.		(0.60)		
- 0.70 - 0.90 - 0.90 - 1.20	B 6					GROUND) Brownish grey sandy slightly clayey angular to		0.90 +36.09		
-						subangular fine to coarse GRAVEL of limestone. (MADE GROUND)	-			
-				14/10/16	1800			(0.85)		
 1.75 - 1.84	SPTC		50 (25 for 75mm/50 for 10mm)		Dry Dry	Hole progressed by SPT.		1.75 (0.09) +35.24 1.84 (0.09) +35.15		
[[,			END OF EXPLORATORY HOLE				
_							-			
-										
F										
-							-			
- - -										
-										
-										
_							-			
[-										
-										
-										
-							-			
-							-			
-							-			
							-			
 - -										
-								-		
- -										
-							-			
-										
E							-			
										[
Groundwater Entri No. Depth Stril	es ke Remarks		1	Depth Seal	ed	Depth Related Remarks Depths (m) Remarks 120 - 1 84 SPT Hammer ID: ID3		Chiselling Detail Depths (m)	s Duration (mins	s) Tools used
						Er%: 70.62				
Notes: For explanation see Key to Explorato	on of symbols and ry Hole Records.	d abbi . All de	reviations Project epths and		Tro	vbridge STW, Wiltshire		Borehole		
reduced levels in met brackets in depth col	tres. Stratum thic umn.	kness	s given in	No.	H61	00-16			BH04	
Scale 1:50	(c) ES	G www	w.esg.co.uk Carried	out for	Wes	sex Water Services Limited			Sheet 1 of 1	

Drilled	ML	Start	Equipment, Methods and Re	marks	Depth from to Dian	meter Casing Depth	Ground Level		
Logged	NJD	14/10/2016	Commachio Geo 205 Hand excavated inspection pit	from 0.00 m to 1.20 m. F	(m) (m) (m 1.20 1.75 1.75 1.94	92 45	Coordinates (m)		
Checke	d AP	End	to 1.75 m. SPT from 1.75 to 1. Terminated at 1.84 m due to 0	84. hstruction Relocated 2 m	SE to BH04B	45	National Grid		
Approv	ed LL	14/10/2016							
Sam	ples and	Tests			Strata Description				
	Depth	TCR SCR ROD	If Records/Samples	Date Time Casing Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfil
-		Nub		14/10/16 0800	Dark brown sandy silty angular to subrounded fine to coarse GRAVEL of limestone, clinker and chert. Sand is fine to coarse. (MADE GROUND)	-	(0.20)		
- - -					Very stiff light brown mottled grey slightly gravelly CLAY with orangish brown silty fine sand partings. Gravel is angular coarse of tile. (MADE GROUND)		(0.70)		
- - - 1	.20 - 1.65	SPTC	N=26 (6,7/8,7,6,5)	Dry	Brownish grey sandy slightly clayey angular to subangular fine to coarse GRAVEL of limestone. (MADE GROUND)		0.90		
	.75 - 1.84	SPTC	50 (25 for 75mm/50 for	14/10/16 1800 Dry Dry			1.75 (0.00)		
			10mm)		Hole progressed by SPT. END OF EXPLORATORY HOLE	 	1.84 (0.09)		
-									
- - -									
-									
-									
-						-			
-									
						- - - -			
- - -						- - - -			
-						- - - 			
-									
Ground No.	dwater Entries Depth Strike	Remarks		Depth Sealed	Depth Related Remarks Depths (m) Remarks 1.20 - 1.84 SPT Hammer ID: JD3 Er%: 70.62		Chiselling Detail Depths (m)	Is Duration (mins) T	lools used
Notes: F see Key reduced brackets	or explanation to Exploratory levels in metre in depth colum	of symbols and Hole Records. es. Stratum thic nn.	d abbreviations All depths and kness given in	ct Tro ct No. H61	vbridge STW, Wiltshire 00-16		Borehole	3H04A	
Scale	1:50	(c) ES	G www.esg.co.uk	ed out for Wes	sex Water Services Limited			Sheet 1 of 1	

Drilled TP ML Logged JH Checked AP Approved LL	Start 14/10/201 End 19/10/201	Eq 16 Co Ha to 1	uipment, Methods and Rema mmachio Geo 205 nd excavated inspection pit fro 3.70 m. Rotary coring from 8.7	arks om 0.00 m to 1.2 0 m to 25.30m. 3	0 m. D SPT fr	ynamic sampling from 1.20 m m 25.30 m to 25.72 m. Depth from to Di (m) (m) 1.20 8.70 8.70 25.30 25.30 25.72	iameter Casing Depth (mm) (m) 102 3.00 92 45	Ground Level Coordinates (m) National Grid		
Samples and	Tests			Date	Time	Strata Description				
Depth	SCR RQD	lf	Records/Samples	Casing	Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
				14/10/16	0800	Dark brown gravelly slightly clayey tine to coarse SAND. Gravel is subangular to subrounded fine to coarse of mixed lithologies including brick, limestone, mudstone and concrete. Occasional rootlets. (MADE GROUND)				
- 1.00				14/10/16	1800 Dry			(2.00)		H
- 1.20 - 1.20 - 1.75 -	ES 20		55% rec	17/10/16	0800 Dry					
1.75 - 1.84	SPTC		50 (25 for 75mm/50 for 20mm)	0.00	Dry		-	-]∐{
2.00 - 2.50 			L 2 60% rec	0.00	Dry	Dark brown and grey clayey angular to subangular fine to coarse GRAVEL of mixed lithologies including limestone, basalt and		2.00		
- 2.00 - 3.00 - 2.50 - 2.50 - 3.00	100 0 0		ES 21 L 3 60% rec	0.00	Dry	macadam. (MADE GROUND) Firm grey mottled orange fissured slightly sandy		2.70		
			SPTS N=13 (2,2/2,3,4,4) L 4 100% rec	3.00 3.00	Dry Dry	CLAY. Sand is fine. Occasional pockets of fine sand. (Weathered KELLAWAYS FORMATION)		(0.90)		
- 3.40	99		D 23 ES 22			Soft to firm dark grey slightly sandy CLAY. Sand is		3.60		
3.00 - 4.50 	0					fine to medium. (Weathered KELLAWAYS FORMATION)		(1.15)		
- - 4.50 - 4.95				3.00	Dry		-	(
4.50 - 6.00 - 4.50 -			L 5 100% rec D 24	3.00	Dry	Soft thinly laminated dark grey CLAY. (Weathered KELLAWAYS FORMATION)		4.75		
4.50 - 6.00	99 0 0							-		
		NA NA NA						(2.10)		
6.00 - 6.45 6.00 - 7.30 6.00			SPTS N=24 (2,3/3,6,7,8) L 6 100% rec D 25	3.00 3.00	Dry Dry			-		
6.00 - 7.30	98 0 0							6.85		
				3.00	Drv	Stiff thinly laminated dark silty CLAY. (Weathered KELLAWAYS FORMATION)		(0.65)		
- 7.30 - 8.70 - 7.30 -			SPTS 50 (5,10/16,15,12,7 for 35mm) L 7 100% rec D 26	3.00	Dry	Soft dark grey slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular		7.50		
7.30 - 8.80	93 0 0					(Weathered KELLAWAYS FORMATION) Stiff thinly laminated dark grey CLAY. (Weathered KELLAWAYS FORMATION)		8.00	- <u></u> -	
				17/10/16 3.00	1800 Dry			(0.80)		
- 8.80 - 9.22 - 8.80 - 9.55 - 8.80			SPTS 50 (9,10/11,13,15,11 for 40mm)	18/10/16 3.00 3.00	0800 Dry Dry	Soft becoming stiff with depth dark grey slightly gravelly slightly sandy CLAY. Sand is fine to		8.80		
8.80 - 9.55 	95 0 0		C 8 D 27		.,	coarse. Gravel is subangular fine of mixed lithologies including quartzite and chert. (Weathered KELLAWAYS FORMATION)	9.35-11.06 Rarely grades to soft CLAY	(0.55) 9.35		
9.55 - 10.30 	100 100 100		C 9			MUDSTONE. (KELLAWAYS FORMATION) Discontinuities: Medium spaced planar smooth partings along laminae.	in thin beds.			
9.55 - 10.50						Hole continues on next sheet				
Groundwater Entries No. Depth Strike	s e Remark	ks		I Depth Seale	d	Depth Related Remarks Depths (m) Remarks 0.00 - 1.20 No samples required 1.20 - 25.72 SPT Hammer ID: JD3 Er%: 70.62 Er%: 70.62		Chiselling Detai Depths (m)	ls Duration (mins)	Tools used
Notes: For explanation see Key to Exploratory	of symbols Hole Reco	and abl ords. All c	previations Project lepths and		Tro	vbridge STW, Wiltshire		Borehole		
reduced levels in metre brackets in depth colur	es. Stratum nn.	thicknes	ss given in AGS Project	No. out for	H61 Wes	00-16 say Water Services Limited			BH04B	

Drilled TP ML Logged JH Checked AP	Start 14/10/2 End	016 Co Ha to 1	uipment, Methods and Rema ommachio Geo 205 Ind excavated inspection pit fro 8.70 m. Rotary coring from 8.7	arks om 0.00 m to 1.20 0 m to 25.30m. S	m. Dynamic sampling froi PT from 25.30 m to 25.72	Depth from (m) to Di Di (m) 1.20 8.70 1.20 8.70 25.30 25.72	ameter Casing Depth (mm) (m) 102 3.00 92 45	Ground Level Coordinates (m) National Grid)	
Approved LL Samples an	^{19/10/2} d Test	016 S			Strata Desc	ription				
Depth	TCR SCR	lf	Records/Samples	Date	ime	Main	Detail	Depth, Level	Legend	Backfill
_	RQD			Casing V	ater		-	(Thickness)		ਾ ਸ
- - 10.30 - 10.72		-		3.00	Dry		-	(1.71)		o H
- 10.30 - 11.80 		100 200	SPTC 50 (5,7/12,12,15,11 for 40mm)				-			οħ
_		400					-	-		-l offe
 10.30 - 11.80	97 97		_				-	11.06		I T
-	97				MUDSTONE. (F	(Interlaminated dark grey silty (ELLAWAYS FORMATION)	-			음료
-		200			smooth partings	along laminae.	-	(1.04)		ĽÆ
 		320		3.00	Dry		11.80-12.05 -	(1.04)		ΤP
— 11.80 - 13.30 —			SPTC 50 (6,9/13,12,13,12 for 40mm)				Weathered soft grey - CLAY			
		NA	C 11		Firm laminated	dark grey CLAY. (KELLAWAYS	1 -	12.10		ЪД
	96	NA NA					-	(0.50)	F	lo P
_ 11.60 - 13.30	96 94		-		Very weak think	/ laminated dark grey silty	12.60-15.60 Rare - brown nodules (up -	12.60		οŦρ
_					Discontinuities:	Very closely to closely spaced	iron.			l offic
-					along laminae.	r occasionally stepped partings	-	-		o F
- 13.30 - 13.64 - 13.30 - 14.80			SPTC 51 (12,13/17,19,15	3.00	Dry			-		68
-			C 12				-	-		Ľ£
_	99	100					_			Ľď
13.30 - 14.80	99 90	150						(3.00)		
-							-	-		ιōΗ
_										P
- 14.80 - 15.14 - 14.80 - 16.30		-	SPTC 50 (11.9/16.14.20 for	3.00	Dry		-	-		Þ
			45mm) C 13					-		
_										lo E
14.80 - 16.30	99 94 76		_		Venueskthisk	Invited dark grouplighthy alley		15.60		68
-	/6				MUDSTONE wi	th rare laminae of fine sandstone.	-	-		ĽÆ
-		40			Discontinuities:	Medium spaced and locally		(140)		Ľď
- - 16.30 - 16.63		120		3.00	Dry along laminae p	norizontal planar stepped smooth artings.	-	(1.10)		
- 16.30 - 17.80 			SPTC 50 (12,10/18,16,16 for 30mm)					-		Γ, Ψ
-					Weak thinly lam	inated dark grey silty	1 :	16.70		
- 16.30 - 17.80	98 98	70			Shell content in	ccasional thin shell-rich beds. creases with depth. (KELLAWAYS		(0.70)		
-	93	280			FORMATION) Discontinuities:	Medium spaced horizontal rough	-	(0.79)		
-			_		stepped parting	s. thickly laminated dark grey silty	- 17.49-18.00 Sharp	17.49		
- - - 17 80 - 17 90		150 260		3.00	fine to medium	grained bioclastic LIMESTONE.	Rare bioturbation -	(0.51)		
- 17.80 - 19.30		260	SPTC 50 (25 for 75mm/50 for 20mm)	0.00	Discontinuity: h	prizontal planar rough partings.	contact 18.00-18.30	18.00		
-			C 15 NI		ooidal and shell	y LIMESTONE. (CORNBRASH	Occasional - disseminations of -	(0.30)		
	96	100	NI 100		Discontinuity: H	orizontal undulating rough.	pyrite 18.30-18.94 Rare	10.30		
17.80 - 19.30 	90 84	NI 500			bioclastic slight	ly and thickly bedded light grey y sandy fine to medium grained	vertical veins of _	(0.64)		
_			_		LIMESTONE. (C Discontinuity (J	CORNBRASH FORMATION) pint): Subvertical (~75 degrees)		18.94		
					↓ planar rough wi Weak to mediur	th calcitic coating.	19.05-19.10 Non	-		
-		-	SPTC 50 (25 for 75mm/50	3.00	Dry light grey mottle grained LIMES	d dark grey silty bioclastic medium	-	-		
- - 19.30 - 19.40 - 19.30 - 20.80		60			consolidated M	JDSTONE. Shell content	-			
- 19.30 - 19.40 - 19.30 - 20.80 		60 72 590	for 25mm) C 16		increases with o	lepth. (CORNBRASH				
- 19.30 - 19.40 - 19.30 - 20.80 		60 72 590	for 25mm) C 16		increases with o FORMATION) Discontinuities:	lepth. (CORNBRASH		-		
- 19.30 - 19.40 - 19.30 - 20.80 		60 72 590	for 25mm) C 16		increases with o FORMATION) Discontinuities:	lepth. (CORNBRASH Very closely to closely spaced le continues on next sheet		(2.09)		
	ies	60 72 590	for 25mm) C 16		increases with of FORMATION) Discontinuities: Ho Depth Related Re	lepth. (CORNBRASH Very closely to closely spaced le continues on next sheet		(2.09) Chiselling Deta		
- 19.30 - 19.40 - 19.30 - 20.80 	ies ke Rema	60 72 590	for 25mm) C 16	Depth Sealed	increases with of FORMATION) Discontinuities: Ho Depth Related Re Depths (m) R	lepth. (CORNBRASH Very closely to closely spaced le continues on next sheet marks emarks		(2.09) Chiselling Deta Depths (m)	ails Duration (mins)	Tools used
Groundwater Entri No. Depth Stri	ies ike Rema	60 72 590	for 25mm) C 16	Depth Sealed	increases with of FORMATION) Discontinuities: Ho Depth Related Re Depths (m) R	lepth. (CORNBRASH Very closely to closely spaced le continues on next sheet marks emarks		(2.09) Chiselling Deta Depths (m)	hils	Tools used
Groundwater Entri No. Depth Stri	ies ike Rema	efformed and able sords. All of methods and able sords. All of methods and the sords and the sords and the sords are sold able sords. All of methods are sold able sords and able sords are sold able for 25mm) C 16 breviations depths and se given in	Depth Sealed	increases with c FORMATION) Discontinuities: Ho Depth Related Re Depths (m) R	lepth. (CORNBRASH Very closely to closely spaced le continues on next sheet marks emarks		(2.09) Chiselling Deta Depths (m) Borehole	nils Duration (mins)	Tools used	

Drilled TP ML	Start	Ec	uipment, Methods and Rema	ırks		Depth from	n to Di	ameter Casing Depth	Ground Level		
Logged JH	14/10/201	16 Co	ommachio Geo 205		20 m D	(m) 1.20 8 zo	(m) 8.70	(mm) (m) 102 3.00	Coordinates (m)		
Checked AP	End	to	8.70 m. Rotary coring from 8.70	0 m to 25.30m	. SPT fro	om 25.30 m to 25.72 m. 25.30	25.30 25.72	92 45	National Grid		
Approved LL	19/10/201	16									
Samples and	d Tests	;				Strata Description					
Depth	TCR SCR ROD	lf	Records/Samples	Date Casing	Time Water	Main		Detail	Depth, Level (Thickness)	Legend	Backfill
- 19.30 - 20.80	They w		+	Cuong		subhorizontal undulating smooth par	tings along	-			
=	100	1			ļ	beds.			4	FI	/
-	100 92	1						20.40-21.03 - Becomes medium -	-		
F		1			ļ			strong with no - mudstone beds	-		
- 20.80 - 22.30 -		1	C 17		ļ			-	-		$\left \right\rangle$
-			-		ļ	Weak poorly bedded dark green mot	tled light	21.03-22.85 Rare laminae of	21.03		
F		1			ļ	brown occasionally calcareous MUD (FOREST MARBLE FORMATION)	STONE.	carbonaceous MUDSTONE.			
20.80 - 22.30	93 93	1			ļ	Discontinuities: Horizontal closely sp	aced		-		
-	83	1			ļ	along bedding.	n parungs		-		$ / \rangle$
-		70 150			ļ	-			(1.82)		\mathbb{K}
-		304		18/10/16	1800						
22.30 - 22.72		4	ODTO 50 (5 7/12 12 15 11	3.00	Diy						
- 22.30 - 23.00 		1	for 40mm)	19/10/16 3.00	0800 Dry						
F		1	C 18		ļ			-			\mathbb{K}
-	96		-			Weak thinly to thickly laminated dark	green and	-	22.85		
22.30 - 23.80	77 75	170 200				fine grained bioclastic LIMESTONE.	nin laminae of (FOREST		(0.61)		
_		250				MARBLE FORMATION)	ontal planar		-		
_			-			smooth partings along laminae.			23.46		
- - 23.80 - 25.30		1				olive green and white MUDSTONE a	aminated and	-			Y/
		ĺ	C 19			LIMESTONE. (FOREST MARBLE F	ORMATION)	-	-		
-						rough partings along laminations. Or	ne joint		-		
-	66	40 170			ļ	vertical stepped rough.			(1.84)		
23.80 - 25.30	55	290			ļ						$\langle \rangle \rangle$
-	40	1			ļ			-	4		1/
-		1			ļ				4		//
È		1						-	4		1//
– 25.30 - 25.72 –			- SPTC 50 (6,9/13,12,13,12 for 50mm)	3.00	Dry	Hole progressed by SPT.		1 =	25.30		
-				19/10/16 3.00	1800 Dry			-	(0.42)		\vee
-						END OF EXPLORATORY H	HOLE		25.72		
-					ļ				4		
-					ļ			-			
-					ļ			-			
-					ļ						
E -					ļ						
					ļ			_			
					ļ			-			
_					ļ						
E					ļ			-]		
					ļ			-			
								_			
L									-		
-					ļ						
_									-		
_									-		
 					ļ				-		
_					ļ			-	4		
-								-	-		
-								-	-		
-								-	-		
Crowndwater Entri						Danéh Dalaéad Damayka			Chicalling Data		_
No. Depth Strik	∍s ke Remar!	ks		Depth Sea	led	Depths (m) Remarks			Depths (m)	Duration (mins)	Tools used
Notes: For explanatio	on of symbols	s and ab	breviations Project		Trov	vbridge STW, Wiltshire			Borehole		
see Key to Explorator reduced levels in met	ry Hole Reco tres. Stratum	ords. All o thickne	depths and ss given in						,		
brackets in depth colu	Jmn.		AGS	No.	H61	00-16				3 П 04D	
Scale 1:50	(0	JESG W	Carried	out for	Wes	sex Water Services Limited			1	Sheet 3 of 3	

APPENDIX C INSTRUMENTATION AND MONITORING

Installation Details Groundwater Monitoring Gas Monitoring Table C1 Table C2 Table C3 BH01, BH02A, BH03, BH04B

Water Sampling Records

Installation Details

Instrument Reference	Instrument Type (See Notes)	Installation Date, dd/mm/yyyy	Pipe Diameter, mm	Instrument Base, mbgl	Response Zone Range, mbgl	Pipe Top Details	Headworks	Remarks
BH01 (1)	SPIE	04/10/2016	19	3.00	1.00 to 3.00	Gas tap	Flush	
BH01 (2)	SP	04/10/2016	50	24.00	12.00 to 24.00	Gas tap	Flush	
BH02A (1)	SP	11/10/2016	50	20.50	18.00 to 20.50	Gas tap	Flush	
BH02A (2)	SP	11/10/2016	19	2.50	1.80 to 2.50	Gas tap	Flush	
BH03 (1)	SP	17/10/2016	50	16.00	10.00 to 16.00	Gas tap	Flush	
BH03 (2)	SP	07/10/2016	19	1.50	0.50 to 1.50	Gas tap	Flush	
BH04B (1)	SP	19/10/2016	50	16.50	3.00 to 16.50	Gas tap	Flush	
BH04B (2)	SP	19/10/2016	19	2.20	0.50 to 2.20	Gas tap	Flush	

Groundwater Monitoring

Instrument Reference	Instrument Type	Instrument Base, mbgl	Date Time dd/mm/yyyy hh:mm:ss	Depth to groundwater, mbgl	Comments
BH01 (1)	SPIE	3.00	17/11/2016 09:00:00	1.95	
BH01 (1)	SPIE	3.00	22/11/2016 13:10:00	0.47	
BH01 (1)	SPIE	3.00	30/11/2016 10:00:00	2.08	
BH01 (1)	SPIE	3.00	08/12/2016 09:10:00	1.87	
BH01 (1)	SPIE	3.00	12/01/2017 09:00:00	1.86	
BH01 (1)	SPIE	3.00	23/01/2017 12:10:00	2.00	
BH01 (1)	SPIE	3.00	06/02/2017 11:40:00	1.90	
BH01 (2)	SP	24.00	17/11/2016 10:00:00	2.25	
BH01 (2)	SP	24.00	22/11/2016 13:00:00	0.80	
BH01 (2)	SP	24.00	30/11/2016 10:30:00	2.10	
BH01 (2)	SP	24.00	08/12/2016 09:00:00	1.76	
BH01 (2)	SP	24.00	12/01/2017 09:10:00	2.05	
BH01 (2)	SP	24.00	23/01/2017 12:00:00	2.00	
BH01 (2)	SP	24.00	06/02/2017 11:30:00	2.00	
BH02A (1)	SP	20.50	12/01/2017 09:25:00	2.17	
BH02A (1)	SP	20.50	23/01/2017 12:20:00	1.90	
BH02A (1)	SP	20.50	06/02/2017 12:15:00	2.10	
BH02A (2)	SP	2.50	12/01/2017 09:35:00	1.57	
BH02A (2)	SP	2.50	23/01/2017 12:25:00	1.40	
BH02A (2)	SP	2.50	06/02/2017 12:20:00	1.60	
BH03 (1)	SP	16.00	12/01/2017 09:50:00	1.83	
BH03 (1)	SP	16.00	23/01/2017 12:35:00	1.70	
BH03 (1)	SP	16.00	06/02/2017 12:45:00	1.80	
BH03 (2)	SP	1.50	12/01/2017 10:00:00	1.70	
BH03 (2)	SP	1.50	23/01/2017 12:40:00	1.80	
BH03 (2)	SP	1.50	06/02/2017 12:40:00	1.70	
BH04B (1)	SP	16.50	12/01/2017 10:15:00	1.72	
BH04B (1)	SP	16.50	23/01/2017 12:50:00	1.70	
BH04B (1)	SP	16.50	06/02/2017 13:00:00	1.70	
BH04B (2)	SP	2.20	12/01/2017 10:25:00	1.70	
BH04B (2)	SP	2.20	23/01/2017 12:55:00	1.80	
BH04B (2)	SP	2.20	06/02/2017 13:00:00	1.70	

Gas Monitoring

								Gas C	oncent	rations				
Instrument Reference	Date Time dd/mm/yyyy hh:mm:ss	Reading Depth, mBGL	Air Temperature, oC	Baromentric Pressure, mbar	Instrument Base, mbgl	Gas Differential Pressure, Pa	Gas Flow Rate, //hr	Carbon Dioxide, %vol	Carbon Monoxide, ppm	Hydrogen Sulphide, ppm	Methane, %LEL	Methane, %vol	Oxygen, %vol	Total VOCs, ppm
BH01 (1)	17/11/2016 09:00:00	0.00	9.0	992	3.00	0.0	0.0	6.5		0.0	0.0	0.0	8.5	
BH01 (1)	22/11/2016 13:10:00	0.00	7.0	996	3.00	0.0	0.0	0.0		0.0	0.0	0.0	20.5	
BH01 (1)	30/11/2016 10:00:00	0.00	0.0	1032	3.00	0.1	0.0	6.6		0.0	1.1	0.1	10.8	
BH01 (1)	08/12/2016 09:10:00	0.00	10.0	1011	3.00	0.6	0.2	0.0		0.0	0.0	0.0	20.5	
BH01 (1)	12/01/2017 09:00:00	0.00	5.0	992	3.00	0.0	0.0	0.0		0.0	0.0	0.0	20.4	
BH01 (1)	23/01/2017 12:10:00	0.00	3.0	1022	3.00	0.1	0.0	3.6		0.0	0.0	0.0	17.1	
BH01 (1)	06/02/2017 11:40:00	0.00	3.0	1013	3.00	-0.2	0.1	4.1		0.0	0.0	0.0	15.9	
BH01 (2)	17/11/2016 10:00:00	0.00	9.0	992	24.00	0.0	0.2	0.4		0.0	0.0	0.0	19.2	
BH01 (2)	22/11/2016 13:00:00	0.00	7.0	996	24.00	-0.2	0.0	1.2		0.0	0.0	0.0	18.6	
BH01 (2)	30/11/2016 10:30:00	0.00	0.0	1031	24.00	-2.6	-1.0	0.7		0.0	0.0	0.0	18.9	
BH01 (2)	08/12/2016 09:00:00	0.00	10.0	1014	24.00	-0.9	-0.3	0.0		0.0	0.0	0.0	20.5	
BH01 (2)	12/01/2017 09:10:00	0.00	5.0	993	24.00	0.0	0.3	0.1		0.0	0.0	0.0	20.2	
BH01 (2)	23/01/2017 12:00:00	0.00	3.0	1023	24.00	0.0	-0.2	0.1		0.0	0.0	0.0	19.3	
BH01 (2)	06/02/2017 11:30:00	0.00	3.0	1012	24.00	-2.3	-1.4	0.6		0.0	0.0	0.0	19.5	
BH02A (1)	12/01/2017 09:25:00	0.00	5.0	993	20.50	0.0	0.1	0.2		0.0	0.0	0.0	18.0	
BH02A (1)	23/01/2017 12:20:00	0.00	3.0	1023	20.50	0.0	0.0	0.8		0.0	0.0	0.0	19.1	
BH02A (1)	06/02/2017 12:15:00	0.00	3.0	1013	20.50	-0.1	0.2	0.3		0.0	0.0	0.0	16.9	
BH02A (2)	12/01/2017 09:35:00	0.00	5.0	993	2.50	0.0	0.0	0.0		0.0	0.0	0.0	20.1	
BH02A (2)	23/01/2017 12:25:00	0.00	3.0	1021	2.50	0.0	0.1	0.4		0.0	0.0	0.0	19.8	
BH02A (2)	06/02/2017 12:20:00	0.00	3.0	1013	2.50	-0.2	0.0	0.4		0.0	0.0	0.0	19.1	
BH03 (1)	12/01/2017 09:50:00	0.00	5.0	991	16.00	0.0	0.0	0.0		0.0	0.0	0.0	20.3	
BH03 (1)	23/01/2017 12:35:00	0.00	3.0	1023	16.00	0.2	0.0	0.1		0.0	0.0	0.0	20.2	
BH03 (1)	06/02/2017 12:45:00	0.00	3.0	1012	16.00	-0.1	-0.4	0.3		0.0	0.0	0.0	19.2	
BH03 (2)	12/01/2017 10:00:00	0.00	5.0	991	1.50	0.0	0.1	1.2		0.0	0.0	0.0	18.3	
BH03 (2)	23/01/2017 12:40:00	0.00	3.0	1020	1.50	0.1	-0.1	0.0		0.0	0.0	0.0	20.3	
BH03 (2)	06/02/2017 12:40:00	0.00	3.0	1012	1.50	0.0	0.1	0.6		0.0	0.0	0.0	16.3	
BH04B (1)	12/01/2017 10:15:00	0.00	5.0	992	16.50	0.0	0.1	0.0		0.0	0.0	0.0	20.3	
BH04B (1)	23/01/2017 12:50:00	0.00	3.0	1022	16.50	0.1	0.0	0.1		0.0	0.0	0.0	20.2	
BH04B (1)	06/02/2017 13:00:00	0.00	3.0	1013	16.50	-0.1	0.0	2.1		0.0	0.0	0.0	18.4	
BH04B (2)	12/01/2017 10:25:00	0.00	5.0	992	2.20	0.0	0.1	2.7		0.0	0.0	0.0	18.4	
BH04B (2)	23/01/2017 12:55:00	0.00	3.0	1023	2.20	0.2	0.0	0.2		0.0	0.0	0.0	20.3	

Notes: ND - not detected	Project	Trowbridge STW, Wiltshire	Figure
	Project No. Carried out for	H6100-16 Wessex Water Services Limited	C3

Project No	H6100-16						
Project	Trowbridge STW, Wiltshire						
Client	Wessex Water Services Limited						
Borehole No	BH01		Site Area				
Date	06/02/201	7					
	Purging Data						
Initial Water Level	, mBGL (a)	2	G	uideline Water Volumes			
Base of Installation	n, m BGL (b)	24	Borehole Diamet	er (mm) Volume (litres/m) 0.23			
Saturated Depth, I	m (c) (b-a)	22	50 95	2.0 7.1			
Diameter of Install	lation, mm (d)	50	100 150	8 18			
Base of Borehole,	m (e)	25.15	200 380	32 113			
Well Volume, litres	s (f) (πd ² c/4)x10 ⁻³	43.1969	Readings taken durin	ng purging			
Number of Well V	olumes (g)	3	Water Level, mBGL				
Purging Device	Bailer		Temperature, degC				
Flow Rate, I/min (I	ר)	3	рН				
Time to purge, mir	n (gf/h)	60	Dissolved O2, mg/l				
Volume Purged, lit	tres	120	Conductivity, uS/m				
			Redox Potential, mV				
			Sampling Data				
Sample Collection	Depth, mBGL	2	Oil	NA			
Sample No (use d	dmmyy) EWM	W1	Appearance and Colour	Brown			
Time Collected (hl	h:mm:ss)	113000	Odour	NA			
Time since purge	(minutes)	40	Sediment	NA			
Containers:	Number	1	Туре	NA			
			Remarks				
Weather	Cloudy						
Notes and Comments							
Name			Signature				

Project No	H6100-16]						
Project	Trowbridge STW, Wiltshire							
Client	Wessex Water Services Limited							
Borehole No	BH02A	BH02A Site Area						
Date	06/02/201	7						
	Purging Data							
Initial Water Level	, mBGL (a)	2.1	Gu	uideline Water Volumes				
Base of Installation	n, m BGL (b)	20.5	Borehole Diamete	er (mm) Volume (litres/m) 0.23				
Saturated Depth, I	m (c) (b-a)	18.4	50 95	2.0 7.1				
Diameter of Install	ation, mm (d)	50	100 150	8 18				
Base of Borehole,	m (e)	25.4	200 380	32 113				
Well Volume, litres	s (f) (πd ² c/4)x10 ⁻³	36.12832	Readings taken durin	ng purging				
Number of Well V	olumes (g)	3	Water Level, mBGL					
Purging Device	Bailer		Temperature, degC					
Flow Rate, I/min (I	ר)	3	рН					
Time to purge, mir	n (gf/h)	30	Dissolved O2, mg/l					
Volume Purged, lit	tres	110	Conductivity, uS/m					
			Redox Potential, mV					
			Sampling Data					
Sample Collection	Depth, mBGL	2.1	Oil					
Sample No (use d	dmmyy) EWM	W1	Appearance and Colour					
Time Collected (hl	h:mm:ss)	121500	Odour					
Time since purge	(minutes)	30	Sediment					
Containers:	Number	1	Туре					
			Remarks					
Weather	Cloudy							
Notes and Comments								
Name			Signature					

Project No	H6100-16]					
Project	Trowbridge STW, Wiltshire						
Client	Wessex Wate	r Services Lim	iited				
Borehole No	BH03] :	Site Area				
Date	06/02/201	<u> </u>					
Purging Data							
Initial Water Level	, mBGL (a)	1.8	G	uideline Water Volumes			
Base of Installation	n, m BGL (b)	16	Borehole Diamet	er (mm) Volume (litres/m) 0.23			
Saturated Depth, I	m (c) (b-a)	14.2	50 95	2.0 7.1			
Diameter of Install	ation, mm (d)	50	100 150	8 18 22			
Base of Borehole,	m (e)	25.4	380	<u> </u>			
Well Volume, litres	s (f) (πd ² c/4)x10 ⁻³	27.88163	Readings taken durir	ng purging			
Number of Well V	olumes (g)	3	Water Level, mBGL				
Purging Device	Bailer		Temperature, degC				
Flow Rate, I/min (I	ר)	3	рН				
Time to purge, mir	n (gf/h)	15	Dissolved O2, mg/l				
Volume Purged, lit	tres	90	Conductivity, uS/m				
			Redox Potential, mV				
			Sampling Data				
Sample Collection	Depth, mBGL	1.8	Oil	NA			
Sample No (use d	dmmyy) EWM	W1	Appearance and Colour	Brown			
Time Collected (hl	h:mm:ss)	124500	Odour	None			
Time since purge	(minutes)	30	Sediment	None			
Containers:	Number	1	Туре				
			Remarks				
Weather	Cloudy						
Notes and Comments							
Name			Signature				

Project No	H6100-16]					
Project	Trowbridge STW, Wiltshire						
Client	Wessex Wate	r Services Lim	ited				
Borehole No	BH04B		Site Area				
Date	06/02/201	7					
Purging Data							
Initial Water Level	, mBGL (a)	1.7	Gu	uideline Water Volumes			
Base of Installation	n, m BGL (b)	16.5	Borehole Diamete	er (mm) Volume (litres/m) 0.23			
Saturated Depth, r	m (c) (b-a)	14.8	50 95	2.0 7.1			
Diameter of Install	ation, mm (d)	50	100 150	8 18			
Base of Borehole,	m (e)	25.72	200 380	32 113			
Well Volume, litres	s (f) (πd ² c/4)x10 ⁻³	29.05973	Readings taken durin	ng purging			
Number of Well Ve	olumes (g)	3	Water Level, mBGL				
Purging Device	Bailer		Temperature, degC				
Flow Rate, I/min (I	ר)	3	рН				
Time to purge, mir	n (gf/h)	10	Dissolved O2, mg/l				
Volume Purged, lit	tres	30	Conductivity, uS/m				
			Redox Potential, mV				
			Sampling Data				
Sample Collection	Depth, mBGL	1.7	Oil				
Sample No (use d	dmmyy) EWM	W1	Appearance and Colour				
Time Collected (hl	n:mm:ss)	131000	Odour				
Time since purge	(minutes)	15	Sediment				
Containers:	Number	1	Туре				
			Remarks				
Weather	Cloudy						
Notes and Comments							
Name			Signature				

APPENDIX D IN-SITU TESTING

California Bearing Ratio Tests

CB01 to CB03

Dynamic Cone Penetrometer Test

Date of Test: 03/10/2016

TRL PROBE

Test Depth:

0.500 mBGL

Method: Remarks:

Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows
0.533	5	1.208	135						
0.559	10	1.238	140						
0.588	15	1.267	145						
0.610	20								
0.633	25								
0.666	30								
0.681	35								
0.692	40								
0.703	45								
0.717	50								
0.736	55								
0.760	60								
0.793	65								
0.809	70								
0.820	75								
0.833	80								
0.854	85								
0.883	90								
0.922	95								
0.972	100								
1.011	105								
1.046	110								
1.076	115								
1.105	120								
1.135	125								
1.170	130								

Notes:	Project	Trowbridge STW, Wiltshire	Hole
Calculated using DMRB Vol 7,	Project No.	H6100-16	CBR01
Section 3, Part 2, HD29/08 (2008)	Carried out for	Wessex Water Services Limited	

Dynamic Cone Penetrometer Test

Date of Test: 19/10/2016

Method:

TRL PROBE

Test Depth:

0.500 mBGL

Remarks:

Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows
0.528	3	1.218	64						
0.558	6	1.230	69						
0.596	8	1.248	74						
0.625	9	1.265	84						
0.640	10	1.297	94						
0.652	11	1.310	104						
0.680	14	1.335	111						
0.696	19								
0.715	24								
0.732	29								
0.754	32								
0.785	34								
0.812	36								
0.843	38								
0.886	40								
0.912	41								
0.950	42								
0.990	43								
1.025	44								
1.058	45								
1.085	46								
1.109	47								
1.135	48								
1.157	49								
1.175	54								
1.201	59								

Cumulative Blows

alues	Top, mBGL	Base, mBGL	CBR, %1
	0.53	0.72	29
	0.72	0.79	41
	0.79	1.18	10
	1.18	1.34	100

Notes:	Project	Trowbridge STW, Wiltshire	Hole
Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008)	Project No. Carried out for	H6100-16 Wessex Water Services Limited	CBR02
Dynamic Cone Penetrometer Test

Date of Test: 19/10/2016

TRL PROBE

Test Depth:

0.500 mBGL

Method: Remarks:

L			
Notes: Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008)	Project Project No. Carried out for	Trowbridge STW, Wiltshire H6100-16 Wessex Water Services Limited	Hole CBR03

1.34

12

1.18

APPENDIX E

GEOTECHNICAL LABORATORY TEST RESULTS

Index Properties – Summary of Results	INDX 1
Particle Size Distribution Analyses	PSD 1
Unconsolidated Undrained Triaxial Compression Tests – Summary of Results	UUSUM 1
One Dimensional Consolidation Test	OED 1
Point Load Index Tests	PLT 1
Shear Strength by Hand Vane	HV 1
BRE SD1 Tests	EFS/168818 and EFS/188933

INDEX PROPERTIES - SUMMARY OF RESULTS

		Sam	ole			р	pd	W	< 425	WL	WP	IP	ps	
Hole No.	No	Dept	h (m)	ture	Soil Description				µm sieve					Remarks
	INO.	from	to	type		Mg	/m3	%	%	%	%		Mg/m3	
BH01	10	2.00		D	Brown slightly sandy clayey GRAVEL.			5.4						
BH01	12	3.00		D	Greyish brown slightly sandy gravelly CLAY.			14	43	39 b	19	20		
BH01	14	5.70		D	Grey slightly sandy slightly gravelly CLAY.			21	99	54 a	22	32		
BH01	21	7.65		С	Grey fissured slightly sandy CLAY.			22	100	57 a	23	34		
BH01	22	9.15		С	Soft brownish grey slightly sandy slightly gravelly CLAY.			39						
BH01	23	10.65		С	Grey fissured slightly sandy CLAY.			20	99	50 a	22	28		
BH01	24	12.15		с	Very stiff brownish grey slightly sandy CLAY with occasional shell fragments.			19	99	47 a	21	26		
BH01	25	13.65		с	Grey fissured slightly sandy CLAY.			20	100	51 a	23	28		
BH01	26	15.15		С	Grey fissured slightly sandy CLAY.			25	100	57 a	29	28		
BH01	28	18.15		с	Grey slightly sandy slightly clayey GRAVEL. Gravel			5						
BH01	31	22.65		с	Grey GRAVEL. Gravel is limestone.			5.3						
BH02A	15	1.65		L	Yellowish brown and light grey slightly sandy silty			19						
BH02A	16	3.00		1	Stiff grey mottled yellowish brown slightly sandy			23						
BH02A	8	4 50			Grey slightly sandy slightly gravelly CLAY.			27	99	51.a	21	30		
BH02A	10	7.50		D	Grey slightly sandy slightly gravelly CLAY.			15	00	38.0	15	22		
PHO2A	10	10.50		D	Grey slightly sandy CLAY.			10	90	50 a	10	23		
BHU2A	12	10.50		D	Yellowish brown and light grey slightly sandy slightly			22	100	52 a	23	29		
BH03	10	2.25		D	gravelly CLAY. Greyish brown slightly sandy slightly gravelly CLAY.			24	99	37 a	19	18		
BH03	15	8.30		D	Grey slightly sandy slightly gravelly CLAY.			18	94	44 a	19	25		
BH03	24	11.15		С	Grev slightly sandy slightly gravelly CLAY.			25	99	42 a	19	23		
BH03	25	11.90		С	Sing arou alighthy apply alighthy gravely CLAY.			12	99	41 a	21	20		
BH03	27	14.90		С	Growish brown slightly sondy slightly grovely CLAT.			30	100	56 a	27	29		
BH04B	23	3.00		D				24	96	53 a	22	31		
BH04B	24	4.50		D	Grey slightly sandy slightly gravelly CLAY.			24	100	56 a	22	34		
BH04B	25	6.00		D	Grey slightly sandy CLAY.			19	100	48 a	25	23		
General notes:	All above tests carried out to BS1377 : 1990 unless annotated otherwise. See individur						ports for	further	details.	1	1	1	1	
Key :	p	bulk dens	sity, linea	r	WL Liquid limit	WP Plastic limit <425					25um preparation			ps particle density
	pd	dry densi	ty		a 4 point cone test	NP non - plastic n from natural soil							-g = gas jar	
	W *	moisture	content		b 1 point cone test	IP	Plasticit	y Index		s siev	ed spec	imen		-p = small pyknometer
	-	iesi carri	=u UUT tO I	Opinio	ns and interpretations expressed herein are outsi	de the s	cope of	UKAS a	accredita	ition				
	Projec	t No	I	H6100)-16									Table
Rev 2.91 Sep 16	Project Name Trowbridge GI Printed:01/12/2016 11:41							INDX						

ESG 🔗

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TESTS WITHOUT MEASUREMENT OF PORE PRESSURE - SUMMARY OF RESULTS

г

		Sam	ple			Der	nsity	w	Test	Dia.	ó3	At fail	At failure / end of stage			
Hole No.	No.	Dept	h (m)	type	Soil Description	bulk	dry		type			Axial strain	ó1 - ó:	си	M 0	Remarks
	110.	from	to	.ypo		Mg	/m3	%		mm	kPa	%	kPa	kPa	D E	
BH01	22	9.15		с	Soft brownish grey slightly sandy slightly gravelly CLAY.	1.94	1.4	39	UUM	84.0 84.0 84.0	180 270 360	2.5 4.0 13.0	13 16 19	7 8 10	С	
BH01	24	12.15		с	Very stiff brownish grey slightly sandy CLAY with occasional shell fragments.	2.08	1.75	19	UUM UUM	86.2 86.2	250 375	10.0 20.1	298 368	149 184	C	Ran to 20% on stage 2
BH02A	16	3.00		L	Stiff grey mottled yellowish brown slightly sandy CLAY with rare gypsum.	2.02	1.6	26	UUM	97.4 97.4 97.4	35 70 140	6.9 7.4 8.4	175 175 174	88 88 87		
BH02A	21	10.50		L	Firm brown slightly sandy CLAY. 1.96 1.52 29 UUM 86.1 225 7.0 77 39 C 86.1 450 11.0 85 43 41 C 61<											
BH03	21	6.80		L	Stiff to very stiff greyish brown slightly gravelly CLAY.	2	1.61	25	UUM	76.0 76.0 76.0	140 210 280	4.5 5.0 6.5	193 201 198	97 101 99	в	
BH03	26	13.40		с	Very stiff friable dark greyish brown CLAY.	2.11	1.77	19	UUM	87.2 87.2 87.2	280 420 560	4.5 5.5 6.5	362 360 359	181 180 180	в	
BH04B	3	2.50		L	Firm to stiff brownish grey mottled yellowish brown slightly sandy CLAY.	2.02	1.64	23	UUM	97.7 97.7 97.7	25 50 100	7.4 9.4 19.3	101 106 118	51 53 59	Ρ	
BH04B	5	4.50		L	Firm greyish brown CLAY.	2	1.58	27	UUM	96.7 96.7 96.7	50 100 200	6.9 8.4 12.9	104 107 111	52 54 56	В	
BH04B	7	7.30		L	Very stiff brownish grey slightly sandy slightly gravelly CLAY.	2.11	1.75	21	UUM	83.5 83.5 83.5	160 240 320	5.5 8.0 19.9	118 152 256	59 76 128	Ρ	
General notes:	Tests ca diamete	arried ou r ratio ar	t in acco nd tested	rdance I at a r	with BS1377: Part 7: 1990, clause 8 for single ate of strain of 2%/minute, unless annotated o	e stage therwis	e, claus e. See	e 9 for r individu	nultistao ual test r	ge tests. reports f	Specii or furth	mens n ier deta	ominal ails.	ly 2:1 l	neight	
Legend	UU - sir UUM - r	igle stag nultistag	e test (r e test on	nay be a sing	in sets of specimens) Jle specimen	ó3cell pressureó1 - ó3deviator stress						Mode of failure P B				plastic brittle
	suffix R	- remoul	ded or re	ecomp	acted Opinions and interpretations expressed here	CU ein are	outside	undrair the sco	ned shea	ar strenç IKAS ac	jth credita	tion			C	compound
QA Ref SLR 2	Pro	oject N	lo		H6100-16							P	rinted:()1/12/2	2016	
Rev 2.6 Apr 15	Project Name Trowbridge GI												1	1:42		0030101

Point Load Index Test ISRM:1985

All specimens tested at as received water content unless shown otherwise Test Type Diametral Axial D - Diametral, A - Axial, I - Irregular Lump, B - Block Ρ Ρ Direction (U = unknown or random) L - parallel to planes of weakness P - perpendicular to planes of weakness L_{ne} D_{ps} D_{ps} Dimensions Ŵ Dps - Distance between platens (platen separation) Dps' - at failure W L_{ne} Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P

Block/irregular lump Ρ D_{ps} W

٥	E	Ref	ype	Ref	Depth		Test see Fig 5	Type ISRM and 8	(N/X) F		Dime	nsions		LOAD P	ameter,	Point Los Mi	ad Index Pa	
Boreho	Depth,	Sample I	Sample T	specimen	becimen [Rock type	pe , I, B)	ction or U)	ilure Valio	Lne	w	Dps	Dps'	LNI	De ivalent dia mm	F = (De/	(50)0.45	Remarks
				0)	у		D, A,	Dired (L, P	Fai	mm	mm	mm	mm	KIN	edni	15	18(50)	
BH01	18.15	28	с			LIMESTONE/MU DSTONE	А	U	Y		87.0	45.0	40.0	1.20	66.56	0.27	0.31	
BH01	21.15	30	С			MUDSTONE	A	U	Y		87.4	48.0	45.0	1.40	70.76	0.28	0.33	
BH01	22.65	31	с			MUDSTONE/LIM ESTONE	А	U	Y		87.1	47.0	41.0	5.30	67.43	1.17	1.33	
BH02A	16.40	26	с			CLAY	A	U	Y		87.6	62.0	52.0	0.30	76.16	0.05	0.06	
BH02A	17.90	27	С			LIMESTONE	A	U	Y		87.1	47.0	42.0	12.00	68.25	2.58	2.96	
BH02A	19.40	28	С			MUDSTONE/LIM ESTONE	А	U	Y		87.3	46.0	43.0	3.80	69.13	0.80	0.92	
BH02A	22.40	30	С			MUDSTONE	A	U	Y		86.7	40.0	35.0	0.20	62.16	0.05	0.06	
BH03	17.90	29	С			MUDSTONE/LIM ESTONE	A	U	Y		86.9	48.0	44.0	3.60	69.77	0.74	0.86	
BH03	19.40	30	С			MUDSTONE/LIM ESTONE	A	U	Y		87.4	50.0	43.0	6.70	69.17	1.40	1.62	
BH03	20.90	31	С			LIMESTONE	A	U	Y		87.0	57.0	45.0	14.70	70.60	2.95	3.44	
BH03	22.40	32	С			LIMESTONE/MU DSTONE	A	U	Y		86.8	62.0	57.0	1.60	79.37	0.25	0.31	
BH03	23.90	33	С			MUDSTONE	A	U	Y		87.1	53.0	48.0	1.20	72.96	0.23	0.27	
BH04B	9.55	9	С			CLAY	A	U	Y		87.8	50.0	30.0	0.30	57.91	0.09	0.10	
BH04B	10.30	10	С			CLAY	А	U	Y		84.8	60.0	40.0	0.30	65.72	0.07	0.08	
BH04B	13.30	12	С			CLAY	А	U	Y		87.0	57.0	40.0	0.40	66.56	0.09	0.10	
BH04B	14.80	13	С			MUDSTONE	A	U	Y		86.7	49.0	42.0	0.30	68.09	0.06	0.07	
BH04B	17.80	15	С			LIMESTONE	A	U	Y		86.9	54.0	52.0	12.40	75.85	2.16	2.60	
BH04B	22.30	18	С			MUDSTONE	A	U	Y		86.7	56.0	54.0	1.50	77.21	0.25	0.31	
	-	-	-	-	Opinioi	ns and interpretations	express	ed herei	n are ou	itside the	e scope	ot UKAS	accred	tation	•			
QA RefProject NoH6100-16ISRM 85Rev 2.4Project NameTrowbridge GINov 16Project NameTrowbridge GI											Printed:01 12:	01	Figure	, PLT	•			

Shear Strength by Pilcon Hand method - Summary of Results

Holo No		Sa	ample		Soil Description	Undrained shear	Residu	ual shear	Remarks				
		De	oth (m)			strength kPa	stren	gth kPa	Remarks				
	No.	from	to	type									
BH02A	24	13.40		с	Firm brownish grey slightly sandy CLAY.	58			Only one hand vane could be performed.				
Notes : 1	Tests c	arried	out in ac	ccordan Opinions	ce with Manufacturers Instruction	ons outside the scope of UKAS a	accreditation						
QA Ref SLR Lvane Rev 2 Nov 2016		F	Project N Project N	o ame	H6100-16 Trowbridge GI			Printed: 07/11/2016 16:40	Figure HV				

Our Ref: EFS/168818 (Ver. 1) Your Ref: H6100-16

November 2, 2016

Environmental Chemistry ESG

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

Adam Putt ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

For the attention of Adam Putt

Dear Adam Putt

Sample Analysis - Trowbridge GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 09/12/16 when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG JACOUDOVINE

J Colbourne Project Co-ordinator 01283 554547

TEST REPORT

Report No. EFS/168818 (Ver. 1)

ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

Site: Trowbridge GI

The 3 samples described in this report were registered for analysis by ESG on 28-Oct-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 02-Nov-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2) Analytical and Deviating Sample Overview (Page 3) Table of Method Descriptions (Page 4) Table of Report Notes (Page 5) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG : Tim Barnes

Emes

Operations Director Energy & Waste Services Date of Issue: 02-Nov-2016

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	ma/ka	ma/l	%	pH Units						
	Method	d Codes :	ICPACIDS	ICPWSS	TSBRE1	WSLM50						
	Method Reporting	g Limits :	20	10	0.005							
	UKAS Acc	credited :	Yes	Yes	No	No						
LAB ID Number CL/	Client Sample Description	Sample Date	SO4 (acid sol)	SO4 (H2O sol) mg/l	Total Sulphur.	pH (BS1377)						
1635342	BH02A ES 1 1.20	11-Oct-16	1060	213	0.109	7.9						
1635343	BH03 ES 9 2.00	06-Oct-16	312	39	0.036	8.2						
1635344	BH03 ES 11 3.80	06-Oct-16	2070	332	1.01	7.7						
	ESG 🔗		Client Na Contact	ame	ESG Li Adam Pu	mited Bridgend			Sam	ple Analysis		
	Bretby Business Park, Ashby Road								Date Printed	02	2-Nov-2016	
	Burton-on-Trent, Staffordshire, DE15 0YZ					-	<u> </u>		Report Number	E	FS/168818	
	Tel +44 (0) 1283 554400					Irowbrid	ge Gl		Table Number		1	
	Fax +44 (0) 1283 554422											

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer	ESG Limited Bridgend
Site	Trowbridge Gl
Report No	S168818

Consignment No S59975 Date Logged 28-Oct-2016

							Repo	ort Du	e 03-	Nov-2	2016		
		MethodID	CustServ	Dep.Opt			ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	TSBRE1	WSLM50
ID Number	Description	Sampled	REPORT A	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	Total Sulphur.	pH (BS1377)
							✓		✓				
CL/1635342	BH02A 1.20	11/10/16											
CL/1635343	BH03 2.00	06/10/16											
CL/1635344	BH03 3.80	06/10/16											

Note: For analysis where the scheduled turnaround is greater than the	Deviating Sample Key
holding time we will do our utmost to prioritise these samples. However, it	A The sample was received in an inappropriate container for this analysis
is possible that samples could become deviant whilst being processed in	B The sample was received without the correct preservation for this analysis
the laboratory.	C Headspace present in the sample container
	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
n this instance please contact the laboratory immediately should you	E Sample processing did not commence within the appropriate holding time
wish to discuss how you would like us to proceed. If you do not respond	F Sample processing did not commence within the appropriate handling time
within 24 hours, we will proceed as originally requested.	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	Analysis Subcontracted - Note: due date may vary

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water
		@ < 35°C	extraction followed by ICPOES detection
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid
		@ < 35°C	samples by high temperature combustion/infrared detection
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using
		@ < 35°C	pH probe.

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l NiI: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client :	ESG Limited Bridgend
Site :	Trowbridge GI
Report Number :	S16_8818

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CI /1635342	BH02A ES 1 1 20	CLAY
CL/1635343	BH03 ES 9 2.00	CLAY
CL/1635344	BH03 ES 11 3.80	CLAY

Our Ref: EFS/168933 (Ver. 1) Your Ref: H6100-16

November 4, 2016

Environmental Chemistry ESG

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

Adam Putt ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

For the attention of Adam Putt

Dear Adam Putt

Sample Analysis - Trowbridge GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 13/12/16 when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG JACOUDOVINE

J Colbourne Project Co-ordinator 01283 554547

TEST REPORT

Report No. EFS/168933 (Ver. 1)

ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

Site: Trowbridge GI

The 1 sample described in this report were registered for analysis by ESG on 01-Nov-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 04-Nov-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2) Analytical and Deviating Sample Overview (Page 3) Table of Method Descriptions (Page 4) Table of Report Notes (Page 5) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG : Tim Barnes

Emes

Operations Director Energy & Waste Services Date of Issue: 04-Nov-2016

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. ESG accepts no responsibility for any sampling not carried out by our personnel.

Units Mathed Octoor		mg/kg	mg/l	%	pH Units											
Method Codes : Method Poperting Limits			ICPWSS 10	ISBRE1	WSLM50											
		20 Ves	Ves	0.005 No	No											
LAB ID Number CL/	UKAS A	Sample Date	SO4 (acid sol)	SO4 (H2O sol) mg/l	Total Sulphur.	рН (BS1377)										
4005755		10.0.4.10	500	450	0.004	7.0										
1035755	BH01 ES 11 2.10	18-Uct-16	582	150	0.031	1.3										
-																
ESG 🔄		Client N Contact	ame	ESG Li Adam Pu	3 Limited Bridgend					Sample Analysis						
Bretby Business Park, Ashby Road				•						Date Prin	nted		04-Nov-2016			
Burton-on-Trent, Staffordshire, DE15 0YZ					T	Report Number EFS/168933										
Tel +44 (0) 1283 554400					Irov	Wbridge GI Table Number 1										
	Fax +44 (0) 1283 554422															

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **ESG Limited Bridgend** Site Trowbridge GI S168933 **Report No**

Consignment No S_NonCon Date Logged 01-Nov-2016

							Repo	ort Du	e 07-	Nov-2	2016		
		MethodID	CustServ	Dep.Opt			ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	TSBRE1	WSLM50
ID Number	Description	Sampled	REPORT A	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	Total Sulphur.	pH (BS1377)
							√		√				
CL/1635755	BH01 2.10	18/10/16											

Note: For analysis where the scheduled turnaround is greater than the	Jeviating Sample Key					
holding time we will do our utmost to prioritise these samples. However, it	A The sample was received in an inappropriate container for this analysis					
is possible that samples could become deviant whilst being processed in	B The sample was received without the correct preservation for this analysis					
the laboratory.	C Headspace present in the sample container					
	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis					
In this instance please contact the laboratory immediately should you	E Sample processing did not commence within the appropriate holding time					
wish to discuss how you would like us to proceed. If you do not respond	F Sample processing did not commence within the appropriate handling time					
within 24 hours, we will proceed as originally requested.	Requested Analysis Key					
	Analysis Required					
	Analysis dependant upon trigger result - Note: due date may be affected if triggered					
	No analysis scheduled					
	Analysis Subcontracted - Note: due date may vary					

Method Descriptions

Matrix	MethodID	Analysis	Method Description				
		Basis					
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric				
		@ < 35°C	Acid extraction followed by ICPOES detection				
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water				
		@ < 35°C	extraction followed by ICPOES detection				
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid				
		@ < 35°C	samples by high temperature combustion/infrared detection				
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using				
		@ < 35°C	pH probe.				

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l NiI: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client :	ESG Limited Bridgend
Site :	Trowbridge GI
Report Number :	S16_8933

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1635755	BH01 ES 11 2.10	CLAY

APPENDIX F

GEOENVIRONMENTAL LABORATORY TEST RESULTS

Soil Sample Analysis Test Reports Leachate Sample Analysis Report Water Sample Analysis Report EFS/168812, EFS/168814 and EFS/168932 EXR/229287 and EXR/229296 EFS/235169 and EFS/232019 Our Ref: EFS/168812M (Ver. 1) Your Ref: H6100-16

November 2, 2016

Environmental Chemistry ESG

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

Adam Putt ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

For the attention of Adam Putt

Dear Adam Putt

Sample Analysis - Trowbridge GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 08/12/16 when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Laboratory and Analytical) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG JACOUDOVINE

J Colbourne <u>Project Co-ordinator</u> 01283 554547
TEST REPORT

Report No. EFS/168812M (Ver. 1)

ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

Site: Trowbridge GI

The 2 samples described in this report were registered for analysis by ESG on 27-Oct-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 02-Nov-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS or MCERTS accredited. Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 4) Table of PAH (MS-SIM) (80) Results (Pages 5 to 6) Table of PCB Congener Results (Page 7) GC-FID Chromatograms (Pages 8 to 9) Table of WAC Analysis Results (Page 10) Table of Asbestos Screening Results (Page 11) Analytical and Deviating Sample Overview (Pages 12 to 13) Table of Method Descriptions (Pages 14 to 15) Table of Report Notes (Page 16) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG : Tim Barnes

Lomes

Operations Director Energy & Waste Services Date of Issue: 02-Nov-2016

Accreditation Codes: **N** (Not Accredited), **U** (UKAS), **UM** (UKAS & MCERTS) Tests marked '^' have been subcontracted to another laboratory. (NVM) - denotes the sample matrix is dissimilar to matrices upon which the MCERTS validation was based, and is therefore not accredited for MCERTS. All results are reported on a dry weight basis at 105°C unless otherwise stated. (except QC samples) ESG accepts no responsibility for any sampling not carried out by our personnel.

	Metho	Units : od Codes :	mg/kg GROHSA	mg/kg ICPACIDS	mg/kg ICPBOR	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	pH Units PHSOIL	mg/kg SFAPI	mg/kg SFAPI	mg/kg SFAPI
	Method Reportin	ng Limits :	0.2	20	0.5	0.3	0.2	1.2	1.6	0.7	0.5	2	0.5	16		0.5	0.5	0.5
	Accredita	tion Code:	UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	N	UM	UM
LAB ID Number CL/	Client Sample Description	Sample Date	GRO (C6-C10)	SO4 (acid sol)	Boron (H20 Soluble)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	pH units (AR)	Cyanide(Complex)(AR)	Cyanide(Free) (AR)	Cyanide(Total) (AR)
1635299	BH04B ES 20 1.20	18-Oct-16	<0.2	1050	1.2	6.1	0.60	63.8	673.4	63.9	<0.5	18.9	<0.5	258.2	10.2	<0.6	<0.6	<0.6
1635300	BH04B ES 22 3.40	18-Oct-16	<0.3	1110	8.1	7.9	0.65	31.3	39.3	20	<0.6	34.1	<0.6	94.1	9	<0.6	<0.6	<0.6
ESG & Client Name			ame	ESG Li	mited Br	idgend			1			Sam	ple Ana	alysis			1	
	Brethy Business Park, Ashby Road											Date Prin	nted		02	-Nov-2016		
	Burton-on-Trent Staffordshire DE15.0V7											Report N	Jale Fillieu U2-NUV-2010					
						Trov	vbrido	qe Gl				Teble			CF3	J 1000 1 2 1 VI		
	rei +44 (0) 1283 554400											I able NL	imper			1		
1	Fax +44 (0) 1283 554422																	

	Units : mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Mol/kg mg/kg % mg/l mg/kg		%	µg/kg														
	Method	Codes :	SFAPI	Sub002a	TMSS	TPHFIDUS	TPHFIDUS	TPHFIDUS	TPHFIDUS	TPHFIDUS	ANC	CALC_CR3	CEN Leachate	e CEN Leachate	KONECL	KONECR	LOI(%MM)	PCBUSECDAR
	Method Reporting	Limits :	0.5		0.1	10	10	10	10	10	0.04	0.5			1	0.1	0.2	
	Accreditatio	on Code:	U	U	U	N	N	U	N	UM	N	N	N	N	N	N	N	
LAB ID Number CL/	Client Sample Description	Sample Date	Phenol Index.(AR)	^Asbestos Screen	Tot.Moisture @ 105C	TPH Band (>C10-C16)	TPH Band (>C10-C40)	TPH Band (>C16-C21)	TPH Band (>C21-C35)	TPH by GCFID (AR)	Acid Neut. Capacity	Chromium (III)	Fraction of non-crushable material %	Fraction of sample above 4 mm %	Chloride:(2:1)	Chromium vi:	L.O.I. % @ 450C	PCB-7 Congeners Analysis
1635299	BH04B ES 20 1.20	18-Oct-16	<0.6	NAIIS	13.0	<11	549	30	446	551	9.13	<63.8	0.0	78.1	28	<0.1	1.6	Req
1635300	BH04B ES 22 3.40	18-Oct-16	<0.6		20.4	<13		<13	44	59		<31.3			24	<0.1		
						1									1			
	ESG 🔄		Client N	ame	ESG Li	mited Bri	idgend						Sam	ple Ana	alysis			
Derthe Derivers Dark Arth Deriv		Contact		Audiii Pu							Data Bri	atod	T		-Nov. 2016			
	Bretby Business Park, Ashby Road											Date Pfil	lumbor			C/46004 0M		
						Trov	vbrido	le Gl					uniber		EF	J/ 10001211		
	rei +44 (U) 1283 554400											I able NL	mper			1		
	Fax +44 (0) 1283 554422											1						

		Units :	% M/M	µg/kg	µq/kq	µg/kg	µg/kg	µg/kg	µq/kq	µg/kg	mg/kg				
	Metho	od Codes :	WSLM59	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	PAHMSUS				
	Method Reporting	ng Limits :	0.04	10	10	10	20	30	20	10					
	Accredita	tion Code:	N	UM	UM	UM	U	UM	UM	UM					
LAB ID Number CL/	Client Sample Description	Sample Date	Total Organic Carbon	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS				
1635299	BH04B ES 20 1.20	18-Oct-16	1.52	<11	<11	<11	<23	<34	<23	<11	Req				
1635300	BH04B ES 22 3.40	18-Oct-16		<13	<13	<13	<25	<38	<25	<13	Req				
ESG 🔗			Client N Contact	ame	ESG Li Adam Pu	mited Bri	dgend			1	1	Sam	ple Ana	alysis	
Bretby Business Park, Ashby Road				•							Date Printed		02-Nov-2016		
	Burton-on-Trent, Staffordshire, DE15 0YZ					T	-l					Report Number		EFS/168812M	
Tel +44 (0) 1283 554400						Irow	pridé	ge Gl				Table Number		1	
Fax +44 (0) 1283 554400															

Customer and Site Details:	ESG Limited Bridgend: Trowbridge GI							
Sample Details:	BH04B ES 20 1.20	Job Number:	S16_8812M					
LIMS ID Number:	CL1635299	Date Booked in:	27-Oct-16					
QC Batch Number:	161236	Date Extracted:	31-Oct-16					
Quantitation File:	Initial Calibration	Date Analysed:	01-Nov-16					
Directory:	116PAH.MS17\	Matrix:	Soil					
Dilution:	1.0	Ext Method:	Ultrasonic					

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.09	-	UM
Acenaphthylene	208-96-8	-	< 0.09	-	U
Acenaphthene	83-32-9	-	< 0.09	-	UM
Fluorene	86-73-7	-	< 0.09	-	UM
Phenanthrene	85-01-8	5.80	0.10	97	UM
Anthracene	120-12-7	-	< 0.09	-	U
Fluoranthene	206-44-0	7.15	0.28	99	UM
Pyrene	129-00-0	7.44	0.25	98	UM
Benzo[a]anthracene	56-55-3	9.13	0.22	92	UM
Chrysene	218-01-9	9.18	0.17	95	UM
Benzo[b]fluoranthene	205-99-2	10.66	0.26	91	UM
Benzo[k]fluoranthene	207-08-9	10.70	0.10	92	UM
Benzo[a]pyrene	50-32-8	11.09	0.20	95	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.47	0.20	100	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.09	-	UM
Benzo[g,h,i]perylene	191-24-2	12.78	0.16	97	UM
Coronene	191-07-1 *	-	< 0.09	-	Ν
Total (USEPA16) PAHs	-	-	< 2.49	-	N

* Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	118
Acenaphthene-d10	119
Phenanthrene-d10	128
Chrysene-d12	161
Perylene-d12	220

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	86
Terphenyl-d14	75

Concentrations are reported on a dry weight basis.

Customer and Site Details:	ESG Limited Bridgend: Trowbridge GI							
Sample Details:	BH04B ES 22 3.40	Job Number:	S16_8812M					
LIMS ID Number:	CL1635300	Date Booked in:	27-Oct-16					
QC Batch Number:	161236	Date Extracted:	31-Oct-16					
Quantitation File:	Initial Calibration	Date Analysed:	01-Nov-16					
Directory:	116PAH.MS17\	Matrix:	Soil					
Dilution:	1.0	Ext Method:	Ultrasonic					

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Coronene	191-07-1 *	-	< 0.10	-	N
Total (USEPA16) PAHs	-	-	< 1.61	-	N

* Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	123
Acenaphthene-d10	125
Phenanthrene-d10	134
Chrysene-d12	155
Perylene-d12	193

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	85
Terphenyl-d14	75

Concentrations are reported on a dry weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	ESG Limited Bridgend: Trowbridge GI S16_8812M 161236 1031PCB.GC70 Ultrasonic				Matrix: Date Booked Date Extracte Date Analyse	l in: ed: ed:	Soil 27-Oct-16 28-Oct-16 31-Oct-16	
Acticulation code.				Cor	ncentration,	(µg/kg)		
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
* CL1635299	BH04B ES 20 1.20	<5.7	190.0	<5.7	<5.7	<5.7	<5.7	<5.7

EFS/168812M Ver. 1Where individual results are flagged see report notes for status.Page 8 of 16Results corrected to dry weight at 105°C where appropriate, in accordance with the MCERTS standard.

	FID2 B, (070B)	2201.D)				
PA -	1					
	-					
1200 -	_					
-						
-	-					
-						
1000 -				1		
-	-					
-						
-						
800 -	-					
-	_					
_						
-						
600 -	_					
-						
-						
-	-					
400 -	_					
-						
-	-					
	_					
200 -						
200						
-						
-	-					
-						
		Uh				
	0	1	2	3	4	5 min
Sample ID:		CL1635300		Job Number:	S16_8812M	
Multiplier:		8		Client:	ESG Limited Bridgend	
Dilution		1		Site:	Trowbridge GI	
Acquisition	Mathadi			Client Sample Bof:		
Acquisition				Chefit Sample Ref:	DHU4D E3 22 3.40	
Acquisition	Date/Time:	31-Oct-16, 19:14:41	1			
Datafile:		D:\TES\DATA\Y201	16\103116TPH_GC	4\103116 2016-10-31 14-29)-47\070B2201.D	
			_			

EFS/168812M Ver. 1Where individual results are flagged see report notes for status.Page 9 of 16Results corrected to dry weight at 105°C where appropriate, in accordance with the MCERTS standard.

WASTE ACCEPTANCE CRITERIA TESTING **BSEN 12457/3**

Client	ESC Limited Bridgend			Leaching Data						
Chent	ESG Limited Bridgend				Weight of sample (kg)	0.230				
Contract	Adam Butt		Moisture content @ 105°C (% of Wet Weight) 13							
Contact	Adam Full		Equivalent Weight based on drying at 105°C (kg) 0.225							
Sito	Troubridge Ol				Volume of water required to carry out 2:1 stage (litres) 0.44					
Sile	Howblidge GI				Fraction of sample above 4 mm %	78.100				
Samp	ble Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000				
PHO	H04B ES 20.1.20		CL /1625200	02 Nov 16	Volume to undertake analysis (2:1 Stage) (litres)	0.300				
	4D EG 20 1.20	510_001210	CL/1035299	02-1100-10	Weight of Deionised water to carry out 8:1 stage (kg)	1.650				

					J J J J J J J J J J J J J J J J J J J	1.000
Note	: The >4mm fracti	on is crushed using a disc mill				
				Landfill V	Vaste Acceptance	Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	1.52	3	5	6
Ν	LOI450	Loss on Ignition (%)	1.6			10
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.206	1		
U	TPHFIDUS	Mineral Oil (mg/kg)	549	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<2.59	100		
U	PHSOIL	pH (pH units)	10.2		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	9.13		To be evaluated	To be evaluated

itation	Code	Leachate Analysis	2:1 Leachate	8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste	ria Limit Values for BSEN 0 litre kg-1			
Accred	Method		mg/l ex	ccept ⁰⁰	mg/kg (e	dry weight)	mg/kg (dry weight)				
U	WSLM3	pH (pH units) ⁰⁰	8	8.5	Calculated data	not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) ⁰⁰	202	<100	Calculated data i						
U	ICPMSW	Arsenic	0.003	0.006	0.006	0.06	0.5	2	25		
U	ICPWATVAR	Barium	0.11	0.03	0.22	0.4	20	100	300		
U	ICPMSW	Cadmium	< 0.0001	<0.0001	<0.0002	<0.001	0.04	1	5		
U	ICPMSW	Chromium	0.004	0.005	0.008 0.05		0.5	10	70		
U	ICPMSW	Copper	0.009	0.007	0.018 0.07		2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.0001	<0.0002	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.016	0.003	0.032	0.05	0.5	10	30		
U	ICPMSW	Nickel	< 0.001	<0.001	< 0.002	<0.01	0.4	10	40		
U	ICPMSW	Lead	0.001	0.004	0.002	0.04	0.5	10	50		
U	ICPMSW	Antimony	0.003	0.002	0.006	0.02	0.06	0.7	5		
U	ICPMSW	Selenium	<0.001	<0.001	< 0.002	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.012	0.011	0.024	0.11	4	50	200		
U	KONENS	Chloride	17	3	34	49	800	15000	25000		
U	ISEF	Fluoride	0.4	0.2	0.8	2	10	150	500		
U	ICPWATVAR	Sulphate as SO4	40	10.1	80	141	1000	20000	50000		
Ν	WSLM27	Total Dissolved Solids	157	63.8	314	762	4000	60000	100000		
U	SFAPI	Phenol Index	< 0.05	< 0.05	<0.1	<0.5	1				
Ν	WSLM13	Dissolved Organic Carbon	7.1	81	14.2	711	500	800	1000		
Templa	Femplate Ver. 1 Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.										

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

	ASBESTOS ANALYSIS RESULTS										Detection limit of Method S	SCI-ASB-020 is 0.001%	
E	50		ESG Asbe	stos Limited	Certificate of	Analysis for A	sbestos in Soils	s, Sediments an	d Aggregates		Sampling has been carried	out by a third party	
<u>.</u>			500 F	() ()	• .					1089			
Client:			ESG Enviro	nmental Chem	nistry					Page 1 of 1			
Address:			Etwall Hous	e, Bretby Busi	ness Park, As	hby Road, Burto	on upon Trent			Report No:	ANU-0488-13537		
For the atter	ntion of:		ESG Limite	d Bridgend						Report Date:	01/11/2016		
Site Address	s:		Trowbridge	GI		(r	г — т		Project Number:	S168812		
Sample Number	Sample Date	Sample Location & Matrix	Test Date	Total Sample Dry Weight (g)	Weight of <10mm Fraction (g)	Asbestos(g) in >10mm	Asbestos(g) in < 10mm	% Asbestos by weight of Total Dried Sample	Moisture Content		Asbestos Fibre Types	Identified	
CL/1635299	18/10/16	BH04B 1.20 Soils	01/11/2016								NAIIS		
						-							
	1												
	I						I						
Ka		NAACR = Not Analysed at	Clients Request			NAIIS = No Asbesto	os Identified in Samp	ole (Identification On	ly)	Name:	Nathan Brough	Authorised Signatory:	
r.e	eys	* visible to nal	ked eye			NADIS = No Asbes	tos Detected in San	nple (ID & Quant Only	()	Position:	Lab Analyst	Declaration provide a status in the loss to status in the declaration of the declara	
The sample ana using ESG Asbe fibres. All fibres	he sample analysis for the above results was carried out using the procedures detailed in ESG Asbestos Limited in house method (SCI-ASB-020) based on EA document Quantification of asbestos in soil and associated materials - Draft 12 - February 2016. Fibre identification was carried out sing ESG Asbestos Limited in house method (SCI-ASB-020) based on HSE's HSG 248. The analysis of the < 10mm fraction for asbestos content only includes ACMs and fibres and does not discriminate non-asbestos pres. All fibres are assumed, unless specified, to be amphiboles. All tests were carried out ESG Asbestos Laboratory, Ashbourne House, Bretby Business Park, Ashby Road, Burton-upon-Trent, Staffordshire. DE15 0YZ, UKAS Laboratory Number 1089.												

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **ESG Limited Bridgend** Site Trowbridge GI S168812M **Report No**

Consignment No S60148

Date Logged 27-Oct-2016

							Repo	ort Du	ie 03-	Nov-2	2016																	
		MethodID	ANC	BTEXHSA		CALC_CR3	CEN Leachate					CustServ	GROHSA	ICPACIDS	ICPBOR	ICPMSS									KONECL	KONECR	LOI(%MM)	
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (µg/kg)	Chromium (III)	CEN Leac(P)1	CEN Leac(P)2	CEN Leac(P)C	Fraction of non-crushable material %	Fraction of sample above 4 mm %	REPORT A	GRO (C6-C10)	SO4 (acid sol)	Boron (H20 Soluble)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	Chloride:(2:1)	Chromium vi:	L.O.I. % @ 450C	
				✓	✓								✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓				ł
CL/1635299	BH04B 1.20	18/10/16																										l
CL/1635300	BH04B 3.40	18/10/16																										l

Note: For analysis where the scheduled turnaround is greater than the	Deviating Sample Key
holding time we will do our utmost to prioritise these samples. However, it	A The sample was received in an inappropriate container for this analysis
is possible that samples could become deviant whilst being processed in	B The sample was received without the correct preservation for this analysis
the laboratory.	C Headspace present in the sample container
	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
In this instance please contact the laboratory immediately should you	E Sample processing did not commence within the appropriate holding time
wish to discuss how you would like us to proceed. If you do not respond	F Sample processing did not commence within the appropriate handling time
within 24 hours, we will proceed as originally requested.	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	Analysis Subcontracted - Note: due date may vary

EFS/168812M Ver. 1 Where individual results are flagged see report notes for status. Page 12 of 16^{the} integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **ESG Limited Bridgend** Site Trowbridge GI S168812M **Report No**

Consignment No S60148

Date Logged 27-Oct-2016

							Rep	ort Du	e 03-	Nov-2	2016							
		MethodID	MCertS	PAHMSUS	PCBUSECDAR	PHSOIL	SFAPI				Sub002a	TMSS	TPHFIDUS					WSLM59
ID Number	Description	Sampled	MCertS Analysis	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Cyanide(Complex)(AR)	Cyanide(Free) (AR)	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos Screen	Tot.Moisture @ 105C	TPH Band (>C10-C16)	TPH Band (>C10-C40)	TPH Band (>C16-C21)	TPH Band (>C21-C35)	TPH by GCFID (AR)	Total Organic Carbon
				✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	 ✓ 	✓	✓	
CL/1635299	BH04B 1.20	18/10/16																
CL/1635300	BH04B 3.40	18/10/16																

Note: For analysis where the scheduled turnaround is greater than the	Deviating Sample Key
holding time we will do our utmost to prioritise these samples. However, it	A The sample was received in an inappropriate container for this analysis
is possible that samples could become deviant whilst being processed in	B The sample was received without the correct preservation for this analysis
the laboratory.	C Headspace present in the sample container
	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
In this instance please contact the laboratory immediately should you	E Sample processing did not commence within the appropriate holding time
wish to discuss how you would like us to proceed. If you do not respond	F Sample processing did not commence within the appropriate handling time
within 24 hours, we will proceed as originally requested.	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	 Analysis Subcontracted - Note: due date may vary

EFS/168812M Ver. 1 Where individual results are flagged see report notes for status. Page 13 of 16^{the} integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Method Descriptions

Matrix	MethodID	Analysis	Method Description
0.1		Basis	
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
0	DTEXUOA	@ < 35°C	Sodium Hydroxide to pH 7
Soll	BIEXHSA	As Received	Determination of Benzene, Toluene, Etnyl benzene and Xylenes
0			(BTEX) by Headspace GCFID
Soll	CALC_CR3	Oven Dried	Calculated from the difference between Total Chromium and
0.1		@ < 35°C	Hexavalent Chromium
Soll	CEN Leachate	As Received	Determination of Oversize and Inert Material Content prior to
0			leaching sample
501	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
0			(GRU) by Headspace GUFID
Soll	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
0		@ < 35°C	Acid extraction followed by ICPOES detection
Soll	ICPBOR	Oven Dried	Determination of Boron in soil samples by not water extraction
0	100100	@ < 35°C	followed by ICPOES detection
Soil	ICPMSS	Oven Dried	Determination of Metals in Marine Sediments and Soil samples by
0.1		@ < 35°C	aqua regia digestion followed by ICPMS detection
Soil	KONECL	Oven Dried	Determination of Chloride in Soil using water extraction at the
		@ < 35°C	stated water:soil ratio, discrete colorimetric detection
Soil	KONECR	Oven Dried	Determination of Chromium vi in soil samples by water extraction
0.1		@ < 35°C	followed by colorimetric detection
Soil	LOI(%MM)	Oven Dried	Determination of loss on ignition for soil samples at specified
		@ < 35°C	temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB)
			congeners/aroclors by hexane/acetone extraction followed by
			GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
	0.7.1.7.		pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on
_			oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection.
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid
		@ < 35°C	digestion followed by high temperature combustion and IR
			detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l **NiI**: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

 $\ensuremath{\text{Req}}$ Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client :	ESG Limited Bridgend
Site :	Trowbridge GI
Report Number :	S16_8812

Note: major constituent in upper case

Lab ID Number	Client ID	Description
		Description
CL/1635299	BH04B ES 20 1.20	Grey MADE GROUND
CL/1635300	BH04B ES 22 3.40	Grey CLAY

Our Ref: EFS/168814M (Ver. 1) Your Ref: H6100-16

November 4, 2016

Environmental Chemistry ESG

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

Adam Putt ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

For the attention of Adam Putt

Dear Adam Putt

Sample Analysis - Trowbridge GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 08/12/16 when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Laboratory and Analytical) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG JACOUDOVINE

J Colbourne Project Co-ordinator 01283 554547

TEST REPORT

Report No. EFS/168814M (Ver. 1)

ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

Site: Trowbridge GI

The 4 samples described in this report were registered for analysis by ESG on 27-Oct-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 04-Nov-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS or MCERTS accredited. Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 4) Table of PAH (MS-SIM) (80) Results (Pages 5 to 8) Table of PCB Congener Results (Page 9) GC-FID Chromatograms (Pages 10 to 13) Table of WAC Analysis Results (Pages 14 to 15) Table of Asbestos Screening Results (Page 16) Analytical and Deviating Sample Overview (Pages 17 to 18) Table of Method Descriptions (Pages 19 to 20) Table of Report Notes (Page 21) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG : Tim Barnes

Lomes

Operations Director Energy & Waste Services Date of Issue: 04-Nov-2016

Accreditation Codes: **N** (Not Accredited), **U** (UKAS), **UM** (UKAS & MCERTS) Tests marked '^' have been subcontracted to another laboratory. (NVM) - denotes the sample matrix is dissimilar to matrices upon which the MCERTS validation was based, and is therefore not accredited for MCERTS. All results are reported on a dry weight basis at 105°C unless otherwise stated. (except QC samples) ESG accepts no responsibility for any sampling not carried out by our personnel.

	Metho	Units: Method Codes: GR			mg/kg ICPBOR	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	pH Units PHSOIL	mg/kg SFAPI	mg/kg SFAPI	mg/kg SFAPI
	Method Reporti	ng Limits :	0.2	20	0.5	0.3	0.2	1.2	1.6	0.7	0.5	2	0.5	16		0.5	0.5	0.5
	Accredita	tion Code:	UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	N	UM	UM
LAB ID Number CL/	Client Sample Description	Sample Date	GRO (C6-C10)	SO4 (acid sol)	Boron (H20 Soluble)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	pH units (AR)	Cyanide(Complex)(AR)	Cyanide(Free) (AR)	Cyanide(Total) (AR)
1635317	BH02A ES 1 1.20	11-Oct-16	<0.3	1090	3.5	12.2	0.5	40.1	22.9	93	<0.53	20.4	0.9	121.5	8.4	<0.6	<0.6	<0.6
1635318	BH03 ES 2 0.10	29-Sep-16	<0.2	1440	1.9	20.4	1.40	45.0	153.1	208.0	<0.52	38.4	0.9	404.3	8.1	<0.6	0.6	<0.6
1635319	BH03 ES 7 1.00	29-Sep-16	<0.2	1120	2.1	18.8	1.62	51.9	109.1	286.6	0.6	38	0.5	389.3	8.5	<0.6	<0.6	<0.6
1635320	BH03 ES 9 2.00	06-Oct-16	<0.3	338	1.6	16.3	<0.2	42.9	14.8	30.9	<0.5	18.5	<0.5	90.4	8.4	<0.7	0.7	<0.7
			Client N	ame	ESG Li	mited Br	idaend						Sam	ole Ana	alvsis			
			Contact		Adam Put	tt	<u> </u>											
	Bretby Business Park, Ashby Road											Date Prin	nted		04	-Nov-2016		
	Burton-on-Trent, Staffordshire, DE15 0YZ					Trov	vbride					Report Number EFS/168814M						
	Tel +44 (0) 1283 554400					1100	vnindé	je Gl				Table Nu	mber			1		
	Fax +44 (0) 1283 554422																	

		Units :	mg/kg		%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Mol/kg	mg/kg	%	%	mg/l	mg/kg	%	µg/kg
	Metho	od Codes :	SFAPI	Sub002a	TMSS	TPHFIDUS	TPHFIDUS	TPHFIDUS	TPHFIDUS	TPHFIDUS	ANC	CALC_CR3	CEN Leachate	CEN Leachate	KONECL	KONECR	LOI(%MM)	PCBUSECDAR
	Method Reportin Accreditat	ig Limits :	0.5	U	0.1 U	10 N	10 N	10	10 N	UM	0.04 N	0.5 N	N	N	1 N	0.1 N	0.2 N	
LAB ID Number CL/	Client Sample Description	Sample Date	Phenol Index.(AR)	^Asbestos Screen	Tot.Moisture @ 105C	TPH Band (>C10-C16)	TPH Band (>C10-C40)	TPH Band (>C16-C21)	TPH Band (>C21-C35)	TPH by GCFID (AR)	Acid Neut. Capacity	Chromium (III)	Fraction of non-crushable material %	Fraction of sample above 4 mm %	Chloride:(2:1)	Chromium vi:	L.O.I. % @ 450C	PCB-7 Congeners Analysis
1635317	BH02A ES 1 1.20	11-Oct-16	<0.6	AM	21.9	<13	81	<13	63	82	4.45	<40.1			24	<0.1	5.6	Req
1635318	BH03 ES 2 0.10	29-Sep-16	<0.6	NAIIS	14.6	<12		21	316	317		<45.0	0.0	41.6	14	<0.1		
1635319	BH03 ES 7 1.00	29-Sep-16	<0.6	СН	13.4	15	973	97	766	975	6.38	<51.9			6	<0.1	6.8	Req
	ESG 🔗		Client N Contact	ame	ESG Li Adam Pu	mited Br i tt	idgend					Sample Analysis						
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ					Trai						Date Prin Report N	nted lumber		04 EF	1-Nov-2016 S/168814M		
	Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422				Trowbridge GI													

		Units :	% M/M	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	mg/kg				
	Metho	od Codes :	WSLM59	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	PAHMSUS				
	Method Reporting	ng Limits :	0.04	10	10	10	20	30	20	10					
	Accredita	tion Code:	N	UM	UM	UM	U	UM	UM	UM					
LAB ID Number CL/	Client Sample Description	Sample Date	Total Organic Carbon	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS				
1635317	BH02A ES 1 1.20	11-Oct-16	2.32	<13	<13	<13	<26	<38	<26	<13	Req				
1635318	BH03 ES 2 0.10	29-Sep-16	6.02	<12	<12	<12	<23	<35	<23	<12	Req				
1635319	BH03 ES 7 1.00	29-Sep-16	5.13	<12	<12	<12	<23	<35	<23	<12	Req				
1635320	BH03 ES 9 2.00	06-Oct-16		<13	<13	<13	<26	<39	<26	<13	Req				
	ESG 🔗	<u>l</u>	Client N Contact	ame ESG Limited Bridgend Adam Putt				1	Sample Analysis						
	Bretby Business Park, Ashby Road											Date Printed		04-Nov-2016	
	Burton-on-Trent, Staffordshire, DE15 0YZ					_						Report Number		EFS/168814M	
	Tel +44 (0) 1283 554400			Trowbridge GI					Table Number		1				
	Fax +44 (0) 1283 554422										·				

Customer and Site Details:	ESG Limited Bridgend: Tr	owbridge GI	
Sample Details:	BH02A ES 1 1.20	Job Number:	S16_8814M
LIMS ID Number:	CL1635317	Date Booked in:	27-Oct-16
QC Batch Number:	161236	Date Extracted:	31-Oct-16
Quantitation File:	Initial Calibration	Date Analysed:	01-Nov-16
Directory:	116PAH.MS17\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
_		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	4.43	0.10	96	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	5.80	0.44	100	UM
Anthracene	120-12-7	5.85	0.20	97	U
Fluoranthene	206-44-0	7.15	1.40	99	UM
Pyrene	129-00-0	7.44	1.13	97	UM
Benzo[a]anthracene	56-55-3	9.13	0.80	96	UM
Chrysene	218-01-9	9.18	0.56	99	UM
Benzo[b]fluoranthene	205-99-2	10.66	0.83	95	UM
Benzo[k]fluoranthene	207-08-9	10.70	0.32	95	UM
Benzo[a]pyrene	50-32-8	11.09	0.68	96	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.47	0.56	87	UM
Dibenzo[a,h]anthracene	53-70-3	12.49	0.12	95	UM
Benzo[g,h,i]perylene	191-24-2	12.78	0.44	96	UM
Coronene	191-07-1 *	14.98	0.12	1	N
Total (USEPA16) PAHs	-	-	< 7.86	-	N

* Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	116
Acenaphthene-d10	117
Phenanthrene-d10	125
Chrysene-d12	151
Perylene-d12	200

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	88
Terphenyl-d14	76

Concentrations are reported on a dry weight basis.

Customer and Site Details:	ESG Limited Bridgend: Tr	owbridge GI	
Sample Details:	BH03 ES 2 0.10	Job Number:	S16_8814M
LIMS ID Number:	CL1635318	Date Booked in:	27-Oct-16
QC Batch Number:	161236	Date Extracted:	31-Oct-16
Quantitation File:	Initial Calibration	Date Analysed:	01-Nov-16
Directory:	116PAH.MS17\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.09	-	UM
Acenaphthylene	208-96-8	4.43	0.18	97	U
Acenaphthene	83-32-9	-	< 0.09	-	UM
Fluorene	86-73-7	-	< 0.09	-	UM
Phenanthrene	85-01-8	5.80	1.16	99	UM
Anthracene	120-12-7	5.85	0.43	97	U
Fluoranthene	206-44-0	7.15	4.88	99	UM
Pyrene	129-00-0	7.44	3.84	96	UM
Benzo[a]anthracene	56-55-3	9.13	2.61	94	UM
Chrysene	218-01-9	9.18	2.26	100	UM
Benzo[b]fluoranthene	205-99-2	10.66	3.09	93	UM
Benzo[k]fluoranthene	207-08-9	10.70	1.08	94	UM
Benzo[a]pyrene	50-32-8	11.09	2.31	95	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.47	2.20	87	UM
Dibenzo[a,h]anthracene	53-70-3	12.50	0.42	82	UM
Benzo[g,h,i]perylene	191-24-2	12.78	1.67	96	UM
Coronene	191-07-1 *	14.98	0.40	73	Ν
Total (USEPA16) PAHs	-	-	< 26.42	-	N

* Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	116
Acenaphthene-d10	117
Phenanthrene-d10	125
Chrysene-d12	156
Perylene-d12	215

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	87
Terphenyl-d14	75

Concentrations are reported on a dry weight basis.

Customer and Site Details:	ESG Limited Bridgend: Trowbridge GI				
Sample Details:	BH03 ES 7 1.00	Job Number:	S16_8814M		
LIMS ID Number:	CL1635319	Date Booked in:	27-Oct-16		
QC Batch Number:	161236	Date Extracted:	31-Oct-16		
Quantitation File:	Initial Calibration	Date Analysed:	01-Nov-16		
Directory:	116PAH.MS17\	Matrix:	Soil		
Dilution:	1.0	Ext Method:	Ultrasonic		

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	3.37	0.14	93	UM
Acenaphthylene	208-96-8	4.43	0.88	99	U
Acenaphthene	83-32-9	4.55	0.21	94	UM
Fluorene	86-73-7	4.94	0.22	97	UM
Phenanthrene	85-01-8	5.80	3.08	99	UM
Anthracene	120-12-7	5.85	1.36	98	U
Fluoranthene	206-44-0	7.15	11.70	99	UM
Pyrene	129-00-0	7.44	9.75	95	UM
Benzo[a]anthracene	56-55-3	9.13	8.14	92	UM
Chrysene	218-01-9	9.18	5.82	99	UM
Benzo[b]fluoranthene	205-99-2	10.67	10.42	96	UM
Benzo[k]fluoranthene	207-08-9	10.70	10.70 3.60		UM
Benzo[a]pyrene	50-32-8	11.09	8.22	95	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.47	12.47 9.03		UM
Dibenzo[a,h]anthracene	53-70-3	12.50	2.02	91	UM
Benzo[g,h,i]perylene	191-24-2	12.78	6.82	95	UM
Coronene	191-07-1 *	14.99	1.81	1	N
Total (USEPA16) PAHs	-	-	81.35	-	N

* Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	119
Acenaphthene-d10	122
Phenanthrene-d10	132
Chrysene-d12	173
Perylene-d12	257

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	86
Terphenyl-d14	74

Concentrations are reported on a dry weight basis.

Customer and Site Details:	ESG Limited Bridgend: Trowbridge GI				
Sample Details:	BH03 ES 9 2.00	Job Number:	S16_8814M		
LIMS ID Number:	CL1635320	Date Booked in:	27-Oct-16		
QC Batch Number:	161236	Date Extracted:	31-Oct-16		
Quantitation File:	Initial Calibration	Date Analysed:	01-Nov-16		
Directory:	116PAH.MS17\	Matrix:	Soil		
Dilution:	1.0	Ext Method:	Ultrasonic		

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Coronene	191-07-1 *	-	< 0.10	-	N
Total (USEPA16) PAHs	-	-	< 1.67	-	N

* Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	118
Acenaphthene-d10	119
Phenanthrene-d10	128
Chrysene-d12	152
Perylene-d12	193

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	88
Terphenyl-d14	77

Concentrations are reported on a dry weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method: Accreditation code:				Matrix: Date Booked Date Extracte Date Analyse	in: ed: ed:	Soil 27-Oct-16 28-Oct-16 31-Oct-16			
		Concentration, (µg/kg)							
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180	
* CL1635317	BH02A ES 1 1.20	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	
* CL1635319	BH03 ES 7 1.00	<5.8	<5.8	<5.8	<5.8	9.4	10.6	8.4	
							-		
			-						

EFS/168814M Ver. 1Where individual results are flagged see report notes for status.Page 10 of 21Results corrected to dry weight at 105°C where appropriate, in accordance with the MCERTS standard.

EFS/168814M Ver. 1Where individual results are flagged see report notes for status.Page 11 of 21Results corrected to dry weight at 105°C where appropriate, in accordance with the MCERTS standard.

EFS/168814M Ver. 1Where individual results are flagged see report notes for status.Page 12 of 21Results corrected to dry weight at 105°C where appropriate, in accordance with the MCERTS standard.

EFS/168814M Ver. 1Where individual results are flagged see report notes for status.Page 13 of 21Results corrected to dry weight at 105°C where appropriate, in accordance with the MCERTS standard.

WASTE ACCEPTANCE CRITERIA TESTING **BSEN 12457/3**

Client ESC Limited Bridgend					Leaching Data		
				Weight of sample (kg)	0.296		
Contract Adam Dutt			Moisture content @ 105°C (% of Wet Weight) 2				
Contact Adam Pull			quivalent Weight based on drying at 105°C (kg) 0.225				
Site Trowbridge GI		Volume of water required to carry out 2:1 stage (litres)	0.379				
					Fraction of sample above 4 mm %	0.000	
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
DU024 ES 1 1 20		-1C 0014M CL/400504		04 Nov 40	Volume to undertake analysis (2:1 Stage) (litres)	0.300	
BH02A ES 1 1.20		ST0_0014W	CL/1035317	04-1100-16	Weight of Deionised water to carry out 8:1 stage (kg)	1.650	
lote: The >4mm fraction is crushed using a disc mill							

	Ine F Innii Inaeu						
				Landfill Waste Acceptance Criteria Limit Values			
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill	
Ν	WSLM59	Total Organic Carbon (% M/M)	2.32	3	5	6	
Ν	LOI450	Loss on Ignition (%)	5.6			10	
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.07	6			
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.035	1			
U	TPHFIDUS	Mineral Oil (mg/kg)	81	500			
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<7.98	100			
U	PHSOIL	pH (pH units)	8.4		>6		
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	4.45		To be evaluated	To be evaluated	

editation	od Code	Leachate Analysis	2:1 Leachate	8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste A	cceptance Criteria @ L/S 10 li	Limit Values for BSEN 12457/3 itre kg-1	
Accre	Metho		mg/l except ⁰⁰		mg/kg (mg/kg (dry weight)		mg/kg (dry weight)		
U	WSLM3	pH (pH units) ⁰⁰	7.4	7.8	Calculated data	not LIKAS Accredited				
U	WSLM2	Conductivity (µs/cm) ⁰⁰	607	266	Calculated data	not on to risciedited				
U	ICPMSW	Arsenic	0.002	0.001	0.004	0.01	0.5	2	25	
U	ICPWATVAR	Barium	0.14	0.15	0.28	1.5	20	100	300	
U	ICPMSW	Cadmium	< 0.0001	<0.0001	< 0.0002	<0.001	0.04	1	5	
U	ICPMSW	Chromium	< 0.001	< 0.001	<0.002	<0.01	0.5	10	70	
U	ICPMSW	Copper	0.004	0.006	0.008	0.06	2	50	100	
U	ICPMSW	Mercury	<0.0001	<0.0001	<0.0002	<0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.009	0.011	0.018	0.11	0.5	10	30	
U	ICPMSW	Nickel	0.001	0.001	0.002	0.01	0.4	10	40	
U	ICPMSW	Lead	0.003	0.003	0.006	0.03	0.5	10	50	
U	ICPMSW	Antimony	0.002	0.002	0.004	0.02	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	<0.001	<0.002	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	0.05	0.034	0.1	0.36	4	50	200	
U	KONENS	Chloride	7	1	14	18	800	15000	25000	
U	ISEF	Fluoride	0.6	0.7	1.2	7	10	150	500	
U	ICPWATVAR	Sulphate as SO4	158	42.4	316	578	1000	20000	50000	
Ν	WSLM27	Total Dissolved Solids	473	207	946	2425	4000	60000	100000	
U	SFAPI	Phenol Index	< 0.05	<0.05	<0.1	<0.5	1			
Ν	WSLM13	Dissolved Organic Carbon	7.3	6.6	14.6	67	500	800	1000	
Templa	emplate Ver. 1 Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.									

Template Ver. 1 Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

WASTE ACCEPTANCE CRITERIA TESTING BSEN 12457/3

Client	ESC Limited Bridgend				Leaching Data						
Client	ESG Limited Bridgerid				Weight of sample (kg)	0.262					
Contact	Adam Putt				Moisture content @ 105°C (% of Wet Weight)	13.4					
Contact	Audin Full				Equivalent Weight based on drying at 105°C (kg)	0.225					
					Volume of water required to carry out 2:1 stage (litres) 0.41						
Sile	r towbridge Gr				Fraction of sample above 4 mm %	35.000					
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000					
рц	2 5 5 7 1 00	o16 0014M	CL /1625210	04 Nov 16	Volume to undertake analysis (2:1 Stage) (litres)	0.300					
חס	Trowbridge GI Sample Description BH03 ES 7 1.00 mm fraction is crushed using a disc mill	ST0_0014W	CL/1035319	04-1107-16	Weight of Deionised water to carry out 8:1 stage (kg)	1.650					
Note: The >4mm fracti	on is crushed using a disc mill										

11010.												
				Landfill Waste Acceptance Criteria Limit Values								
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill						
Ν	WSLM59	Total Organic Carbon (% M/M)	5.13	3	5	6						
Ν	LOI450	Loss on Ignition (%)	6.8			10						
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6								
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.0452	1								
U	TPHFIDUS	Mineral Oil (mg/kg)	973	500								
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	83.16	100								
U	PHSOIL	pH (pH units)	8.5		>6							
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	6.38		To be evaluated	To be evaluated						

ditation	od Code	Leachate Analysis	2:1 Leachate 8:1 Leachate		Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/3 @ L/S 10 litre kg-1							
Accre	Metho		mg/l ex	cept ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)							
U	WSLM3	pH (pH units) ⁰⁰	7.5	7.6	Calculated data	not LIKAS Accredited								
U	WSLM2	Conductivity (µs/cm) ⁰⁰	281	138	Calculated data	The OTAG Accredited								
U	ICPMSW	Arsenic	0.002	0.005	0.004	0.05	0.5	2	25					
U	ICPWATVAR	Barium	0.2	0.11	0.4	1.2	20	100	300					
U	ICPMSW	Cadmium	<0.0001	0.0003	< 0.0002	<0.003	0.04	1	5					
U	ICPMSW	Chromium	0.003	0.008	0.006	0.07	0.5	10	70					
U	ICPMSW	Copper	0.015	0.027	0.03	0.25	2	50	100					
U	ICPMSW	Mercury	<0.0001	<0.0001	< 0.0002	<0.001	0.01	0.2	2					
U	ICPMSW	Molybdenum	0.008	0.004	0.016	0.05	0.5	10	30					
U	ICPMSW	Nickel	0.002	0.002	0.004	0.02	0.4	10	40					
U	ICPMSW	Lead	0.011	0.047	0.022	0.42	0.5	10	50					
U	ICPMSW	Antimony	0.008	0.005	0.016	0.05	0.06	0.7	5					
U	ICPMSW	Selenium	<0.001	<0.001	<0.002	<0.01	0.1	0.5	7					
U	ICPMSW	Zinc	0.036	0.099	0.072	0.91	4	50	200					
U	KONENS	Chloride	2	2	4	20	800	15000	25000					
U	ISEF	Fluoride	1.3	1.2	2.6	12	10	150	500					
U	ICPWATVAR	Sulphate as SO4	33.3	7.3	67	108	1000	20000	50000					
Ν	WSLM27	Total Dissolved Solids	219	107	438	1219	4000	60000	100000					
U	SFAPI	Phenol Index	< 0.05	<0.05	<0.1	<0.5	1							
Ν	WSLM13	Dissolved Organic Carbon	6	6.8	12	67	500	800	1000					

Template Ver. 1 Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

		. 4			ASBEST	OS ANALY	SIS RESUL		Detection limit of Method SCI-ASB-020 is 0.001%								
E	50		ESG Asbe	stos Limited (Certificate of	Analysis for A	sbestos in Soils	s, Sediments an	d Aggregates		Sampling has been carried	l out by a third party					
								1089									
Client:			ESG Enviro	nmental Cherr	nistry			Page 1 of 1									
Address:			Etwall Hous	e, Bretby Busi	ness Park, As	hby Road, Burto	on upon Trent	Report No:	ANO-0488-13535								
For the atten	tion of:		ESG Limite	d Bridgend				Report Date:	02/11/2016								
Site Address	:		Trowbridge	GI				Project Number:	S168814								
Sample Number	Sample Date	Sample Location & Matrix	Test Date	Total Sample Dry Weight (g)	Weight of <10mm Fraction (g)	Asbestos(g) in >10mm	Asbestos(g) in < 10mm	% Asbestos by weight of Total Dried Sample	Moisture Content		Asbestos Fibre Types Identified						
CL/1635317	11/10/16	BH02A 1.20 Soils	02/11/2016								Amosite, (Insulating	J Board)					
CL/1635318	29/09/16	BH03 0.10 Soils	02/11/2016								NAIIS						
CL/1635319	29/09/16	BH03 1.00 Soils	02/11/2016								Chrysotile, (Free Fibres	and Lagging)					
			1														
			ł			-	-										
Ka		NAACR = Not Analysed at	Clients Request			NAIIS = No Asbesto	s Identified in Samp	ble (Identification On	ly)	Name:	Stacey Innes	Authorised Signatory:					
Ke	ys	* visible to nat	ked eye			NADIS = No Asbes	tos Detected in Sam	nple (ID & Quant Only	/)	Position:	Lab Analyst	Instance and a second states in the two second and the second states in the two second and the second states in the second states and the sec					
The sample ana using ESG Asbe fibres. All fibres	lysis for the abo estos Limited in h are assumed, u	ve results was carried out using the proce- nouse method of transmitted/polarised ligh nless specified, to be amphiboles. All test	dures detailed in t microscopy ar s were carried o	n ESG Asbestos id centre stop dis out at ESG Asbes	Limited in house persion staining stos Laboratory,	method (SCI-ASB- (SCI-ASB-007), ba Ashbourne House,	020) based on EA sed on HSE's HSG Bretby Business Pa	document Quantifica 248. The analysis ark, Ashby Road, Bu	ation of asbestos ir of the < 10mm frac urton-upon-Trent, \$	n soil and associated ma ction for asbestos conte Staffordshire. DE15 0YZ	aterials - Draft 12 - February 20 nt only includes ACMs and fibre , UKAS Laboratory Number 10	 Fibre identification was carried out s and does not discriminate non-asbestos 89. 					

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **ESG Limited Bridgend** Site Trowbridge GI S168814M **Report No**

Consignment No S59694

Date Logged 27-Oct-2016

Report Due 03-Nov-2016																											
		MethodID	ANC	BTEXHSA		CALC_CR3	CEN Leachate					CustServ	GROHSA	ICPACIDS	ICPBOR	ICPMSS									KONECL	KONECR	LOI(%MM)
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (µg/kg)	Chromium (III)	CEN Leac(P)1	CEN Leac(P)2	CEN Leac(P)C	Fraction of non-crushable material %	Fraction of sample above 4 mm %	REPORT A	GRO (C6-C10)	SO4 (acid sol)	Boron (H20 Soluble)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	Chloride:(2:1)	Chromium vi:	L.O.I. % @ 450C
				✓	✓								✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
CL/1635317	BH02A 1.20	11/10/16		E	E								E														
CL/1635318	BH03 0.10	29/09/16		Е	E								E		E												
CL/1635319	BH03 1.00	29/09/16		Е	E								E		E												
CL/1635320	BH03 2.00	06/10/16		E	E								Е														

Note: For analysis where the scheduled turnaround is greater than the	Deviating Sample Key
holding time we will do our utmost to prioritise these samples. However, it	A The sample was received in an inappropriate container for this analysis
is possible that samples could become deviant whilst being processed in	B The sample was received without the correct preservation for this analysis
the laboratory.	C Headspace present in the sample container
	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
In this instance please contact the laboratory immediately should you	E Sample processing did not commence within the appropriate holding time
wish to discuss how you would like us to proceed. If you do not respond	F Sample processing did not commence within the appropriate handling time
within 24 hours, we will proceed as originally requested.	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	Analysis Subcontracted - Note: due date may vary

EFS/168814M Ver. 1 Where individual results are flagged see report notes for status. Page 17 of 2^{The} integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

ESG Limited Bridgend Customer Site Trowbridge GI S168814M **Report No**

Consignment No S59694

Date Logged 27-Oct-2016

	Report Due 03-Nov-2016																	
	MethodID MCerrts SFAPI										Sub002a	TMSS	TPHFIDUS	WSLM59				
ID Number	Description	Sampled	MCertS Analysis	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Cyanide(Complex)(AR)	Cyanide(Free) (AR)	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos Screen	Tot.Moisture @ 105C	TPH Band (>C10-C16)	TPH Band (>C10-C40)	TPH Band (>C16-C21)	TPH Band (>C21-C35)	TPH by GCFID (AR)	Total Organic Carbon
						✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
CL/1635317	BH02A 1.20	11/10/16				E	E	E	E	Е								
CL/1635318	BH03 0.10	29/09/16		E		Е	E	E	E	Е		E	E		Е	Е	E	
CL/1635319	BH03 1.00	29/09/16		E		Е	E	E	E	Е		E	E	E	Е	Е	E	
CL/1635320	BH03 2.00	06/10/16		E		Е	Е	E	Е	Е			Е		Е	Е	E	

Deviating Sample Key Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it The sample was received in an inappropriate container for this analysis А is possible that samples could become deviant whilst being processed in В The sample was received without the correct preservation for this analysis С the laboratory. Headspace present in the sample container D The sampling date was not supplied so holding time may be compromised - applicable to all analysis Е In this instance please contact the laboratory immediately should you Sample processing did not commence within the appropriate holding time wish to discuss how you would like us to proceed. If you do not respond Sample processing did not commence within the appropriate handling time within 24 hours, we will proceed as originally requested. Requested Analysis Key Analysis Required Analysis dependant upon trigger result - Note: due date may be affected if triggered No analysis scheduled Analysis Subcontracted - Note: due date may vary

EFS/168814M Ver. 1 Where individual results are flagged see report notes for status. Page 18 of 21 he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.
Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes
			(BTEX) by Headspace GCFID
Soil	CALC_CR3	Oven Dried	Calculated from the difference between Total Chromium and
		@ < 35°C	Hexavalent Chromium
Soil	CEN Leachate	As Received	Determination of Oversize and Inert Material Content prior to
			leaching sample
Soil	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace GCFID
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPBOR	Oven Dried	Determination of Boron in soil samples by hot water extraction
		@ < 35°C	followed by ICPOES detection
Soil	ICPMSS	Oven Dried	Determination of Metals in Marine Sediments and Soil samples by
		@ < 35°C	aqua regia digestion followed by ICPMS detection
Soil	KONECL	Oven Dried	Determination of Chloride in Soil using water extraction at the
		@ < 35°C	stated water:soil ratio, discrete colorimetric detection
Soil	KONECR	Oven Dried	Determination of Chromium vi in soil samples by water extraction
		@ < 35°C	followed by colorimetric detection
Soil	LOI(%MM)	Oven Dried	Determination of loss on ignition for soil samples at specified
		@ < 35°C	temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB)
			congeners/aroclors by hexane/acetone extraction followed by
			GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on
			oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection.
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid
		@ < 35°C	digestion followed by high temperature combustion and IR
			detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l **NiI**: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

 $\ensuremath{\text{Req}}$ Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client :	ESG Limited Bridgend
Site :	Trowbridge GI
Report Number :	S16_8814

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1635317	BH02A ES 1 1.20	Brown Stone CLAY
CL/1635318	BH03 ES 2 0.10	Brown Stone SILT
CL/1635319	BH03 ES 7 1.00	Brown Stone SILT
CL/1635320	BH03 ES 9 2.00	Brown CLAY

Our Ref: EFS/168932M (Ver. 1) Your Ref: H6100-16

November 7, 2016

Environmental Chemistry ESG Brethy Business Park

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

Adam Putt ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

For the attention of Adam Putt

Dear Adam Putt

Sample Analysis - Trowbridge GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 13/12/16 when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Laboratory and Analytical) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG JACOUDOVINE

J Colbourne <u>Project Co-ordinator</u> 01283 554547

TEST REPORT

Report No. EFS/168932M (Ver. 1)

ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

Site: Trowbridge GI

The 1 sample described in this report were registered for analysis by ESG on 01-Nov-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 07-Nov-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS or MCERTS accredited. Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 4) Table of PAH (MS-SIM) (80) Results (Page 5) GC-FID Chromatograms (Page 6) Analytical and Deviating Sample Overview (Pages 7 to 8) Table of Method Descriptions (Page 9) Table of Report Notes (Page 10) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG : Tim Barnes

Emes

Operations Director Energy & Waste Services Date of Issue: 07-Nov-2016

Accreditation Codes: **N** (Not Accredited), **U** (UKAS), **UM** (UKAS & MCERTS) Tests marked '^' have been subcontracted to another laboratory. (NVM) - denotes the sample matrix is dissimilar to matrices upon which the MCERTS validation was based, and is therefore not accredited for MCERTS. All results are reported on a dry weight basis at 105°C unless otherwise stated. (except QC samples) ESG accepts no responsibility for any sampling not carried out by our personnel.

Units Method Codes Method Reporting Limits			mg/kg GROHSA	mg/kg ICPACIDS	mg/kg ICPBOR	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	pH Units PHSOIL	mg/kg SFAPI	mg/kg SFAPI	mg/kg SFAPI
	Method Report	tion Code:	0.2 UM	20 LIM	0.5 UM	0.3 UM	0.2 UM	1.2 UM	1.6 UM	0.7 UM	0.5 UM	2 UM	0.5 UM	16 LIM	LIM	0.5 N	0.5 UM	0.5 UM
LAB ID Number CL/	Client Sample Description	Sample Date	GRO (C6-C10)	SO4 (acid sol)	Boron (H20 Soluble)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	pH units (AR)	Cyanide(Complex)(AR)	Cyanide(Free) (AR)	Cyanide(Total) (AR)
1635754	BH01 ES 11 2.10	18-Oct-16	<0.2	637	2.0	5.9	<0.2	28.0	12.3	8.7	<0.5	24.3	<0.5	78.9	7.9	<0.6	<0.6	<0.6
	ESG 🔄	Client N Contact	ame	ESG Lii Adam Put	mited Br	idgend						Sam	ple Ana	lysis				
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422	Date Printed 07-Nov-2016 Report Number EFS/168932M Table Number 1																

Units :		mg/kg	%	mg/kg	mg/kg	.g mg/kg mg/kg mg/kg mg/l mg/kg						µg/kg	µg/kg	µg/kg	µg/kg				
	Meth	od Codes :	SFAPI	TMSS	TPHFIDUS	TPHFIDUS	TPHFIDUS	TPHFIDUS	CALC_CR3	KONECL	KONECR	WSLM59	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	
	Method Reporti	ng Limits :	0.5	0.1	10	10	10	10	0.5	1	0.1	0.04	10	10	10	20	30	20	
	Accredita	tion Code:	U	U	N	U	N	UM	N	N	N	N	UM	UM	UM	U	UM	UM	
LAB ID Number CL/	Client Sample Description	Sample Date	Phenol Index.(AR)	Tot.Moisture @ 105C	TPH Band (>C10-C16)	TPH Band (>C16-C21)	TPH Band (>C21-C35)	TPH by GCFID (AR)	Chromium (III)	Chloride:(2:1)	Chromium vi:	Total Organic Carbon	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	
1635754	BH01 ES 11 2.10	18-Oct-16	<0.6	15.7	<12	<12	<12	13	<28.0	29	<0.1	0.27	<12	<12	<12	<24	<36	<24	
			Client N	ame	ESG Li	mited Bri	idgend						Sam	ple Ana	lysis				
		Contact	Contact Adam Putt										T						
Bretby Business Park, Ashby Road													Date Printed 07-Nov-201						
Burton-on-Trent, Staffordshire, DE15 0YZ			Trowbridge GI									Report Number EFS/168932M							
Tel +44 (0) 1283 554400			I OWDINGE OI									Table Number1							
	Fax +44 (0) 1283 554422																		

		Units ·	ua/ka	ma/ka									
	Metho	onits :		PAHMSUS									
	Method Reportir	na limits ·	10										
	Accreditat	tion Code	LIM										
	Noorballa		0 M										
LAB ID Number CL/	Client Sample Description	Sample Date	o Xylene	PAH (17) by GCMS									
1635754	BH01 ES 11 2.10	18-Oct-16	<12	Req									
				1			1	1	1				
	ESG 🔗	Client N Contact	ame	ESG Lin	nited Br i t	idgend		Sam	ole Ana	llysis			
	Bretby Business Park, Asbby Road									Date Printed	07-Nov-2016		
	Burton-on-Trent, Staffordshire, DE15 0YZ					-			Report Number				
Tel +44 (0) 1283 554400						Irov	vbridge Gl	Table Number		1			
	Fax +44 (0) 1283 554422						-						

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details:	ESG Limited Bridgend: Tr	owbridge GI	
Sample Details:	BH01 ES 11 2.10	Job Number:	S16_8932M
LIMS ID Number:	CL1635754	Date Booked in:	01-Nov-16
QC Batch Number:	161254	Date Extracted:	03-Nov-16
Quantitation File:	Initial Calibration	Date Analysed:	04-Nov-16
Directory:	216PAH.MS17\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.09	-	UM
Acenaphthylene	208-96-8	-	< 0.09	-	U
Acenaphthene	83-32-9	-	< 0.09	-	UM
Fluorene	86-73-7	-	< 0.09	-	UM
Phenanthrene	85-01-8	-	< 0.09	-	UM
Anthracene	120-12-7	-	< 0.09	-	U
Fluoranthene	206-44-0	-	< 0.09	-	UM
Pyrene	129-00-0	-	< 0.09	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.09	-	UM
Chrysene	218-01-9	-	< 0.09	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.09	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.09	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.09	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.09	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.09	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.09	-	UM
Coronene	191-07-1 *	-	< 0.09	-	N
Total (USEPA16) PAHs	-	-	< 1.52	-	N

* Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	74
Acenaphthene-d10	80
Phenanthrene-d10	83
Chrysene-d12	97
Perylene-d12	112

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	92

Concentrations are reported on a dry weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Petroleum Hydrocarbons (C8 to C40) by GC/FID

EFS/168932M Ver. 1Where individual results are flagged see report notes for status.Page 6 of 10Results corrected to dry weight at 105°C where appropriate, in accordance with the MCERTS standard.

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer	ESG Limited Bridgend						Con	signm	nent N	lo S6	0022																	
Site Report No	Trowbridge GI S168932M						Date	e Logo	ged 0	1-Nov	/-2016	6																
-							Rep	ort Du	Je 07-	Nov-2	2016																	
		MethodID	BTEXHSA		CALC_CR3	CustServ	GROHSA	ICPACIDS	ICPBOR	ICPMSS									KONECL	KONECR	MCertS	PAHMSUS	PHSOIL	SFAPI				
ID Number	Description	Sampled	BTEX-HSA + MTBE analysis	MTBE (µg/kg)	Chromium (III)	REPORT A	GRO (C6-C10)	SO4 (acid sol)	Boron (H20 Soluble)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	Chloride:(2:1)	Chromium vi:	MCertS Analysis	PAH (17) by GCMS	pH units (AR)	Cyanide(Complex)(AR)	Cyanide(Free) (AR)	Cyanide(Total) (AR)	Phenol Index.(AR)	
			✓	✓			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓				✓	✓	✓	✓	✓	✓	
CL/1635754	BH01 2.10	18/10/16	Ε	Ε			Ε																Ε	Ε	Ε	Ε	Ε	l

Note: For analysis where the scheduled turnaround is greater than the	De	eviating Sample Key
holding time we will do our utmost to prioritise these samples. However, it	A	The sample was received in an inappropriate container for this analysis
is possible that samples could become deviant whilst being processed in	в	The sample was received without the correct preservation for this analysis
the laboratory.	С	Headspace present in the sample container
	D	The sampling date was not supplied so holding time may be compromised - applicable to all analysis
In this instance please contact the laboratory immediately should you	E	Sample processing did not commence within the appropriate holding time
wish to discuss how you would like us to proceed. If you do not respond	F	Sample processing did not commence within the appropriate handling time
within 24 hours, we will proceed as originally requested.	Re	quested Analysis Key
		Analysis Required
		Analysis dependant upon trigger result - Note: due date may be affected if triggered
		No analysis scheduled
	^	Analysis Subcontracted - Note: due date may vary

EFS/168932M Ver. 1 Where individual results are flagged see report notes for status. Page 7 of 10^{The} integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

S168932M

ESG Limited Bridgend Customer Site Trowbridge GI S168932M **Report No**

Consignment No S60022 Date Logged 01-Nov-2016

Report Due 07-Nov-2016

		MethodID	TMSS	TPHFIDUS				WSLM59	
ID Number	Description	Sampled	Tot.Moisture @ 105C	TPH Band (>C10-C16)	TPH Band (>C16-C21)	TPH Band (>C21-C35)	TPH by GCFID (AR)	Total Organic Carbon	
			✓	✓	✓	✓	✓		
CL/1635754	BH01 2.10	18/10/16							

Note: For analysis where the scheduled turnaround is greater than the		Devi	ating Sample Key
holding time we will do our utmost to prioritise these samples. However, it		A	The sample was received in an inappropriate container for this analysis
is possible that samples could become deviant whilst being processed in		В	The sample was received without the correct preservation for this analysis
the laboratory.		С	Headspace present in the sample container
		D	The sampling date was not supplied so holding time may be compromised - applicable to all analysis
In this instance please contact the laboratory immediately should you		E	Sample processing did not commence within the appropriate holding time
wish to discuss how you would like us to proceed. If you do not respond		F	Sample processing did not commence within the appropriate handling time
within 24 hours, we will proceed as originally requested.	[Requ	lested Analysis Key
	ſ		Analysis Required
			Analysis dependant upon trigger result - Note: due date may be affected if triggered
	1		No analysis scheduled
		^	Analysis Subcontracted - Note: due date may vary

EFS/168932M Ver. 1 Where individual results are flagged see report notes for status. Page 8 of 10^{The} integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	CALC_CR3	Oven Dried @ < 35°C	Calculated from the difference between Total Chromium and Hexavalent Chromium
Soil	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons (GRO) by Headspace GCFID
Soil	ICPACIDS	Oven Dried @ < 35°C	Determination of Total Sulphate in soil samples by Hydrochloric Acid extraction followed by ICPOES detection
Soil	ICPBOR	Oven Dried @ < 35°C	Determination of Boron in soil samples by hot water extraction followed by ICPOES detection
Soil	ICPMSS	Oven Dried @ < 35°C	Determination of Metals in Marine Sediments and Soil samples by aqua regia digestion followed by ICPMS detection
Soil	KONECL	Oven Dried @ < 35°C	Determination of Chloride in Soil using water extraction at the stated water:soil ratio, discrete colorimetric detection
Soil	KONECR	Oven Dried @ < 35°C	Determination of Chromium vi in soil samples by water extraction followed by colorimetric detection
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l **NiI**: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

 $\ensuremath{\text{Req}}$ Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client :	ESG Limited Bridgend
Site :	Trowbridge GI
Report Number :	S16_8932

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1635754	BH01 ES 11 2.10	Grey/Brown CLAY

Our Ref: EXR/229287 (Ver. 1) Your Ref: H6100-16

November 2, 2016

For the attention of Adam Putt

Dear Adam Putt

CEN Leachate 10:1 - Trowbridge GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG JACOUDOVINE

J Colbourne <u>Project Co-ordinator</u> 01283 554547

Environmental Chemistry ESG Bretby Business Park Ashby Road Burton-on-Trent

Telephone: 01283 554400 Facsimile: 01283 554422

Staffordshire

DE15 0YZ

TEST REPORT

Report No. EXR/229287 (Ver. 1)

ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

Site: Trowbridge GI

The 1 sample described in this report were registered for analysis by ESG on 27-Oct-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 02-Nov-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3) Table of PAH (MS-SIM) (10) Results (Page 4) GC-FID Chromatograms (Page 5) Analytical and Deviating Sample Overview (Pages 6 to 7) Table of Additional Report Notes (Page 8) Table of Method Descriptions (Page 9) Table of Report Notes (Page 10) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG : Tim Barnes

Komes

Operations Director Energy & Waste Services Date of Issue: 02-Nov-2016

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. ESG accepts no responsibility for any sampling not carried out by our personnel.

	Meth	Units :	pH units	mg/l	mg/l	mg/l	mg/l	µg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l SEAPI
	Method Reporting Limits		WOLNIS	3	0.001	0.001	0.0001	1 A INOW	0.001	0.001	0.002	0.001	0.01	0.0001	0.001	0.01	0.01	0.02
	UKAS A	ccredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Total Sulphur as SO4 (Dissolved) a	Nickel as Ni (Dissolved)	Chromium as Cr (Dissolved)	Cadmium as Cd (Dissolved)	PAH GC-MS (16) o	Copper as Cu (Dissolved)	Lead as Pb (Dissolved)	Zinc as Zn (Dissolved)	Arsenic as As (Dissolved)	Boron as B (Dissolved) a	Mercury as Hg (Dissolved)	Selenium as Se (Dissolved)	Ammoniacal Nitrogen as NH4	Ammoniacal Nitrogen as N	Cyanide (Free) as CN
1744016	BH04B ES 20 1.20	27-Oct-16	7.8	8.8	<0.001	0.002	<0.0001	Req §	0.004	0.002	0.016	0.004	0.03	<0.0001	<0.001	0.01	<0.01	<0.02
	ESG 🔗		Client Name ESG Limited Bridgend CEN Leachate							te 10:1								
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422			Date Printed 02-Nov-2016 Report Number EXR/229287 Table Number 1														

	Mathad	Units :	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/ PTEVUSA	µg/l	
	Method Reporting	Limits :	0.02	0.05	TETIEID	0.01	0.01	0.01	0.1	5	5	5	10	15	10	5	
	UKAS Accr	redited :	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
LAB ID Number EX/	Client Sample Description	Sample Date	Cyanide (Total) as CN	Phenol Index as C6H5OH	TPH Band >C10-C16	TPH Band >C16-C21	TPH Band (≻C21-C35)	ТРН GC	GRO >C6->C10	Ethyl Benzene	Benzene	Toluene	MTBE	Xylenes	m/p Xylenes	o Xylene	
1744016	BH04B ES 20 1.20 2	27-Oct-16	<0.02	<0.05	<0.01	<0.01	0.02	0.03	<0.1	<5	<5	<5	<10	<15	<10	<5	
	ESG Limited Bridgend CEN Leachate 10:1																
	Brethy Business Park Ashby Road		Contact		Auam Pu							Date Priv	nted		02	-Nov-2016	
	Burton-on-Trent, Staffordshire, DE15 0YZ					_	.					Report N	lumbor		52 F)	(R/229287	
	Tel +44 (0) 1283 554400					Trow	vbridg	ge Gl					imher		۲,	1	
	Fax +44 (0) 1283 554422						-	-								· ·	

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: Sample Details: LIMS ID Number: QC Batch Number: Quantitation File: Directory: Dilution: ESG Limited Bridgend: Trowbridge GIBH04B ES 20 1.20Job NumbEX1744016Date Book160692Date ExtraInitial CalibrationDate Analy116PAH.MS10\Matrix:1.0Ext Metho

wbridge GIJob Number:W22_9287Date Booked in:27-Oct-16Date Extracted:01-Nov-16Date Analysed:02-Nov-16Matrix:WaterExt Method:Bottle

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	3.05	0.096	87
Acenaphthylene	208-96-8	-	< 0.010	-
Acenaphthene	83-32-9	4.21	0.021	88
Fluorene	86-73-7	4.56	0.015	89
Phenanthrene	85-01-8	5.35	0.070	97
Anthracene	120-12-7	5.40	0.014	95
Fluoranthene	206-44-0	6.63	0.052	94
Pyrene	129-00-0	6.91	0.043	95
Benzo[a]anthracene	56-55-3	8.56	0.030	87
Chrysene	218-01-9	8.60	0.018	91
Benzo[b]fluoranthene	205-99-2	10.06	0.022	78
Benzo[k]fluoranthene	207-08-9	-	< 0.010	-
Benzo[a]pyrene	50-32-8	10.48	0.013	91
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.010	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.010	-
Total (USEPA16) PAHs	-	-	< 0.444	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	106
Acenaphthene-d10	109
Phenanthrene-d10	109
Chrysene-d12	108
Perylene-d12	124

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	80
Terphenyl-d14	70

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Petroleum Hydrocarbons (C8 to C40) by GC/FID

CEN Leachate 10:1 Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W229287

CustomerESG Limited BridgendSiteTrowbridge GIReport NoW229287

Consignment No S60148 Date Logged 27-Oct-2016

Report Due 03-Nov-2016 BTEXHSA CALCNH4 CUSTSERV ICPMSW KONENS PAHMSW GROHS eachPre MethodID WATV **Ammoniacal Nitrogen as NH4 Calc** Total Sulphur as SO4 (Diss) VAR Chromium as Cr MS Cadmium as Cd Selenium as Se MS (Dissolved) Mercury as Hg MS (Dissolved) Copper as Cu MS (Dissolved) Arsenic as As MS (Dissolved) Boron Ammoniacal Nitrogen (Kone) Nickel as Ni MS (Dissolved) **BTEX-HSA + MTBE analysis** Lead as Pb MS (Dissolved) Zinc as Zn MS (Dissolved) Report A (CEN)C PAH GC-MS (16) GR0 >C6->C10 as B (Dissolved) VAR Leachate Prep Sampled ID Number Description Matrix Type MS (Dissolved) (Dissolved) 1 1 1 1 1 1 1 1 < ✓ < 1 1 \checkmark BH04B 1.20 27/10/16 EX/1744016 Laboratory Produced Leachate

Note: For analysis where the scheduled turnaround is greater than the holding time we will do	Deviating Sample Key
our utmost to prioritise these samples. However, it is possible that samples could become	A The sample was received in an inappropriate container for this analysis
deviant whilst being processed in the laboratory.	B The sample was received without the correct preservation for this analysis
	C Headspace present in the sample container
In this instance please contact the laboratory immediately should you wish to discuss how you	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
would like us to proceed. If you do not respond within 24 hours, we will proceed as originally	E Sample processing did not commence within the appropriate holding time
requested.	F Sample processing did not commence within the appropriate handling time
	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled

Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

CEN Leachate 10:1 Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

CustomerESG Limited BridgendSiteTrowbridge GIReport NoW229287

Consignment No S60148

Date Logged 27-Oct-2016

							Repo	ort Du	e 03-	Nov-2	2016	
			MethodID	SFAPI			TPHFID				WSLM3	
ID Number	Description	Matrix Type	Sampled	Cyanide (Free) as CN SFA	Cyanide (Total) as CN SFA	Phenol Index SFA	TPH Band (>C10-C16)	TPH Band (>C16-C21)	TPH Band (>C21-C35)	TPH GC	pH units	
				✓	✓	✓	✓	✓	✓	✓	✓]
EX/1744016	BH04B 1.20	Laboratory Produced Leachate	27/10/16									

Note: For analysis where the scheduled turnaround is greater than the holding t	time we will do Deviating Sample Key
our utmost to prioritise these samples. However, it is possible that samples cou	A The sample was received in an inappropriate container for this analysis
deviant whilst being processed in the laboratory.	B The sample was received without the correct preservation for this analysis
	C Headspace present in the sample container
In this instance please contact the laboratory immediately should you wish to di	iscuss how you D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
would like us to proceed. If you do not respond within 24 hours, we will proceed	d as originally E Sample processing did not commence within the appropriate holding time
requested.	F Sample processing did not commence within the appropriate handling time
	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Report Number : W/EXR/229287

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
TPHFID	EX1744016	The Secondary process control result associated with this Test has not wholly met the requirements of the Laboratory Quality Management System (QMS). All other Process controls (including the Primary Process control) are within specification. The Laboratory believes that the validity of the data has not been affected but in line with our QMS policy we have removed accreditation from the affected bandings (>c10->c12). These circumstances should be taken into consideration when utilising the data.

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	BTEXHSA	As Received	Benzene, Toluene, Ethylbenzene, & Xylenes by headspace
			extraction GCFID quantitation
Water	CALCNH4	As Received	Ammoniacal Nitrogen expressed as NH4, calculated from
			Ammoniacal Nitrogen expressed as N
Water	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace FID
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	PAHMSW	As Received	Determination of PolyAromatic Hydrocarbons in water by pentane
			extraction GCMS quantitation
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by
			GCFID
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l NiI: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

 $\ensuremath{\text{Req}}$ Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client :	ESG Limited Bridgend
Site :	Trowbridge GI
Report Number :	W22_9287

Lab ID Number	Client ID	Description
EX/1744016	BH04B ES 20 1.20	Laboratory Produced Leachate

Our Ref: EXR/229296 (Ver. 1) Your Ref: H6100-16

November 4, 2016

For the attention of Adam Putt

Dear Adam Putt

CEN Leachate 10:1 - Trowbridge GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG JACOUDOVINE

J Colbourne Project Co-ordinator 01283 554547

Environmental Chemistry ESG Bretby Business Park Ashby Road Burton-on-Trent

DE15 0YZ Telephone: 01283 554400 Facsimile: 01283 554422

Staffordshire

TEST REPORT

Report No. EXR/229296 (Ver. 1)

ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

Site: Trowbridge GI

The 1 sample described in this report were registered for analysis by ESG on 27-Oct-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 04-Nov-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3) Table of PAH (MS-SIM) (10) Results (Page 4) GC-FID Chromatograms (Page 5) Analytical and Deviating Sample Overview (Pages 6 to 7) Table of Additional Report Notes (Page 8) Table of Method Descriptions (Page 9) Table of Report Notes (Page 10) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG : Tim Barnes

Komes

Operations Director Energy & Waste Services Date of Issue: 04-Nov-2016

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. ESG accepts no responsibility for any sampling not carried out by our personnel.

	Units Method Codes		pH units	mg/l	mg/l	mg/l	mg/l	µg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l		mg/l	mg/l
	Method Reporti	na Limits :	VV SLIVIS	3	0.001	0.001	0.0001	PARINOV	0.001	0.001	0.002	0.001	0.01	0.0001	0.001		0.01	0.02
	UKAS A	ccredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Total Sulphur as SO4 (Dissolved) a	Nickel as Ni (Dissolved)	Chromium as Cr (Dissolved)	Cadmium as Cd (Dissolved)	PAH GC-MS (16) o	Copper as Cu (Dissolved)	Lead as Pb (Dissolved)	Zinc as Zn (Dissolved)	Arsenic as As (Dissolved)	Boron as B (Dissolved) a	Mercury as Hg (Dissolved)	Selenium as Se (Dissolved)	Ammoniacal Nitrogen as NH4	Ammoniacal Nitrogen as N	Cyanide (Free) as CN
1744047	BH03 ES 2 0.10	27-Oct-16	7.5	6.1	0.002	<0.001	<0.0001	Req §	0.024	0.006	0.05	0.004	0.04	<0.0001	<0.001	<0.01	<0.01	<0.02
	ESG 🔗		Client N Contact	lame t	ESG Li Adam Pu	mited Bri	idgend							_eachat	te 10:1			
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422	Ashby Road ardshire, DE15 0YZ 1400 Trowbridge GI					Date Printed04-Nov-2016Report NumberEXR/229296Table Number1											

	Unit Method Code		mg/l SEAPI	mg/l SEAPI	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l BTEXHSA	µg/l BTEXHSA	μg/l ΒΤΕΧΗSΔ	µg/l BTEXHSA	µg/l BTEXHSA	µg/ btexhsa	µg/l BTEXHSA	
	Method Reporting L	imits :	0.02	0.05	TTTTLE	0.01	0.01	0.01	0.1	5	5	5	10	15	10	5	
	UKAS Accre	edited :	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
LAB ID Number EX/	Client Sample Description	Sample Date	Cyanide (Total) as CN	Phenol Index as C6H5OH	TPH Band >C10-C16	TPH Band >C16-C21	TPH Band (>C21-C35)	TPH GC	GRO >C6->C10	Ethyl Benzene	Benzene	Toluene	MTBE	Xylenes	m/p Xylenes	o Xylene	
1744047	BH03 ES 2 0.10 27	'-Oct-16	<0.02	<0.05	<0.01	0.01	0.03	0.06	<0.1	<5	<5	<5	<10	<165	<10	<5	
	ESG 🔄		Client N Contact	ame	ESG Li	mited Bri	idgend							.eachat	e 10:1		
	Bretby Business Park, Ashby Road									Date Pri	nted		04	-Nov-2016			
	Burton-on-Trent, Staffordshire, DE15 0YZ			Trowbridge Gl					Report Number EXR/229296								
	Tel +44 (0) 1283 554400					1100	, nuí					Table Number 1			1		
	Fax +44 (0) 1283 554422																

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: Sample Details: LIMS ID Number: QC Batch Number: Quantitation File: Directory: Dilution: ESG Limited Bridgend: Trowbridge GIBH03 ES 2 0.10Job NumbEX1744047Date Book160692Date ExtraInitial CalibrationDate Analy116PAH.MS10\Matrix:1.0Ext Metho

Wbridge GIJob Number:W22_9296Date Booked in:27-Oct-16Date Extracted:01-Nov-16Date Analysed:01-Nov-16Matrix:WaterExt Method:Bottle

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	3.05	0.236	96
Acenaphthylene	208-96-8	4.09	0.026	М
Acenaphthene	83-32-9	4.21	0.765	97
Fluorene	86-73-7	4.56	0.368	98
Phenanthrene	85-01-8	5.35	0.738	99
Anthracene	120-12-7	5.40	0.161	98
Fluoranthene	206-44-0	6.63	0.228	94
Pyrene	129-00-0	6.91	0.161	96
Benzo[a]anthracene	56-55-3	8.55	0.050	98
Chrysene	218-01-9	8.60	0.046	97
Benzo[b]fluoranthene	205-99-2	10.06	0.043	75
Benzo[k]fluoranthene	207-08-9	10.10	0.019	76
Benzo[a]pyrene	50-32-8	10.48	0.032	95
Indeno[1,2,3-cd]pyrene	193-39-5	11.85	0.026	76
Dibenzo[a,h]anthracene	53-70-3	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2	12.13	0.024	89
Total (USEPA16) PAHs	-	-	< 2.933	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	90
Acenaphthene-d10	94
Phenanthrene-d10	94
Chrysene-d12	89
Perylene-d12	102

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	78
Terphenyl-d14	67

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Petroleum Hydrocarbons (C8 to C40) by GC/FID

CEN Leachate 10:1 Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W229296

CustomerESG Limited BridgendSiteTrowbridge GIReport NoW229296

Consignment No S59694

Date Logged 27-Oct-2016

							Repo	ort Du	e 03-	Nov-2	2016										
			MethodID	BTEXHSA	CALCNH4	CUSTSERV	GROHSA	ICPMSW									ICPWATVAR		KONENS	LeachPrep	PAHMSW
ID Number	Description	Matrix Type	Sampled	BTEX-HSA + MTBE analysis	Ammoniacal Nitrogen as NH4 Calc	Report A (CEN)C	GRO >C6->C10	Nickel as Ni MS (Dissolved)	Chromium as Cr MS (Dissolved)	Cadmium as Cd MS (Dissolved)	Copper as Cu MS (Dissolved)	Lead as Pb MS (Dissolved)	Zinc as Zn MS (Dissolved)	Arsenic as As MS (Dissolved)	Mercury as Hg MS (Dissolved)	Selenium as Se MS (Dissolved)	Total Sulphur as SO4 (Diss) VAR	Boron as B (Dissolved) VAR	Ammoniacal Nitrogen (Kone)	Leachate Prep	PAH GC-MS (16)
	-	-		✓	✓			✓	✓	✓	✓	✓	✓	✓	✓	✓	1	~	✓		
EX/1744047	BH03 0.10	Laboratory Produced Leachate	27/10/16																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do	Deviating Sample Key					
our utmost to prioritise these samples. However, it is possible that samples could become	А	The sample was received in an inappropriate container for this analysis				
deviant whilst being processed in the laboratory.	В	The sample was received without the correct preservation for this analysis				
	С	Headspace present in the sample container				
In this instance please contact the laboratory immediately should you wish to discuss how you	D	The sampling date was not supplied so holding time may be compromised - applicable to all analysis				
would like us to proceed. If you do not respond within 24 hours, we will proceed as originally	Е	Sample processing did not commence within the appropriate holding time				
requested.	F	Sample processing did not commence within the appropriate handling time				

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

CEN Leachate 10:1 Analysis

CustomerESG Limited BridgendSiteTrowbridge GIReport NoW229296

Consignment No S59694

Date Logged 27-Oct-2016

							Repo	ort Du	e 03-	Nov-2	016
			MethodID	SFAPI			TPHFID				WSLM3
ID Number	Description	Matrix Type	Sampled	Cyanide (Free) as CN SFA	Cyanide (Total) as CN SFA	Phenol Index SFA	TPH Band (>C10-C16)	TPH Band (>C16-C21)	TPH Band (>C21-C35)	TPH GC	pH units
	+	•		✓	✓	✓	✓	✓	✓	✓	✓
EX/1744047	BH03 0.10	Laboratory Produced Leachate	27/10/16								

Note: For analysis where the scheduled turnaround is greater than the holding time we will do	Deviating Sample Key
our utmost to prioritise these samples. However, it is possible that samples could become	A The sample was received in an inappropriate container for this analysis
deviant whilst being processed in the laboratory.	B The sample was received without the correct preservation for this analysis
	C Headspace present in the sample container
In this instance please contact the laboratory immediately should you wish to discuss how you	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
would like us to proceed. If you do not respond within 24 hours, we will proceed as originally	E Sample processing did not commence within the appropriate holding time
requested.	F Sample processing did not commence within the appropriate handling time
	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	A Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.
Report Number : W/EXR/229296

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
TPHFID	EX1744047	The Secondary process control result associated with this Test has not wholly met the requirements of the Laboratory Quality Management System (QMS). All other Process controls (including the Primary Process control) are within specification. The Laboratory believes that the validity of the data has not been affected but in line with our QMS policy we have removed accreditation from the affected bandings (>c10->c12). These circumstances should be taken into consideration when utilising the data.

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	BTEXHSA	As Received	Benzene, Toluene, Ethylbenzene, & Xylenes by headspace
			extraction GCFID quantitation
Water	CALCNH4	As Received	Ammoniacal Nitrogen expressed as NH4, calculated from
			Ammoniacal Nitrogen expressed as N
Water	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace FID
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	PAHMSW	As Received	Determination of PolyAromatic Hydrocarbons in water by pentane
			extraction GCMS quantitation
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by
			GCFID
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l NiI: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

 $\ensuremath{\text{Req}}$ Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client :	ESG Limited Bridgend
Site :	Trowbridge GI
Report Number :	W22_9296

Lab ID Number	Client ID	Description
EX/1744047	BH03 ES 2 0.10	Laboratory Produced Leachate

Our Ref: EXR/235169 (Ver. 1) Your Ref: H6100-16

February 15, 2017

For the attention of Joss Evans

Dear Joss Evans

Sample Analysis - H6100-16 Trowbridge

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG Spercer .

K Spencer <u>Project Co-ordinator</u> 01283 554463

Environmental Chemistry ESG Bretby Business Park

Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

TEST REPORT

Report No. EXR/235169 (Ver. 1)

ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

Site: H6100-16 Trowbridge

The 4 samples described in this report were registered for analysis by ESG on 09-Feb-2017. This report supersedes any versions previously issued by the laboratory. The analysis was completed by: 15-Feb-2017

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3) Table of PAH (MS-SIM) (10) Results (Pages 4 to 7) GC-FID Chromatograms (Pages 8 to 11) Analytical and Deviating Sample Overview (Pages 12 to 13) Table of Additional Report Notes (Page 14) Table of Method Descriptions (Page 15) Table of Report Notes (Page 16) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG : Tim Barnes

Kames

Operations Director Energy & Waste Services Date of Issue: 15-Feb-2017

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Method Codes :			WSLM3	WSLM2	KONENS	ICPWATVART	ICPWATVAR	ICPWATVAR	ICPMSW	ICPMSWT	ICPMSW	PAHMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPWATVAR	ICPMSW
	Method Reporting Limits :			100	1	3	3	1	0.001	0.001	0.0001		0.001	0.001	0.002	0.001	0.01	0.0001
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Chloride as Cl w	Total Sulphur as SO4 (Total) a	Total Sulphur as SO4 (Dissolved) a	Magnesium as Mg (Dissolved) a	Nickel as Ni (Dissolved)	Chromium as Cr (Total)	Cadmium as Cd (Dissolved)	PAH GC-MS (16) o	Copper as Cu (Dissolved)	Lead as Pb (Dissolved)	Zinc as Zn (Dissolved)	Arsenic as As (Dissolved)	Boron as B (Dissolved) a	Mercury as Hg (Dissolved)
1768544	BH01 W	06-Feb-17 11:40	7.6	5200	1070	671	747	23	0.004	0.002	0.0004	Req	0.003	<0.001	0.105	0.003	3.59	0.0001
1768545	BH02A W	06-Feb-17 12:10	7.8	5000	925	625	694	14	0.004	0.002	0.0001	Req	0.002	0.002	0.064	0.005	2.54	0.0001
1768546	BH03 W	06-Feb-17 12:40	7.5	4000	689	1310	1270	59	0.006	0.037	0.0002	Req	0.003	<0.001	0.105	0.002	4	<0.0001
1768547	BH04B W	06-Feb-17 13:20	7.4	4000	490	1310	1490	72	0.008	0.024	<0.0001	Req	0.002	<0.001	0.009	0.001	2.75	<0.0001
				Client Name ESG Limited Bridgend Sample Analysis Contact Joss Evans Sample Analysis														
E	retby Business Park, Ashby Road											Date Printed 15-Feb-20			5-Feb-2017			
B	urton-on-Trent, Staffordshire, DE15 0YZ											Report Number EXR/23516			(R/235169			
	Tel +44 (0) 1283 554400		Horou-ro rrowbridge								Table Nu	ımber			1			
	Fax +44 (0) 1283 554422																	

Units :			mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	
	Method Codes : Method Reporting Limits		0.001	0.01	0.9	0.2	0.02	0.02	0.02	0.05	0.1	IPHFID	0.01	0.01	0.01	GROHSA 0.1	
LAB ID Number EX/	Client Sample Description	Sample Date	Selenium as Se (Dissolved)	Ammoniacal Nitrogen as N	Nitrate as NO3 (Kone Calc) w	Nitrate as N	Cyanide (Free) as CN	Cyanide (Total) as CN	Sulphide as S	Phenol Index as C6H5OH	GRO-HSA o	TPH Band >C10-C16	TPH Band >C16-C21	TPH Band (>C21-C35)	трн өс	GRO >C6->C10	
1768544	BH01 W	06-Feb-17 11:40	0.011	0.5	15.1	3.4	<0.02	<0.02	<0.02	<0.05	<0.1	<0.01	<0.01	0.04	0.05	<0.1	
1768545	BH02A W	06-Feb-17 12:10	0.099	1.0	47.4	10.7	<0.02	<0.02	<0.02	<0.05	<0.1	<0.01	<0.01	0.04	0.06	<0.1	
1768546	BH03 W	06-Feb-17 12:40	0.002	0.8	4.4	1.0	<0.02	<0.02	<0.02	<0.05	<0.1	<0.01	<0.01	<0.01	0.02	<0.1	
1/6854/	BH04B W	06-Feb-17 13:20	0.001	0.16	<0.9	<0.2	<0.02	<0.02	<0.02	<0.05	<0.1	<0.01	<0.01	0.04	0.06	<0.1	
ESG & Client Name ESG Limited Bridgend					1	1	1		Sam	ple Ana	llysis						
	Bretby Business Park, Ashby Road											Date Pri	nted		15	-Feb-2017	
	Burton-on-Trent, Staffordshire, DE15 0YZ										Report N	lumber		EX	(R/235169		
	Tel +44 (0) 1283 554400		H6100-16 Trowbridge							Table Nu	umber			1			
	Fax +44 (0) 1283 554422																

Customer and Site Details: Sample Details: LIMS ID Number: QC Batch Number: **Quantitation File:** Directory: **Dilution:**

BH01 W EX1768544 170078 Initial Calibration \021317MS10\ 1.0

ESG Limited Bridgend: H6100-16 Trowbridge Job Number: w23_5169 Date Booked in: 09-Feb-17 Date Extracted: 13-Feb-17 Date Analysed: 14-Feb-17 Matrix: Water Ext Method: Bottle

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	-	< 0.020	-
Acenaphthylene	208-96-8	-	< 0.010	-
Acenaphthene	83-32-9	-	< 0.010	-
Fluorene	86-73-7	-	< 0.010	-
Phenanthrene	85-01-8	-	< 0.010	-
Anthracene	120-12-7	-	< 0.010	-
Fluoranthene	206-44-0	-	< 0.010	-
Pyrene	129-00-0	-	< 0.010	-
Benzo[a]anthracene	56-55-3	-	< 0.010	-
Chrysene	218-01-9	-	< 0.010	-
Benzo[b]fluoranthene	205-99-2	-	< 0.010	-
Benzo[k]fluoranthene	207-08-9	-	< 0.010	-
Benzo[a]pyrene	50-32-8	-	< 0.010	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.010	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.010	-
Total (USEPA16) PAHs	-	-	< 0.170	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	98
Acenaphthene-d10	100
Phenanthrene-d10	107
Chrysene-d12	101
Perylene-d12	100

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	88
Terphenyl-d14	78

Customer and Site Details: Sample Details: LIMS ID Number: **QC Batch Number: Quantitation File:** Directory: **Dilution:**

BH02A W EX1768545 170078 Initial Calibration \021317MS10\ 1.0

ESG Limited Bridgend: H6100-16 Trowbridge Job Number: W23_5169 Date Booked in: 09-Feb-17 Date Extracted: 13-Feb-17 Date Analysed: 14-Feb-17 Matrix: Water Ext Method: Bottle

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	-	< 0.020	-
Acenaphthylene	208-96-8	-	< 0.010	-
Acenaphthene	83-32-9	-	< 0.010	-
Fluorene	86-73-7	-	< 0.010	-
Phenanthrene	85-01-8	-	< 0.010	-
Anthracene	120-12-7	-	< 0.010	-
Fluoranthene	206-44-0	-	< 0.010	-
Pyrene	129-00-0	-	< 0.010	-
Benzo[a]anthracene	56-55-3	-	< 0.010	-
Chrysene	218-01-9	-	< 0.010	-
Benzo[b]fluoranthene	205-99-2	-	< 0.010	-
Benzo[k]fluoranthene	207-08-9	-	< 0.010	-
Benzo[a]pyrene	50-32-8	-	< 0.010	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.010	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.010	-
Total (USEPA16) PAHs	-	-	< 0.170	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	100
Acenaphthene-d10	79
Phenanthrene-d10	121
Chrysene-d12	105
Perylene-d12	108

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	102
Terphenyl-d14	81

Customer and Site Details: Sample Details: LIMS ID Number: **QC Batch Number: Quantitation File:** Directory: **Dilution:**

BH03 W EX1768546 170078 Initial Calibration \021317MS10\ 1.0

ESG Limited Bridgend: H6100-16 Trowbridge Job Number: w23_5169 Date Booked in: 09-Feb-17 Date Extracted: 13-Feb-17 Date Analysed: 14-Feb-17 Matrix: Water Ext Method: Bottle

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	-	< 0.020	-
Acenaphthylene	208-96-8	-	< 0.010	-
Acenaphthene	83-32-9	-	< 0.010	-
Fluorene	86-73-7	-	< 0.010	-
Phenanthrene	85-01-8	-	< 0.010	-
Anthracene	120-12-7	-	< 0.010	-
Fluoranthene	206-44-0	-	< 0.010	-
Pyrene	129-00-0	-	< 0.010	-
Benzo[a]anthracene	56-55-3	-	< 0.010	-
Chrysene	218-01-9	-	< 0.010	-
Benzo[b]fluoranthene	205-99-2	-	< 0.010	-
Benzo[k]fluoranthene	207-08-9	-	< 0.010	-
Benzo[a]pyrene	50-32-8	-	< 0.010	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.010	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.010	-
Total (USEPA16) PAHs	-	-	< 0.170	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	94
Acenaphthene-d10	76
Phenanthrene-d10	115
Chrysene-d12	96
Perylene-d12	91

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	117
Terphenyl-d14	79

Customer and Site Details: Sample Details: LIMS ID Number: QC Batch Number: **Quantitation File:** Directory: **Dilution:**

BH04B W EX1768547 170078 Initial Calibration \021317MS10\ 1.0

ESG Limited Bridgend: H6100-16 Trowbridge Job Number: W23_5169 Date Booked in: 09-Feb-17 Date Extracted: 13-Feb-17 Date Analysed: 14-Feb-17 Matrix: Water Ext Method: Bottle

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	-	< 0.020	-
Acenaphthylene	208-96-8	-	< 0.010	-
Acenaphthene	83-32-9	-	< 0.010	-
Fluorene	86-73-7	-	< 0.010	-
Phenanthrene	85-01-8	-	< 0.010	-
Anthracene	120-12-7	-	< 0.010	-
Fluoranthene	206-44-0	-	< 0.010	-
Pyrene	129-00-0	6.91	0.012	76
Benzo[a]anthracene	56-55-3	-	< 0.010	-
Chrysene	218-01-9	-	< 0.010	-
Benzo[b]fluoranthene	205-99-2	-	< 0.010	-
Benzo[k]fluoranthene	207-08-9	-	< 0.010	-
Benzo[a]pyrene	50-32-8	-	< 0.010	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.010	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.010	-
Total (USEPA16) PAHs	-	-	< 0.172	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	93
Acenaphthene-d10	93
Phenanthrene-d10	111
Chrysene-d12	94
Perylene-d12	93

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	101
Terphenyl-d14	85

FID1 A,	(049F8201.D)				
PA		1			
1000 —					
-					
800 -					
600 -					
400 -					
-					
200 -					
		al Mannannan			
o		3	4 5 min		
Sample ID:	EX1768544	Job Number:	W23 5169		
Multiplier:	0.005	Client:	ESG Limited Bridgend		
Dilution	1	Site:	H6100-16 Trowbridge		
Acquisition Method		Client Semple Defi			
Acquisition wethou		Glient Sample Ref:			
Acquisition Date/Til	ne: 14-Feb-17, 04:15:28				
Datafile:	D:\TES\DATA\Y2017\021317TPH_(D:\TES\DATA\Y2017\021317TPH_GC4\021317 2017-02-13 10-12-39\049F8201.D			

FID1 A, (050)F8301.D)				1
		I			
1400					
1300 -					
1000 -					
800 -					
- 009					
400 -					
200 -					
-					
-		1 a Malana a an			
	1 2	3	4	5	min
Sample ID:	EX1768545	Job Number:	W23 5169		
Multiplier:	0.005	Client:	ESG Limited Bridgend		
Dilution:	1	Site:	H6100-16 Trowbridge		
Acquisition Method:	5UL RUNF.M	Client Sample Ref:	BH02A W		
Acquisition Date/Time	14-Feb-17 04·28·48				
Datafila:	D. TES DATA V2017 021317TPH C	C/\021317 2017-02-13 10-1	2-39\050F8301 D		
D./IES/DATA/IZUT/0213171FH_GG4/021317 2017-02-13 10-12-39/030F0301.D					

	FID1 A, (004F8	401.D)			
PA _					
-					
1200 -	-				
-	-				
-					
1000 -					
-	-				
-					
_					
800 -					
_					
-	-				
-	-				
600 -					
800 -					
-					
_	-				
-	- 1				
400 -					
1					
-					
_	-				
200 -					
-					
1					
-					
o –	•	1 2	3	4	5 mir
Sample ID.		EX1768546	Job Number:	W23 5169	
Multiplier:		0.005	Client:	ESC Limited Bridgend	
Dilution.		4			
		1	Site:	HOTUU-TO TROWDRIDGE	
Acquisition	Method:	5UL_RUNF.M	Client Sample Ref:	BH03 W	
Acquisition Date/Time:		14-Feb-17, 04:41:51			
D:\TES\DATA\Y2017\021317TPH_GC4\021317 2017-02-13 10-12-39\004F8401.D			2-39\004F8401.D		
Sample ID: Multiplier: Dilution: Acquisition Datafile:	Method: Date/Time:	EX1768546 0.005 1 5UL_RUNF.M 14-Feb-17, 04:41:51 D:\TES\DATA\Y2017\021317TPH_GO	Job Number: Client: Site: Client Sample Ref: C4\021317 2017-02-13 10-12	W23_5169 ESG Limited Bridgend H6100-16 Trowbridge BH03 W 2-39\004F8401.D	

FID1 A,	(071F8501.D)]
PA -				
-				
-				
1400 -				
_				
1200 -				
1000 -				
800 -				
400 -				
200 -				
		land have been h		
	1 2	3	4	5 min
Sample ID:	EX1768547	Job Number:	W23_5169	
Multiplier:	0.005	Client:	ESG Limited Bridgend	
Dilution:	1	Site:	H6100-16 Trowbridge	
Acquisition Method:	5UL RUNF.M	Client Sample Ref:	BH04B W	
Acquisition Date/Tin	14-Feb-17 04:54:57			
Datafile: D:\TES\DATA\Y2017\0213171PH_GC4\021317 2017-02-13 10-12-39\071F8501.D				

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W235169

CustomerESG Limited BridgendSiteH6100-16 TrowbridgeReport NoW235169

Consignment No W115791 Date Logged 09-Feb-2017

Report Due 15-Feb-2017 BTEXHSA CALC_NO CUSTSERV GROHS/ ICPMSW CPMSV MethodID Magnesium as Mg (Dissolved) VAR Total Sulphur as SO4 (Diss) VAR Cadmium as Cd MS (Dissolved) Selenium as Se MS (Dissolved) Total Sulphur as SO4 (Tot) VAR Mercury as Hg MS (Dissolved) Copper as Cu MS (Dissolved) Arsenic as As MS (Dissolved) Nickel Boron as B (Dissolved) VAR **BTEX-HSA + MTBE analysis** Nitrate Lead as Pb MS (Dissolved) Chromium as Zinc as Zn MS (Dissolved) GR0 >C6->C10 as as **GRO-HSA** Ni MS (Dissolved) Report A NO3 (Kone Calc) **ID Number** Matrix Type Sampled Description Cr MS (Total) BH01 06/02/17 Α EX/1768544 Unclassified Α Α EX/1768545 BH02A Unclassified 06/02/17 Α Α Α EX/1768546 BH03 Unclassified 06/02/17 Α Α Α EX/1768547 BH04B Unclassified 06/02/17 Α Α Α

Note: For analysis where the scheduled turnaround is greater than the holding time we will do	Devi		eviati	
our utmost to prioritise these samples. However, it is possible that samples could become		А	Т	
deviant whilst being processed in the laboratory.		в	Т	
		~		

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

A The sample was received in an inappropriate container for this analysis
 B The sample was received without the correct preservation for this analysis
 C Headspace present in the sample container
 D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
 E Sample processing did not commence within the appropriate holding time
 F Sample processing did not commence within the appropriate handling time
 Requested Analysis Key
 Analysis Required
 Analysis scheduled

Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W235169

CustomerESG Limited BridgendSiteH6100-16 TrowbridgeReport NoW235169

Consignment No W115791 Date Logged 09-Feb-2017

Report Due 15-Feb-2017 WSLM3 KONENS PAHMSV SFAPI SFAS TPHFID WSLM2 MethodID Ammoniacal Nitrogen (Kone) Cyanide (Total) as CN SFA Conductivity uS/cm Cyanide (Free) as CN SFA Nitrate as N (Kone calc) TPH Band (>C21-C35) Chloride as Cl (Kone) TPH Band (>C16-C21) TPH Band (>C10-C16) Sulphide as S Phenol Index SFA PAH GC-MS (16) TPH GC pH units Sampled ID Number Description Matrix Type SFA 0 25C EX/1768544 BH01 06/02/17 Unclassified Α В В В Α Α В Α Α EX/1768545 BH02A Unclassified 06/02/17 Α В В В В Α Α Α Α EX/1768546 BH03 06/02/17 В В В Α Α Unclassified Α В Α Α Unclassified В В В В Α Α EX/1768547 BH04B 06/02/17 Α Α Α

Note: For analysis where the scheduled turnaround is greater than the holding time we will do	Deviating Sample Key
our utmost to prioritise these samples. However, it is possible that samples could become	A The sample was received in an inappropriate container for this analysis
deviant whilst being processed in the laboratory.	B The sample was received without the correct preservation for this analysis
	C Headspace present in the sample container
In this instance please contact the laboratory immediately should you wish to discuss how you	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
would like us to proceed. If you do not respond within 24 hours, we will proceed as originally	E Sample processing did not commence within the appropriate holding time
requested.	F Sample processing did not commence within the appropriate handling time
	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled

Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Report Number : W/EXR/235169

Additional Report Notes

Method	Sample ID	The following information should be taken into consideration when using the
Code	Campic ID	data contained within this report
PAHMSW	EX1768544- 8547	The Secondary process control result associated with this Test has not wholly met the requirements of the Laboratory Quality Management System (QMS). All other Process controls (including the Primary Process control) are within specification. The Laboratory believes that the validity of the data has not been affected but in line with our QMS policy we have removed accreditation from the affected analytes, Pyrene & Flourene. These circumstances should be taken into consideration when utilising the data.

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Water	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons (GRO) by Headspace FID
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPMSWT	As Received	Determination of Total Metals in water samples using nitric acid digestion and ICPMS quantitation
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ICPWATVART	As Received	Determination of Total Metals in water samples using nitric acid digestion and ICPOES quantitation
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	PAHMSW	As Received	Determination of PolyAromatic Hydrocarbons in water by pentane extraction GCMS quantitation
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	SFAS	As Received	Determination of Sulphide by segmented flow analysis with colorimetric detection
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by GCFID
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l **NiI**: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client :	ESG Limited Bridgend
Site :	H6100-16 Trowbridge
Report Number :	W23_5169

Lab ID Number	Client ID	Description
EX/1768544	BH01 W	Unclassified
EX/1768545	BH02A W	Unclassified
EX/1768546	BH03 W	Unclassified
EX/1768547	BH04B W	Unclassified

Our Ref: EXR/232019 (Ver. 1) Your Ref: H6100-16

January 11, 2017

For the attention of Adam Putt

Dear Adam Putt

Sample Analysis - Trowbridge

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG Spercer .

K Spencer <u>Project Co-ordinator</u> 01283 554463

Environmental Chemistry ESG Bretby Business Park Ashby Road

Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

TEST REPORT

Report No. EXR/232019 (Ver. 1)

ESG Limited Bridgend ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

Site: Trowbridge

The 3 samples described in this report were registered for analysis by ESG on 12-Dec-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 11-Jan-2017

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 4) Table of PAH (MS-SIM) (10) Results (Pages 5 to 7) Table of TPH Texas banding (0.01) (Page 8) GC-FID Chromatograms (Pages 9 to 11) Analytical and Deviating Sample Overview (Pages 12 to 14) Table of Method Descriptions (Page 15) Table of Report Notes (Page 16) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG : Tim Barnes

Komes

Operations Director Energy & Waste Services Date of Issue: 11-Jan-2017

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	Meth	od Codes :	WSLM3	WSLM2	WSLM12	KONENS	ICPWATVAR		ICPMSW	ICPMSWT	ICPMSW	PAHMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPWATVAR	ICPMSW
	Method Report	ng Limits :	Ves	100 Yes	Ves	1 Ves	3 Ves	1 Ves	0.001 Yes	0.001 Yes	0.0001 Yes	Ves	0.001 Yes	0.001 Yes	0.002 Yes	0.001 Yes	0.01 Yes	0.0001 Yes
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Chloride as Cl w	7 Total Sulphur as SO4 (Dissolved) a	Magnesium as Mg (Dissolved) a	Nickel as Ni (Dissolved)	Chromium as Cr (Total)	Cadmium as Cd (Dissolved)	PAH GC-MS (16) o	Copper as Cu (Dissolved)	Lead as Pb (Dissolved)	Zinc as Zn (Dissolved)	Arsenic as As (Dissolved)	Boron as B (Dissolved) a	Mercury as Hg (Dissolved)
1755772	BH01 W	08-Dec-16	7.4	4160		705	727	33.2	0.01	0.001	0.0003	Req	0.003	<0.001	0.11	<0.001	2.78	<0.0001
1755773	SW1 W	08-Dec-16	7.9	817	268	51	67.4		0.002	0.002	<0.0001	Req	0.002	<0.001	0.013	0.002	0.04	<0.0001
1755774	SW2 W	08-Dec-16	7.8	848	271	54	70.5		0.002	0.004	<0.0001	Req	0.003	<0.001	0.024	0.002	0.04	<0.0001
					Image: state													
	ESG 🔗	Client Name ESG Limited Bridgend Sample Analysis Contact Adam Putt Image: Contact State S					alysis											
	Bretby Business Park, Ashby Road											Date Prin	nted		1	1-Jan-2017		
Burton-on-Trent, Staffordshire, DE15 0YZ				Tra	owhrid	dao				Report Number E		E	XR/232019					
	Tel +44 (0) 1283 554400 Table Number					1												
	Fax +44 (0) 1283 554422																	

	Moth	Units :	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l
	Method Reporti	na Limits :	0.001			0 9		0.02	0.02	0.02	0.1	TERFID					0.1	1
	UKAS A	ccredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
LAB ID Number EX/	Client Sample Description	Sample Date	Selenium as Se (Dissolved)	Ammoniacal Nitrogen as NH4	Ammoniacal Nitrogen as N	Nitrate as NO3 (Kone Calc) w	Nitrate as N	Cyanide (Free) as CN	Cyanide (Total) as CN	Sulphide as S	GRO-HSA o	TPH Band >C10-C16	TPH Band >C16-C21	TPH Band (>C21-C35)	Carbon Banding	ТРН GC	GRO >C6->C10	Benzene
1755772	BH01 W	08-Dec-16	0.006	0.03	0.02	50.5	11.4	<0.02	<0.02	<0.02	<0.1	<0.01	0.01	0.01	Req	0.03	<0.1	<1
1755773	SW1 W	08-Dec-16	<0.001	0.03	0.02	35.4	8.0	<0.02	<0.02	<0.02	<0.1	<0.01	<0.01	0.01	Req	0.02	<0.1	<1
1755774	SW2 W	08-Dec-16	<0.001	0.03	0.02	37.2	8.4	<0.02	<0.02	<0.02	<0.1	<0.01	<0.01	0.02	Req	0.03	<0.1	<1
	Image: series of the series																	
	ESG 🔗		Client N Contact	Client Name ESG Limited Bridgend Contact Adam Putt							Sam	ple Ana	lysis					
	Bretby Business Park, Ashby Road											Date Prin	nted		1	I-Jan-2017		
	Burton-on-Trent, Staffordshire, DE15 0YZ					Tra	whrid	dao				Report N	lumber		ΕX	(R/232019		
	Tel +44 (0) 1283 554400							Table Nu	Imber			1						
	Fax +44 (0) 1283 554422																	

		Units :	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	mg/l	mg/l	mg/l	mg/l			
	Meth	od Codes :	VOCHSAW	VOCHSAW	VOCHSAW	VOCHSAW	VOCHSAW	VOCHSAW	PHEHPLCVL	PHEHPLCVL	PHEHPLCVL	PHEHPLCVL			
	Method Report	ng Limits :	1	1	2	1	1	2	0.0005	0.0005	0.0005	0.0005			
	UKAS A	ccredited :	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No			
LAB ID Number EX/	Client Sample Description	Sample Date	Toluene	Ethyl Benzene	Xylenes	m/p Xylenes	o Xylene	MTBE	Phenol	Cresols	Dimethylphenols	Trimethylphenols			
1755772	BH01 W	08-Dec-16	<1	<1	<2	<1	<1	<1	0.0029	<0.0005	<0.0005	<0.0005			
1755773	SW1 W	08-Dec-16	<1	<1	<2	<1	<1	<1	<0.0005	<0.0005	<0.0005	<0.0005			
1755774	SW2 W	08-Dec-16	<1	<1	<2	<1	<1	<1	<0.0005	<0.0005	<0.0005	<0.0005			
	<u> </u>														
	ESG 🔗			lame t	ESG Li Adam Pu	mited Br	idgend					Sample Analysis			
B	retby Business Park, Ashby Road			-	-							Date Printed	11-Jan-2017		
B	urton-on-Trent, Staffordshire, DE15 0YZ							_				Report Number	FXR/232010		
	Tel +44 (0) 1283 554400					Tro	owbrid	dge					4		
	101 +44 (U) 1263 004400												1		
1 '	Fax +44 (0) 1283 554422	1													

Customer and Site Details: Sample Details: LIMS ID Number: QC Batch Number: Quantitation File: Directory: Dilution: ESG Limited Bridgend: TrowbridgeBH01 WJob NuEX1755772Date Bo170005Date ExInitial CalibrationDate Ar\010917MS10\Matrix:1.0Ext Met

WbridgeJob Number:w23_2019Date Booked in:12-Dec-16Date Extracted:06-Jan-17Date Analysed:09-Jan-17Matrix:WaterExt Method:Bottle

UKAS accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	-	< 0.020	-
Acenaphthylene	208-96-8	-	< 0.010	-
Acenaphthene	83-32-9	3.94	0.012	73
Fluorene	86-73-7	-	< 0.010	-
Phenanthrene	85-01-8	-	< 0.010	-
Anthracene	120-12-7	-	< 0.010	-
Fluoranthene	206-44-0	-	< 0.010	-
Pyrene	129-00-0	-	< 0.010	-
Benzo[a]anthracene	56-55-3	8.04	0.011	69
Chrysene	218-01-9	-	< 0.010	-
Benzo[b]fluoranthene	205-99-2	-	< 0.010	-
Benzo[k]fluoranthene	207-08-9	-	< 0.010	-
Benzo[a]pyrene	50-32-8	-	< 0.010	-
Indeno[1,2,3-cd]pyrene	193-39-5*	-	< 0.010	-
Dibenzo[a,h]anthracene	53-70-3*	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2*	-	< 0.010	-
Total (USEPA16) PAHs	-	-	< 0.173	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	121
Acenaphthene-d10	112
Phenanthrene-d10	115
Chrysene-d12	110
Perylene-d12	117

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	77
Terphenyl-d14	71

Customer and Site Details: Sample Details: LIMS ID Number: QC Batch Number: Quantitation File: Directory: Dilution: ESG Limited Bridgend: TrowbridgeSW1 WJob NuEX1755773Date Bo170005Date ExInitial CalibrationDate Ar\010917MS10\Matrix:1.0Ext Met

WbridgeJob Number:W23_2019Date Booked in:12-Dec-16Date Extracted:06-Jan-17Date Analysed:09-Jan-17Matrix:WaterExt Method:Bottle

UKAS accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	-	< 0.020	-
Acenaphthylene	208-96-8	-	< 0.010	-
Acenaphthene	83-32-9	-	< 0.010	-
Fluorene	86-73-7	-	< 0.010	-
Phenanthrene	85-01-8	-	< 0.010	-
Anthracene	120-12-7	-	< 0.010	-
Fluoranthene	206-44-0	6.18	0.011	97
Pyrene	129-00-0	6.44	0.013	78
Benzo[a]anthracene	56-55-3	8.04	0.016	69
Chrysene	218-01-9	-	< 0.010	-
Benzo[b]fluoranthene	205-99-2	9.52	0.011	75
Benzo[k]fluoranthene	207-08-9	-	< 0.010	-
Benzo[a]pyrene	50-32-8	-	< 0.010	-
Indeno[1,2,3-cd]pyrene	193-39-5*	-	< 0.010	-
Dibenzo[a,h]anthracene	53-70-3*	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2*	-	< 0.010	_
Total (USEPA16) PAHs	-	-	< 0.181	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	117
Acenaphthene-d10	107
Phenanthrene-d10	107
Chrysene-d12	102
Perylene-d12	109

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	91
Terphenyl-d14	76

Customer and Site Details: Sample Details: LIMS ID Number: QC Batch Number: Quantitation File: Directory: Dilution: ESG Limited Bridgend: TrowbridgeSW2 WJob NuEX1755774Date Bo170005Date ExInitial CalibrationDate Ar\010917MS10\Matrix:1.0Ext Met

WbridgeJob Number:w23_2019Date Booked in:12-Dec-16Date Extracted:06-Jan-17Date Analysed:09-Jan-17Matrix:WaterExt Method:Bottle

UKAS accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	-	< 0.020	-
Acenaphthylene	208-96-8	-	< 0.010	-
Acenaphthene	83-32-9	-	< 0.010	-
Fluorene	86-73-7	-	< 0.010	-
Phenanthrene	85-01-8	-	< 0.010	-
Anthracene	120-12-7	-	< 0.010	-
Fluoranthene	206-44-0	6.18	0.027	97
Pyrene	129-00-0	6.44	0.027	98
Benzo[a]anthracene	56-55-3	8.03	0.023	65
Chrysene	218-01-9	8.07	0.018	62
Benzo[b]fluoranthene	205-99-2	9.52	0.023	71
Benzo[k]fluoranthene	207-08-9	-	< 0.010	-
Benzo[a]pyrene	50-32-8	9.93	0.016	88
Indeno[1,2,3-cd]pyrene	193-39-5*	11.29	0.016	70
Dibenzo[a,h]anthracene	53-70-3*	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2*	11.57	0.011	64
Total (USEPA16) PAHs	-	-	< 0.251	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	115
Acenaphthene-d10	107
Phenanthrene-d10	109
Chrysene-d12	112
Perylene-d12	121

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	88
Terphenyl-d14	74

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	ESG Limited Bridgend : Trowbridge W23_2019 170005 D:\TES\DATA\Y2017\010617TPH_GC1 Bottle	Matrix: Date Booked in: Date Extracted: Date Analysed:	Water 12-Dec-16 06-Jan-17 06-Jan-17, 23:01:49			
		* Sample data with a	an asterisk are not UK	AS accredited.		
			C	Concentration, (m	g/l)	
Sample ID	Client ID	>C8 - C10	>C10 - C12	>C12 - C16	>C16 - C21	>C21 - C35
EX1755772	BH01 W	<0.01	<0.01	<0.01	0.01	0.013
EX1755773	SW1 W	<0.01	<0.01	<0.01	<0.01	0.011
EX1755774	SW2 W	<0.01	<0.01	<0.01	<0.01	0.019

Sample Analysis

CustomerESG Limited BridgendSiteTrowbridgeReport NoW232019

Consignment No W113284 Date Logged 12-Dec-2016

Report Due 12-Jan-2017 CALC_NO: CALCNH4 KONENS ICPMSW GROHS/ CUSTSER CPMSV MethodID Ammoniacal Nitrogen Magnesium as Mg (Dissolved) VAR Total Sulphur as SO4 (Diss) VAR Cadmium as Cd MS (Dissolved) Mercury Selenium as Se MS (Dissolved) Nickel Copper as Cu MS (Dissolved) Arsenic as As MS (Dissolved) Boron as B (Dissolved) VAR Nitrate as Lead as Pb MS (Dissolved) Chromium as Zinc as Zn MS (Dissolved) Chloride as Cl (Kone) GRO >C6->C10 as as Hg MS (Dissolved) **GRO-HSA** Ni MS (Dissolved) Report A NO3 (Kone Calc) **ID Number** Matrix Type Sampled Description Cr MS as NH4 Calc (Total) ✓ ~ ~ 1 ~ < 1 ~ 1 ~ ~ ~ ~ ~ 1 ~ BH01 Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε EX/1755772 Groundwater 08/12/16 Ε Ε Ε EX/1755773 SW1 Surface Water 08/12/16 Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε EX/1755774 SW2 Surface Water 08/12/16 Ε Ε Ε E Е Ε E Ε E Ε Ε Ε Ε Ε

> Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

> In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

A The sample was received in an inappropriate container for this analysis
 B The sample was received without the correct preservation for this analysis
 C Headspace present in the sample container
 D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
 E Sample processing did not commence within the appropriate holding time
 F Sample processing did not commence within the appropriate handling time
 Requested Analysis Key
 Analysis Required
 Analysis scheduled

Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Sample Analysis

CustomerESG Limited BridgendSiteTrowbridgeReport NoW232019

Consignment No W113284 Date Logged 12-Dec-2016

	Report Due 12-Jan-2017																				
			MethodID	KONENS		PAHMSW	PHEHPLCVL	SFAPI		SFAS	TPHFID					VOCHSAW					
ID Number	Description	Matrix Type	Sampled	Ammoniacal Nitrogen (Kone)	Nitrate as N (Kone calc)	PAH GC-MS (16)	Phenols by HPLC (Low Level)	Cyanide (Free) as CN SFA	Cyanide (Total) as CN SFA	Sulphide as S SFA	TPH Band (>C10-C16)	TPH Band (>C16-C21)	TPH Band (>C21-C35)	TPH Carbon Banding	TPH GC	BTEX + MTBE Analysis HSA GC-MS	Benzene (µg/l)	Toluene (µg/l)	Ethyl Benzene (µg/l)	MTBE (µg/l)	Xylenes (µg/l)
				✓	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓		✓
EX/1755772	BH01	Groundwater	08/12/16	E	E	E		E	Е	Е	E	E	E	E	E	E	E	E	E	E	E
EX/1755773	SW1	Surface Water	08/12/16	Е	Е	Е		BE	BE	BE	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е
EX/1755774	SW2	Surface Water	08/12/16	E	E	E		BE	BE	BE	E	E	Е	E	E	Е	Ε	E	E	Е	Ε

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

A The sample was received in an inappropriate container for this analysis
 B The sample was received without the correct preservation for this analysis
 C Headspace present in the sample container
 D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
 E Sample processing did not commence within the appropriate holding time
 F Sample processing did not commence within the appropriate handling time
 Requested Analysis Key
 Analysis Required
 Analysis scheduled

Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.
Sample Analysis

CustomerESG Limited BridgendSiteTrowbridgeReport NoW232019

Consignment No W113284 Date Logged 12-Dec-2016

Report Due 12-Jan-2017 WSLM2 WSLM3 WSLM12 MethodID Conductivity uS/cm @ 25C **Total Alkalinity as CaCO3** m/p Xylenes o Xylene pH units Sampled ID Number Description Matrix Type (l/g/l) (l/g/l) 1 1 < 1 1 EX/1755772 BH01 Groundwater Е Ε Ε Е 08/12/16 EX/1755773 Е Е SW1 Surface Water 08/12/16 Ε Е Е E E E E EX/1755774 SW2 Surface Water 08/12/16 E

Note: For analysis where the scheduled turnaround is greater than the holding time we will do	Jeviat	ing Sample Key
our utmost to prioritise these samples. However, it is possible that samples could become	A T	he sample was received in an inappropriate container for this analysis
deviant whilst being processed in the laboratory.	з т	he sample was received without the correct preservation for this analysis
	C F	leadspace present in the sample container
In this instance please contact the laboratory immediately should you wish to discuss how you	T C	he sampling date was not supplied so holding time may be compromised - applicable to all analysis
would like us to proceed. If you do not respond within 24 hours, we will proceed as originally	= 5	Sample processing did not commence within the appropriate holding time
requested.	- 5	Sample processing did not commence within the appropriate handling time
	Seane	sted Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Where individual results are flagged see report notes for status.

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Water	CALCNH4	As Received	Ammoniacal Nitrogen expressed as NH4, calculated from
			Ammoniacal Nitrogen expressed as N
Water	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace FID
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPMSWT	As Received	Determination of Total Metals in water samples using nitric acid
			digestion and ICPMS quantitation
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	PAHMSW	As Received	Determination of PolyAromatic Hydrocarbons in water by pentane
			extraction GCMS quantitation
Water	PHEHPLCVL	As Received	Determination of Phenols by HPLC
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	SFAS	As Received	Determination of Sulphide by segmented flow analysis with
			colorimetric detection
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by
			GCFID
Water	VOCHSAW	As Received	Determination of Volatile Organics Compounds by Headspace
			GCMS
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical
			conductivity probe.
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l NiI: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client :	ESG Limited Bridgend
Site :	Trowbridge
Report Number :	W23_2019

Lab ID Number	Client ID	Description
EX/1755772	BH01 W	Groundwater
EX/1755773	SW1 W	Surface Water
EX/1755774	SW2 W	Surface Water

ENVIRONMENTAL

Wessex Water

Trowbridge STW

Ground Investigation and Factual Report

Integrated Engineering and Environmental Consultants

environmental | water | transportation | civil | structural | highways | infrastructure

ENVIRONMENTAL

Wessex Water

Trowbridge STW

Ground Investigation and Factual Report

Birmingham Livery Place, 35 Livery Street, Colmore Business District, Birmingham, B3 2PB T: +44(0) 121 233 3322, F: +44(0) 121 233 3318

Leeds Whitehall Waterfront, 2 Riverside Way, Leeds LS1 4EH T: +44(0) 113 2338000 F: +44(0) 113 2450654

London 15 Weller Street, London, SE1 1QU T: +44(0) 20 7234 9122

Manchester 4th Floor Carvers Warehouse, 77 Dale Street Manchester, M1 2HG T: +44(0) 0161 2334260

Nottingham 5^{th} Floor Waterfront House, Station Street, Nottingham NG2 3DQ T – 0115 924 1100, F – 0115 950 3966

E -environmental@bwb-consulting.com

Date: April 2012

AUTHOR:	Greg Adams BSc, MSc, FGS	GTAdame
CHECKED:	David Josling MEng	D. Jory
APPROVED:	Rachel Cheetham BSc (Hons) MSc	Dadhan.
REPORT REF NO:	BME2019/01/V1	
STATUS:	FINAL	

Document Revision Status

Issue	Date	Comments
01	03/04/2012	Issued to client
02	19/04/2012	Issued to client

CONTENTS PAGE

1.0	INTRODUCTION	3
	Instruction	3
	Objectives	3
	Limitations	3
2.0	SITE SETTING	5
	Site Location	5
	Site Description	5
	Published Geology	5
	Site History	5
	Proposed Development	5
3.0	SITE WORK AND LABORATORY TESTING	7
	Scope of Works	7
	Sampling and Analytical Strategy	7
4.0	ON SITE OBSERVATIONS	9
	Ground Conditions	9
	Visual or Olfactory Evidence of Contamination	9
	Groundwater	9
	Ground Gas	9

FIGURES

Figure 1	Site Location Plan (included in main text)
Figure 2	Exploratory Hole Location Plan

APPENDICES

- Appendix 1 Legal Framework
- Appendix 2 Site Photographs
- Appendix 3 **Drillers Logs**
- Borehole Logs Appendix 4
- Appendix 5 Trial Pit Logs
- Appendix 6
- Appendix 7
- Soil Chemical Laboratory Testing Geotechnical Laboratory Testing Gas and Groundwater Monitoring Results Appendix 8

1.0 **INTRODUCTION**

Instruction

1.1 BWB Consulting (BWB) was instructed by Wessex Water (the Client) to carry out a ground investigation at the site at Trowbridge Sewage Treatment Works (STW), Wiltshire. The details of the instruction to undertake the works were received by email confirmation in January 2012 and contained a detailed schedule of works from the client's consultants, Halcrow.

Objectives

- 1.2 The overall objectives of the investigation are to:
 - Confirm prevailing ground and groundwater conditions at the exploratory hole locations;
 - Undertake geotechnical and environmental soil testing as requested by the clients consultant;
 - · Undertake post fieldwork monitoring of ground gas and water; and
 - Provide a factual account of the investigation.
- **1.3** This report presents the factual data relating to the ground investigation completed at the site.
- 1.4 The report forms part 1 of the Eurocode 7 Ground Investigation Report namely the presentation of geotechnical information.
- 1.5 Details of the BWB approach and legal framework for the investigation of contaminated land are presented in **Appendix 1**.

Limitations

- **1.6** The assessments and interpretation have been made in line with legislation and guidelines in force at the time of writing, representing best practice at that time.
- **1.7** All of the comments and opinions contained in this report, including any conclusions, are based on the information obtained by BWB during our investigations.
- 1.8 There may be other conditions prevailing on the site which have not been disclosed by this investigation and which have not been taken into account by this report. Responsibility cannot be accepted for conditions not revealed by the investigation.
- **1.9** Any diagram or opinion of the possible configuration of the findings is conjectural and given for guidance only and confirmation of intermediate ground conditions should be considered if deemed necessary.
- 1.10 Except as otherwise requested by the Client, BWB is not obliged and disclaims any obligation to update the report for events taking place after:
 - a) the date on which this assessment was undertaken; and
 - b) the date on which the final report is delivered.

- 1.11 BWB makes no representation whatsoever concerning the legal significance of its findings or to other legal matters referred to in the following report.
- 1.12 This report has been prepared for the sole use of Wessex Water. No other third parties may rely upon or reproduce the contents of this report without the written permission of BWB. If any unauthorised third party comes into possession of this report they rely on it at their own risk and the authors do not owe them any Duty of Care or Skill.

2.0 SITE SETTING

Site Location

2.1 The site is located within the Trowbridge Sewage Treatment Works in Trowbridge, to the East of Trowle Common, located at national grid reference 384757, 158798. The location of the site is shown below as **Figure 1**.

Figure 1: Site Location Plan

Reproduced from the Ordnance Survey 1:25,000 scale map with the permission of the controller of Her Majesty's Stationery Office Crown Copyright Reserved. OS Licence number 100013665.

Site Description

- 2.2 The site comprises part of the operational Trowbridge sewage treatment works. The site is generally flat, gently sloping from north west to south east, photographs of the site are presented as **Appendix 2**.
- 2.3 Farmers' fields surround the site on all sides with the River Bliss located within 500m to the east of site.

Published Geology

2.4 A review of the published geology has found that the local bedrock geology underlying the site is the Kellaway Formation comprising of mudstone.

Site History

2.5 The site has been associated with a sewage treatment works as far back as is known about the site.

Proposed Development

2.6 It is understood that the proposed development is to extend the existing Trowbridge Sewage Treatment Works with a new digester and sludge storage tanks. The proposed development can be seen as part of **Figure 2**.

3.0 SITE WORK AND LABORATORY TESTING

Scope of Works

- 3.1 The layout of the site and the positioning of all exploratory hole locations are presented as **Figure 2.**
- 3.2 Intrusive works were undertaken between 9th February and 21st February 2012 and comprised the following works:
 - 2no cable percussion boreholes followed on with rotary drilling techniques to a maximum depth of 20.53m bgl. The drillers logs are presented as Appendix 3 and the borehole logs and core photographs are presented as Appendix 4;
 - Standard penetration testing (SPT's) carried out within each borehole, results can be found on the appropriate borehole logs;
 - Installation of 2no. 50mm ground gas and water monitoring pipes for the purpose of subsequent ground gas and water monitoring;
 - 5no machine excavated trial pits to a maximum depth of 3.00m bgl, designated TP2 to TP6. The trial pit logs and photographs are presented as **Appendix 5**; and
 - Hand shear vane tests undertaken within each of the trial pits to provide strength characteristics of cohesive materials. The results are presented on the appropriate trial pit logs.
- 3.3 The ground investigation was carried out in general accordance with BS5930: 1999 'Code of practice for Site Investigations', and BS10175: 2000 'Code of Practice for Investigations of Potentially Contaminated Sites'. The ground investigation and exploratory holes were supervised and logged by a BWB geo-environmental engineer.

Sampling and Analytical Strategy

- 3.4 Soil samples were obtained from all exploratory hole locations for geotechnical and chemical testing.
- 3.5 Following correspondence with Halcrow (the client's Consultant), soil samples were sent to a UKAS and MCERTS accredited laboratory and tested for the following suite of chemical analysis:
 - 3no. samples tested for sulphate content of acid extract from soil, sulphate content of water extract from soil, water soluble chloride content, acid soluble chloride content and pH value;
 - 2no. samples tested for Total Petroleum Hydorcarbons (TPH) (C6-C40), speciated Polycyclic Aromatic Hydrocarbons (PAH) (16) and asbestos screens; and
 - · 3no. samples tested for total waste acceptance criteria.
- 3.6 The results of the chemical analysis are presented as **Appendix 6**.
- 3.7 Groundwater samples were obtained from BH1 using bailers and from BH2 using low flow kit for chemical testing.

- 3.8 Geotechnical samples collected from all exploratory hole locations were sent to a UKAS accredited laboratory for geotechnical analysis. Geotechnical testing was carried out in general accordance with BS1377: 1990.
- 3.9 The soil and rock geotechnical tests undertaken comprised of the following:
 - 19no. moisture content and Atterberg Limit analyses;
 - 11no. particle size distribution tests via wet sieve techniques;
 - · 11no. particle size distribution tests via sedimentation techniques;
 - · 3no. one dimensional consolidation tests;
 - · 5no. 3x38mm diameter triaxial tests;
 - 5no. quick undrained triaxial tests; and
 - 2no. consolidated undrained triaxial tests.
- 3.10 The results of the geotechnical laboratory testing are presented as Appendix 7.

4.0 **ON SITE OBSERVATIONS**

Ground Conditions

4.1 The ground investigation found the ground conditions present at site to confirm the information reviewed from published geology. The ground conditions encountered comprised topsoil over the weathered Kellaway Formation described as sandy clay, grading into very stiff clay tending to a weak mudstone below 19.0m bgl. Significant thicknesses of made ground were observed to depths of 3.00m bgl, comprising reworked natural material, in the south east of the site.

Visual or Olfactory Evidence of Contamination

4.2 No visual or olfactory evidence of contamination was observed within or surrounding any of the exploratory hole locations.

Groundwater

- 4.3 Groundwater was observed within BH2 at 11.14m bgl and within TP6 at 1.50m bgl.
- 4.4 In situ testing of dissolved oxygen, pH, conductivity and redox potential was conducted during the post fieldwork monitoring at both boreholes. The results are presented as **Appendix 8**.

Ground Gas

4.5 A single ground gas monitoring event was carried out on the 22ndFebruary 2012, the results are presented as **Appendix 8**.

BWB Consulting Ltd

April 2012

FIGURES

FIGURE 2

EXPLORATORY HOLE LOCATION PLAN

APPENDICES

APPENDIX 1

LEGAL FRAMEWORK

Legislative Background

Environmental liabilities and risks have been evaluated in terms of a source pathway - target relationship in accordance with the approach set out in the 1995 Environment Act, The Contaminated Land (England) Regulations 2000 and the DETR circular 02/2000 Environmental Protection Act 1990: Part IIA Contaminated Land. Contaminated land is defined within the legislative framework as land which is in such condition by reason of substances in, on or under the land that:

- a) significant harm is being caused or there is a significant possibility of such harm being caused;
- b) significant pollution of controlled waters is being or is likely to be caused.

The potential for harm is based on the presence of three factors:

- Source: Substances that are potential contaminants or pollutants that may cause harm;
- Pathway: A potential route by which contaminants can move from the source to the receptor; and
- Receptor or target: A receptor that may be harmed, for example the water environment, humans, water, flora and fauna.

Where a source, pathway and target are all present a pollutant linkage exists and there is potential for harm to be caused. Therefore, the presence of measurable concentrations of contaminants within the ground and subsurface environment does not automatically imply that a contamination problem exists, since contamination must be defined in terms of pollutant linkages and unacceptable risk of harm.

The nature and importance of both pathways and receptors, which are relevant to a particular site, will vary according to the intended use of the site, its characteristics and its surroundings.

The key principle which underpins this approach is the 'suitable for use' criterion. This requires remedial action only where contamination is considered to pose unacceptable actual or potential risks to health or the environment and appropriate and cost effective remediation techniques exist, taking into account the actual or intended use of the site.

Guidance

BWB Consulting Ltd is a registered Engineering Practice and is regulated by the Institution of Civil Engineers.

This report has been prepared in accordance with:

- CLR11 Model Procedures
- Contamination and Environmental Matters Their implications for Property Professionals (2nd Edition RICS Nov 2003)
- Brownfields Managing the development of previously developed land A client's guide, CIRIA 2002
- DEFRA and Environment Agency publications CLR7 10, supported by the TOX guides and SGV guides, dated March 2002
- DETR Circular 02/2000, Contaminated Land: Implementation of Part IIA of the Environmental Protection Act 1990

• Environment Agency technical advice to third parties on Pollution of Controlled Waters for Part IIA of the EPA1990, May 2002

And any other protocols advised by DEFRA and the EA and guidance's prepared by BSI, CERTA, BURA, and other industry advisory bodies including BS5930 and BS10175.

Judicial Precedents and Legislation

The following non-exhaustive list of legislative framework documents has been considered in the compilation of this document.

- The Environment Act (1995)
- The Environment Protection Act (1990)
- The Water Resources Act (1991)
- The Radioactive Substances Act (1993)
- The Pollution Prevention and Control (England and Wales) Regulations (2000)
- The Contaminated Land (England) Act (2000)
- The Environment Act 1995 (Commencement No.16 and Saving Provision) (England) Order (2000)
- The Contaminated Land (England) (Amendment) Regulations (2001)
- The Landfill Regulations (England and Wales) Regulations (2002)
- The Landfill (England and Wales) (Amendment) Regulations (2004)
- Rylands v Fletcher Private Nuisance, Escape
- Health and Safety at Work Act
- The Building Regulations 1991, Part C of Schedule 1
- The controlled Waste Regulations 1992
- Special Waste Regulations 1996.

Neither the list of guidance documents nor the list of judicial precedents and legislation should be considered exclusive or comprehensive. There are approximately 85 individual items of legislation regulating contaminated land work. BWB makes every effort to ensure that all are adhered to in the preparation and presentation of this report.

Technical Competence

BWB is a leading specialist multi-disciplinary engineering practice working in the contaminated land market. Most of the workload undertaken by BWB is within the commercial property development market dealing with brownfield re-development and associated environmental and geotechnical issues.

Established in 1990, BWB is at the forefront of environmental asset management providing expertise in environmental risk assessments, environmental site investigations, geotechnical site investigations and remediation strategies.

BWB's staff come from a wide variety of backgrounds within the geotechnical and environmental sectors and are all degree qualified. Specialists include geotechnical engineers, geologists, environmental engineers, IEMA auditors, chartered environmental surveyors, chartered engineers; up to SiLC (Specialist in Land Condition) accreditation.

BWB's technical protocols are described in our reports and are strictly adhered to by quality control checks in the field and in the laboratory. BWB only uses UKAS and

MCERTS accredited laboratories for all methods used to derive determinant concentrations.

BWB operates a quality assurance process under iso9001:2000 which facilitates rigorous in-house administrative and technical protocols and is assessed externally every 6 months. BWB also initiates a robust health and safety program for each site and are an investor in people ensuring the regular training of staff in new guidance's and techniques.

APPENDIX 2

SITE PHOTOGRAPHS

Photo 1 Entrance to site from un-named road

Photo 2 Location of BH1 and TP2

Photo 3 Existing sludge storage tanks

Photo 4 Filter beds located to the south east of site

Photo 5 Location of BH2 and Balfour Beatty contractors on site

APPENDIX 3 DRILLERS LOGS

Daily l	Repo	ort	She	eet	Rota	ary				
Site: - TRO Job Number:	WBRI AA	DGE	STU	1	BH					
Client: - B	WB							BRISTOL BS	11 9HF	A 1 3
Date: - WE	D 27	1.2.	2017					Tel: 0117 982 Fax: 0117 98	2 1473 2 8200	
Rig: - Co	MACO	CHIO	300	0		Sheet /	of2			associates
TIME RECORD		Tot	ol Hours			Start T	ime		Finish	Time
Transport						Daywork	s		L	
Rig Moving						Running	Casing	/Pulling Cas	sing	
Open Hote Drillin	g					Repairs	& Mair	itenance		:
DRILLING RECORD)					STRATA	& PEN	ETRATION TE	STS	
Run No From To	Drill	ed Reco	very Vary	Number	Location	From	То		Descripti	on of Strata
PICKED UP	GAS	OIL	GRA	R AN	D		-			
TRAVELLED	5 A7	TE.	D			15.20	19.70	- FIRM	GREY	cuts.
4 15.20167	0 1.50	0 1.5	0							
SPT 16.70	7-11-1	3.19	18/66	m						
5 16.10 18.2	0 1·SC	1.10	18/11						and a start of the second second second second second second second second second second second second second s	
6 18.20 19.7	0 1.50	2 1.5	0							
SPT 19.70	8.13	. 16.1	8.16/	52m		-				
FOR INSTA	LINTO	N DE	TALLS	of						
SOMM P.P.	EINS	TALLE	DIN	BH 2	-					
SEE SHEE	TZ	of 2								
						-				
								-		
							-	Depth at e	and of day	
Water Record	L		CORE B	OXES USI	ED 11.0	0-1	9.7	3 RA	XES	
Depth Should	Death	20	Flush Re	cord Al	R 40	0/1700	cfm	CompRes	SOR	g
		2011113		Туре		Return		Туре		Return
								AIR MIS	<u>r</u>	GOOD
			BENTON	ITE USED						
Daily Water	Denth	Depth	Bit Reco		lize		Numb	er	C	Pepth Drilled
Level Record	Hole	Water	PAC	412	2				15.20	-19.70
Start of am shift	15.20	13.46								
End of am shift			CASING	RECORD						
Start of pm shift			C	Size	2 V		GI		Q	-50
End of B	19.70	15.28	SIM	MITK	5.		0))-old	•	
After pulling casing	-		Water add	ed to assist	boring	Crew	AE	VANS		
After 24hrs			If so dep	oth? 15.20	-19.	o Signer	turg of	driller	Verified	by Client

SHEET Z of 2

Somm Standpipe Installation Site TROWBRIDGE STW JobNumber AA012S Chient BWB C.J. associates

WEDNESDAY

Daily	Rep	ort	She	eet	Rota	ary				
Site: -		DCE	STW			DI				
Job Number:	AA	10125	5		BF	1	KING ROAD AVENUE			
Client: -	SWB				/		BRISTOL BS	11 9HF		
Date: -	on 2	0.2.	2012					Tel: 0117 982 Fax: 0117 98	2 8200	
Rig: - C	MAC	CHIO	300			Sheet /	of /			ssociates
TIME RECORD		Tot	tal Hours			Start T	ime		Finish	Time
Tananat						Davwork	(S			
Pia Movina						Running	Casina	/Pulling Cas	sina	
Open Hate Drilli	ng					Repairs	& Main	tenance		
Core Drilling						Other				5 (A
DRILLING RECOR	RD					STRATA	& PEN	ETRATION TE	STS	and an and the second
Run No From T	o Dri	illed Reco	overy Payro	Number	Location	From	То		Descriptio	on of Strata
MOBILIZED	10	SITE.					25			
TRACKED T	216 7	6 BH	2							
SET UP				-						
RUN SIMM	TREX	CASIA	16 M	2.00M	75 .	100	10 -1	00.1	60.	2.110
REDRILLED	CASIN	6 DOW	IN FRO	M		12.50	19.05	GKEY	FIRM	CLAYS WITH
2.00 - 1	2-50	MTS		(a)				Some	SHELL	
FILLING W	ATER	Bows	ERCI	(AP						······
1 12.30 13.	50 1.0	1.10	0. 4/							
3 12.50 154	4.8.1	0 1.7	8. 73	MM						
2 13.30 131	C. Q.	19.24	. 8/2		1					
3 15.00 16.	50 1.5	0 1.0	+0		1					
SPT 16.50	5-11.	13.19	. 18 63	Am						
4 16.50 18.	00 1.5	SO I.S	só							
SPT 18:00	8.1:	5.19.	21.10/	38m						
5 1800 19.	os l·c	S I.	5.							
										د بر از این از این این این این این این این این این این
								-		
				+				Depth at a	and of day	
<u> </u>					ED.			1 Sobrin ar (ind of duy	
Water Record			CURE	SULES US	0 10	1.7.	6	C. De	2000	
			Flush Re	ecord M	Open Hole	01100	-im i	COMPKE	Corin	
Depth Struck	Depth	+20mins	5	Time		Paturo		Tune		Return
					G	COD		AIRIMIS	T	GOOD
			DENTO	UTE LICED		000	- Internet			
			BENTO	VITE USED						
Daily Water	Denth	Depth	Bit Reco	Type & S	Size		Numbe	r	D	epth Drilled
Level Record Hole Water				C A	17			·····	12.50	219.05
Start of am shift	/	3.72	-3	~ 7	15				12.00	.1.03
End of am shift			CASING	RECORD						
Start of pm shift Size							From		10	То
End of pm shift	1905	14.70	SIM	utlex			66		14	~>0
After pulling casing		1716	Water of	ded to deele	harma	Crew	G.HA	Prock		
After pulling casing Water added to assist boring					S CICH	Signature of driller Verified by Client				
After 24hrs	9		If so de	pth? 10.20	-19.0	S Signe	tuce of a	driller	Verified	by Client

Daily F	Repo	ort	She	eet	Rota	ry					
Site: - TRO	WBRI	SGE	STW			BH	1			A	
Job Number: -	AA	012	S		1		KING ROAD	AVENUE			
Client: -	BWE	3			1		BRISTOL BS	1 9HF			
Date: - Tve	S 2	. 2. :	2012				Tel: 0117 982 Fax: 0117 982	1473 2 8200			
Rig: - Co	MAC	CHIO	300		Sheet /	of 3		-	associates		
TIME RECORD		Toto	I Hours		Start T	Start Time Finish Time					
Transport						Daywork	s				
Rig Moving						Running	& Main	/Pulling Cas tenance	ing	1	
Core Drilling	2				1	Other	C. man				
DRILLING RECORD						STRATA	& PEN	ETRATION TE	STS		
Run No From To	Drille	ed Recov	Chked	Number	Location	From	То		Descriptio	on of Strata	
FILLING WE	TER L	BOWSER	? (ZH				1				
6 19.05 20.30	10.7/	0. 2	8. 22	50					6		
51 20.30	10.73	om a	. /	SUM		19.05	20.3	o fiem	GREY	cuts.	
The off si	TE G	ETTIN	c ma	TERIALS							
FOR INSTA	LUNTIO	×	_			an an an an an an an an an an an an an a		+			
INSTALLATIO	NDE	TAILS	FOR	Some	n Pile						
INSTALLED IN	BH	I SEE	SH	ET 2	of 3						
110 0000	. C. A	1000	Telent	TO	112		1	-			
1412 11001	NUE	VERY	MINC	10 0	7-						
-					-						
				-							
	_										
								-			
										2.	
							-	Depth at	end of day		
Water Record			CORE	BOXES US	ED 12.5	50 -	- 20	.30	3 80	Les	
HUTER NECOLO			Flush R	ecord AL	R 400	0/170	Im (Compres	SOR		
Depth Struck	Depth -	20mins			Open Hole				Coring		
				Туре		Return		AIR MIST	•	Good	
			BENTO	NITE USED)						
			Bit Rec	ord							
Daily Water Level Record	Depth Hole	Depth Water	-	Type &	Size		Numb	er	0	Depth Drilled	
Start of am shift	19.05	14.84	PD	<u>c</u> 4	12				14.05	- 20.30	
End of am shift	. 07	CASINO	RECORD					1			
Start of nm shift				Size			From			То	
	1.2	,77	SIM	MITRE	X		GL		1	2.50	
End of BORY	10.30	11.12			1	Craw	GHA	bbock			
After pulling casing			Water ad	anth?	c Doring 16	Sign		driller	Verified	by Client	
Atter 24hrs			1 50 00	-puit [7-0]	5 - 40'			50			

50mm Starvine Installation

Site TROWBRIDGE STW Job AA0125 Chent BWB

Daily F	Repo	ort	She	et	Rota	ary		1		
Site: - TROI	NBRIC	SGE	stw		BH					
JOD NUMBER	AA	0125			2		AVONMOUT	H		
Client: -	BWE	5	1		2		BRISTOL BS11 9HF Tel: 0117 982 1473			
Date: - TVE	s 21	.2.	2012			Charles		Fax: 0117 982	2 8200	C.J.
Rig: - Co	MAC	CHIO	300			Sneet	5013		1	associates
TIME RECORD		Toto	I Hours			Start	Time		Finish	Time
Transport						Daywor	rks			
Rig Moving						Runnin	g Casin	g/Pulling Cas	ing	
Open Hote Drilling						Repair	s & Mai	ntenance		
Core Drilling						Other		USTRATION T	CTC	
DRILLING RECORD			1 70			STRAT	A & PEI	NETRATION TE	.515	in in the second
Run No From To	Drille	d Recov	very yry	Number	Location	From	То		Descriptio	on of Strata
SET RIG UP	ATE	382	POSITI	ON						
RUN SIMMIT	REX C	ASING	11 -	10 1.2	0					
REDRILLED C	ASING	DOU	N HRON	M						
1.40 - 8.	SO	11.00	117			11.00	15.2	- FIRM	Dev 1	CIALS
KEDKILLED 8	30 -	1100	ann	-		11.00	10.0		9166 1	20110.
4/2 DAGE	0 1.20	1.2	0		-					
SOT 12.20	7.7.17	- 7.1	8 3/4	m		0				
2 12.20 13.70	5 1.50	1.50	0							
SPT 13.70 :	5.9.1	1.13.1	9. 1/2	3m			-			
3 13.70 15.20	5 1.SC	5 1·S	0		1					
SPT 15.20 7	. 13.19	1.17.	14/60 M		12 X					
The Repa	IRING	mis	TR	MP						
			_							
								Ţ =		
	_						_		and of dou	
					ED.	1	_	1 Depth QL	and of day	
Water Record			CORE D		1	170.06	- 0	DR SCAL	2	
Deeth Changle	Death	20mins	Flush Re	cord AIK	Open Hole	110 01	m_sc	MYKE 3301	Corin	g
		-20111113		Type		Return		Туре		Return
				AIR	Ge	400		AIR MIS	7	GOOD
			BENTON	ITE USED				-		
			Bit Reco	rd						
Daily Water	Depth	Depth		Type & S	Size		Num	ber	(Depth Drilled
Level Record	Hole	Water	PDC	41	2				11.00	-15.20
Start of am shift										
End of am shift			CASING	RECORD					1	
Stort of pm shift			6	Size	~		From	1	\$	10 2.50
End of pm shift	15.20	13.52	SIM	MILKE	<u> </u>			in the second se		
After pulling casing			Water add	ded to daala	t boring	5 Cre	" GAA	EVANS		
After 24hrs			If so de	pth?900	-15.2	O Sig	nature or	f driller	Verified	by Client
						6	ht	abo)	

Site: Trowbridge STW												Start Date: 10/02/2012							
lob Number: AA0125													Finish Date: 10/02/2012						
lient:			В	WB Cor	nsultir	ng						Vertic	al Scale:	1:50)				
ig Typ	be:		D	ando 20	000	-						Total E	3H Depth:	12.3	7m	CJ	Ass	sociat	es
Depth	Samp. Ref.	S	tandar	d Penetration Tests (SPTs)				U100 Samples:	ike ← Water ∆	Devil	- 1 · · ·						Reduc		
(m)		Test type	Seat.	Test Drive	N-value	Seat	Test	Blows % recoverv	Nater St. tanding	(m)	(m)	Legend		Des	Description of Strata			(m.	0.D.
		ype	, oour						> 0				Grass / to	nsoil (D	rillor's				
0.50 - 1.20	B1									0.50	(0.50)		description	n).				-	
													Orange / I descriptio	orown c n).	lay (Dr	ller's		-	
											6	===		,				-	
1.20		s	1,2	1,2,2,3	N=8	150	300											-	
1.20 - 1.65 1.20 - 1.65	B3																		
1.70 - 2.00	T4																	-	
200-245	115						1	128h			(0.15)	5-0-5						Ē	
2.40							1	80%			(3.10)								
260 200	то						1											F	
2.30 - 3.00	10						1					2-2-2							
0.00				0.440	N 47													F	
3.00 3.00 - 3.45 3.00 - 3.50	D7 B8	S	3,3	3,4,4,6	N=17	150	300											Ē	
5.00 - 5.50	DO											===						-	
3.50 - 4.00	T9									3.60	(0.20)	******	arov ciltet	ono (Dr	illor's				
										3.80	(0.20)	******	description	n).	IIIEI S				
.00 - 4.45	U10							110b 100%					Blue / gre	y sandy	clay (E	Driller's		-	
													descriptio	n).					
4.50 - 5.00	T11												-					-	
													0						
5.00 5.00 - 5.45	D12	s	4,5	6,6,6,8	N=26	150	300												
5.00 - 5.50	B13																	-	
													4						
											1							-	
6.00 - 6.50	T14																		
											. 1							-	
6.50 - 6.95	U15							109b											
								60%										_	
																		-	
7.50 - 8.00	T16										0							-	
8.00		s	5,6	6,7,8,9	N=30	150	300				(0.57)								
3.00 - 8.45 3.00 - 8.50	D17 B18						1				(8.57)							F	
							1				i.								
							1											F	
100-950	Т10											민준희						Ē	
							1											F	
9 50 <u>-</u> 0 05	0011						1	1705										E	
	020						1	100%											
							1						-	(Continu	ied on n	ext sheet)		F	
L	lole Prov		with Tim	e (Denths in m	below C		1			Chicoll	ina		sing Record	(some	Ground	water Strikes (do	nths in m	F	
Date	Hole d	le depth Casing depth Depth to water Remarks From (m) To (m) Time (n) Time (h	rs) Depth	(m) Dia. (mm)	Strike	Casing	Water (20mins)	Sealed	Remarks	6		
			1.65	5					3.60	3.8	0	1.6	65	٢	o Groun	lovener Endlanderte	ndovatilieté	Epicountexatehi &	Grou
				I								1		I	L		1	Drilled Bv	AN
eneral	кета	rks:																Logged By:	

Cable Percussion Borehole Log Sheet

BH No[.] 1

Cable Percussion Borehole Log Sheet										BH I	No:	1						
Site:			T	rowbrid	ge ST	W						Start I	Date:	10/02/201	2		.ΙΔ	
Job Nu	mbe	r:	A	A0125								Finish	Date:	10/02/201	2			
Client: Ria Tvr	e.		В В	ando 20	nsuitir 100	ng						Total P	al Scale. 3H Depth:	1.50 12.37m	СJ	Ass	ociates	S
		C+	andor	d Ponotratio	n Tooto		' c)		ΙV					12.07111			Reduced	4
Depth (m)	Samp Ref.	Test type	Seat.	Blow Count Test Drive	s N-value	Pen. Seat	s) (mm) Test	U100 Samples: Blows % recovery	Water Strike < Standing Water	Depth (m)	Thickness (m)	Legend		Description	of Strata		(m. O.D.	.)
10.50 - 11.00 11.00 - 11.43 11.00 - 11.43 11.00 - 11.50 11.50 - 12.00 12.00 - 12.37 	T21 D22 B23 T24 D25	s s	8,8	10,10,15,15	N>50	150	145			12.37			Blue / grey description	y sandy clay (D n). CONTINUED B	riller's Y ROTARY DI	RILLING		
ŀ	lole Proç	gress v	/ith Tim	e (Depths in m	. below G	.L.)				Chiselli	ng	Ca	sing Record	Groundv	vater Strikes (dep	oths in m.	below G.L.)	
Date	Hole d	epth C 37	asing d	depth Depth to	water	Re	emarks	Fro	m (m)	To (m	n) Time (hi	rs) Depth ((m) Dia. (mm)	Strike Casing No Grour N	Water (20mins) weberuFnbloodBroof	Sealed	Remarks	inter
0																		4
General	Rema	rks:										<u> </u>					Logged By:	
Cable Percussion Borehole Log Sheet

Site:

Trowbridge STW AA0125

Job Number: Client:

BWB Consulting

Rig Type:

Dando 2000

BH No:

 Start Date:
 09/02/2011

 Finish Date:
 09/02/2011

2

C J Associates

		St	andar	d Penetratio	n Tests	(SPT	"s)	U100	↓ [™]									Reduced
Depth (m)	Samp.	Test		Blow Counts	s	Pen.	(mm)	Blows	er Strike ding Wa	Depth	Thickness	Legend		Des	scriptior	of Strata		(m. O.D.)
(11)	IXEI.	type	Seat.	Test Drive	N-value	Seat	Test	% recovery	Wate Stane	(m)	(m)							
-											(0.30)		Grass / to	psoil (D	riller's			-
-										0.30				n).				
- 0.50 - 1.20 - -	В1											2-2-2-	descriptio	orown c n).	ay (Dr	llier's		
-											(1.20)			,				-
-											(1.30)							-
- 1.20 - 1.20 - 1.65	D2	S	1,2	3,3,3,3	N=12	150	300											E
- 1.20 - 1.65 -	ВЗ									1 60								
- 1.70 - 2.00 -	T4									1.00		X X	Orange /	green si	ilty / sa	ndy clay		-
- 2.00 - 2.45	U5							130b			(0.90)	X		lescripti	011).			-
-								100%			(0.00)	X X	-					
- - 2.50 - 3.00	Т6									2.50		<u>×</u>						
-													Blue / gre	y sandy n)	clay (E	Driller's		-
- 200		6	22	2445	N-16	150	200						descriptio					Ē
- 3.00 - 3.45 - 3.00 - 3.50	D7 88	3	2,3	3,4,4,5	11-10	130	300											L.
-																		-
- 3.50 - 4.00 -	Т9																	-
																		_
4.00 - 4.45 -	U10							63b 70%										-
-											0.5							-
- 4.50 - 5.00	T11																	E
-																		-
- 5.00		s	4,5	5,5,8,8	N=26	150	300											-
- 5.00 - 5.45 - 5.00 - 5.50	D12 B13																	Ē
-																		-
-																		-
- - 	T14																	
-																		_
-																		-
- 6.50 - 6.95 - -	U15							120b 100%										E
-											(8.64)							-
																		-
																		E
- 7.50 - 8.00	T16																	
-											-							-
- 8.00	DIT	s	5,6	6,7,9,9	N=31	150	300											-
- 8.00 - 8.45 - 8.00 - 8.50 -	B18																	E
-																		-
																		E
	T19																	E
-																		-
	001							1404					0					
- 9.50 - 9.95 - -	020							70%										E
-														(Contine	ied on n	ext sheet)		-
<u> </u>			ith Tire	o (Dontha in	hole::: C			 		China			oing Bossed			wotor Strikes (1)	ntho in m	
Date	Hole d	press v epth C	asing d	e (Depths in m lepth Depth to	water	.∟.) Re	emarks	s Fro	m (m)	To (n	n) Time (hr	rs) Depth ((m) Dia. (mm)	Strike	Casing	Water Strikes (de) Sealed	Remarks
			1.65	5								1.6	35	1	1.65		1	
L			1															
General	Rema	rks:																Drilled By: AN Logged By:

Site: Job Nu Client: Rig Typ	mbe be:	r:	Tı A. B' D	r owbridg A0125 WB Cor ando 20	je ST Isultir 100	พ าg			,			Start Finis Verti Total	Date: h Date: cal Scale: BH Depth:	09/0 09/0 1:50 11.14	2/20 ⁻ 2/20 ⁻ 1m	11 11 C J	Ass	SJA sociates
Depth (m)	Samp. Ref.	St Test	andaro	d Penetratio	n Tests s	(SPT	Test	U100 Samples: Blows	/ater Strike ← anding Water	Depth (m)	Thickness (m)	s Legend	1	Des	cription	of Strata		Reduced Level (m. O.D.)
(m)	Ref. T21 D22	s s	Seat.	50,-,-,-	N-value	Seat	35	biows % recovery	← N Water Structure Struc	(m) 11.14	(m)		BOREHOLE	ey sandy n). CONTIN	UED B	Priller's	RILLING	
- - - - - -																		
H	lole Proç	gress v	vith Tim	e (Depths in m	. below G	.L.)	<u> </u>			Chiselli	ing		Casing Record		Ground	water Strikes (de	pths in m.	below G.L.)
Date	Hole de	epth C	asing d	epth Depth to 11.1	4	Re	emarks	s Fro	•m (m)	To (m	ı) Time (h	nrs) Depti	h (m) Dia. (mm)	Strike 11.14	Casing	Water (20mins) 10.70	Sealed	Remarks
General	Remar	rks:	1									<u> </u>						Logged By: AN

Cable Percussion Borehole Log Sheet BH No:

2

APPENDIX 4

BOREHOLE LOGS AND PHOTOGRAPHS

Project T	ſitle	e Trowbridge S	ГW	Hole Re				Ref	e f. BH1		
Client		Wessex Water	•			Pro	oje	ct I	No.	BME2019	
Plant use	ed	Dando 2000 /	Comacchio	300		Start 1	Date 09	9/02/2	En 2012	d Date 21/02/2012	
Groundwater De	epth	Description of	Strata	Level	Legend	l Sa	mple	es	In-	situ Testing	
Strike Well (I	m)	×.		(mAOD)		Туре	De	pth To	Depth (m) (SPT Type)	Result	
0.	.15	MADE GROUND: Grass of brown slightly clayey sligh sandy TOPSOIL. Gravel is fine and medium of flint, n brick and concrete with free	over dark ttly gravelly s subangular nudstone, rare quent rootlets.			B DJV	0.50	1.20 0.50			
		MADE GROUND: Reword orangish brown and greyisl occasionally mottled orang gravelly sandy CLAY with cobble of concrete at 0.30r (150x220x260mm). Grave subangular fine and mediu slate and rare brick with ra	ked soft h brown je slightly a angular n bgl l is angular to m of mudstone, re rootlets.			DJV	1.50	1.50	1.20 (S)	N=8 (1,2/1,2,2,3)	
		Firm becoming stiff below grey and blueish grey local with frequent orange mottl rootlets to 1.30m bgl.	4.00m light ly silty CLAY ing and rare						3.00 (S)	N=17 (3,3/3,4,4,6)	
									5.00 (S)	N=26 (4,5/6,6,6,8)	
		Continued next sheet							8.00 (S)	N=30 (5.6/6,7,8,9)	
REMARKS 1. Hand dug service p 2. Borehole advanced 12.37m bgl follow techniques to schec 3. Chiselling undertal 4. Simmitrex casing a	pit to 1.2 d using o ved by ro duled do ken bet advance	20m bgl. cable percussive techniques to otary drilling using air mist epth of 20.53m bgl. ween 3.60m bgl and 3.80m bgl. dt to a depth of 12.50m bgl.	SOIL SAMPLE TYPE D - 500g to 1kg Disturbed B - 5kg to 20kg Disturbed U - 100mm dia. Undisturbed J - 250ml Amber Glass Jar V - Glass Vial	IN-SITU T SV - Hand S HP - Hand D N = SPT blo S = Split Sp C = Solid C PID - Photo Detector (p	ESTS Shear Vane Penetrometer ows over 300mm oon Sampler one b Ionisation pm)	GROUND ↓ Grounstrike ↓ Standinground	WATEF dwater ng lwater le	R vel	CO	SWB NSULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS	
5.No water strike. 6.No visual or olfact	tory evi	dence encountered within the	EASTING	NORT	HING	ROUND	LEV	EL		Environment Group 5th Floor Waterfront House	
7.Installation of a 50 with a response zon	Omm gas one betw	s and groundwater standpipe veen 1.00m bgl and 19.00m bgl.	LOGGED BY GA	SCA 1::	LE 50	SHE	ET 1 of 3			Station Street Nottingham NG2 3DQ Tel : 0115 9241100 Fax : 0115 9503966	

Project Title Trowbridge			Ho	le R	ef.	BH1	
Client Wessex Wa	ter			Pro	oject	t No.	BME2019
Plant used Dando 2000	/ Comacchio	300		Start I	- Date 09/0	2/2012 Ei	nd Date 21/02/2012
Groundwater Depth Description	n of Strata	Level Lege	end	Sa	mples	In	-situ Testing
Strike Well (m)		(mAOD)		Туре	Dept	h Depth (m	i) Result
Firm becoming stiff be grey and blueish grey 1 with frequent orange n rootlets to 1.30m bgl.	low 4.00m light ocally silty CLAY nottling and rare				11011		
11.00 Stiff becomnig very sti dark greyish blue and o sandy gravelly CLAY extremely weak weath Gravel is angular fine f	ff below 12.00m, lark blue slightly locally tending to ered mudstone. to coarse of					11.00 (S	.) N=50 (8,8/10,10,15,15)
						12.00 (S) 50 (10,12/13,15,22,0 for 0mm)
Very stiff grey very cld fossiliferous locally sil becoming gravelly with from 19.00m bgl.	vsely fissured ty CLAY 1 weak mudstone rite nodule					13.50 (S	50 (4,8/11,17,18,4 for 5mm)
						15.00 (S) 50 (5,9/18,24,8 for 30mm)
						16.50 (S) 50 (5,11/13,19,18 for 63mm)
No No No	on intact zone on intact zone on intact zone					18.00 (S) 50 (8,15/19,21,10 for 38mm)
Continued next sheet	ot silty						
REMARKS 1. Hand dug service pit to 1.20m bgl. 2. Borehole advanced using cable percussive techniques t 12.37m bgl followed by rotary drilling using air mist techniques to scheduled depth of 20.53m bgl. 3. Chiselling undertaken between 3.60m bgl and 3.80m b	o SOIL SAMPLE TYPE D - 500g to 1kg Disturbed B - 5kg to 20kg Disturbed U - 100mm dia. Undisturbed J - 250ml Amber Glass Jar V - Glass Vial	IN-SITU TESTS SV - Hand Shear Vane HP - Hand Penetromet N = SPT blows over 3(S = Split Spoon Sample C = Solid Cone PID - Photo Ionisation	ter 00mm '	GROUND ↓ Ground strike ↓ Standin ground	WATER lwater lg water level	CC	BWBB DINSULTAINCY ENVIRONMENT FRASTRUCTURE BUILDINGS
4.Simmitrex casing advanced to a depth of 12.50m bgl.5.No water strike.6.No visual or olfactory evidence encountered within the	EASTING	Detector (ppm) NORTHING	GR	OUND	LEVEL		Environment Group 5th Floor Waterfront House
exploratory hole. 7.Installation of a 50mm gas and groundwater standpipe with a response zone between 1.00m bgl and 19.00m b	ILOGGED BY GA	- SCALE 1:50		SHEI Sheet 2	E T 2 of 3		Station Street Nottingham NG2 3DQ Tel : 0115 9241100 Fax : 0115 9503966

Project	Title	Trowbridge S	ΓW			Ho	le I	Ref	• [•	BH1	
Client	Client Wessex V		• L			Pro	ojeo	ct ľ	No.	BME201	9
Plant us	sed	Dando 2000 /	Comacchio	3 <u>00</u>		Start I	Date 09	/02/2	2012 Er	nd Date21/02/201	2
Groundwater	Depth	Description of	f Strata	Level	Legend	Sa	mple	es	In-	situ Testing	
Strike Well	(m)	•		(mAOD)	.9	Туре	De	pth	Depth (m)	Result	
		Very stiff grey very closely	y fissured	È			From	10	(SPT Type)	<u>, </u>	
		fossiliferous locally silty C becoming gravelly with we	LAY eak mudstone	Ē					20.30 (S) 50 (18,7 for 38mm/28,22 for	50m
	20.53	from 19.00m bgl.	······································	1		-					
	-	End of hole at 20.53 m									
	-			E							
	-			-							
	-			-							
	-			-							
	-										
	-										
				-							
	_										
	-										
	-										
	-			_							
	_			F							
	-			-							
	-										
				-							
				- -							
REMARKS			SOIL SAMPLE TYPE	IN-SITU T	ESTS Shear Vane		WATER				
1. Hand dug servi 2.Borehole advan	nced using c	Om bgl. able percussive techniques to	B - 5kg to 20kg Disturbed U - 100mm dia. Undisturbed	HP - Hand F N = SPT bk	Penetrometer ows over 300mm	strike	ng			SVVD	5
12.3 /m bgi ion techniques to s	lowed by ro	pth of 20.53m bgl.	J - 250ml Amber Glass Jar V - Glass Vial	S = Split Spo C = Solid C	oon Sampler	ground	water lev	/el	co	INSULTANCY ENVIRONMEN	IT
3. Chiselling unde 4. Simmitrex casi	ertaken betw ing advanced	l to a depth of 12.50m bgl.		PID - Photo Detector (p) Ionisation pm)				INF	Environment Gro	s up
5.No water strike 6.No visual or of exploratory ho	e. lfactory evid lle.	ence encountered within the	EASTING -	NORT	HING G	ROUND -	LEVE	ΣL		5th Fl Waterfront Ho Station St	oor use
7.Installation of a with a response	a 50mm gas e zone betwe	and groundwater standpipe een 1.00m bgl and 19.00m bgl.	LOGGED BY GA	SCA 1:	LE 50	SHEJ Sheet	E T 3 of 3			Nottingh NG2 3 Tel : 0115 9241 Fax : 0115 9503	am DQ 100 966

Project	: Title	e Trowbridge S	ΓW	Hole				Iole Ref.			
Client		Wessex Water	•			Pro	oje	ct I	No.	BME2019	
Plant u	sed	Dando 2000 /	Comacchio	300		Start 1	Date 10)/02/2	En 12	d Date 22/01/2012	
Groundwater	Depth	Description of	f Strata	Level	Legen	d Sa	mple	s	In-	situ Testing	
Strike Well	(m)			(mAOD)	attent (Туре	De From	pth To	Depth (m) (SPT Type)	Result	
	0.20	MADE GROUND: Grass of brown clayey slightly grav TOPSOIL. Gravel is angul subangular fine to coarse of mudstone and limestone w rootlets.	over dark elly sandy ar to f flint, ith frequent			B DJV	0.50 0.80	1.20 0.80			
		MADE GROUND: Rewor and greyish brown with oc orange mottling slightly sa with occasional rootlets.	ked soft brown casional ndy CLAY				1.20 1.70	1.65 2.00	1.20 (S)	N=12 (1,2/3,3,3,3)	
	2.50	Soft becoming firm below depth brown and greyish b occasional orange mottling sandy CLAY with occasion	1.20m with rown with slightly nal rootlets.			U D	2.00 2.50	2.45 3.00			
		Firm locally tending to stif 3.00m, greyish blue and da	sh brown fine ockets / f below rk greyish			DJV B D	3.00	3.00 3.50 3.45	3.00 (S)	N=16 (2,3/3,4,4,5)	
		blue slightly sandy CLAY fragments (<20mm) to 4.00 Firm locally tending to stif blue and dark greyish blue clichtly candy CLAY with	with rare shell Om bgl. f greyish locally			UD	4.00	4.45 4.00			
		fragments (<20mm) to 4.00	Om bgl.			D	4.50 5.00	5.00 5.45	5.00 (S)	N=26 (4,5/5,5,8,8)	
						В	6.00	5.50			
	0.00	Becon locally slightl Stiff greyish blue and grey silty slightly sandy CLAY.	ning stiff y silty and y sandy locally			U	6.50	6.95			
		locally	<i>y</i> silty and y sandy			D	7.50	8.00			
						D B	8.00	8.45 8.50	8.00 (S)	N=31 (5,6/6,7,9,9)	
				-		D	9.00	9.50			
		Continue I de la d									
REMARKS 1. Hand dug serv 2. Borehole adv 11.06m bgl fo techniques to 3. Simmitrex cas	vice pit to 1 anced using illowed by 1 scheduled d sing advance	20m bgl. cable percussive techniques to rotary drilling using air mist lepth of 20.05m bgl. ed to a depth of 8.50m bgl.	SOIL SAMPLE TYPE D - 500g to 1kg Disturbed B - 5kg to 20kg Disturbed U - 100mm dia. Undisturbed J - 250ml Amber Glass Jar V - Glass Vial	F $SV - Hand S$ $HP - Hand$ $N = SPT block S = Split Sp C = Solid C$ $PID - Photo Determined for the second sec$	TESTS Shear Vane Penetrometer ows over 300m oon Sampler Cone o Ionisation	GROUND ↓ Groum strike m ▼ Standii ground	WATEF dwater ng lwater lev	k vel	CO	SULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS	
4. Groundwater 10.70m bgl af 5. No visual or o	Croundwater strikes encountered at 11.14m bgl rising to 10.70m bgl after 20 minutes. S.No visual or olfactory evidence encountered within the exploratory hole.			Detector (ppm) NORTHING GROUND LEVEL		EL	Environment Group 5th Floor Waterfront Houss Station Stree				
exploratory In			LOGGED BY GA	SCA 1:	LE 50	- SHEET Sheet 1 of 3				Station Street Nottingham NG2 3DQ Tel : 0115 9241100 Fax : 0115 9503966	

Project	t Title	e Trowbridge S	ΓW	Hole I			Ref	• •	BH2	
Client		Wessex Water	ſ			Pro	ojec	et N	No.	BME2019
Plant u	ised	Dando 2000 /	Comacchio	300		Start	Date 10	/02/2	Ene	d Date 22/01/2012
Groundwater	Depth	Description of	f Strata	Level	Legend	l Sa	mple	s	In-	situ Testing
Strike Well	(m)	-		(mAOD)		Туре	De	pth To	Depth (m) (SPT Type)	Result
	10.70	Firm locally tending to stif blue and dark greyish blue slightly sandy CLAY with fragments (<20mm) to 4.0	f greyish locally rare shell 0m bgl.			D	10.70	11.00	()* * * ₂	
	11.00	Stiff greyish blue and grey silty slightly sandy CLAY.	locally /			D	11.00	11.06	11.00 (S)	50 (13,12 for 25mm/50 for 35mm
11.14	11.40	Very stiff dark blue and da blue sandy gravelly CLAY extremely weak weathered Gravel is angular fine to co weathered mudstone.	rk greyish tending to mudstone. barse of							
		Grey weak silty fossiliferon MUDSTONE. Fractures ar planar, rough with silt infil	us :e horizontal, (ling.						12.20 (S)	50 (7,7/12,17,18,3 for 4mm)
		Very stiff grey very closely fossiliferous locally silty C becoming gravelly of weak from 19.00m. Non ir Non ir Non ir	/ fissured LAY : mudstone ntact zone						13.70 (S)	50 (5,9/11,13,19,7 for 23mm)
	na na mana mana mana mana mana mana man	Tendiı weak	ng to extremely ^{/⊏} mudstone						15.20 (S)	50 (7,13/19,17,14 for 60mm)
		Tendir weak 1 Non ir Occas presen Horizz with s	ng to extremely mudstone itact zone ional fossils it ontal fracture ilt infilling						16.70 (S)	50 (7,11/13,19,18 for 66mm)
		Silt ba Silt ba Tendin week	ind						18.20 (S)	50 (7,11/14,18,18 for 61mm)
		Continued next sheet	and weak one						19.70 (S)	50 (8,13/16,18,16 for 52mm)
REMARKS 1. Hand dug ser 2. Borehole adv 11.06m bgl for techniques to 3. Simmitrex ca 4. Groundwater	vice pit to 1 'anced using ollowed by 1 scheduled d using advance r strikes enco	.20m bgl. ; cable percussive techniques to rotary drilling using air mist Jepth of 20.05m bgl. ved to a depth of 8.50m bgl. ountered at 11.14m bgl rising to	SOIL SAMPLE TYPE D - 500g to 1kg Disturbed B - 5kg to 20kg Disturbed U - 100mm dia. Undisturbed J - 250ml Amber Glass Jar V - Glass Vial	IN-SITU T SV - Hand S HP - Hand I N = SPT blc S = Split Sp C = Solid C PID - Photo Detector (p)	ESTS Shear Vane Penetrometer ows over 300mm oon Sampler one o Ionisation pm)	GROUND ↓ Groun strike a ▼ Standi ground	WATER idwater ing dwater lev	rel	COL	SULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS
10.70m bgl at 5.No visual or exploratory h	fter 20 minu olfactory evi 10le.	ites. idence encountered within the	EASTING -	NORTHING G		GROUND	LEVE	EL		Environment Group 5th Floor Waterfront House Station Street
			LOGGED BY SCALE GA 1:50			SHE Sheet	ET 2 of 3	3		Nottingham NG2 3DQ Tel : 0115 9241100 Fax : 0115 9503966

Pr	Project TitleTrowbridgeClientWessex Wat			ΓW			Ho	le l	Ref	•	BH2
Cl	ient		Wessex Water	•			Pro	oje	ct I	No.	BME2019
Pla	ant u	sed	Dando 2000 /	Comacchio	300		Start]	Date 10	/02/2	2012 En	d Date 22/01/2012
Grou	ndwater	Depth	Description of	f Strata	Level	Legend	I Sa	mple	s	In-s	situ Testing
Strike	Well	(m)	Description		(mAOD)	Legen	Туре	De	pth	Depth (m)	Result
Strike	Well	(m) 20.05 -	Very stiff grey very closely fossiliferous locally silty C becoming gravelly of weak from 19.00m. <i>End of hole at 20.05 m</i>	y fissured LAY c mudstone	(mAOD)		Type	Je From		Depth (m) (SPT Type)	Result
REM	IARKS			SOIL SAMPLE TYPE	IN-SITU T	ESTS	GROUND	WATER	۱ ۱		
1. Ha 2.Bo 11. tec 3.Sir	nd dug ser rehole adv 06m bgl fo hniques to nmitrex cas	vice pit to 1 anced using blowed by r scheduled d sing advance	20m bgl. cable percussive techniques to otary drilling using air mist epth of 20.05m bgl. ed to a depth of 8.50m bgl.	 D - 500g to 1kg Disturbed B - 5kg to 20kg Disturbed U - 100mm dia. Undisturbed J - 250ml Amber Glass Jar V - Glass Vial 	SV - Hand S HP - Hand H N = SPT blo S = Split Spo C = Solid Co PID - Photo	hear Vane Penetrometer ws over 300mm oon Sampler one Ionisation	 ✓ Ground strike ▲ Standin ground 	dwater ng lwater lev	/el	COL	SULTANCY ENVIRONMENT RASTRUCTURE BUILDINGS
4.Gr 10. 5.No	oundwater 70m bgl af visual or o	strikes enco fter 20 minu olfactory evi	untered at 11.14m bgl rising to tes. dence encountered within the	EASTING	Detector (pp	m) HING	GROUND	LEVI	EL		Environment Group 5th Floor Waterfront House
exp	pioratory h	oie.		LOGGED BY GA	SCA 1:5	LE 50	SHE Sheet	ET 3 of 3			Station Street Nottingham NG2 3DQ Tel : 0115 9241100 Fax : 0115 9503966

Photo 1 BH1 Core 12.50m to 15.70m

Photo 2 BH1 Core 15.70m to 18.70

Photo 3 BH1 Core 18.70m to 20.00m

Photo 4 BH2 Core 11.00m to 14.00m

Photo 5 BH2 Core 14.00m to 17.00m

Photo 5 BH2 Core 17.00m to 19.70m

APPENDIX 5

TRIAL PIT LOGS AND PHOTOGRAPHS

Project	Project Title Trowbridge STW					Hole Ref. TP				TP2
Client		Wessex Water	•			Pr	oje	ct I	No.	BME2019
Plant u	sed	JCB 3CX				Start	Date 10)/02/2	E012	nd Date 10/02/2012
Groundwater	Depth	Description of	f Strata	Level	Legen	d Sa	mple	es	In	-situ Testing
Strike Well	(m)			(mAOD)		Туре	De From	pth To	Depth (n (SPT Type	n) e) Result
	0.10	MADE GROUND: Grass of brown clayey sandy TOPS frequent rootlets.	over dark OIL with			DJV B	0.40	0.40	0.20	
	1.00	MADE GROUND: Firm o and grey slightly sandy slig CLAY. Gravel is angular f of brick, siltstone, mudstor coal fragments.	rangish brown ghtly gravelly ine to coarse he and rare			В	1.20	1.60	1.20	$ \begin{array}{l} SV=64 \ kN/m2\\ SV=60 \ kN/m2\\ SV=61 \ kN/m2 \end{array} $
		Soft orangish brown and b frequently mottled orange slightly gravelly CLAY. G	rownish grey locally silty ravel is	-		DJV	1.90	1.90		
		angular fine and medium o mudstone. Becon gravel	f weathered ning stiff and ly			В	2.40	2.70	2.50	$\begin{array}{l} SV = 80 \ kN/m2 \\ SV = 88 \ kN/m2 \\ SV = 87 \ kN/m2 \end{array}$
	3.00	End of hole at 3.00 m	L		· _ · ·					
REMARKS 1. Trial pit termi 2.No visual or o 3.Side walls we 4.No groundwat	EMARKS Trial pit terminated at scheduled depth of 3.00m bgl. No visual or olfactory evidence encountered. Side walls were stable throughout the excavation. No groundwater encountered during excavation.		SOIL SAMPLE TYPE D - 500g to 1kg Disturbed B - 5kg to 20kg Disturbed U - 100mm dia. Undisturbed J - 250ml Amber Glass Jar V - Glass Vial	IN-SITU I SV - Hand S HP - Hand I N = SPT ble S = Split Sp C = Solid C PID - Photo Detector (p	ESTS Shear Vane Penetrometer ows over 300m oon Sampler one o Ionisation pm)	GROUNI ↓ Grour strike m ↓ Stand groun	DWATEF ndwater ing dwater lev	k vel	CI IN	BWB ONSULTANCY ENVIRONMENT IFRASTRUCTURE DUILDINGS
			EASTING	NORT	HING	GROUND LEVEL		EL		Environment Group 5th Floor Waterfront House
			LOGGED BY SCALE GA 1:50		- SHEET Sheet 1 of 1				Station Street Nottingham NG2 3DQ Tel : 0115 9241100 Fax : 0115 9503966	

Project Title Trowbridge S			Но	le l	Ref	•	TP3		
Client Wessex Water	r			Pro	oje	ct I	No.	BME2019	
Plant used JCB 3CX				Start]	Date 10	/02/2	E012	End Date 10/02/2012	
Groundwater Depth Description o	f Strata	Level	Legend	l Sa	mple	s	Ir	n-situ Testing	
Strike Well (M)		(mAOD)		Туре	De From	pth To	Depth (1 (SPT Typ	m) Result	
0.15 MADE GROUND: Grey s of angular to subangular fi mixed lithologies includin	andy GRAVEL ne to coarse of g limestone.			D B	0.00	0.10	0.60	SV = 75 kN/m2	
1.00 1.00	orangish brown tled orange velly CLAY s angular to of brick and			DJV DJV B	0.90 1.20 1.50	0.90 1.20 1.80		SV = 68 kV/m2 SV = 69 kN/m2	
MADE GROUND: Firm the from 2.00m, dark grey and grey with frequent black s slightly sandy gravelly CL organic odour. Cobble of s concrete at 1.60m bgl (350 Gravel is angular to suban caorse of brick, concrete, n siltstone	pecoming stiff I dark greenish taining AY with subangular b*220*200mm). gular fine to mudstone and			D	2.30 2.80	2.30 2.80	2.00	SV = 95 kN/m2 SV = 90 kN/m2 SV = 93 kN/m2	
End of hole at 3.00 m									
 Trial pit terminated at scheduled depth of 3.00m bgl. No visual or olfactory evidence encountered. Side walls were stable throughout the excavation. No groundwater encountered during excavation. 	D - 500g to 1kg Disturbed B - 5kg to 20kg Disturbed U - 100mm dia. Undisturbed J - 250ml Amber Glass Jar V - Glass Vial	SV - Hand S HP - Hand P N = SPT blo S = Split Spo C = Solid Cc PID - Photo Detector (pp NORTI	hear Vane enetrometer ws over 300mm on Sampler one Ionisation m) HING	✓ Ground strike Standin ground	dwater ng Iwater lev	/el	c II	CONSULTANCY ENVIRONMENT NERASTRUCTURE BUILDINGS Environment Group 5th Floor	
	-	-		-				Waterfront House Station Street Nottingham	
	LOGGED BYSCALEGA1:50			SHEET Sheet 1 of 1			NG2 3DQ Tel : 0115 9241100 Fax : 0115 9503966		

Project Title Trowbridge S	ΓW			Hole Ref.				TP4	
Client Wessex Water	[Pro	ojec	et l	No.	BME2019	
Plant used JCB 3CX				Start I	Date 10,	/02/2	2012 E	End Date 10/02/2012	
Groundwater Depth Description of	f Strata	Level Leg	gend	Sa	mple	s	In	n-situ Testing	
Strike Well (m)		(mAOD)	a.i.,	Туре	De From	pth To	Depth (r (SPT Typ	m) Result	
0.20 MADE GROUND: Grass of brown clayey slightly grav TOPSOIL. Gravel is subar coarse of mudstone and br rootlets. MADE GROUND: Firm to from 0.50m, orangish brow mottled orange slightly sar gravelly CLAY with angula concrete at 1.50m bgl. Gra fine to coarse of brick, flin with occasional decompos and roots. Locall silty MADE GROUND: Firm d blueish grey slightly sandy CLAY. Gravel is angular t fine to coarse of mudstone Frequent decomposing root Becom End of hole at 3.00 m	over dark elly sandy ngular fine to ick with freuent ending to stiff vn and grey ndy slightly lar cobble of vel is angular t and mudstone sing rootlets ly becoming ark grey and gravelly o subangular and brick with tlets and roots. ning soft			DJV B DJV B DJV	1.20 1.20 1.60 2.50	2.50	0.50	SV = 110 kN/m2 SV = 112 kN/m2 SV = 115 kN/m2	
REMARKS	SOIL SAMPLE TYPE	IN-SITU TESTS		GROUND	WATER				
 Trial pit terminated at scheduled depth of 3.00m bgl. No visual or olfactory evidence encountered. Side walls were stable throughout the excavation. No groundwater encountered during excavation. 	SOIL SAMPLE FIFE IN-SITUTESTS D - 500g to 1kg Disturbed SV - Hand Shear Vane B - 5kg to 20kg Disturbed HP - Hand Penetrometer U - 100mm dia. Undisturbed N = SPT blows over 300mm J - 250ml Amber Glass Jar S = Split Spoon Sampler V - Glass Vial PID - Photo Ionisation		GROUNDWATER ∑ Groundwater strike m ▼ Standing groundwater level		el	C	CONSULTANCY ENVIRONMENT NERASTRUCTURE DUILDINGS		
	EASTING	NORTHING	GI	GROUND LEVE		EL		Environment Group 5th Floor Waterfront House	
	LOGGED BY GA				- SHEET Sheet 1 of 1			Station Street Nottingham NG2 3DQ Tel : 0115 9241100 Fax : 0115 9503966	

Project TitleTrowbridge STWClientWessex Water							Но	le l	Ref	? .•	TP5
Cl	ient		Wessex Water	• ·			Pro	oje	ct I	No.	BME2019
Pl	ant u	sed	JCB 3CX				Start]	Date 10)/02/2	E1	nd Date 10/02/2012
Grou	indwater	Depth	Description of	f Strata	Level	Legen	d Sa	mple	es	In-	-situ Testing
Strike	Well	(m)	r		(mAOD)	8	Туре	De	epth	Depth (m) Result
			MADE GROUND: Grass d brown slightly clayey sand with frequent rootlets and a of brick. MADE GROUND: Stiff on and grey mottled orange slightly gravelly CLAY wi rootlets and rare roots. Gra angular to subangular fine mudstone, siltstone, sandst brick fragments. Firm s locally Becon MADE GROUND: Firm d blueish grey occasionally s slightly sandy slightly gra silty CLAY with occasiona decomposing rootlets. Gra fine to coarse of mudstone <i>End of hole at 3.00 m</i>	over dark ly TOPSOIL angular cobble			DJV B DJV B DJV B DJV	0.40 0.60 1.10 1.30 2.50 3.00	0.40 0.90 1.10 2.70 3.00	0.60	SV = 90 kN/m2 SV = 100 kN/m2 SV = 102 kN/m2 SV = 61 kN/m2 SV = 71 kN/m2
REN 1. Tr 2.No 3.Sio 4.No	IARKS ial pit termi o visual or o de walls we o groundwa	inated at so olfactory ev re stable the ter encoun	heduled depth of 3.00m bgl. vidence encountered. aroughout the excavation. areed during excavation.	SOIL SAMPLE TYPE D - 500g to 1kg Disturbed B - 5kg to 20kg Disturbed U - 100mm dia. Undisturbed J - 250ml Amber Glass Jar V - Glass Vial	IN-SITU T SV - Hand S HP - Hand S S = Split Sp C = Solid C	TESTS Shear Vane Penetrometer ows over 300m oon Sampler one	GROUND ↓ Ground strike m ▼ Standing ground	WATEF dwater ng lwater lev	R vel	cc	
			FASTING	PID - Photo Detector (p	o Ionisation pm)	GROUND	IFV	FT	IN	Environment Group	
1				EASTING -	NORT -	HING	GKUUND -	LEVI	СL		5th Floor Waterfront House Station Street
				LOGGED BY GA	SCA 1:	LE 50	SHEET Sheet 1 of 1				Nottingnam NG2 3DQ Tel : 0115 9241100 Fax : 0115 9503966

Project Title Trowbridge STW							Но	le l	Ref	? •		TP6	
Cl	ient		Wessex Water	•			Pro	oje	ct I	No.		BME2019	
Plant used JCB 3CX						Start 1	Date 10	/02/2	2012	End Date 012 10/02/2012			
Groundwater Depth		Depth	Description of	f Strata	Level	Legend	i Sa	Samples			n-s	situ Testing	
Strike	Well	(m)			(mAOD)		Туре	De	pth	Depth ((m)	Result	
∑ 1.50	Well	(m) 0.20 0.60	MADE GROUND: Grass of brown slightly clayey sand of angular concrete at 0.15 MADE GROUND: Firm o and grey slightly sandy CL fine and medium of rare b Firm becoming stiff below frequently mottled orangis slightly sandy gravelly CL angular fine and medium of weak weathered mudstone Becon gravel End of hole at 3.00 m	over dark y TOPSOIL roots. Cobble m bgl. rangish brown AY. Gravel is rick fragments. 1.50m, grey h brown AY. Gravel is f extremely			Type DJV DJV B DJV B DJV D D	De From 0.15 0.40 0.60 1.20 1.50 2.60 3.00	pth To 0.15 0.40 0.90 1.20 1.50 2.20 2.60 3.00	Depth ((SPT Ty)	(m) pe)	SV = 68 kN/m2 SV = 70 kN/m2 SV = 70 kN/m2 SV = 72 kN/m2 SV = 60 kN/m2	
REMARKS 1. Trial pit terminated at scheduled depth of 3.00m bgl. 2.No visual or olfactory evidence encountered. 3.Side walls were stable throughout the excavation. 4.Groundwater seepage at 1.50m bgl.			SOIL SAMPLE TYPE D - 500g to 1kg Disturbed B - 5kg to 20kg Disturbed U - 100mm dia. Undisturbed J - 250ml Amber Glass Jar V - Glass Vial	IN-SITU T SV - Hand S HP - Hand T N = SPT blc S = Split Spc C = Solid C PID - Photo Detector (pj	ESTS Shear Vane Penetrometer ows over 300mr oon Sampler one o Ionisation pm)	GROUND ∑ Groun strike n ▼ Standia ground	WATEF dwater ng lwater lev	k vel		CON	BUITANCY ENVIRONMENT ASTRUCTURE BUILDINGS Environment Group		
				EASTING	NORT	HING	GROUND	LEVI	EL	5th Floor Waterfront House			
				LOGGED BY GA	SCA 1::	LE 50	SHE Sheet	ET 1 of 1					

Photo 1 Back end of TP2


```
Photo 2 Side of TP2
```


Photo 3 Side of TP2

Photo 4 Front end of TP2

Photo 5 Spoil from TP2

Photo 6 Back end of TP3

Photo 10 Front end of TP3

Photo 11 Spoil from TP3

Photo 12 Back end of TP4

Photo 14 Side of TP4

Photo 15 Front end of TP4

Photo 16 Spoil from TP4

Photo 17 Back end of TP5

Photo 18 Side of TP5

Photo 19 Side of TP5

Photo 20 Front end of TP5

Photo 21 Spoil from TP5

Photo 22 Back end of TP6

Photo 23 Side of TP6

Photo 24 Side of TP6

Photo 25 Front end of TP6

Photo 26 Spoil from TP6

APPENDIX 6

SOIL CHEMICAL LABORATORY TESTING

BWB Consulting Livery Place 35 Livery Street Colmore Business District Birmingham B3 2PB

Attention: Greg Adams

CERTIFICATE OF ANALYSIS

Date:	
Customer:	
Sample Delivery Group (SDG):	
Your Reference:	
Location:	
Report No:	

16 April 2012 H_BWB_BRM 120216-81 BME2019 Trowbridge 177836

This report has been revised and directly supersedes 174209 in its entirety.

We received 18 samples on Tuesday February 14, 2012 and 8 of these samples were scheduled for analysis which was completed on Monday April 16, 2012. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

Validated

SDG:	120216-81	Location:	Trowbridge	Order Number:	ne11/493
Job:	H_BWB_BRM-2	Customer:	BWB Consulting	Report Number:	177836
Client Reference:	BME2019	Attention:	Greg Adams	Superseded Report:	174209

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
5183062	BH 1		0.50	09/02/2012
5183063	BH 1		1.50	09/02/2012
5183060	BH 2		0.80	09/02/2012
5183061	BH 2		3.00	09/02/2012
5183077	BH 2		4.00	10/02/2012
5183072	TP 2		1.90	10/02/2012
5183070	TP 3		0.90	10/02/2012
5183076	TP 3		1.20	10/02/2012
5183067	TP 4		0.10	10/02/2012
5183068	TP 4		0.60	10/02/2012
5183069	TP 4		2.50	10/02/2012
5183064	TP 5		0.40	10/02/2012
5183065	TP 5		1.10	10/02/2012
5183066	TP 5		2.10	10/02/2012
5183073	TP 6		0.15	10/02/2012
5183074	TP 6		0.40	10/02/2012
5183075	TP 6		1.20	10/02/2012

Only received samples which have had analysis scheduled will be shown on the following pages.

ALcontrol La	aboratories	CI	ERTI	FIC	АТ	E OF		IAL	YSI	S	
SDG: Job: Client Reference:	120216-81 H_BWB_BRM-2 BME2019	Location: Custome Attention	: Tr r: B\ i: G	owbr NB C reg A	idge onsu dams	llting					Order Number: Report Number: Superseded Report:
SOLID			0	ו טי	. Julia Juli	U	л СЛ	л	сл	сл	
Results Legend	Lab Sa	mple No(s)	01830	1830	1830	518307	518306	518306	518306	518307	
X Test			2	2	6	76	8	4	6	75	
No Determinat Possible	tion Cu: Sample	Customer Sample Reference			TP 3	TP 3	TP 4	TP 5	TP 5	TP 6	
	AGS I	Reference									
	De	pth (m)	0.40	1.90	0.90	1.20	0.60	0.40	1.10	1.20	
	Co	ntainer	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	60g VOC (ALE215) 250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	60g VOC (ALE215) 250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	
ANC at pH4 and ANC at pH	16 All	NDPs: 0 Tests: 3	x			×			x		
Anions by Kone (soil)	All	NDPs: 0 Tests: 3		×			x			x	
Anions by Kone (w)	All	NDPs: 0 Tests: 3	x			x			x		
Asbestos Identification (Soi	i) All	NDPs: 0 Tests: 2			x			x			
CEN 2:1 Readings	All	NDPs: 0 Tests: 3	x			x			x		
CEN 8:1 Readings	All	NDPs: 0 Tests: 3	x			x			x		
Dissolved Metals by ICP-M	S All	NDPs: 0 Tests: 3	x			x			<mark>x</mark>		
Dissolved Organic/Inorgani Carbon	c All	NDPs: 0 Tests: 3	x			x			<mark>x</mark>		
Fluoride	All	NDPs: 0 Tests: 3	x			x			x		
GRO by GC-FID (S)	Ali	NDPs: 0 Tests: 3	,			×			x		
Loss on Ignition in soils	All	NDPs: 0 Tests: 3	×			×			x		
Mercury Dissolved	All	NDPs: 0 Tests: 3	x			x			x		
Mineral Oil	All	NDPs: 0 Tests: 3	x			×			x		
PAH by GCMS	All	NDPs: 0 Tests: 2			x			x			
PAH Value of soil	All	NDPs: 0 Tests: 3	x			x			x		

ne11/493 177836 174209

ALcontrol Laboratories CERTIFICATE OF ANALYSIS											
SDG: Job: Client Reference:	120216-81 H_BWB_BRM-2 BME2019	BT Location: BRM-2 Customer 9 Attention			dge onsu dams	lting					Order Number: Report Number: Superseded Report:
SOLID Results Legend	Lab	Sample No(s)	5183071	5183072	5183070	5183076	5183068	5183064	5183065	5183075	
No Determina Possible	ition C Samp	Customer ble Reference	TP 2	TP 2	TP 3	TP 3	TP 4	TP 5	TP 5	TP 6	
	AG	S Reference									
	ſ	Depth (m)	0.40	1.90	0.90	1.20	0.60	0.40	1.10	1.20	
	c	Container	60g VOC (ALE215) 250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	60g VOC (ALE215) 250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL	60g VOC (ALE215) 250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	
PCBs by GCMS	All	NDPs: 0 Tests: 3	x			x			x		
рН	All	NDPs: 0 Tests: 6	x	x		x	x		x	x	
Phenols by HPLC (W)	All	NDPs: 0 Tests: 3	x			x			x		
Sample description	All	NDPs: 0 Tests: 8	x	×	x	x	x	x	x	x	
Total Dissolved Solids	All	NDPs: 0 Tests: 3	x			x			x		
Total Organic Carbon	All	NDPs: 0 Tests: 3	x			x			x		
Total Sulphate	All	NDPs: 0 Tests: 3		×			x			x	
TPH c6-40 Value of soil	All	NDPs: 0 Tests: 2			×			x			

ne11/493 177836 174209
CERTIFICATE OF ANALYSIS

Validated

Client Reference: BME2019 Attention: Greg Adams Superseded Report: 174209

Sample Descriptions

Grain Sizes												
very fine <	0.063mm	fine	0.063mm - 0.1mm	medium	0.1mm	n - 2mm	coars	e 2mm -	10mm	very coa	rse >10r	nm
Lab Sample No(s)	Custom	ier Sample Re	f. Depth (m)	Co	lour	Descriptio	n	Grain size	Incl	usions	Inclusions 2	
5183071		TP 2	0.40	Light	Brown	Clay		<0.063 mm	St	ones	None	7
5183072		TP 2	1.90	Light	Brown	Silty Clay Lo	am	0.063 - 0.1 mm	N	one	None	-
5183070		TP 3	0.90	Dark	Brown	Silty Clay	/	0.063 - 0.1 mm	N	one	None	_
5183076		TP 3	1.20	Light	Brown	Clay		<0.063 mm	N	one	None	_
5183068		TP 4	0.60	Light	Brown	Silty Clay	/	0.063 - 0.1 mm	N	one	None	-
5183064		TP 5	0.40	Dark	Brown	Silty Clay	/	0.063 - 0.1 mm	N	one	None	_
5183065		TP 5	1.10	Light	Brown	Silty Clay	/	0.063 - 0.1 mm	St	ones	None	
5183075		TP 6	1.20	Light	Brown	Silty Clay Lo	am	0.063 - 0.1 mm	N	one	None	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

Validated

SDG: Job: H Client Reference:	120216-81 H_BWB_BRM BME2019	-2	Location: Tr Customer: BV Attention: Gr	owbridge VB Consulting reg Adams		Order Number: Report Number: Superseded Repor	ne11/493 177836 t: 174209	
Results Legend		Customer Sample R	TP 2	TP 2	TP 3	TP 3	TP 4	TP 5
# ISO17025 accredited. M mCERTS accredited.								
S Deviating sample. aq Aqueous / settled sample. diss filt Disselved / filtered sample.		Depth (m) Sample Type	0.40 Soil/Solid	1.90 Soil/Solid	0.90 Soil/Solid	1.20 Soil/Solid	0.60 Soil/Solid	0.40 Soil/Solid
tot.unfilt Total / unfiltered sample.		Date Sampled Sample Time	10/02/2012	10/02/2012	10/02/2012	10/02/2012	10/02/2012	10/02/2012
** % recovery of the surrogate check the efficiency of the	e standard to method. The	Date Received	14/02/2012	14/02/2012	14/02/2012	14/02/2012	14/02/2012	14/02/2012
results of individual compo samples aren't corrected fo	ounds within or the recovery	Lab Sample No.(s)	5183071	5183072	5183070	5183076	5183068	5183064
(F) Trigger breach confirmed	LOD/U	AGS Reference nits Method						
Loss on ignition	<0.7	% TM018	4.92			4.38		
Mineral oil >C10-C40	<1 m	g/kg TM061	M 32.7 & #			52 8 #		
Organic Carbon, Total	<0.2	% TM132	0.513 §			0.568		
рН	1 pl	H TM133	8.06	4.84		7.86	7.78	
TPH >C6-C40	Unit <1(s) TM154	<u>8 IVI</u>	IM	164	S IVI	IVI	<10
DCD congoner 29	mg/k		-2		#	-2		#
	<3 μξ	μπ.Υ. ΙΝΙΙΟΟ	د» § M			§ M		
PCB congener 52	<3 µç	J/kg TM168	<3 § M			<3 § M		
PCB congener 101	<3 µç	J/kg TM168	<3 § M			<3 § M		
PCB congener 118	<3 µç	j/kg TM168	<3 & M			<3 & M		
PCB congener 138	<3 μς	J/kg TM168	<3 & M			<3 & M		
PCB congener 153	<3 μς	J/kg TM168	<3 <3			<3		
PCB congener 180	<3 µç	J/kg TM168	<3 <3 & M			<3		
Sum of detected PCB 7	<2 ⁻	1 TM168	<21			<21		
ANC @ pH 4	<0.0	3 TM182	0.118			0.0809		
ANC @ pH 6	<0.0	03 TM182	0.044			0.0375		
Polyaromatic	<1() TM213	<10			<10		
Sulphate, Total	<48	3 TM221		1120 M			1200 M	
Water Soluble Sulphate a	as <0.0	08 TM243		0.0423			0.625	
SO4 2:1 Extract Chloride (soluble)	g/l <5 m	1/ka TM243		6 46			M	
		<u>-</u>		M			M	

ALcontrol L	aboratorie	S	CEF	RTI	FICATE OF A	NALYSIS			Validated
SDG: Job: Client Reference:	120216-81 H_BWB_BRM BME2019	1-2	Location: Customer: Attention:	Tro BV Gr	owbridge VB Consulting eg Adams		Order Number: Report Number: Superseded Report	ne11/493 177836 : 174209	
Results Legent # ISO17025 accredited. M mCERTS accredited. § Deviating sample. aq Aqueous / settled sampl diss.filt Dissolved / filtered sample	d e. Ie.	Customer Sample R Depth (m) Sample Type	TP 5		TP 6 1.20 Soil/Solid				
Subcontracted test. Subcontracted test. Generation of the surrog check the efficiency of the results of individual com samples aren't corrected (F) Trigger breach confirmer Component	ate standard to ne method. The pounds within I for the recovery d	Sample Time Date Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	14/02/2012 120216-81 5183065		14/02/2012 12/02/2012 12/02/16-81 5183075				
Loss on ignition	<0.7	7 % TM018	4.61	м					
Mineral oil >C10-C40	<1 m	g/kg TM061	34.6	#					
Organic Carbon, Total	<0.2	2 % TM132	0.357	#					
рН	1 p Uni	H TM133 ts	8.22	м	4.86 M				
PCB congener 28	<3 µ	g/kg TM168	<3	М					
PCB congener 52	<3 µ	g/kg TM168	<3	М					
PCB congener 101	<3 µ	g/kg TM168	<3	М					
PCB congener 118	<3 µ	g/kg TM168	<3	М					
PCB congener 138	<3 µ	g/kg TM168	<3	М					
PCB congener 153	<3 µ	g/kg TM168	<3	М					
PCB congener 180	<3 µ	g/kg TM168	<3	М					
Sum of detected PCB 7 Congeners	' <2 μg/l	1 TM168 (g	<21						
ANC @ pH 4	<0. /mol	03 TM182 kg	0.0757						
ANC @ pH 6	<0. /mol	03 TM182 kg	<0.03						
Polyaromatic hydrocarbons, Total 17	<1 mg/	0 TM213 kg	<10						
Sulphate, Total	<4 mg/	8 TM221 kg			1190 M				
Water Soluble Sulphate SO4 2:1 Extract	e as <0.0 q/	08 TM243			0.0494 M				
Chloride (soluble)	<5 m	g/kg TM243			19.6 M				

CERTIFICATE OF ANALYSIS

Validated

SDG: Job:	120216-81 H_BWB_BRM-2		Location: Customer:	Trowbridge BWB Consulting			Order Number: Report Number:	ne11/493 177836	
Client Reference:	BME2019		Attention:	Greg Adams			Superseded Repor	t: 174209	
GRO by GC-FID (S) Results Legend	c	ustomer Sample R	TP 2	TP 3		TP 5	1		
# ISO17025 accredited. M mCERTS accredited. § Deviating sample. aq Aqueous / settled sample. diss.fit Dissolved / filtered sample tot.unfit Total / unfiltered sample.		Depth (m) Sample Type Date Sampled	0.40 Soil/Solid 10/02/2012	1.20 Soil/Solid 10/02/2012		1.10 Soil/Solid 10/02/2012			
Subcontracted test. Subcontracted test. % recovery of the surrogat check the efficiency of the results of individual compo samples aren't corrected for (F) Trigger breach confirmed	e standard to method. The bunds within or the recovery	Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	14/02/2012 120216-81 5183071	14/02/2012 120216-81 5183076		14/02/2012 120216-81 5183065			
GRO Surrogate %	LOD/Units	s Method TM089	103	89	_	120			
recovery** Methyl tertiary butyl ethe	r <5 µg/k	g TM089	<5	<5		<5			
(MTBE) Benzene	<10	TM089	<10	§<<10	§	# <10			
Toluene	µg/kg	a TM089	<2	§	§	N			
Ethylhonzono			-2	§ -2	§	-2 N			
Euryibenzene	<5 µg/ki	g 110009	< 3	§ S	§	<5 N			
m,p-Xylene	<6 µg/k	g 1M089	<6	<6 §	§	<6 N			
o-Xylene	<3 µg/k	g 1M089	<3	<3 §	§	<3 N			
sum of detected mpo xylene by GC	<9 µg/ki	g TM089	<9	<9		<9			
sum of detected BTEX b	y <24 µg/kg	TM089	<24	<24		<24			

TIEICATE OF ANAL VEIS

Validated

			CER			л А	NAL 1 515			
SDG: 1202 Job: H_B\	16-81 VB_BRM	-2	Location: Customer:	Tro BV	owbridge /B Consulting			Order Number: Report Number:	ne11/493 177836	
Client Reference: BME	2019		Attention:	Gr	eg Adams			Superseded Repo	ort: 174209	
PAH by GCMS										
# ISO17025 accredited.		Customer Sample R	TP 3		TP 5					
M mCERTS accredited. § Deviating sample.		Depth (m)	0.90		0.40					
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Sample Type	Soil/Solid		Soil/Solic					
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled Sample Time	10/02/2012		10/02/201	2				
** % recovery of the surrogate stand check the efficiency of the method	ard to I. The	Date Received	14/02/2012		14/02/201	2				
results of individual compounds w samples aren't corrected for the re	vithin covery	Lab Sample No.(s)	5183070		5183064	'				
(F) Trigger breach confirmed		AGS Reference								
Naphthalene-d8 %	100/0	TM218	92		91.1	_				
recovery**			-	§		§				
Acenaphthene-d10 % recoverv**	%	TM218	91.4	Ş	90.5	ş				
Phenanthrene-d10 %	%	TM218	88.4	6	88.6	5				
Chrysene-d12 %	%	TM218	83.1	8	82.3	- 3				
recovery** Perylene-d12 % recovery**	%	TM218	81.9	§	82	§				
Nanhthalene	<9.00	1/kg TM218	12.5	§	<9	§				
Acconceptibulance	- 45	D TM210	<u>اعات</u>	ξM	-10	§Μ				
Acenaphthylene	<12 µg/k	g 1101218	< 12	ξM	<12	§Μ				
Acenaphthene	<8 µç	g/kg TM218	<8 {	ξM	<8	§Μ				
Fluorene	<1(µg/k) TM218 q	<10 §	şм	<10	§Μ				
Phenanthrene	<1	5 TM218	25.2	sм	<15	8 M				
Anthracene	<16	5 TM218	<16	<u>з м</u>	<16	<u>8 M</u>				
Fluoranthene	<1 <1	9 7 TM218	38	<u> </u>	<17	8 M				
Pyrene	μ <u>μ</u> γ/κ <1;	g 5 TM218	32.2	3 111	<15	<u>8</u> M				
Benz(a)anthracene	µg/k	g 1 TM218	27.7	ş M	<14	§Μ				
	µq/k	g	21.1	ξM		§Μ				
Chrysene	<1(µg/k	D TM218 g	19 ٤	ξM	<10	§Μ				
Benzo(b)fluoranthene	<1: ua/k	5 TM218 a	29.1 و	ŝМ	<15	§Μ				
Benzo(k)fluoranthene	<14 ug/k	4 TM218	<14	sм	<14	8 M				
Benzo(a)pyrene	<1	5 TM218	20.8	<u>з м</u>	<15	<u>8 M</u>				
Indeno(1,2,3-cd)pyrene	μ <u>η</u> /κ <18	g 3 TM218	<18		<18	<u>S M</u>				
Dibenzo(a,h)anthracene	µд/к <23	<u>g</u> 3 TM218	<23	3 171	<23	S IVI				
Benzo(a.h.i)pervlene	µg/k <24	g 4 TM218	<24	3 M	<24	§Μ				
201120(9,11,1)por yiono	µg/k	g	1	ξM		§Μ				
PAH, Total Detected	<11 ug/k	8 TM218	204	8	<118	8				
	pager	3		3		3				

CERTIFICATE OF ANALYSIS

Validated

SDG:	120216-81	Location:	Trowbridge	Order Number:	ne11/493
Job:	H_BWB_BRM-2	Customer:	BWB Consulting	Report Number:	177836
Client Reference:	BME2019	Attention:	Greg Adams	Superseded Report:	174209

Asbestos Identification - Soil

		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	TP 3 NS Z 0.90 SOLID 10/02/2012 00:0000 120216-81 5,183,070 TM048	12/03/12	Martin Cotterell	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Received SDG Original Sample Method Number	TP 5 NS Z 0.40 SOLID 10/02/2012 00:000 120216-81 5,183,064 TM048	12/03/12	Martin Cotterell	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

CERTIFICATE OF ANALYSIS

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Site Location	Trowbridge
Moisture Content Ratio (%)	26
Dry Matter Content Ratio (%)	79.4
	Site Location Moisture Content Ratio (%) Dry Matter Content Ratio (%)

ase					
DG	120216-81				
Lab Sample Number(s)	5183065				
Sampled Date	10-Feb-2012				
Customer Sample Ref.	TP 5				
Depth (m)	1.10				

Solid Waste Analysis

Total Organic Carbon (%)	0.357
Loss on Ignition (%)	4.61
Sum of BTEX (mg/kg)	<0.024
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg)	34.6
PAH Sum of 17 (mg/kg)	<10
pH (pH Units)	8.22
ANC to pH 6 (mol/kg)	<0.03
ANC to pH 4 (mol/kg)	0.0757

Inert Waste Landfill	Stable Non-reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
3	5	6
-	-	10
6	-	-
1	-	-
500	-	-
100	-	-
-	<6 or >9	-
-	-	-
_	-	-

Validated

REF: BS EN 12457/3

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1 eluate	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values	for compliance lea	ching test
	m	g/l	mg,	/kg	USING BS EN 12457-3 at L/S 10 I/kg		10 I/ Kg
Arsenic	0.000548	0.000433	0.0011	0.00446	0.5	2	25
Barium	0.0118	0.00659	0.0236	0.0719	20	100	300
Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
Chromium	<0.00022	<0.00022	<0.000441	<0.0022	0.5	10	70
Copper	0.00374	0.00308	0.0075	0.0316	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.00002	<0.0001	0.01	0.2	2
Molybdenum	0.00039	0.000487	0.000781	0.00476	0.5	10	30
Nickel	0.000949	0.00123	0.0019	0.012	0.4	10	40
Lead	0.000031	0.0019	0.0000621	0.0168	0.5	10	50
Antimony	<0.00016	<0.00016	<0.000321	<0.0016	0.06	0.7	5
Selenium	0.00148	0.000443	0.00295	0.00562	0.1	0.5	7
Zinc	0.00454	0.0013	0.00909	0.0167	4	50	200
Chloride	2.9	3.3	5.81	32.6	800	15000	25000
Fluoride	0.943	1.13	1.89	11.1	10	150	500
Sulphate (soluble)	59.5	21.2	119	256	1000	20000	50000
Total Dissolved Solids	197	97.3	394	1090	4000	60000	100000
Total Monohydric Phenols (W)	0.05	<0.016	0.1	<0.16	1	-	-
Dissolved Organic Carbon	6.17	3.54	12.4	38.4	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	06-Mar-2012	08-Mar-2012
pH (pH Units)	8.854	7.839
Conductivity (µS/cm)	248.00	121.00
Temperature (°C)	21.10	14.70
Volume Leachant (Litres)	0.305	1.400
Volume of Eluate VE1 (Litres)	0.200	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

Mcerts Certification does not apply to leachates

16/04/2012 16:13:33 16:13:18 16/04/2012

CERTIFICATE OF ANALYSIS

120216-81 ne11/493 SDG: Location: Trowbridge Order Number: H_BWB_BRM-2 Job: Customer: BWB Consulting Report Number: 177836 **Client Reference:** BME2019 Superseded Report: 174209 Attention: Greg Adams

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference		Site Location	Trowbridge
Mass Sample taken (kg)	0.213	Moisture Content Ratio (%)	21.6
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	82.3
Particle Size <4mm	>95%		

Case	
SDG	120216-81
Lab Sample Number(s)	5183071
Sampled Date	10-Feb-2012
Customer Sample Ref.	TP 2
Depth (m)	0.40

Criteria Limits				
Inert Waste Landfill	Stable Non-reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill		
3	5	6		
-	-	10		
6	-	-		
1	-	-		
500	-	-		
100	-	-		
-	<6 or >9	-		
-	-	-		

Landfill Waste Acceptance

Validated

REF: BS EN 12457/3

Solid Waste Analysis

Total Organic Carbon (%)	0.513
Loss on Ignition (%)	4.92
Sum of BTEX (mg/kg)	<0.024
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg)	32.7
PAH Sum of 17 (mg/kg)	<10
pH (pH Units)	8.06
ANC to pH 6 (mol/kg)	0.044
ANC to pH 4 (mol/kg)	0.118

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1 eluate	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached	Limit values	for compliance lea	ching test
	m	g/l	mg,	/kg	USING BS EN 12457-5 at L/S 10 1/kg		10 I/ Kg
Arsenic	0.00104	0.000499	0.00207	0.00536	0.5	2	25
Barium	0.0231	0.00893	0.0463	0.099	20	100	300
Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
Chromium	0.00299	0.00223	0.00597	0.0228	0.5	10	70
Copper	0.0127	0.00208	0.0253	0.0281	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.00002	<0.0001	0.01	0.2	2
Molybdenum	0.00243	0.00198	0.00485	0.0201	0.5	10	30
Nickel	0.00192	0.000655	0.00384	0.00742	0.4	10	40
Lead	0.000766	0.000691	0.00153	0.00696	0.5	10	50
Antimony	0.000517	0.00037	0.00103	0.0038	0.06	0.7	5
Selenium	0.000607	<0.00039	0.00121	<0.0039	0.1	0.5	7
Zinc	0.00277	0.00222	0.00553	0.0226	4	50	200
Chloride	3.5	-	7	-	800	15000	25000
Fluoride	0.572	-	1.14	-	10	150	500
Sulphate (soluble)	<2	-	<4	-	1000	20000	50000
Total Dissolved Solids	162	-	324	-	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.032	<0.16	1	-	-
Dissolved Organic Carbon	12.3	-	24.5	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	07-Apr-2012	11-Apr-2012
pH (pH Units)	8.424	8.157
Conductivity (µS/cm)	216.00	82.10
Temperature (°C)	21.10	20.00
Volume Leachant (Litres)	0.312	1.400
Volume of Eluate VE1 (Litres)	0.120	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

Mcerts Certification does not apply to leachates 16/04/2012 16:13:33

SDG:

Job:

Client Reference:

120216-81

BME2019

H_BWB_BRM-2

CERTIFICATE OF ANALYSIS

Greg Adams

Attention:

Trowbridge ne11/493 Location: Order Number: Customer: BWB Consulting Report Number: 177836

Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference		Site Location Trowbridge
Mass Sample taken (kg)	0.216	Moisture Content Ratio (%) 23.8
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%) 80.8
Particle Size <4mm	>95%	

Case	
SDG	120216-81
Lab Sample Number(s)	5183076
Sampled Date	10-Feb-2012
Customer Sample Ref.	TP 3
Depth (m)	1.20

0.0375

0.0809

Criteria Limits Stablo

Landfill Waste Acceptance

174209

Validated

REF: BS EN 12457/3

Solid Waste Analysis		
Total Organic Carbon (%)	0.568	
Loss on Ignition (%)	4.38	
Sum of BTEX (mg/kg)	<0.024	
Sum of 7 PCBs (mg/kg)	<0.021	
Mineral Oil (mg/kg)	52	
PAH Sum of 17 (mg/kg)	<10	
pH (pH Units)	7.86	

ANC to pH 6 (mol/kg)

ANC to pH 4 (mol/kg)

Inert Waste Landfill	Non-reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
3	5	6
-	-	10
6	-	-
1	-	-
500	-	-
100	-	-
-	<6 or >9	-
-	-	-

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1 eluate	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values	for compliance lea	ching test
	mg/l		mg,	/kg	using BS EN 12457-3 at L/S 10 I/kg		
Arsenic	0.00352	0.00134	0.00704	0.0162	0.5	2	25
Barium	0.326	0.034	0.651	0.707	20	100	300
Cadmium	0.000132	<0.0001	0.000264	<0.001	0.04	1	5
Chromium	0.00161	0.000946	0.00322	0.0103	0.5	10	70
Copper	0.0188	0.00242	0.0376	0.0448	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.00002	<0.0001	0.01	0.2	2
Molybdenum	0.00433	0.00302	0.00865	0.0318	0.5	10	30
Nickel	0.0133	0.00387	0.0266	0.0505	0.4	10	40
Lead	0.0142	0.000108	0.0284	0.0188	0.5	10	50
Antimony	0.000636	0.000803	0.00127	0.00782	0.06	0.7	5
Selenium	0.00378	0.000536	0.00754	0.00944	0.1	0.5	7
Zinc	0.132	0.00251	0.264	0.188	4	50	200
Chloride	8.9	<2	17.8	<20	800	15000	25000
Fluoride	<0.5	-	<0.999	-	10	150	500
Sulphate (soluble)	926	151	1850	2480	1000	20000	50000
Total Dissolved Solids	1240	336	2480	4500	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.032	<0.16	1	-	-
Dissolved Organic Carbon	26.4	7.75	52.8	101	500	800	1000

Leach Test Information	2:1	8:1
Date Prenared	04 Apr 2012	08-Apr-2012
	04-Api-2012	007012
pri (pri offics)	8.109	8.019
	1,634.00	445.00
Temperature (°C)	20.50	21.10
Volume Leachant (Litres)	0.308	1.400
Volume of Eluate VE1 (Litres)	0.220	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

Mcerts Certification does not apply to leachates

16/04/2012 16:13:33

CERTIFICATE OF ANALYSIS

Validated

SDG: 120216-81 Location: Trowbridge Order Number: ne11/493 H_BWB_BRM-2 BWB Consulting 177836 Job: Customer: Report Number: Client Reference: BME2019 Attention: Greg Adams Superseded Report: 174209

Notification of Deviating Samples

Sample Number	Customer Sample Ref	Depth (m)	Matrix	Test Name	Component Name	Comment
5309181	TP 3	0.90	SOLID	PAH by GCMS	Acenaphthene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Acenaphthene-d10 % recovery**	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Acenaphthylene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Anthracene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Benz(a)anthracene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Benzo(a)pyrene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Benzo(b)fluoranthene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Benzo(g,h,i)perylene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Benzo(k)fluoranthene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Chrysene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Chrysene-d12 % recovery**	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Dibenzo(a,h)anthracene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Fluoranthene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Fluorene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Indeno(1,2,3-cd)pyrene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Naphthalene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Naphthalene-d8 % recovery**	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	PAH, Total Detected USEPA 16	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Perylene-d12 % recovery**	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Phenanthrene	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Phenanthrene-d10 % recovery**	Sample holding time exceeded
5309181	TP 3	0.90	SOLID	PAH by GCMS	Pyrene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Acenaphthene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Acenaphthene-d10 % recovery**	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Acenaphthylene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Anthracene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Benz(a)anthracene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Benzo(a)pyrene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Benzo(b)fluoranthene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Benzo(g,h,i)perylene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Benzo(k)fluoranthene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Chrysene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Chrysene-d12 % recovery**	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Dibenzo(a,h)anthracene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Fluoranthene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Fluorene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Indeno(1,2,3-cd)pyrene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Naphthalene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Naphthalene-d8 % recovery**	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	PAH, Total Detected USEPA 16	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Perylene-d12 % recovery**	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Phenanthrene	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Phenanthrene-d10 % recovery**	Sample holding time exceeded
5309244	TP 5	0.40	SOLID	PAH by GCMS	Pyrene	Sample holding time exceeded
5426084	TP 3	1.20	SOLID	pН	рН	Sample holding time exceeded
5426091	TP 2	0.40	SOLID	pН	рН	Sample holding time exceeded
5429648	TP 3	1.20	SOLID	PCBs by GCMS	PCB congener 101	Sample holding time exceeded
5429648	TP 3	1.20	SOLID	PCBs by GCMS	PCB congener 118	Sample holding time exceeded
5429648	TP 3	1.20	SOLID	PCBs by GCMS	PCB congener 138	Sample holding time exceeded
5429648	TP 3	1.20	SOLID	PCBs by GCMS	PCB congener 153	Sample holding time exceeded
5429648	TP 3	1.20	SOLID	PCBs by GCMS	PCB congener 180	Sample holding time exceeded
5429648	TP 3	1.20	SOLID	PCBs by GCMS	PCB congener 28	Sample holding time exceeded
5429648	TP 3	1.20	SOLID	PCBs by GCMS	PCB congener 52	Sample holding time exceeded
5429653	TP 3	1.20	SOLID	Mineral Oil	Mineral oil >C10-C40	Sample holding time exceeded
5429660	TP 3	1.20	SOLID	Total Organic Carbon	Organic Carbon, Total	Sample holding time exceeded
5429662	TP 2	0.40	SOLID	PCBs by GCMS	PCB congener 101	Sample holding time exceeded
5429662	TP 2	0.40	SOLID	PCBs by GCMS	PCB congener 118	Sample holding time exceeded
5429662	TP 2	0.40	SOLID	PCBs by GCMS	PCB congener 138	Sample holding time exceeded
5429662	TP 2	0.40	SOLID	PCBs by GCMS	PCB congener 153	Sample holding time exceeded

16:13:18 16/04/2012

CERTIFICATE OF ANALYSIS

Validated

SDG: Job: Client Referer	120216- H_BWB nce: BME201	81 _BRM-2 I9	Lo Ci Ai	ocation: Trowbridge ustomer: BWB Consulting ttention: Greg Adams	Order Number: Report Number: Superseded Report:	ne11/493 177836 174209
Sample Number	Customer Sample Ref.	Depth (m)	Matrix	Test Name	Component Name	Comment
5429662	TP 2	0.40	SOLID	PCBs by GCMS	PCB congener 180	Sample holding time exceeded
5429662	TP 2	0.40	SOLID	PCBs by GCMS	PCB congener 28	Sample holding time exceeded
5429662	TP 2	0.40	SOLID	PCBs by GCMS	PCB congener 52	Sample holding time exceeded
5429664	TP 2	0.40	SOLID	Mineral Oil	Mineral oil >C10-C40	Sample holding time exceeded
5429670	TP 2	0.40	SOLID	Total Organic Carbon	Organic Carbon, Total	Sample holding time exceeded
5449528	TP 2	0.40	SOLID	GRO by GC-FID (S)	Benzene	Sample holding time exceeded
5449528	TP 2	0.40	SOLID	GRO by GC-FID (S)	Ethylbenzene	Sample holding time exceeded
5449528	TP 2	0.40	SOLID	GRO by GC-FID (S)	m,p-Xylene	Sample holding time exceeded
5449528	TP 2	0.40	SOLID	GRO by GC-FID (S)	Methyl tertiary butyl ether (MTBE)	Sample holding time exceeded
5449528	TP 2	0.40	SOLID	GRO by GC-FID (S)	o-Xylene	Sample holding time exceeded
5449528	TP 2	0.40	SOLID	GRO by GC-FID (S)	Toluene	Sample holding time exceeded
5449586	TP 3	1.20	SOLID	GRO by GC-FID (S)	Benzene	Sample holding time exceeded
5449586	TP 3	1.20	SOLID	GRO by GC-FID (S)	Ethylbenzene	Sample holding time exceeded
5449586	TP 3	1.20	SOLID	GRO by GC-FID (S)	m,p-Xylene	Sample holding time exceeded
5449586	TP 3	1.20	SOLID	GRO by GC-FID (S)	Methyl tertiary butyl ether (MTBE)	Sample holding time exceeded
5449586	TP 3	1.20	SOLID	GRO by GC-FID (S)	o-Xylene	Sample holding time exceeded
5449586	TP 3	1.20	SOLID	GRO by GC-FID (S)	Toluene	Sample holding time exceeded

Note : Test results may be compromised

CERTIFICATE OF ANALYSIS

Validated

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM114		Leaching Procedure for CEN Two Stage BatchTest 2:1/8:1 Cumulative		
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition		
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM154	In - house Method	Determination of Petroleum Hydrocarbons by EZ Flash GC-FID in the Carbon range C6- C40		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM213	In-house Method	Rapid Determination of PAHs by GC-FID		
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546		
TM221	Inductively Coupled Plasma - Atomic Emission Spectroscopy. An Atlas of Spectral Information: Winge, Fassel, Peterson and Floyd	Determination of Acid extractable Sulphate in Soils by IRIS Emission Spectrometer		
TM243		Mixed Anions In Soils By Kone		
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

CERTIFICATE OF ANALYSIS

Validated

SDG:	120216-81	Location:	Trowbridge	Order Number:	ne11/493
Job:	H_BWB_BRM-2	Customer:	BWB Consulting	Report Number:	177836
Client Reference:	BME2019	Attention:	Greg Adams	Superseded Report:	174209

Test Completion Dates

Lab Sample No(s)	5183071	5183072	5183070	5183076	5183068	5183064	5183065	5183075
Customer Sample Ref.	TP 2	TP 2	TP 3	TP 3	TP 4	TP 5	TP 5	TP 6
AGS Ref.								
Denth	0.40	1 90	0.90	1 20	0.60	0.40	1 10	1 20
Type	0.40	1.00	0.00	0.0110	0.00	0.40	0.0115	00110
туре	SOLID							
ANC at pH4 and ANC at pH 6	11-Apr-2012			11-Apr-2012			09-Mar-2012	
Anions by Kone (soil)		09-Mar-2012			09-Mar-2012			09-Mar-2012
Anions by Kone (w)	16-Apr-2012			13-Apr-2012			14-Mar-2012	
Asbestos Identification (Soil)			12-Mar-2012			12-Mar-2012		
CEN 2:1 Leachate (2 Stage)	11-Apr-2012			05-Apr-2012			06-Mar-2012	
CEN 2:1 Readings	13-Apr-2012			10-Apr-2012			09-Mar-2012	
CEN 8:1 Leachate (2 Stage)	13-Apr-2012			10-Apr-2012			09-Mar-2012	
CEN 8:1 Readings	13-Apr-2012			13-Apr-2012			12-Mar-2012	
Dissolved Metals by ICP-MS	16-Apr-2012			13-Apr-2012			13-Mar-2012	
Dissolved Organic/Inorganic Carbon	14-Apr-2012			13-Apr-2012			13-Mar-2012	
Fluoride	16-Apr-2012			13-Apr-2012			14-Mar-2012	
GRO by GC-FID (S)	14-Apr-2012			14-Apr-2012			13-Mar-2012	
Loss on Ignition in soils	11-Apr-2012			13-Apr-2012			09-Mar-2012	
Mercury Dissolved	16-Apr-2012			13-Apr-2012			13-Mar-2012	
Mineral Oil	12-Apr-2012			12-Apr-2012			09-Mar-2012	
PAH by GCMS			14-Mar-2012			14-Mar-2012		
PAH Value of soil	13-Apr-2012			13-Apr-2012			09-Mar-2012	
PCBs by GCMS	11-Apr-2012			11-Apr-2012			10-Mar-2012	
pН	14-Apr-2012	08-Mar-2012		14-Apr-2012	08-Mar-2012		12-Mar-2012	08-Mar-2012
Phenols by HPLC (W)	16-Apr-2012			13-Apr-2012			13-Mar-2012	
Sample description	06-Apr-2012	07-Mar-2012	12-Mar-2012	06-Apr-2012	07-Mar-2012	12-Mar-2012	07-Mar-2012	07-Mar-2012
Total Dissolved Solids	13-Apr-2012			12-Apr-2012			12-Mar-2012	
Total Organic Carbon	12-Apr-2012			12-Apr-2012			09-Mar-2012	
Total Sulphate		12-Mar-2012			12-Mar-2012			12-Mar-2012
TPH c6-40 Value of soil			13-Mar-2012			13-Mar-2012		

CERTIFICATE OF ANALYSIS

SDG:	120216-81	Location:	Trowbridge	Order Number:	ne11/493
Job:	H_BWB_BRM-2	Customer:	BWB Consulting	Report Number:	177836
Client Reference:	BME2019	Attention:	Greg Adams	Superseded Report:	174209

Appendix

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 2 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. Results relate only to the items tested.

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5 -C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

ANALYSIS	D&C OR WET	EXTRACTION SOLVENT	EXTRACTION MET HOD	ANALYSIS
SOLVENTEXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
ELEMENTALSULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLS BY GOMS	WET	DOM	SOXTHERM	GC-MS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GC-MS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GC-MS
EPH (DRO)	D&C	HEXANEACETONE	ENDOVEREND	GC-FID
EPH (MIN OL)	D&C	HEXANEACETONE	ENDOVEREND	GC-FID
EPH (CLEANED UP)	D&C	HEXANEACETONE	ENDOWEREND	GC-FID
EPH CWGBY GC	D&C	HEXANEACETONE	ENDOVEREND	GC-FID
PCBAROCLOR 1254/ PCBCON	D&C	HEXANEACETONE	BNDOWEREND	GC-MS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MICROWAVE TM218.	GC-M6
×06-C40	WET	HEXANEACETONE	SHAKER	GC-RD
POLYAROMATIC HYDROCARBONS RAPID GC	WET	HEXANEACETONE	SHAKER	GC-FID
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GC-MS

SOLID MATRICES EXTRACTION SUMMARY

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STRRED EXTRACTION (STIR-BAR)	GCMS
BH	HEXANE	STRRED EXTRACTION (STIR-BAR)	GC FD
EPHCWG	HEXANE	STRRED EXTRACTION (STIR-BAR)	GC FD
MNERALOL	HEXANE	STRRED EXTRACTION (STIR-BAR)	GC FD
PCB7 CONGENERS	HEXANE	STRRED EXTRACTION (STIR-BAR)	GCMS
PCBAROCLOR 1254	HEXANE	STRRED EXTRACTION (STIR-BAR)	GCMS
SVOC	DCM	LQUD/LQUD SHAKE	GCMS
FREESULPHUR	DCM	SOLD PHASEEXTRACTION	HPLC
PESTOCPOPP	DCM	LQUD/LQUD SHAKE	GCMS
TRIAZINE HERBS	DCM	LQUD/LQUD SHAKE	GCMS
PHENOLSMS	ACETONE	SOLD PHASEEXTRACTION	GCMS
TPH by INFRARED (IR)	TCE	STRRED EXTRACTION (STIR-BAR)	R
MNERALOL by R	TCE	STRRED EXTRACTION (STIR-BAR)	R
GLYCOLS	NONE	DRECTINIECTION	CC FD

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials or those identified as potentially asbestos containing during sample description which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratorices (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

Asbestos Type

Chrystile

Amosite

Onichite

Fibrous Adindite

Fibrous Anthophylite

FibrasTrendie

Common Name

White Ashestos

BrownAsbestos

Blue Ashestos

-

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

APPENDIX 7

GEOTECHNICAL LABORATORY TESTING

cjassociates

BS1377:Part 7:1990: Clause 8

Site	Trowbridge STW
Client	BWB Consulting
Job Number	AA0125
Lab Number	L9481

Hole	BH1	Description
Sample	U	Slightly sandy CLAY.
Depth m	4.00	
Depth within original sample mm	60	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	84.7
Mean initial sample diameter	mm	38.6
Sample mass	g	204.31
Initial moisture content	%	18
Rate of strain	%/min	4.13
Initial bulk density	Mg/m³	2.07
Initial dry density	Mg/m³	1.76
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	100
Membrane correction	kPa	2.3
Deviator stress	kPa	324
Cumulative strain at failure	%	14
Shear strength	kPa	162
Consistency		Very Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Site	Trowbridge STW
Client	BWB Consulting
Job Number	AA0125
Lab Number	L9481

Hole	BH1	Description
Sample	U	Slightly sandy CLAY.
Depth m	4.00	
Depth within original sample mm	60	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	84.3
Mean initial sample diameter	mm	37.7
Sample mass	g	202.62
Initial moisture content	%	16
Rate of strain	%/min	4.15
Initial bulk density	Mg/m³	2.16
Initial dry density	Mg/m³	1.86
	<u>.</u>	
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	150
Membrane correction	kPa	2.5
Deviator stress	kPa	467
Cumulative strain at failure	%	15
Shear strength	kPa	234
Consistency		Very Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Trowbridge STW
BWB Consulting
AA0125
L9481

Hole	BH1	Description
Sample	U	Grey, slightly sandy CLAY.
Depth m	4.00	
Depth within original sample mm	60	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	84.9
Mean initial sample diameter	mm	38.0
Sample mass	g	205.58
Initial moisture content	%	17
Rate of strain	%/min	4.12
Initial bulk density	Mg/m³	2.14
Initial dry density	Mg/m³	1.83
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	200
Membrane correction	kPa	2.5
Deviator stress	kPa	489
Cumulative strain at failure	%	15
Shear strength	kPa	244
Consistency		Very Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Site	Trowbridge STW
Client	BWB Consulting
Job Number	AA0125
Lab Number	L9481

Hole	BH1	Description
Sample	U	Grey CLAY.
Depth m	6.50	
Depth within original sample mm	160]

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	84.6
Mean initial sample diameter	mm	37.7
Sample mass	g	195.83
Initial moisture content	%	13
Rate of strain	%/min	4.14
Initial bulk density	Mg/m³	2.08
Initial dry density	Mg/m³	1.84
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	150
Membrane correction	kPa	1.9
Deviator stress	kPa	476
Cumulative strain at failure	%	11
Shear strength	kPa	238
Consistency		Very Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Trowbridge STW
BWB Consulting
AA0125
L9489

Hole	BH1	Description
Sample	U	Grey CLAY.
Depth m	6.50	
Depth within original sample mm	200	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	85.3
Mean initial sample diameter	mm	38.2
Sample mass	g	182.66
Initial moisture content	%	15
Rate of strain	%/min	4.10
Initial bulk density	Mg/m³	1.87
Initial dry density	Mg/m³	1.63
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	200
Membrane correction	kPa	2.8
Deviator stress	kPa	260
Cumulative strain at failure	%	18
Shear strength	kPa	130
Consistency		Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Site	Trowbridge STW
Client	BWB Consulting
Job Number	AA0125
Lab Number	L9481

Hole	BH1	Description
Sample	U	Grey CLAY.
Depth m	6.50	
Depth within original sample mm	260	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	84.5
Mean initial sample diameter	mm	38.6
Sample mass	g	164.91
Initial moisture content	%	19
Rate of strain	%/min	4.14
Initial bulk density	Mg/m³	1.67
Initial dry density	Mg/m³	1.40
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	400
Membrane correction	kPa	2.7
Deviator stress	kPa	343
Cumulative strain at failure	%	18
Shear strength	kPa	172
Consistency		Very Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Site	Trowbridge STW
Client	BWB Consulting
Job Number	AA0125
Lab Number	L9481

Hole	BH1	Description
Sample	U	Grey CLAY.
Depth m	9.50	
Depth within original sample mm	70	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	84.3
Mean initial sample diameter	mm	38.2
Sample mass	g	194.41
Initial moisture content	%	22
Rate of strain	%/min	4.15
Initial bulk density	Mg/m³	2.02
Initial dry density	Mg/m³	1.65
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	250
Membrane correction	kPa	1.3
Deviator stress	kPa	287
Cumulative strain at failure	%	7
Shear strength	kPa	143
Consistency		Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Site	Trowbridge STW
Client	BWB Consulting
Job Number	AA0125
Lab Number	L9481

Hole	BH1	Description
Sample	U	Grey CLAY.
Depth m	9.50	
Depth within original sample mm	70	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	82.8
Mean initial sample diameter	mm	38.3
Sample mass	g	186.79
Initial moisture content	%	23
Rate of strain	%/min	4.23
Initial bulk density	Mg/m³	1.96
Initial dry density	Mg/m³	1.60
	-	
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	300
Membrane correction	kPa	1.7
Deviator stress	kPa	277
Cumulative strain at failure	%	10
Shear strength	kPa	138
Consistency		Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Site	Trowbridge STW
Client	BWB Consulting
Job Number	AA0125
Lab Number	L9481

Hole	BH1	Description
Sample	U	Grey CLAY.
Depth m	9.50	
Depth within original sample mm	70	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	83.9
Mean initial sample diameter	mm	37.8
Sample mass	g	189.65
Initial moisture content	%	22
Rate of strain	%/min	4.17
Initial bulk density	Mg/m³	2.02
Initial dry density	Mg/m³	1.66
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	200
Membrane correction	kPa	1.6
Deviator stress	kPa	347
Cumulative strain at failure	%	8
Shear strength	kPa	173
Consistency		Very Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Site	Trowbridge STW
Client	BWB Consulting
Job Number	AA0125
Lab Number	L9481

Hole	BH2	Description
Sample	U	Dark grey CLAY.
Depth m	6.50	
Depth within original sample mm	140	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	84.5
Mean initial sample diameter	mm	38.5
Sample mass	g	190.02
Initial moisture content	%	19
Rate of strain	%/min	4.14
Initial bulk density	Mg/m³	1.94
Initial dry density	Mg/m³	1.62
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	150
Membrane correction	kPa	1.4
Deviator stress	kPa	532
Cumulative strain at failure	%	8
Shear strength	kPa	266
Consistency		Very Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Site	Trowbridge STW
Client	BWB Consulting
Job Number	AA0125
Lab Number	L9481

Hole	BH2	Description
Sample	U	Dark grey CLAY.
Depth m	6.50	
Depth within original sample mm	140	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	84.4
Mean initial sample diameter	mm	38.8
Sample mass	g	189.73
Initial moisture content	%	20
Rate of strain	%/min	4.15
Initial bulk density	Mg/m³	1.90
Initial dry density	Mg/m³	1.58
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	200
Membrane correction	kPa	1.6
Deviator stress	kPa	511
Cumulative strain at failure	%	9
Shear strength	kPa	255
Consistency		Very Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Site	Trowbridge STW
Client	BWB Consulting
Job Number	AA0125
Lab Number	L9481

Hole	BH2	Description
Sample	U	Grey CLAY.
Depth m	6.50	
Depth within original sample mm	140]

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	82.8
Mean initial sample diameter	mm	38.5
Sample mass	g	184.03
Initial moisture content	%	20
Rate of strain	%/min	4.23
Initial bulk density	Mg/m³	1.91
Initial dry density	Mg/m³	1.59
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	250
Membrane correction	kPa	3.0
Deviator stress	kPa	279
Cumulative strain at failure	%	20
Shear strength	kPa	140
Consistency		Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Trowbridge STW
BWB Consulting
AA0125
L9481

Hole	BH2	Description
Sample	U	Mottled orange-grey CLAY.
Depth m	2.00	
Depth within original sample mm	60	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	84.6
Mean initial sample diameter	mm	37.6
Sample mass	g	197.93
Initial moisture content	%	22
Rate of strain	%/min	4.14
Initial bulk density	Mg/m³	2.11
Initial dry density	Mg/m³	1.73
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	50
Membrane correction	kPa	2.8
Deviator stress	kPa	162
Cumulative strain at failure	%	18
Shear strength	kPa	81
ConsistencyMottled o		Firm to Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Trowbridge STW
BWB Consulting
AA0125
L9481

Hole	BH2	Description
Sample	U	Medium brown, mottled orange CLAY.
Depth m	2.00	
Depth within original sample mm	60	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	84.5
Mean initial sample diameter	mm	37.3
Sample mass	g	184.73
Initial moisture content	%	23
Rate of strain	%/min	4.14
Initial bulk density	Mg/m³	2.00
Initial dry density	Mg/m³	1.62
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	100
Membrane correction	kPa	2.8
Deviator stress	kPa	160
Cumulative strain at failure	%	18
Shear strength	kPa	80
Consistency		Firm to Stiff

Checked

Approved

cjassociates

BS1377:Part 7:1990: Clause 8

Site	Trowbridge STW
Client	BWB Consulting
Job Number	AA0125
Lab Number	L9481

Hole	BH2	Description
Sample	U	Medium brown, mottled orange CLAY.
Depth m	2.00	
Depth within original sample mm	160	

Orientation within original sample		Vertical
Preparation		Undisturbed
Mean initial sample height	mm	84.1
Mean initial sample diameter	mm	37.4
Sample mass	g	193.26
Initial moisture content	%	20
Rate of strain	%/min	4.16
Initial bulk density	Mg/m³	2.09
Initial dry density	Mg/m³	1.74
Membrane type		Latex
Membrane thickness		0.3

Cell pressure	kPa	150
Membrane correction	kPa	2.9
Deviator stress	kPa	391
Cumulative strain at failure	%	19
Shear strength	kPa	196
Consistency		Very Stiff

Checked

Approved

Laboratory Report

Contract Number: 15507

Client's Reference: AA0125-L9481-S3954

Report Date: 02-04-2012

Client Name: C J Associates King Roads Avenue Bristol BS11 9HF

Contract Title:	Trowbridge STW
For the attention of:	Vince Simmonds

Date Received:	19-03-2012
Date Commenced:	19-03-2012
Date Completed:	18-04-2012

Test Description	Quantity	Checked	Approved
One-dimensional Consolidation 75mm or 50mm	3		
diameter specimens (5 days)			
1377 : 1990 Part 5 : 3 *			
CU SS 100mm single stage test on a 102 mm	2		
diameter Part 8 Continued specimen at one confining			
pressure, test duration four days.			
1377:1990 Part 8 : 8			

Notes: Observations and Interpretations are outside the UKAS Accreditation * - Denotes test included in laboratory scope of accreditation # Denotes test included in laboratory scope of accreditation

- Denotes test carried out by approved contractor

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Approved Signatories: Paul Evans (Quality Manager), Emma Williams (Office Manager), Benjamin Sharp (Laboratory Coordinator), Alex Wynn (Business Development Manager).

ONE DIMENSIONAL CONSOLIDATION

BS1377: Part 5: 1990

Client ref:	AA0125-L9481-S3954
Location:	Trowbridge STW
Contract Number:	15507-190312
Hole/Sample Number:	BH1
Depth (m) :	2.00 - 2.45
Sample Type:	U

Initial Conditions		Pressure Range		Mv	Cv	Method of time fitting used	
Moisture Content (%):	21		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.98	0	-	25	0.099	2.435	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.64	25	-	50	0.180	10.446	20'C
Voids Ratio:	0.6178	50	-	100	0.140	3.211	Location of specimen with sample
Degree of saturation:	90.6	100	-	200	0.087	1.548	top
Height (mm):	18.9						Remarks:
Diameter (mm)	75						
Particle Density (Mg/m3):	2.65						
Assumed							

SSR: Checked by

DP Glong Approved by

Date approved

17/04/12

ONE DIMENSIONAL CONSOLIDATION

BS1377: Part 5: 1990

Client ref:	AA0125-L9481-S3954
Location:	Trowbridge STW
Contract Number:	15507-190312
Hole/Sample Number:	BH1
Depth (m) :	2.00 - 2.45
Sample Type:	U

Initial Conditions		Pressure Range		Mv	Cv	Method of time fitting used	
Moisture Content (%):	20		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	2.01	0	-	25	0.135	2.433	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.68	25	-	50	0.202	10.421	20'C
Voids Ratio:	0.5732	50	-	100	0.152	3.200	Location of specimen with sample
Degree of saturation:	90.4	100	-	200	0.094	1.541	top
Height (mm):	18.9						Remarks:
Diameter (mm)	75						
Particle Density (Mg/m3):	2.65						
Assumed							

SSR: Checked by

DP Glong Approved by

Date approved

17/04/12

ONE DIMENSIONAL CONSOLIDATION

BS1377: Part 5: 1990

Client ref:	AA0125-L9481-S3954
Location:	Trowbridge STW
Contract Number:	15507-190312
Hole/Sample Number:	BH2
Depth (m) :	4.00 - 4.45
Sample Type:	U

Initial Conditions		Pressure Range		Mv	Cv	Method of time fitting used	
Moisture Content (%):	18		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	2.07	0	-	50	0.089	2.431	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.76	50	-	100	0.138	10.380	20'C
Voids Ratio:	0.5088	100	-	200	0.092	3.176	Location of specimen with sample
Degree of saturation:	92.3	200	-	400	0.054	1.524	top
Height (mm):	18.9						Remarks:
Diameter (mm)	75						
Particle Density (Mg/m3):	2.65						
Assumed							

DP Glong Approved by

Date approved

17/04/12

Consolidated Undrained Triaxial Compression Test

BS 1377 : Part 8 : 1990

Specimen Details		
Borehole		BH1
Sample No.		U5
Depth	m	2.00-2.45
Date		18/04/2012
Disturbed / Undisturbed		Undisturbed

Description of Specimen

Brown sandy silty CLAY

Trowbridge

Initial Specimen Conditions

Height	mm	206.00
Diameter	mm	100.00
Area	mm ²	7853.98
Volume	cm ³	1617.92
Mass	g	3245.60
Dry Mass	g	2625.20
Density	Mg/m ³	2.01
Dry Density	Mg/m ³	1.62
Moisture Content	%	24
Specific Gravity	kN/m ³	2.65
(assume	assumed	

Final Specimen Conditions

Moisture Content	%	24
Density	Mg/m ³	2.04
Dry Density	Mg/m ³	1.65

DP Grong

Checked and Approved By

eEG Site & Testing Services Limited

18/04/12 Date

Client Ref

AA0125

Contract No

15507-190312

Consolidated Undrained Triaxial Compression Test

BS 1377 : Part 8 : 1990

Specimen Details		
Borehole		BH1
Sample No.		U5
Depth	m	2.00-2.45
Date		18/04/2012

Test SetupDate started24/03/2012Date Finished14/04/2012Top Drain UsedyBase Drain UsedySide Drains UsedyPressure System NumberP6Cell NumberC6

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	600.00
Final Pore Pressure	kPa	600.00
Final B Value		0.98

Consolidation

Effective Pressure	kPa	50.00	100.00	200.00
Cell Pressure	kPa	600.00	600.00	600.00
Back Pressure	kPa	550.00	500.00	400.00
Excess Pore Pressure	kPa	50.00	100.00	200.00
Pore Pressure at End	kPa	550.00	500.00	400.00
Consolidated Volume	cm ³	1613.32	1605.52	1592.62
Consolidated Height	mm	205.80	201.47	195.81
Consolidated Area	mm ²	7839.09	7968.88	8133.66
Vol. Compressibility	m²/MN	0.00517	0.00967	0.02009
Consolidation Coef.	m²/yr.	45.83801	4.93520	2.10481

DP Grong

Checked and Approved By

Trowbridge

18/04/12 Date

Client Ref

Contract No

15507-190312
BS 1377 : Part 8 : 1990

Specimen Details		
Borehole		BH1
Sample No.		U5
Depth	m	2.00-2.45
Date		18/04/2012

Consolidation Stage

DP Grong

Checked and Approved By

eEO Site & Tecting Services Limited

Trowbridge

Client Ref AA0125

18/04/12

Date

Contract No

Specimen Details		
Borehole		BH1
Sample No.		U5
Depth	m	2.00-2.45
Date		18/04/2012

Shearing

Initial Cell Pressure	kPa	600	600	600
Initial Pore Pressure	kPa	550	500	400
Rate of Strain	mm/min	0.0858	0.0839	0.0434
Max Deviator Stress				
Axial Strain		1.997	4.929	7.549
Axial Stress	kPa	91.813	139.51	257.17
Cor. Deviator stress	kPa	89.005	135.47	252.88
Effective Major Stress	kPa	112.005	189.47	376.88
Effective Minor Stress	kPa	24.000	54.00	124.00
Effective Stress Ratio		4.667	3.509	3.04
s'	kPa	68.003	121.74	250.44
ť	kPa	44.003	67.74	126.44
Max Effective Priciple S	Stress Ra	tio		
Axial Strain		1.890	3.535	6.737
Axial Stress	kPa	91.012	131.500	245.069
Cor. Deviator stress	kPa	87.213	127.617	240.829
Effective Major Stress	kPa	110.213	176.617	357.829
Effective Minor Stress	kPa	23.000	49.000	117.000
Effective Stress Ratio		4.792	3.604	3.058
s'	kPa	66.606	112.808	237.414
ť	kPa	43.606	63.808	120.414
Shear Resistance Angle	degs			25.0
Cohesion c'	kPa			20

DP Grong

Checked and Approved By

Trowbridge

18/04/12 Date

Client Ref

Contract No

BS 1377 : Part 8 : 1990

Specimen Details		
Borehole		BH1
Sample No.		U5
Depth	m	2.00-2.45
Date		18/04/2012

Shearing Stage

DP Gronz

Checked and Approved By

Trowbridge

18/04/12 Date

Client Ref AA0125

Contract No

BS 1377 : Part 8 : 1990

Specimen Details		
Borehole		BH1
Sample No.		U5
Depth	m	2.00-2.45
Date		18/04/2012

Shearing Stage

DP Grong

Checked and Approved By

Client Ref AA0125

18/04/12

Date

GSTTL, elso site & Teching Services Limited

Trowbridge

15507- 190312

Contract No

BS 1377 : Part 8 : 1990

Specimen Details		
Borehole		BH1
Sample No.		U5
Depth	m	2.00-2.45
Date		18/04/2012

Shearing Stage

DP Grong

Checked and Approved By

in Limited BEO Site & Tecting Service

Trowbridge

18/04/12 Date

Client Ref

Contract No

Specimen Details		
Borehole		BH2
Sample No.		U10
Depth	m	4.00-4.45
Date		18/04/2012
Disturbed / Undisturbed		undisturbed

Description of Specimen

Brown silty sandy Clay.

Initial Specimen Conditions

Height	mm	206.00
Diameter	mm	102.00
Area	mm ²	8171.28
Volume	cm ³	1683.28
Mass	g	3448.20
Dry Mass	g	2802.40
Density	Mg/m ³	2.05
Dry Density	Mg/m ³	1.66
Moisture Content	%	23
Specific Gravity	kN/m ³	2.65
(assumed/r	measured)	assumed

Final Specimen Conditions

Moisture Content	%	22
Density	Mg/m ³	2.08
Dry Density	Mg/m ³	1.70

DP Grong

Checked and Approved By

eeo sito & Tecting Services Limited

Trowbridge STW

18/04/12 Date

Client Ref AA0125

Contract No

Specimen Details			
Borehole		BH2	
Sample No.		U10	
Depth	m	4.00-4.45	
Date		18/04/2012	

Test Setup	
Date started	24/03/2012
Date Finished	12/04/2012
Top Drain Used	у
Base Drain Used	у
Side Drains Used	У
Pressure System Number	P4
Cell Number	C4

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	500.00
Final Pore Pressure	kPa	487.00
Final B Value		1.00

Consolidation

Effective Pressure	kPa	50.00	100.00	200.00
Cell Pressure	kPa	500.00	500.00	500.00
Back Pressure	kPa	450.00	400.00	300.00
Excess Pore Pressure	kPa	50.00	100.00	200.00
Pore Pressure at End	kPa	450.00	400.00	300.00
Consolidated Volume	cm ³	1674.58	1662.98	1646.08
Consolidated Height	mm	205.65	197.04	189.42
Consolidated Area	mm ²	8143.13	8439.75	8690.32
Vol. Compressibility	m²/MN	0.01149	0.01732	0.03387
Consolidation Coef.	m²/yr.	10.86324	3.45681	2.26784

DP Gronz

Checked and Approved By

Trowbridge STW

18/04/12 Date

Client Ref

AA0125

Contract No

Specimen Details		
Borehole		BH2
Sample No.		U10
Depth	m	4.00-4.45
Date		18/04/2012

Consolidation Stage

Trowbridge STW

DP Gronz

Checked and Approved By

REG SING &

balling Services Limited

18/04/12 Date

Client Ref AA0125

Contract No

BS 1377 : Part 8 : 1990

Specimen Details								
Borehole		BH2						
Sample No.		U10						
Depth	m	4.00-4.45						
Date		18/04/2012						

Shearing				
Initial Cell Pressure	kPa	500	500	500
Initial Pore Pressure	kPa	450	400	300
Rate of Strain	mm/min	0.0857	0.0690	0.0435
Max Deviator Stress				
Axial Strain		4.697	7.498	10.363
Axial Stress	kPa	114.389	177.99	301.13
Cor. Deviator stress	kPa	111.381	173.69	296.69
Effective Major Stress	kPa	154.381	245.69	423.69
Effective Minor Stress	kPa	44.000	72.00	127.00
Effective Stress Ratio		3.509	3.412	3.34
s'	kPa	99.191	158.85	275.34
ť'	kPa	55.191	86.85	148.34
Max Effective Priciple	Stress Ra	tio		
Axial Strain		3.516	6.280	8.552
Axial Stress	kPa	113.888	171.467	277.171
Cor. Deviator stress	kPa	109.970	167.300	272.837
Effective Major Stress	kPa	148.970	231.300	380.837
Effective Minor Stress	kPa	39.000	64.000	108.000
Effective Stress Ratio		3.820	3.614	3.526
s'	kPa	93.985	147.650	244.418
ť'	kPa	54.985	83.650	136.418
Shear Resistance Angle	degs			32.0
Cohesion c'	kPa			8

DP Gronz

Checked and Approved By

18/04/12 Date

C

Client Ref

Trowbridge STW

Contract No 15507 - 190312

BS 1377 : Part 8 : 1990

Specimen Details		
Borehole		BH2
Sample No.		U10
Depth	m	4.00-4.45
Date		18/04/2012

Shearing Stage

DP Grang

Checked and Approved By

GISTIL

Trowbridge STW

Client Ref AA0125

18/04/12

Date

Contract No

BS 1377 : Part 8 : 1990

Specimen Details		
Borehole		BH2
Sample No.		U10
Depth	m	4.00-4.45
Date		18/04/2012

Shearing Stage

Specimen Details		
Borehole		BH2
Sample No.		U10
Depth	m	4.00-4.45
Date		18/04/2012

Shearing Stage

DP Grong Checked and Approved By

GISTIL GISTIL

Trowbridge STW

18/04/12 Date

Client Ref

Contract No

Index Property Test Results

cjassociat∈s

Site

Trowbridge STW

Client

BWB Consulting

Job Number Lab Number AA0125

UKAS Testing Laboratory 1429

Hole	Sample	Depth (m)	Method	History	MC (%)	LL (%)	Ret (%)	PL (%)	Pa (%)	Pl (%)	Class	Description
BH1	D	1.70	1	1	20	55	0	28	100	27	СН	Refer to log sheets
BH1	D	3.50	1	2	11	39	56	19	44	20	CI	Refer to log sheets
BH1	D14	6.00	1	1	23	38	3	20	97	18	CI	Refer to log sheets
BH1	D	9.00	1	1	30	48	2	24	98	24	CI	Refer to log sheets
BH2	D	1.20	1	1	24	51	0	23	100	28	СН	Refer to log sheets
BH2	D	1.70	1	1	21	49	0	26	100	23	CI	Refer to log sheets
BH2	D	3.50	1	1	21	40	0	20	100	20	CI	Refer to log sheets

Key

MC - Moisture content

LL - Liquid Limit

Ret - Percentage retained on 425 micron test sieve

PL - Plastic limit Pa - Percentage passing the 425 micron test sieve

PI - Plasticity Index

Methods

[1] BS1377:Part2:1990: Methods 3.2/4.4/5.3 - Liquid Limit by One point Cone Penetrometer [2] BS1377:Part2:1990: Methods 3.2/4.4/5.3 - Liquid Limit by Four Point Cone Penetrometer

Samples were prepared in accordance with BS1377:Part1:1990

Classification is based on the plasticity chart - Fig 2.6 of Manual of Soil Laboratory Testing - Volume 1 by K.H.Head. NOTE - 'O' is added to the symbol for soils containing a significant amount of organic material (determined by visual inspection) e.g. MHO

Checked

Approved

History (1) Samp

(1) Sample was tested from the natural state. Particles greater than 425 microns removed by hand (BS1377:Part2:1990:4.2.3)
(2) Sample was wet sieved through 425 micron test sieve (BS1377:Part2:1990:4.2.4)

(3) Sample was air dried at less than 50 degrees Centigrade and passed through the 425 micron sieve

(3) Sample was all oned at less than 50 degrees Centigrade and passed through the 425 micron si
 (4) Unknown

Index Property Test Results

cjassociat∈s

Site

Trowbridge STW

Client

BWB Consulting

Job Number Lab Number AA0125

UKAS Testing Laboratory 1429

Hole	Sample	Depth (m)	Method	History	MC (%)	LL (%)	Ret (%)	PL (%)	Pa (%)	PI (%)	Class	Description
BH2	D	6.00	1	1	26	53	1	25	99	28	СН	Refer to log sheets
BH2	D	9.00	1	1	28	55	0	26	100	29	СН	Refer to log sheets
TP2	В	0.60	1	1	31	57	0	27	100	30	СН	Refer to log sheets
TP2	В	2.40	1	1	20	49	0	24	100	25	CI	Refer to log sheets
TP3	В	0.50	1	2	27	48	14	27	86	21	CI	Refer to log sheets
TP3	В	1.50	1	1	25	59	0	25	100	34	СН	Refer to log sheets
TP4	В	0.40	1	1	24	45	0	23	100	22	CI	Refer to log sheets

Key

MC - Moisture content

LL - Liquid Limit

Ret - Percentage retained on 425 micron test sieve

PL - Plastic limit

Pa - Percentage passing the 425 micron test sieve

PI - Plasticity Index

Methods

[1] BS1377:Part2:1990: Methods 3.2/4.4/5.3 - Liquid Limit by One point Cone Penetrometer [2] BS1377:Part2:1990: Methods 3.2/4.4/5.3 - Liquid Limit by Four Point Cone Penetrometer

Samples were prepared in accordance with BS1377:Part1:1990

Classification is based on the plasticity chart - Fig 2.6 of Manual of Soil Laboratory Testing - Volume 1 by K.H.Head. NOTE - 'O' is added to the symbol for soils containing a significant amount of organic material (determined by visual inspection) e.g. MHO

Checked

Approved

History
(1) Sample was tested from the natural state. Particles greater than 425 microns removed by hand (BS1377:Part2:1990:4.2.3)

(2) Sample was wet sieved through 425 micron test sieve (BS1377:Part2:1990:4.2.4)

(3) Sample was air dried at less than 50 degrees Centigrade and passed through the 425 micron sieve

(4) Unknown

Index Property Test Results

cjassociat∈s

Site

Trowbridge STW

Client

BWB Consulting

Job Number Lab Number AA0125

UKAS Testing Laboratory 1429

Hole	Sample	Depth (m)	Method	History	MC (%)	LL (%)	Ret (%)	PL (%)	Pa (%)	PI (%)	Class	Description
TP4	В	1.60	1	2	27	51	4	24	96	27	СН	Refer to log sheets
TP5	В	0.60	1	1	15	44	0	22	100	22	CI	Refer to log sheets
TP5	В	2.50	1	1	32	53	0	25	100	28	СН	Refer to log sheets
TP6	В	1.90	1	1	24	49	0	22	100	27	CI	Refer to log sheets
TP6	D	2.90	1	2	18	45	4	26	96	19	CI	Refer to log sheets

Key

MC - Moisture content

LL - Liquid Limit

Ret - Percentage retained on 425 micron test sieve

PL - Plastic limit

Pa - Percentage passing the 425 micron test sieve

PI - Plasticity Index

Methods

[1] BS1377:Part2:1990: Methods 3.2/4.4/5.3 - Liquid Limit by One point Cone Penetrometer [2] BS1377:Part2:1990: Methods 3.2/4.4/5.3 - Liquid Limit by Four Point Cone Penetrometer

Samples were prepared in accordance with BS1377:Part1:1990

Classification is based on the plasticity chart - Fig 2.6 of Manual of Soil Laboratory Testing - Volume 1 by K.H.Head. NOTE - 'O' is added to the symbol for soils containing a significant amount of organic material (determined by visual inspection) e.g. MHO

Checked

Approved

History

(1) Sample was tested from the natural state. Particles greater than 425 microns removed by hand (BS1377:Part2:1990:4.2.3)
(2) Sample was wet sieved through 425 micron test sieve (BS1377:Part2:1990:4.2.4)
(3) Sample was air dried at less than 50 degrees Centigrade and passed through the 425 micron sieve
(4) Unknown

cjassociates Particle Size Distribution Analysis Trowbridge STW Site Client **BWB** Consulting Job Number AA0125 Lab Number L9481 Hole BH1 Sample D Depth (m) 2.50 Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT GRAVEL SAND 100 90

Percentage Passing (%)

		n				
Sievir	ng	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
75	100	0.063	85			
37.5	100	0.063	85			
20	100	0.052	81			
10	100	0.036	79			
6.3	100	0.025	73			
2	100	0.018	69			
1.18	99 0.013		62			
0.6	99	0.009	58			
0.425	98	0.006	54			
0.3	98	0.004	50			
0.212	98	0.003	48			
0.15	97	0.002	44			
0.063	85	0.001	42			

Test Method								
BS 1377 : Part 2 : 1990								
Sieving	Clause 9.2							
Sedimentation	Clause 9.5							

Sample Proportions		
Cobbles	0.0	
Gravel	0.5	
Sand	15.7	
Silt 39.3		
Clay	44.5	

Grading Analysis		
D100	6.3	
D60	0.0	
D10		
Uniformity Coefficient	N/A	

cjassociates Particle Size Distribution Analysis Trowbridge STW Site Client **BWB** Consulting Job Number AA0125 Lab Number L9481 Hole BH1 Sample D Depth (m) 7.50 Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
75	100	0.063	87
37.5	100	0.063	87
20	100	0.052	85
10	100	0.037	83
6.3	100	0.026	83
2	99	0.019	78
1.18	98	0.013	70
0.6	97	0.009	65
0.425	97	0.006	61
0.3	97	0.005	56
0.212	97	0.003	52
0.15	97	0.002	44
0.063	87	0.001	41

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause 9.2		
Sedimentation	Clause 9.5	

Sample Proportions		
Cobbles	0.0	
Gravel	1.3	
Sand	12.0	
Silt 42.3		
Clay	44.4	

Grading Analysis		
D100	6.3	
D60	0.0	
D10		
Uniformity Coefficient	N/A	

cjassociates Particle Size Distribution Analysis Trowbridge STW Site Client **BWB** Consulting Job Number AA0125 Lab Number L9481 Hole BH1 Sample D Depth (m) 10.50 Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT GRAVEL SAND 100 90 80 70 60 50 40

Sievir	ng	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
75	100	0.063	96
37.5	100	0.063	96
20	100	0.050	93
10	100	0.035	93
6.3	100	0.025	93
2	100	0.018	87
1.18	100	0.013	84
0.6	99	0.009	78
0.425	99	0.006	69
0.3	99	0.004	66
0.212	99	0.003	64
0.15	99	0.002	55
0.063	96	0.001	49

0.03

0.06

0.2

Sieve Size (mm)

0.6

Ν

ი

Percentage Passing (%)

30 · 20 · 10 ·

0.002

0.006

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause 9.2	
Sedimentation Clause 9.5		

20

60

200

Sample Proportions		
Cobbles	0.0	
Gravel	0.2	
Sand	4.8	
Silt	39.4	
Clay	55.5	

Grading Analysis		
D100	6.3	
D60	0.0	
D10		
Uniformity Coefficient	N/A	

cjassociates Particle Size Distribution Analysis Trowbridge STW Site Client **BWB** Consulting Job Number AA0125 Lab Number L9481 Hole BH2 Sample В Depth (m) 0.50 Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT GRAVEL SAND 100 90 80 70

60 50 40 30 20 10 0 -0.002 0.006 0.03 0.06 0.2 0.6 Ν ი 20 60 200

Sieve Size (mm)

		-	
Sievir	וg	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
75	100	0.063	80
37.5	100	0.063	80
20	100	0.051	80
10	100	0.036	76
6.3	100	0.025	74
2	100	0.018	70
1.18	100	0.013	66
0.6	100	0.009	62
0.425	99	0.006	58
0.3	99	0.005	54
0.212	99	0.003	52
0.15	97	0.002	47
0.063	80	0.001	43

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause 9.2		
Sedimentation	Clause 9.5	

Sample Proportions												
Cobbles	0.0											
Gravel	0.1											
Sand	20.2											
Silt	33.2											
Clay	46.5											

Grading Anal	ysis
D100	6.3
D60	0.0
D10	
Uniformity Coefficient	N/A

cjassociates Particle Size Distribution Analysis Trowbridge STW Site Client **BWB** Consulting Job Number AA0125 Lab Number L9481 Hole BH2 Sample D Depth (m) 4.50 Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT GRAVEL SAND 100 90

80

-	 	 _			_	-	-	-							_					_		_		_		_					_	_
											Ι	/	-		ľ	┢				T		Γ		IT			[1		
Ī											Π	/																		Π		
Ι											Π												Π							Π		
T											I																			Π		
T										Ι	Π																			Π		
T								Т			Π																			Π		
T		•	ſ	Π							Π																			Π		
											Π																					-
Ι								Τ			Π				Γ	Τ						Τ	Π	Π						Π		
	0.002		0.006				0.03		0.00				0.2	ວ ວ			0.6	>		N		ი			20	2		00	3			200

Sieve Size (mm)

Sievir	ıg	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
75	100	0.063	52
37.5	100	0.063	52
20	100	0.048	50
10	100	0.034	50
6.3	100	0.024	48
2	99	0.018	48
1.18	98	0.012	44
0.6	98	0.009	41
0.425	98	0.006	37
0.3	97	0.004	35
0.212	97	0.003	33
0.15	96	0.002	30
0.063	52	0.001	26

Test Method											
BS 1377 : Part 2 : 1990											
Sieving	Clause 9.2										
Sedimentation	Clause 9.5										

Sample Proportions											
Cobbles	0.0										
Gravel	1.1										
Sand	46.9										
Silt	21.4										
Clay	30.6										

Grading Anal	ysis
D100	6.3
D60	0.1
D10	
Uniformity Coefficient	N/A

cjassociates Particle Size Distribution Analysis Trowbridge STW Site Client **BWB** Consulting Job Number AA0125 Lab Number L9481 Hole BH2 Sample D Depth (m) 2.50 Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT GRAVEL SAND 100 T ╞╺╞┼**╤**╢╢ Ш 90 8 7 6

30	Ш						Ш																	Ш	Ш							
80 -	╢╢				-	Η	╂		-				-	\forall	/				+	+	-		+	H	╂	+	+	Η	+	╂╋	╟	
70 -														1																		
70 - CO													Ι											Π								
60 -						Π	Π					ľ												Π	Π			Π		Π	Π	
50 -					+	Н	₽		r					-					+				+	₩	╢	_	+	H		₽	╢	
40 -																																
-0							Π																									
30 -			_			Π	Ħ																	Ħ	Ħ		T	Π		IT		
20 -	╢			-	+	H	Ħ							╟					+		-		+	Ħ	Ħ	+	+	H	+	Н	╢	
10	Ш					Ш	Ш																	Ш	Ш							
0							Π																									
0 -						 ``	•••	-		``			_				-			_		 		ת. היי								
		N	כ		o	ກ									Siev	ve S	Size	e (ı	nn	n)												
																				· /												

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
75	100	0.063	59
37.5	100	0.063	59
20	100	0.052	57
10	100	0.037	57
6.3	100	0.026	55
2	98	0.019	52
1.18	98	0.013	47
0.6	97	0.009	44
0.425	97	0.006	39
0.3	96	0.005	36
0.212	95	0.003	34
0.15	93	0.002	30
0.063	59	0.001	29

Test Method											
BS 1377 : Part 2 : 1990											
Sieving	Clause 9.2										
Sedimentation	Clause 9.5										

200

Sample Proportions											
Cobbles	0.0										
Gravel	2.2										
Sand	39.6										
Silt	28.1										
Clay	30.1										

Grading Anal	ysis
D100	6.3
D60	0.1
D10	
Uniformity Coefficient	N/A

cjassociates Particle Size Distribution Analysis Trowbridge STW Site Client **BWB** Consulting Job Number AA0125 Lab Number L9481 Hole TP2 Sample В Depth (m) 2.40

Sievir	ng	Sediment	tation							
Particle Size mm	% Passing	Particle Size mm	% Passing							
75	100	0.063	93							
37.5	100	0.063	93							
20	100	0.050	86							
10	100	0.036	86							
6.3	100	0.025	76							
2	100	0.018	76							
1.18	100	0.013	69							
0.6	100	0.009	64							
0.425	100	0.006	62							
0.3	99	0.004	57							
0.212	99	0.003	55							
0.15	99	0.002	52							
0.063	93	0.001	47							

Test Method									
BS 1377 : Part 2 : 1990									
Sieving	Clause 9.2								
Sedimentation	Clause 9.5								

Sample Proportions										
Cobbles	0.0									
Gravel	0.0									
Sand	8.7									
Silt	38.8									
Clay	52.4									

Grading Analysis										
D100	2.0									
D60	0.0									
D10										
Uniformity Coefficient	N/A									

cjassociates Particle Size Distribution Analysis Trowbridge STW Site Client **BWB** Consulting Job Number AA0125 Lab Number L9481 Hole TP3 Sample В Depth (m) 1.50 Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT GRAVEL SAND

Sievir	ng	Sedimentation								
Particle Size mm	% Passing	Particle Size mm	% Passing							
75	100	0.063	81							
37.5	100	0.063	81							
20	100	0.050	79							
10	100	0.035	79							
6.3	100	0.025	79							
2	100	0.018	74							
1.18	100	0.013	65							
0.6	100	0.009	60							
0.425	100	0.006	55							
0.3	99	0.004	51							
0.212	99	0.003	48							
0.15	99	0.002	44							
0.063	81	0.001	41							

Test Method								
BS 1377 : Part 2 : 1990								
Sieving	Clause 9.2							
Sedimentation	Clause 9.5							

Sample Proportions										
Cobbles	0.0									
Gravel	0.0									
Sand	19.6									
Silt	36.3									
Clay	44.1									

Grading Analysis										
D100	2.0									
D60	0.0									
D10										
Uniformity Coefficient	N/A									

cjassociates Particle Size Distribution Analysis Trowbridge STW Site Client **BWB** Consulting Job Number AA0125 Lab Number L9481 Hole TP4 Sample В Depth (m) 0.40 Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT GRAVEL SAND 100 90 80 70

00 -				_			_	 -		_			_		-	-	-					_		-	-			_	-			-	-
00					Ш							Π		Τ	T	Г	IT	II		-	T			IT		Π	Τ	1					
90 -	Ш				Π	Π					Π	X	1					Π	Π					Π	Π	Π					T		
80 -	\mathbb{H}			+	H	╂					ł	╢		+	+	╈	\square	╂	╢		-	+	+	H	H	╢	 -	+		+	╢		
70 -	Ш			_	Ш	4			-	1	Ш	╢		+				Ш	1					Ш	Ш		_				Ш		
60					Ш		\mathbf{P}				Ш	Π						Ш							Ш								
60 -	Ш	ر				n					П	I						Π							Π						Π		
50 -				+	┼┼	╂		 -		-	╂╂	╢		+	+	╈	$\left \right $	╂	╢		+	+	╈	┼┼	╂╂	╢	 +	┢	$\left \right $	+	╂		
40 -					Ш						Ш	11						Ш						Ш	Ш						Ш		
					Ш	Ш					Ш	Π						Ш							Ш								
30 -	Ш				Ħ	Ħ					Ħ	Ħ						Ħ	I					Ħ	Ħ	I					Ħ		
20 -	$\left \right \right $			+	╂╋	╂		 -		+	₩	╢		+	+	╀	\mathbb{H}	╢	╢		+	+	╋	₩	╂	╢	 -	+	\vdash	+	╢	-	
10 -	Ш																																
10					Ш	Ш					Ш	Ш						Ш							Ш								
0 -	ш	~	ـــــــــــــــــــــــــــــــــــــ	-	ц о			 ـــــــــــــــــــــــــــــــــــــ	רד ר	ц,		Ц	-	-	-	-	ц С				 N	-		പ		Ц	 <u> </u>	-		പ		-	
		0.002	003		0.006				202		906). 2).6							5,			ŏ			ŏ			00

Sievir	ng	Sedimentation								
Particle Size mm	% Passing	Particle Size mm	% Passing							
75	100	0.063	78							
37.5	100	0.063	78							
20	100	0.050	76							
10	100	0.035	74							
6.3	100	0.025	74							
2	100	0.018	74							
1.18	100	0.013	67							
0.6	100	0.009	62							
0.425	100	0.006	58							
0.3	99	0.004	58							
0.212	99	0.003	58							
0.15	99	0.002	55							
0.063	78	0.001	51							

Test Method										
BS 1377 : Part 2 : 1990										
Sieving	Clause 9.2									
Sedimentation	Clause 9.5									

Sample Proportions						
Cobbles	0.0					
Gravel	0.0					
Sand	22.1					
Silt	22.7					
Clay	55.2					

Grading Analysis						
D100	2.0					
D60	0.0					
D10						
Uniformity Coefficient	N/A					

cjassociates Particle Size Distribution Analysis Trowbridge STW Site Client **BWB** Consulting Job Number AA0125 Lab Number L9481 Hole TP5 Sample В Depth (m) 2.50 Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT GRAVEL SAND 100 90 80 70

Percentage Passing (%)

00 -	 	_	 -	 	 -	г т	-			-						-	<u> </u> т	 				-	_	 _	-	_		-
90 -												Η			╢				Γ			L						
80 -																												
70									ł	1																		
60 -																												
50 -																												
40 -			ł																									
30 -	-								∐																			
20 -									║						\parallel													
10 -																												
0 -																												
J	0.002		0.000		0.00	50.0	0.00	30.0		C I	0		0.0	с Л			N		c	D	!	20		60			200	2
		•								Sie	ve S	Size	e (m	۱m	ו)													

Sievir	ng	Sedimentation					
Particle Size mm	% Passing	Particle Size mm	% Passing				
75	100	0.063	68				
37.5	100	0.063	68				
20	100	0.050	66				
10	100	0.035	64				
6.3	98	0.025	62				
2	97	0.018	58				
1.18	96	0.013	54				
0.6	95	0.009	50				
0.425	95	0.006	46				
0.3	94	0.004	40				
0.212	92	0.003	40				
0.15	88	0.002	40				
0.063	68	0.001	38				
	1						

Test Method					
BS 1377 : Part 2 : 1990					
Sieving	Clause 9.2				
Sedimentation	Clause 9.5				

Sample Proportions						
Cobbles	0.0					
Gravel	3.1					
Sand	29.7					
Silt	26.7					
Clay	40.4					

Grading Analysis							
D100	10.0						
D60	0.0						
D10							
Uniformity Coefficient	N/A						

cjassociates Particle Size Distribution Analysis Trowbridge STW Site Client **BWB** Consulting Job Number AA0125 Lab Number L9481 Hole TP6 Sample В Depth (m) 1.90 Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT GRAVEL SAND 100 90 80 70 60 50 40 30

Sievir	ng	Sediment	ation			
Particle Size mm	% Passing	Particle Size mm	% Passing			
75	100	0.063	87			
37.5	100	0.063	87			
20	100	0.050	84			
10	100	0.036	82			
6.3	100	0.025	80			
2	99	0.018	73			
1.18	99	0.013	68			
0.6	98	0.009	65			
0.425	98	0.006	61			
0.3	98	0.004	54			
0.212	97	0.003	54			
0.15	97	0.002	51			
0.063	87	0.001	47			

0.03

0.06

0.2

Sieve Size (mm)

0.6

Ν

ი

Percentage Passing (%)

20 -10 -0 -

0.002

0.006

Test Method						
BS 1377 : Part 2 : 1990						
Sieving	Clause 9.2					
Sedimentation	Clause 9.5					

20

60

200

Sample Proportions						
Cobbles	0.0					
Gravel	0.6					
Sand	13.3					
Silt	34.6					
Clay	51.6					

Grading Analysis						
D100	6.3					
D60	0.0					
D10						
Uniformity Coefficient	N/A					

APPENDIX 8

GAS AND GROUNDWATER MONITORING RESULTS

BWB WATER MONITORING

SITE	Trowbridge STW
CLIENT	Wessex Water
JOB No	BME2019
DATE	22/02/2012
START TIME/FINISH TIME	12:00/13:00
ENGINEER	GA
INSTALLATION DEPTH	19.00m
MONITORING EQUIPMENT	HI 9828 Multiparameter, dip metre, bailers, low flow eqipment

WEATHER CONDITIONS	START	FINISH
Dry/raining etc	Dry	Dry
Cloud Cover	2/8	2/8
Wind strength (m/s)	2.0	3.0
Wind Direction (from)	South	South
Temperature (oC)	11.5	11.5
Barometric Pressure (mb)	1021	1021

BH Ref	Conductivity Oxidisation		Dissolved	pН	Temperature	Pressure	Water	Base of
		Reduction Potential	Oxygen				Level	Response Zone
	(µS/cm)	(ORP)	(mg/l)		(°C)	(mbar)	(mbgl)	(mbgl)
BH1	1762	-169.3	9.70%	7.93	11.66	1021	15.07	19
BH2	1700	-158.4	9.70	7.86	11.54	1021.0	1.75	19.00

BWB GAS AND GROUNDWATER MONITORING

Site:					Trowb	oridge STW				We	ather Conditions		Start	End
Client:					Wessex Water				•	Otart	LIN			
Job No.:			BME2019					(Dry / Raining)				Dry	Dry	
Date:	Date:			22 February 2012					Cloud Cover				2/8	2/8
Start / E	Start / End Time:			12:00/13:00					Wind strength (m/s)				2.0	3.0
Enginee	Engineer:			GA						Wind Direc	ction (from)		South	South
Installat	ion Deta	ils:		50mm	HDPE Sta	andpipe and	Gas Valve			Temperatu	ire (°C)		11.5	11.5
Monitor	ing Equi	pment:		GA2000 Gas Analyser, GF60 Flow Monitor,						Barometric	c Pressure (mb)		1021	1021
				l l	MiniRAE F	PID & DIP Me	eter			(Rising / Fa	alling)		Falling	Falling
Ref.	Flow	Met	hane	Carbon	Oxygen	Hydrogen	Carbon	PID	Depth	Base of	Groundwater	dwater		
			1	Dioxide		Sulphide	Monoxide		to water	Response	elevation		Notes	
	(l/hr)	(%v/v)	(%LEL)	(%v/v)	(%v/v)	(ppm)	(ppm)	(ppm)	(m)	Zone (m)	(mAOD)			
BH1	0.1	<0.1	<0.1	0.1	20.1	0	3	NR	15.07	19.00	#VALUE!			
BH2	0.1	<0.1	<0.1	<0.1	19.8	<0.1	<0.1	NR	1.75	19.00	#VALUE!			
-														
L														
L		L			l			l						
LEL		Lower Explo	osive limit (1	00% LEL = 5%	% Flammable	gas)								

NR

Not recorded

Date	Version	Author	Checked	Authorisa	Notes
01/06/2010	1	SS	TJH	TJH	Issue to division
05/01/2012	2	SS	TJH	TJH	Number formatting amended and borehole specific classification added

W bwbconsulting.com

ENVIRONMENT

Wessex Water Services Ltd Trowbridge WRC Trowbridge

Ground Investigation Factual Report

ENVIRONMENT

Wessex Water Services Ltd Trowbridge WRC Trowbridge Ground Investigation Factual Report

Birmingham Livery Place, 35 Livery Street, Colmore Business District, Birmingham, B3 2PB T: 0121 233 3322

> Leeds Whitehall Waterfront, 2 Riverside Way, Leeds LS1 4EH T: 0113 233 8000

> > London 11 Borough High Street London, SE1 9SE T: 0207 407 3879

Manchester 11, Portland Street, Manchester M1 3HU T: 0161 233 4260

Nottingham Waterfront House, Station Street, Nottingham NG2 3DQ T: 0115 924 1100

December 2020

DOCUMENT ISSUE RECORD

Document Number:	TBWRC-BWB-ZZ-XX-YE-RP_0001_FR
BWB Reference:	BMG2109

Revision	Date of Issue	Status	Author:	Checked:	Approved:
Decemb	December		Imogen Wort BSc. MSc.	Luke Cross BSc (Hons)	Peter Mason BSc MSc CGeol FGS
1	2020	S1	llet	L.J. 0783	M

Notice

This document has been prepared for the sole use of the Client in accordance with the terms of the appointment under which it was produced. BWB Consulting Limited accepts no responsibility for any use of or reliance on the contents of this document by any third party. No part of this document shall be copied or reproduced in any form without the prior written permission of BWB.

CONTENTS

1.	INTRODUCTION
2.	THE SITE
	Site Location
	Site Description
3.	ENVIRONMENTAL AND GEOTECHNICAL GROUND INVESTIGATION
	Chemical Analytical Strategy
	Geotechnical Strategy
	Groundwater Sampling Strategy7
	Limitations and Uncertainty
4.	REFERENCES

FIGURES

Figure 2.1: Site Location Plan

DRAWINGS

Drawing 1: Exploratory Hole Location Plan

APPENDICES

- Appendix 1: Exploratory Hole Records
- Appendix 2: Driller's Logs
- Appendix 3: SPT Calibration Certificates
- Appendix 4: Permeability Testing
- Appendix 5: Ground Gas and Groundwater Monitoring Results
- Appendix 6: TRL DCP Testing Results
- Appendix 7: Soil Chemical Testing Results
- Appendix 8: Geotechnical Testing Results
- Appendix 9: Water Chemical Testing Results

1. INTRODUCTION

Instruction

- 1.1 BWB Consulting (BWB) was instructed by Wessex Water Services Ltd (the Client) to carry out a ground investigation and produce a factual report for Trowbridge Water Recycling Centre (WRC), Trowbridge.
- 1.2 The purpose of this investigation is to provide information on the ground and groundwater conditions at the site in order to enable the detailed design of proposed new structures for the existing WRC. No proposed development plan has been provided to BWB at the time of writing this report.

Objectives

- 1.3 The objectives of the project are to:
 - Confirm the prevailing ground and groundwater conditions at exploratory hole locations as selected by the Client.
 - Undertake environmental and geotechnical testing as specified by the Client.
 - Undertake in-situ geotechnical testing, comprising standard penetration testing (SPTs).
 - Install monitoring wells for subsequent monitoring of groundwater levels beneath the site as specified by the Client.
 - Provide a factual account of the ground investigation (this report).
- 1.4 The report has been completed in accordance with BS10175:2011(+A2:2017) 'Investigation of Potentially Contaminated Sites, Code of Practice' and EA Guidance on Land Contamination Risk Management (LCRM, 2020).

Scope of Works

- 1.5 The ground investigation scope of works was completed between the 10th and 12th November 2020 and comprised the following:
 - Non-intrusive survey of excavation locations for underground utilities.
 - Three cable percussive boreholes, two with rotary core follow-on.
 - Excavation of seven hand pits.
 - Six dynamic cone penetration tests.
 - Rising and falling head permeability testing.
 - Chemical analysis of soils and groundwater.
 - Geotechnical testing of soils.
 - Four gas and groundwater monitoring visits.

2. THE SITE

Site Location

2.1 The site is located at Trowbridge Water Recycling Centre (WRC), approximately 1km north-west of the centre of Trowbridge at approximate National Grid Reference 384865, 158726. The location of the site is shown in Figure 2.1 below.

Site Description

- 2.2 The site comprises an area within the existing operational Trowbridge WRC, covering an area of approximately 400m x 250m.
- 2.3 Access to the site is via an unnamed road off the A363 (Trowle) to the west of the site.
- 2.4 The site is generally flat, with a slight fall in levels from west to east and a typical elevation of approximately 45m above ordnance datum (AOD).
- 2.5 The site is bound to the south-west by agricultural land, to the north and west by a solar farm and to the east by the River Biss and its floodplain.

3. ENVIRONMENTAL AND GEOTECHNICAL GROUND INVESTIGATION

- 3.1 Intrusive ground investigation works were completed between the 10th and 12th November 2020 and comprised the following:
 - Clearance of investigation locations by a specialist buried services tracing company.
 - Collection of coordinates and elevations of exploratory hole locations.
 - The advancement of three cable percussive boreholes (BH01 to BH03) to a maximum depth of 16.50m below ground level (bgl), with rotary core follow-on to a maximum depth of 25.00 bgl within BH01 and BH02. Completion of standard penetration testing (SPTs), in-situ permeability testing and the installation of gas and groundwater monitoring wells.
 - The advancement of seven hand excavated trial pits (HP01 to HP07) to a maximum depth of 1.20m bgl
 - Six TRL dynamic cone penetrometer (TRL DCP) tests undertaken in order to infer CBR values.
 - Collection of environmental soil and groundwater samples for chemical analysis at a UKAS and MCERTS accredited laboratory.
 - Collection of undisturbed and disturbed soil and rock samples for geotechnical analysis at a UKAS accredited laboratory.
 - Four gas and groundwater monitoring visits.
- 3.2 An exploratory hole location plan is presented as Drawing 1. BWB exploratory hole records are presented as Appendix 1, drillers' logs are presented as Appendix 2, the SPT calibration certificate is presented in Appendix 3, the permeability worksheets are presented as Appendix 4, the ground gas and groundwater monitoring data is presented as Appendix 5 and the DCP data sheets are presented as Appendix 6.
- 3.3 The site investigation works were carried out in general accordance with BS5930:2015 'Code of Practice for Site Investigations' and BS10175:2017 'Investigation of Potentially Contaminated Sites'.

Chemical Analytical Strategy

3.4 Draft logs and chain of custody forms were sent to the projects appointed consultants (Sweco) for scheduling following completion of the ground investigation.

Soil Strategy

- 3.5 Selected soil samples collected from exploratory hole locations were sent to i2 Analytical (UKAS and MCERTS accredited) for chemical analysis. The following chemical analytical testing was undertaken:
 - Nineteen soil samples tested in line with Wessex Water Suite 1 comprising pH, Total Organic Carbon, asbestos screen and ID, TPH CWG (aliphatic and aromatic) (<C40), PAH (speciated – 16 USEPA), BTEX & MTBE, arsenic, antimony, barium,

cadmium, chromium, hexavalent chromium, copper, lead, mercury, molybdenum, nickel, selenium, vanadium and zinc.

- Four soil samples tested for asbestos quantification analysis (gravimetric).
- Eleven soil samples tested for a leachable component analysis soil Suite F (ICE UK Specification for Ground Investigation) comprising arsenic, boron, cadmium, chromium (total), hexavalent chromium, copper, lead, mercury, nickel, sulphate, selenium, zinc, pH, phenol (total), TPH (C10-40), PAH (speciated 16 USAEPA), cyanide (total), TPH CWG (inc BTEX) and ammoniacal nitrogen.
- 3.6 The results of the soil chemical testing are presented as Appendix 7.

Geotechnical Strategy

- 3.7 In-situ soil strength testing comprising SPTs were undertaken within the cable percussive boreholes. SPT 'N' values are included on the exploratory hole logs presented as Appendix 1.
- 3.8 Selected undisturbed and disturbed samples were collected from the investigation locations and sent to i2 Analytical Limited (UKAS accredited). The following geotechnical testing was undertaken;
 - Seventeen samples tested for moisture content.
 - Ten samples tested for Atterberg (liquid and plastic) limits.
 - Six samples tested for particle size distribution by sieve wet/dry and sedimentation.
 - Two samples submitted for California Bearing Ratio (CBR) testing.
 - One sample submitted for one-dimensional consolidation testing.
 - Six samples submitted for multistage triaxial testing.
 - Fourteen samples submitted for point load testing.
 - Two samples submitted for unconfined compressive strength (UCS) testing
 - Four samples tested for BRE Suite D analysis.
 - Six samples tested for organic content.
- 3.9 The results of the geotechnical testing are included as Appendix 8.

Groundwater Sampling Strategy

- 3.10 Water samples were collected from BH101 (S), BH102 (D) & BH102 (D) and sent to i2 Analytical (UKAS and MCERTS accredited) for chemical analysis. The following chemical analytical testing was undertaken:
 - 3 water samples tested for a suite in line with Suite F water suite (ICE UK Specification for Ground Investigation) comprising arsenic, cadmium, chromium III, chromium hexavalent, lead, mercury, selenium, boron, copper, nickel, zinc, cyanide (total, complex & free), thiocyanate, phenols, sulphate, sulphur, pH, PAH (speciated – 16 USAEPA), antimony, barium, beryllium, vanadium chloride, chloride, ammoniacal nitrogen, nitrate, nitrogen, chemical oxygen demand, biochemical oxygen

demand, total organic carbon, volatile fatty acids, iron, manganese, calcium, sodium, magnesium and potassium.

3.11 The results of the water chemical testing are included as Appendix 9.

Limitations and Uncertainty

3.12 Several hand pits were terminated at shallow depths including HP02 and HP07 at 0.50m on limestone cobbles, and HP05 at 0.70m bgl and HP06 at 1.00m on concrete obstructions.

4. REFERENCES

- 1. British Standards Institution, (BSI), BS 10175:2011+A2:2017, Investigation of Contaminated Sites Code of Practice
- 2. British Standards Institution, (BSI), BS5930:2015) Code of practice for ground investigations
- 3. British Standards Institution, (BSI), BS EN 1997-1:2004 Incorporating corrigendum February 2009, Eurocode 7 Geotechnical Design Part 1: General rules.
- 4. British Standards Institution, (BSI), BS EN 1997-2:2007 Incorporating corrigendum June 2010, Eurocode 7 Geotechnical Design Part 2: Ground Investigation and testing.
- 5. Construction Industry Research and Information Association (CIRIA), Report 132, A Guide to Safe working on Contaminated Sites (1996).
- 6. Construction Industry Research and Information Association (CIRIA). 2001, C522 Contaminated land risk assessment, A guide to good practice.
- 7. Department for Communities and Local Government (DCLG), 2012, National Planning Policy Framework.
- 8. Department for Environment Food and Rural Affairs (DEFRA), 2012, Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance.
- 9. Environment Agency report CLR11 'Model Procedures for the Management of Land Contamination'.
- 10. Environment Agency 2008, Human health toxicological assessment of contaminants in soil Science Report SC050021/SR2
- 11. Environment Agency 2009, CLEA Software (Version 1.05) Handbook Better Regulation Science Programme Science report: SC050021/SR4
- 12. Health and Safety Executive (HSE) 'Protection of workers and the general public during the Development of Contaminated Land (1991).
- 13. NHBC Guidance for the Safe Development of Housing on Land Affected by Contamination, R&D Publication 66: 2008.

DRAWINGS

Drawing 1: Exploratory Hole Location Plan

C:\Users\imogen.wort\Desktop\Trowbridge EHLP.dwg

APPENDICES

Appendix 1: Exploratory Hole Records

|--|

BHO1 Eastings: 323 Project Number: BMG2109 Eastings: 323 Northings: Morthings: Morthin	36.19	AOD): 36.1	vel (m A	nd Lev	Groun								ame: Trowbridge WRC	ect Nam	Proje	LOCATION ID
BHOLD Client: Wesser Water Services Ltd Northings: 13 Hole Type: rmf Rg: Dands 3000 and Camachin GEDDE Start & End Date: 10/11/2020 High Services RgineServices Rgine Services RgineSer	385008.60	385(gs:	Eastin								umber: BMG2109	ect Num	Proje	
Hole Type: ~~P Rig: Instruction 10000 and Connection 940000 Sant & End Date: 10/11/2020 Engine: - W Checked Solie Net Sant & End Date: 10/11/2020 11/11/2020 Engine: - W Checked Sant & End Date: 10/11/2020 Engine: - W Checked Sant & End Date: 10/11/2020 Engine: - W Checked Sant & End Date: Sant & End Date: Sant & End Date: 10/11/2020 Engine: - W Checked Sant & End Date:	158786.11	1587		ings:	North							es Ltd	Wessex Water Servio	t:	Client	BH01
Boring Stratu Rock Core Details Samples and in-Sit Scile Weil The Corporation Larger (1000) Site (1000) The Core Details Samples and in-Sit Scile Weil The Core Intestone and multional, Plastic net Scile Scile <th>ker: LC</th> <th>Checker:</th> <th>IW</th> <th>eer:</th> <th>Engine</th> <th>20</th> <th>1/202</th> <th>11/1</th> <th>2020 - 1</th> <th>0/11/2</th> <th>te: 10</th> <th>Start & End Da</th> <th>ando 3000 and Comacchio GEO205</th> <th>Dand</th> <th>C Rig:</th> <th>Hole Type: CP+R</th>	ker: LC	Checker:	IW	eer:	Engine	20	1/202	11/1	2020 - 1	0/11/2	te: 10	Start & End Da	ando 3000 and Comacchio GEO205	Dand	C Rig:	Hole Type: CP+R
Strike Wei International Control Leand International Control Leand International Control Internatin Control International Control <th>itu Testing</th> <th>es and In-Situ</th> <th>Samples</th> <th></th> <th>nils</th> <th>Deta</th> <th>ore</th> <th>ock C</th> <th>Ro</th> <th></th> <th></th> <th></th> <th>Strata</th> <th></th> <th></th> <th>Boring</th>	itu Testing	es and In-Situ	Samples		nils	Deta	ore	ock C	Ro				Strata			Boring
Image: Second	It Casing Depth	ı) Result	• Depth (m)	Туре	FI (Spacing Min,	RQD	SCR	TCR	Core Run	Depth (m.bgl)	Legend		Description	1	Level (m AOD) & [Thickness (m)]	Strike Well
Image: Second			0.20 - 0.50m 0.50 - 0.50m 0.70 - 0.70m	B1 D1 ES1		(70)	(73)	(73)		0.20		RAVEL of angular astic net CLAY. Gravel is e brick, concrete	ark greyish brown slightly clayey G arse limestone and mudstone. Pl embrane at base. Aade Ground) oft greyish brown slightly gravelly i gular to subangular fine to coarse	Dark coars mem (Mad Soft g angu	[0.20] 35.99 [0.30] 35.69 - [2.00]	
Image: 10 and as with frequent glass and the control carries inclusions. Cobles are engular to subangular concrete. 1.00 1.00 N=6 (1.100, 3.64 3.69 (Made Ground) (Very soft to soft arrangish brown and dark brown silty CLAY. (Kellaways Formation) 2.50 2.50 2.50 3.2.9 Very soft to soft arrangish brown mottled grey silty (LAY with frequent fine sandy lenses. (Kellaways Formation) 7.7 3.50 8 3.00 8 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	,1,1,1)	N=5 (1,1/2,1,1,1)	1.20 1.20 - 1.65m 1.70 -	S D2 D3						-		ilty fine to coarse ent. Gravel is	nd limestone. Made Ground) hose dark greyish brown gravelly s ND with a moderate cobble cont	and li (Mad Loose SANE	-	
I.00 Very soft orangish brown and dark brown silty CLAY. T <tht< th=""> <tht< th=""> T</tht<></tht<>	,0,0,0) 1.70m (NR)	N=0 (1,1/0,0,0,0)	1.70m 2.00 2.00 - 2.45m 2.50 -	S D4						- 2 50		ass and ceramic ubangular	udstone and ash with frequent gl clusions. Cobbles are angular to s increte. Aade Ground)	muds inclus conci	-	
32.00 100 300 100 300 11.00 CLAV with frequent fine sandy lenses. 3.50 100 300 (Reliaways Formation) 100 4.70 100 4.80 10.00 500 greyish brown sandy CLAV. Sand is fine and medium. 4.70 100 5.50 10.00 500 greyish brown sandy CLAV. Sand is fine and medium. 4.70 100 5.50 10.00 5.50 101 5.50 101 5.50 10.00 5.6m 101 5.50 101 5.50 10.00 Firm dark grey mottled light grey thinly laminated starget depth. 100 5.50 101 5.50 10.00 Firm dark grey mottled light grey thinly laminated starget depth. 101 5.50 101 5.50 10.00 Firm dark grey mottled light grey thinly laminated starget depth. 101 5.50 101 5.50 10.01 Firm dark grey mottled light grey thinly laminated starget depth. 101 5.50 101 5.50 10.01 Firm dark grey mottled light grey thinly laminated starget depth. </td <td>9,0,1,1) 3.00m (NR)</td> <td>N=2 (1,0/0,0,1,1)</td> <td>2.50 - 2.50m 3.00 3.00 -</td> <td>S B2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 2.30</td> <td></td> <td>prown silty CLAY.</td> <td>ery soft orangish brown and dark l ellaways Formation)</td> <td>Very (Kella</td> <td>[1.00]</td> <td></td>	9,0,1,1) 3.00m (NR)	N=2 (1,0/0,0,1,1)	2.50 - 2.50m 3.00 3.00 -	S B2						- 2.30		prown silty CLAY.	ery soft orangish brown and dark l ellaways Formation)	Very (Kella	[1.00]	
31.49 3.4.70 3.00 4.50 31.49 Soft greyish brown sandy CLAY. Sand is fine and medium. (Kellaways Formation) 4.70 09 4.50 30.69 Firm dark grey mottled light grey thinly laminated slightly sandy CLAY. Sand is fine and medium. (Kellaways Formation) 5.50 011 5.50 11.00 Firm dark grey mottled light grey thinly laminated slightly sandy CLAY. Sand is fine and medium. (Kellaways Formation) 012 6.50 11.00 Firm dark grey mottled light grey thinly laminated slightly sandy CLAY. Sand is fine and medium. (Kellaways Formation) 013 5.50 11.00 Time (htom) 5.50 013 5.50 11.00 Sature 83 7.00 11.00 Time (htom) 5.50 013 5.50 11.00 Sature 83 7.00 7.50 11.00 Time (htom) Sature 93.69 8.50 11.00 Sature 93.69 9.50 9.50 11.00 Time (htom) Time (htom) 1015 8.50 11.00 Time (htom) Time (htom) 1015 <			3.00m 3.00 - 3.45m 3.00 - 3.50m 3.50 -	D6 ES2 D7 UT1						- 3.50		ottled grey silty es.	ery soft to soft orangish brown mo AY with frequent fine sandy lense ellaways Formation)	Very CLAY (Kella	32.69 - [1.20]	
Image: Instance of the second secon			3.50m 4.00 - 4.45m 4.50 - 4.50m	(17) D8 D9						4.70	×	d is first and			- 31.49	
Image: firm dark grey mottled light grey thinly laminated slightly sandy CLAV. Sand is fine and medium. Image: firm dark grey mottled light grey thinly laminated slightly sandy CLAV. Sand is fine and medium. Image: firm dark grey mottled light grey thinly laminated slightly sandy CLAV. Sand is fine and medium. Image: firm dark grey mottled light grey thinly laminated slightly sandy CLAV. Sand is fine and medium. Image: firm dark grey mottled light grey thinly laminated slightly sandy CLAV. Sand is fine and medium. Image: firm dark grey mottled light grey thinly laminated slightly sandy CLAV. Sand is fine and medium. Image: firm dark grey mottled light grey thinly laminated slightly sandy CLAV. Sand is fine and medium. Image: firm dark grey mottled light grey thinly laminated slightly sandy CLAV. Sand is fine and medium. Image: firm dark grey mottled light grey thinly laminated slightly sandy CLAV. Sand is fine and medium. Image: firm dark grey mottled light grey thinly laminated slightly sandy CLAV. Sand is fine and medium. Image: firm dark grey thinly laminated slightly sandy CLAV. Sand is fine and medium. Image: firm dark grey thinly laminated slightly sandy CLAV. Sand is fire and medium. Image: firm dark grey thinly laminated slightly sandy CLAV. Sand is fire and medium. Image: firm dark grey thinly laminated slightly sandy CLAV. Sand is fire and medium. Image: firm dark grey thinly laminated slightly sandy CLAV. Sand is fire and medium. Image: firm dark grey thinly laminated slightly sandy CLAV. Sand is fire and medium. Image: fire dark grey thinly laminated slightly sandy CLAV. Sand is fire and medium. Image: fire dark grey thinly laminated slightly sandy CLAV. Sand is fire dark grey thinly sandy sand is fire and medium.	,1,2,2) 4.70m (NR)	N=6 (0,1/1,1,2,2)	4.70 4.70m 5.00 5.00 - 5.45m 5.50 -	S D10 D11						- 5.50		a is the and	edium. ellaways Formation)	medi (Kella	[0.80] — 30.69 -	
Image: chine line line line line line line line l			5.50m 6.00 - 6.45m	UT2 (29)								inly laminated medium.	rm dark grey mottled light grey th ghtly sandy CLAY. Sand is fine and ellaways Formation)	Firm slight (Kella	[11.00]	
From (m bg) Time (th:mm) From (m bg) To (m bg) To (m bg) Time (th:mm) Reason for Termination: Terminated at target depth.			6.50 - 6.50m	D12						-					-	
From (m bgl) To (m bgl) Time (hh:mm) From (m bgl) To (m bgl) Time (hh:mm) Reason for Termination: Terminated at target depth. Remarks	2,4,4,6) 6.00m (NR)	N=16 (2,2/2,4,4,6	7.00 - 7.00m 7.00 - 7.50m 7.50 7.50 - 7.95m	B3 D13 S D14											-	
From (m bgl) To (m bgl) Time (hh:mm) Reason for Termination: Terminated at target depth. Time (hh:mm)			8.50 - 8.50m	D15											-	
Chiseling Chiseling 9.50m From (m bgl) To (m bgl) Time (hh:mm) Reason for Termination: Terminated at target depth.			9.00 - 9.45m 9.50 -	UT3 (37) D16						-					_	
From (m bgl) To (m bgl) Time (hh:mm) Reason for Termination: Terminated at target depth.			9.50m	510											ling	Chier
Water Added Groundwater Remarks: From (m bgl) To (m bgl) Volume (l) Other Remarks: 0 I. Borehole backfilled with bentonite and arisings upon completion. 2. No visual or olfactory evidence of contamination noted. 3. Borehole backfilled using cable percussive techniques to 16 50m bel with rotary coring to 25 00m bel 4. Borehole cased to 6 00m bel	BWB	ed. 3.	tion noted	amina	e of conta	idence bøl 4	ory ev	olfact	visual or	n. 2. No v	completion 5.50m bel	nite and arisings upon		ne (hh:mm) Volume (I)	Added	From (m bgl) To (m Water. From (m bgl) To (m

BORFHOLFLOG

Ch +	2	- 4	2
Sneet	2	01	3

											1	Scale	1:50		Sheet 2 of 3
LOCATION ID	Projec	t Name:	Trowbridge WRC								Groun	ld Le	vel (m A	OD): 36.19)
	Projec	t Numbe	r: BMG2109								Eastin	gs:		3850	08.60
	Client	:	Wessex Water Servi	ces Ltd							North	ings		1587	86.11
Hole Type: CP+RC	Rig:	Dando 30	000 and Comacchio GEO205	Start & End Da	te: 1	.0/11/2	2020 - 2	11/1	1/202	20	Engin	eer:	IW	Checker:	LC
Boring			Strata	÷			Ro	ock C	ore	Deta	nils		Samples	and In-Situ T	esting
Strike Well	Level (m AOD) & [Thickness (m)]		Description		Legend	Depth (m bgl)	Core Run	TCR (%)	SCR (%)	RQD (%)	FI (Spacing Min, Avg, Max)	Туре	Depth (m)	Result	Casing Depth (Water Level)
Strike Well	19.69 [1.80]	Firm dar slightly s (Kellaway Strong th frequent fine and fractures	bescription k grey mottled light grey th andy CLAY. Sand is fine and ys Formation)	MUDSTONE with gments. Sand is arse sand along		(m bgl)	16.50 -				(Spacing Min, Arg, Mag)	D17 SD18 D19 UT4 D20 D21 SD22 D23 D23 SD24 D25 SD26 C1 C2	Depth (m) 10.00 - 10.00m 10.50 - 10.50 - 10.95m 11.50 - 11.50m 12.00 - 12.45m 12.40 - 12.45m 13.00 - 13.00m 13.50 - 13.95m 14.00 - 14.00m 15.00 15.00 - 15.45m 16.00 - 16.50 - 16.95m 16.50 - 16.95m 17.20 -	N=36 (1,4/8,9,9,10) N=36 (3,4/6,8,10,12) N=44 (4,7/9,10,10,15) 50 (7,11/50 for 150mm)	(Water Level) 6.00m (NR) 6.00m (NR) 6.00m (NR) 6.00m (NR) 6.00m (NR)
		(Kellawa	ys Formation)				18.00	87	80	80	2	63	17.61m		
	17.89	Moderat SANDSTC Clayey al beds.	ely strong light and dark g DNE with very frequent sho ong fractures with thin we	rey fine grained ell fragments. eak grey mudstone		18.30	18.00 - 19.50	99	73	63	12	C4 C5	18.40m 18.45 - 18.61m 18.88 - 19.20m		
Chise From (m bgl) To (m	ling bgl) Time	(hh:mm)				Re	emark	s		•					
Water / From (m bgl) To (m	dded bgl) Vo	I contraction of the second se	ason for Termination: minated at target depth. pundwater Remarks: groundwater encountered. her Remarks: Borehole backfilled with bento ehole drilled using cable perc ng 150mm casing and to 16.50	nite and arisings upon ussive techniques to 10 Dm using rotary casing.	completior 6.50m bgl, v	n. 2. No with rota	visual or ary corin	olfact	ory ev 5.00m	ridence bgl. 4	e of cont . Boreho	amina le cas	ition noted ed to 6.00r	. 3. n bgl	

Sheet	3	of	3
Sheet	~	01	-

BH01 Pro Clin Pro Pro Clin Pro Clin Pro Clin Pro Pro Pro Pro Pro Pro Pro Pro Pro Pro	Client: Rig:	t Number: BMG2109 : Wessex Water Services Ltd Dando 3000 and Comacchio GE0205 Star Strata Description Moderately strong light and dark grey fine SANDSTONE with very frequent shell fragm Clayey along fractures with thin weak grey beds. (Kellaways Formation)	r t & End Dat e grained nents. / mudstone	e: 1	D/11/2 Depth (m bgl)	020 - 2 Ro	11/11	1/202	0	Eastin North Engine	gs: ings: eer:	1\0/	3850	786.11
	LS.79 - 1.10]	: Wessex Water Services Ltd Dando 3000 and Comacchio GEO205 Star Strata Description Moderately strong light and dark grey fine SANDSTONE with very frequent shell fragn Clayey along fractures with thin weak grey beds. (Kellaways Formation)	r t & End Dat e grained nents. / mudstone	e: 1	Depth (m bgl)	020 - 2 Ro	11/11 ock C	/202	0	North Engine	ings: eer:	1\\\/	1587	786.11
Hole Type: CPAC Rig Strike Well Interest 15.7 11.1 15.7 15.7 11.1 15.7	((m AOD))& ((m AOD))& (ckness (m))	Dando 3000 and Comacchio GE0205 Star Strata Description Moderately strong light and dark grey fine SANDSTONE with very frequent shell fragm Clayey along fractures with thin weak grey beds. (Kellaways Formation)	rt & End Dat e grained nents. / mudstone	e: 1	Depth (m bgl)	020 - 2 Ro	11/11	/202	0	Engine	eer:	1\\/	1307	
BUIL Well International Strike Well International Image: strike Image: strike Image: strike Image: strike Image: strike	(Ig: (chreas (m)) (chreas (m))	Strata Description Moderately strong light and dark grey fine SANDSTONE with very frequent shell fragn Clayey along fractures with thin weak grey beds. (Kellaways Formation)	e grained nents. / mudstone	Legend	Depth (m bgl)	.020 Ro	ck C	oro [0	Engine	eer:	1 1 1 1 1		1.4
Boring Image: Constraint of the second sec	(im AOD) & (in AOD) &	Strata Description Moderately strong light and dark grey fine SANDSTONE with very frequent shell fragn Clayey along fractures with thin weak grey beds. (Kellaways Formation)	e grained nents. / mudstone	Legend	Depth (m bgl)	Ro Core Run	ck C	oro [etails		100	Спескег:	
Strike Well Letting	I (m ADD) & ickness (m)	Description Moderately strong light and dark grey fine SANDSTONE with very frequent shell fragn Clayey along fractures with thin weak grey beds. (Kellaways Formation)	e grained nents. / mudstone	Legend	(m bgl)	Core Run	TOD		Deta	ils		Samples	and In-Situ	Testing
		Moderately strong light and dark grey fine SANDSTONE with very frequent shell fragn Clayey along fractures with thin weak grey beds. (Kellaways Formation)	e grained nents. 7 mudstone	· · · · · · · · · · · · · · · · · · ·			1CR (%)	SCR (%)	кQD (%)	(Spacing Min, Avg, Max)	Туре	Depth (m)	Result	(Water Level)
	(1.19	Very weak light greenish grey MUDSTONE as very stiff clay. (Kellaways Formation) 20.70m - 21.00m: Becoming dark grey. Strong thinly laminated greenish grey MUD mottled reddish brown along fractures. Fra filled with clay and gravel. (Kellaways Formation) 23.00m - 24.00m: Becoming slightly sandy. Hole Terminated at 25.00m bgl.	recovered		22.40	19.50 - 21.00 22.50 22.50 24.00 25.00	999 999 899 600	 (%) 85 34 83 47 	76 85 83 35	10 10 9	C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19	19.20 - 19.46m 19.58 - 19.72m 19.85 - 20.10m 20.27 - 20.39m 20.40 - 20.55m 20.55 - 20.90m 21.07 - 21.20m 21.23 - 21.43m 21.50 - 22.22m 22.22 - 22.63m 22.70 - 22.82m 22.70 - 22.82m 24.16 - 24.39m 24.40 - 24.56m		
	-													
Chiseling						marle								
From (m bgl) To (m bgl)) Time	(hh:mm) Reason for Termination:			Ke	marks)							
Water Added From (m bgl) To (m bgl)		Terminated at target depth. Groundwater Remarks: No groundwater encountered. Iume (I) Other Remarks:	arising upon a	completion	- 2. No.		16 .							

Sheet	1	of	3
011000	-	۰.	~

LOCATION ID	Projec	t Name: Trowbridge WRC					Grour	nd Le	vel (m A	OD): 36.10	
D 1100	Projec	t Number: BMG2109					Eastin	gs:		38502	21.58
BH02	Client	: Wessex Water Services Ltd					North	ings		15878	37.55
Hole Type: CP+RC	Rig:	Dando 3000 and Comacchio GEO205 Start & End Da	ite: 11/1	1/2020	- 12/1	1/2020	Engin	eer:	IW	Checker:	LC
Boring		Strata			Rock C	Core De	tails		Samples	and In-Situ Te	 esting
Strike Well	Level (m AOD) & [Thickness (m)]	Description	Legend (m	pth bgl) Core R	Run (%)	SCR RQ	D FI (Spacing Min, Aver Max)	Туре	Depth (m)	Result	Casing Depth
Strike Well	Level (m A00) & (Thichess (m)) [0.20] : 35.90 [0.50] : 35.40 [2.30] : 33.10 [1.50] : 31.60 - [1.00] : 30.60 - [3.50] : 30.60 -	Description Dark greyish brown slightly clayey GRAVEL of angular coarse limestone and mudstone. Plastic net membrane at base. (Made Ground) Dark greyish brown sandy clayey GRAVEL of angular to subangular fine to coarse brick, concrete, mudstone, limestone with rare glass and ceramic inclusions. (Made Ground) Soft friable dark greyish black gravelly very sandy CLAY. Gravel is angular to subangular fine to coarse brick, ash and concrete with rare glass, ceramic and wood inclusions. Sand is fine to coarse. (Made Ground) Soft dark greyish brown and reddish brown slightly gravelly sandy CLAY. Gravel is angular to subangular fine to coarse. (Made Ground) Soft to firm orangish brown mottled light grey silty CLAY with frequent orangish brown fine sandy lenses. (Kellaways Formation) Firm dark grey silty CLAY with rare orangish brown	Legend De (m) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	pth bgl) Core R 20 70 70 50 50	Run TCR (%)	SCR RQ (%) (%	D R Department Ange Mad	Type B1 ES1 D1 ES2 S D2 S B2 D3 S C4 D5 S B3 D6 ES3 D7 UT1 (22) D8 D8	Depth (m) 0.30 - 0.30m 0.30 - 0.50m 0.50 - 0.50m 1.00 - 1.00m 1.20 - 1.20 - 1.20 - 1.20 - 1.20 - 2.00 - 2.45m 2.00 - 3.00 - 3.00 - 3.45m 3.50 - 3.55m 4.00 - 4.00 - 4.45m 4.00 - 4.45m 4.50 - 5.50 - 5.50 - 5.50 -	Result N=4 (1,0/1,1,1,1) N=3 (1,2/1,1,0,1) N=2 (1,0/1,0,1,0) N=4 (0,0/1,1,1,1)	Casing Depth (Water Level) 1.70m (NR) 3.00m (NR) 3.00m (NR)
	27.10	mottling and fine sandy lenses. (Kellaways Formation) Firm to stiff dark grey silty CLAY with frequent fine and medium shell fragments and dark and light grey		00				D9 S D10 D11 B4 UT2 (23) D12 D13 S D14	5.30m 5.70 - 5.70 - 6.00 - 6.45m 6.50 - 6.50m 7.00 - 7.50 - 7.50 - 7.50 - 7.95m 8.00 - 8.00 - 8.50 - 8.50 - 8.50 - 8.50 - 9.00 - 9.00 - 9.45m	N=18 (1,2/3,4,5,6) N=21 (2,3/4,5,6,6)	4.70m (NR) 4.70m (NR)
Chise	ling			Remai	rks						
From (m bgl) To (m	bgl) Time	(hh:mm) Reason for Termination:		Rema	KS						
Water A From (m bgl) To (m	dded bgl) Vo	Terminated at target depth. Groundwater Remarks: No groundwater encountered. Unme (I) Other Remarks: 1. Borehole installed with dual 50mm and 19mm HPDE contamination noted. 3. Borehole drilled using cable per	pipe, gas taps, ercussive techni	bungs and ques to 15	d flush cc 5.00m bg	over. 2. No I, with rot	visual or o ary coring	lfacto to 25.	ry evidenco 00m bgl. 4	e of B	NB

BORFHOLFLOG

Sh	ee	۲.	2	of	3

												Scale	1:50		Sheet 2 of 3
LOCATION ID	Projec	t Name:	Trowbridge WRC								Groun	d Le	vel (m A	OD): 36.10)
	Projec	t Numbe	er: BMG2109								Easting	gs:		3850	21.58
BHUZ	Client	:	Wessex Water Sei	rvices Ltd							Northi	ngs:		1587	87.55
Hole Type: CP+RC	Rig:	Dando 3	000 and Comacchio GEO2(D5 Start & End Da	ite: 1	1/11/2	2020 - 2	12/11	1/202	20	Engine	er:	IW	Checker:	LC
Boring			Strat	ta			Ro	ock C	ore	Deta	ils		Samples	and In-Situ T	esting
Strike Well	Level (m AOD) &		Description		Legend	Depth	Core Run	TCR	SCR	RQD	FI (Spacing Min,	Type	Depth (m)	Result	Casing Depth
Strike Well	Lee (in ADD) & [Thickness (m)]	Firm to and mee fine san (Kellawa	Description stiff dark grey silty CLAY dium shell fragments and dy lenses. ays Formation)	with frequent fine d dark and light grey	Legend	Depth (m bgl)	Core Run	TCR (%)	SCR (%)	RQD (%)	Fi (pacing Min, Aug, Mas)	Type D15 UT3 (48) D16 D17 S D17 S D18 D19 S D20 D21	Depth (m) 10.00 - 10.00m 10.50 - 10.95m 11.00 - 11.00m 11.50 - 11.50m 12.00 - 12.45m 13.00 - 13.00m 13.50 - 13.95m 14.00 - 14.00m	N=32 (2,4/6,8,8,10) N=42 (3,6/6,9,12,15)	Casing Depth (Water Level) 4.70m (NR) 4.70m (NR)
	21.10	Very stif brown a (Kellawa	f dark grey silty CLAY. We long fractures. wys Formation)	eathered reddish		15.00	15.00 - 16.50	97	93	91	1	S D22	15.00 15.00 - 15.45m	50 (8,9/50 for 150mm)	4.70m (NR)
	19.45 [2.05]	Strong t frequen fine and fracture (Kellawa	hinly laminated grey sar t fine and medium shell medium. Medium and o s. ıys Formation)	ndy MUDSTONE with fragments. Sand is coarse sand along		16.65	16.50 - 18.00	89	89	89	2	C1 C2	16.63 - 16.81m 16.81 - 17.14m		
	17.40 [2.15]	Modera	tely strong light and darl	k grey fine grained		18.70	18.00 - 19.50	97	86	82	11	C3 C4 C5	18.00 - 18.27m 18.29 - 18.53m 18.72 - 18.96m		
Chisel	ing				1	R	emark	s							
From (m bgl) To (m l	dded ogl) Vo	e (hh:mm) Re Te Gr Ncc lume (l) Ot Bc	ason for Termination: rminated at target depth. oundwater Remarks: groundwater encountered her Remarks: Borehole installed with duai ntamination noted. 3. Boreh rehole cased to 4.70m bgl u	I 50mm and 19mm HPDE nole drilled using cable pe Ising 150mm casing.	pipe, gas ta prcussive te	ips, bun, chnique:	gs and fl s to 15.0	ush co 10m bg	over. 2. ;I, with	No vis rotary	ual or ol v coring t	factor o 25.1	ry evidence 00m bgl. 4.	e of CONSULTA	

Sheet	3	of	

LOCA	TION ID	Projec	t Name: Trowbridge WRC								Grour	nd Le	vel (m A	DD): 36.10	C
2007		Projec	t Number: BMG2109								Fastin	igs:	- 1	3850	21 58
B	H02	Client	Wessey Water Service								North			1507	07 55
	-	Die		Chart & Frid Day	••••	11/11/	0000	1 2 /1	1 /202	20	E se si se	ings.		Chasham	07.55
Hole	Type: CP+R	Rig:	Dando 3000 and Comacchio GEO205	Start & End Da	te:	[1/11/2	2020 -	12/1	1/202	20	Engin	eer:	IW	Checker:	LC
Bo	oring		Strata		1		Ro	ock C	ore	Deta	ils		Samples	and In-Situ 1	esting
Strike	Well	Level (m AOD) & [Thickness (m)]	Description Moderately strong light and dark gre SANDSTONE with very frequent shell Clayey along fractures with thin weal beds.	y fine grained I fragments. k grey mudstone	Legend	Depth (m bgl)	Core Run	TCR (%)	SCR (%)	RQD (%)	Fi (Spacing Min, Avg, Max)	Type C6	Depth (m) 19.20 - 19.45m	Result	Casing Depth (Water Level)
		15.35	(Kellaways Formation)				19.50 - 21.00	98	85	80	10	С7	19.83 - 21.04m		
		[3.15]	Very weak light greenish grey MUDS as very stiff clay. (Kellaways Formation)	TONE recovered		20.85	21.00 - 22.50	93	87	87	7	C8 C9 C10	21.20 - 21.67m 21.82 - 22.05m 22.05 -		
							22.52					-	22.27m		
		12.10 -	Strong thinly laminated greenish gree			24.00	22.50 - 24.00	95	79	88	11	C11 C12	23.30 - 23.62m 24.00 -		
		[1.00]	mottled reddish brown along fractur filled with clay and gravel. (Kellaways Formation)	es. Fractures			24.00 - 25.00	100	70	46	15	C13 C14	24.33m 24.57 - 24.70m 24.84 - 24.93m		
			Hole Terminated at 25.00m	n bgl.											
	Chise	ling					mark								
From (m	Water J bgl) To (m	Added Very	e (hh:mm) Reason for Termination: Terminated at target depth. Groundwater Remarks: No groundwater encountered.			<u> </u>		3							
	-8.7 10 (11	-81	Other Remarks: 1. Borehole installed with dual 50m contamination noted. 3. Borehole c Borehole cased to 4.70m bgl using	nm and 19mm HPDE drilled using cable per 150mm casing.	pipe, gas t rcussive te	aps, bun chnique	gs and fl s to 15.0	ush cc 10m bg	over. 2. I, with	. No vi n rotar	sual or c y coring	olfacto to 25.	ry evidence 00m bgl. 4.	e of B	

	Project	Name: Trowbridge WRC						Groun	d Lev	el (m AO	D): 35.73	
LOCATION ID	Project	Number: BMG2109						Fastin	<i>a</i> c.	•	38501	4 77
BH03	Cliont	Woscov Water Services Ltd						North			15970	1.01
	client.		F - J D - J	11/2020				-	iigs.	13.4.7	13870	
Hole Type: CP	Kig:	Dando 3000 Start &	End Date: 12/	11/2020				Engine	er:	IVV	Спескег:	
Boring		Strata			Donth		Sampl	es I			In-Situ Tests	0
Strike Well	Level (m AOD) & [Thickness (m)] [0.50]	Description	f	Legend	(m bgl)	Type (Ublows)	(m)	To (m)	Туре	Depth (m)	Result	(Water Level
	35.23 (0.50) 34.73 (3.50)	Imestone and mudstone. Plastic net membra (Made Ground) Soft brown, orangish brown and reddish brow gravelly CLAY. Sand is fine to coarse. Gravel is subrounded fine to coarse flint, brick, mudsto quartzite.	ane at base. wn slightly sandy s angular to one, concrete and		- 0.50	1 1 1 2	0.50 0.50 0.70 1.20	0.50 1.00 0.70 1.65	SPT	1.20	N=3 (1,0/0,1,1,1)	
	- - - - - - - - - - - - - 	(Made Ground) Very soft dark greyish black slightly gravelly s CLAY with rare rootlets. Gravel is angular fine and concrete. Sand is fine to coarse. (Made Ground)	slightly sandy silty e to coarse brick		-	3 4	1.70 2.00	1.70 2.45	SPT	2.00	N=3 (0,0/3,0,0,0)	1.70m (NR)
	- - - - - -				-	5	2.50	2.50				
					_	2 6	3.00 3.00	3.45 3.50	SPT	3.00	N=4 (1,0/1,1,1,1)	3.00m (NR)
					-	2 7	3.50 3.50	3.50				
	31.23				- 4.50	8	4.00	4.45	SPT	4.00	N=5 (1,1/1,1,1,2)	3.00m (NR)
	(3.00) - - - - -	Soft light greyish brown mottled orangish bro sandy silty CLAY. Sand is fine and medium. (Made Ground)	own and black		_	1 (9)	5.00	5.45				
	- - - -	5.50m: Clay pipe fragment.				10 3 3	5.50 5.50 5.50	5.50 6.00				
					_	11	6.00	6.45	SPT	6.00	N=16 (3,5/4,4,4,4)	6.00m (NR)
	-	6.50m: Metal fragment.			-	12	6.50	6.50				
					_	13	6.80	6.80				
	28.23	Stiff dark grey silty CLAY with fine and mediu (Kellaways Formation)	m shell fragments.		- 7.50	2 4 4 (29)	7.50 7.50 7.50	7.45 7.50 8.00				
	- - - -			× × ·		14	8.50	8.50				
	- 				-	15	9.00	9.45	SPT	9.00	N=27 (3,3/8,8,5,6)	7.50m (NR
Chi	ling											
From (m bgl) To (m	Added	(hh:mm) Reason for Termination: Terminated at target depth, as specified by c Groundwater Remarks: No groundwater encountered.	consultant engineer.	кета	rKS							
From (m bgl) To (m	bgl) Vo	ume () Other Remarks: 1. Borehole installed with dual 50mm and 19 contamination noted. 3. Borehole cased to 7	9mm HPDE pipe, gas tap 7.5m bgl using 150mm o	os, bungs and t	nd flus to 15.0	h cove Om bgl	r. 2. No I using r	visual o otary ca	r olfac Ising.	tory evide		

										Scale	1:50		Sheet 2 of 2
LOCATIO	ON ID	Projec	t Name: Trowbridge WRC						Groun	d Lev	el (m AO	D): 35.73	
ВН	03	Projec	t Number: BMG2109						Eastin	gs:		38501	4.77
		Client	: Wessex Water Services	Ltd					North	ings:		15870	1.01
Hole Typ	e: CP	Rig:	Dando 3000	Start & End Date: 12	/11/2020				Engine	er:	IW	Checker:	LC
Borin	g		Stra	ta	-			Sampl	es			In-Situ Tests	•
Strike \	Well	Level (m AOD) & [Thickness (m)]	Description	ı	Legend	Depth (m bgl)	Type (Ublows)	From (m)	To (m)	Туре	Depth (m)	Result	Casing Depth 8 (Water Level)
Strike V		22.28 -	Stiff dark grey silty CLAY with fine and (Kellaways Formation) Hole Terminated at 12	n d medium shell fragments.		12.45	^{Type} (Ublow) 16 3 (39) 17 18 18 19	rom (m) 10.00 11.00 11.00 11.00 12.00	To (m) 10.00 10.95 11.00 11.50 12.45	SPT	12.00	Result	7.50m (NR)
	Chise	ling			Rema	arks							
From (m bgl) From (m bgl)	Water / To (m	Added Very Very Very Very Very Very Very Very	e (hh:mm) Reason for Termination: Terminated at target depth, as species Groundwater Remarks: No groundwater encountered. Solume (I) Other Remarks: 1. Borehole installed with dual 50m contamination noted. 3. Borehole (I)	cified by consultant engineer. nm and 19mm HPDE pipe, gas ta cased to 7.5m bgl using 150mm	Kema ps, bungs and	and flus to 15.0	h cove 0m bg	r. 2. No I using r	visual o otary ca	r olfac	tory evide		

LOCATION I	D: Prc	oject Name: Tro	wbridge WRC							0.50	
	Pro	bject Number: BM	1G2109								
HP01	Clie	ent: We	essex Water Services Ltd				C	.50	Pit Dim	ensions	(m) Degree
	Pla	nt: Hand tools	Start & End Date:	10/11/2020			Stabili	ty: Fai	r		
Ground Leve	el (m A	OD): 43.04	Eastings & Northings:	384716E 158696N		I	Engine	er: IW		Check	er: LC
			Strata				Sample	es		In-Site	u Tests
Groundwa ter Strike Backfill	Level (m AOD)		Description		Legend (m bgl)	Туре	From (m)	To (m)	Туре	Depth (m)	Result
	0.20m	Grass covered soft ((Topsoil)	dark brown silty CLAY. Rootle	ets present throughout.		D1 ES1	0.10 0.10	0.10 0.10			
	42.64 0.30m	Soft to firm brown a angular medium an (Made Ground)	and orangish brown slightly and coarse concrete and limes	gravelly silty CLAY. Gravel is tone.		D2 ES2	0.30 0.30	0.30 0.30			
	42.54	Soft light orangish b brown sandy lenses (Kellaways Formatic	orown mottled greyish brown s throughout. on)	n silty CLAY. Frequent orangish		D3 ES3	0.60 0.60	0.60 0.60			
	0.70m					B1	0.80	0.80			
					×_^_[
				Remarks							
Reason for Te	rminati	ion:									
Groundwater No groundwat Other Remark	Notes: ier encc cs:	ountered.	eletion 2 Novievel or elfect								

LOCATION ID:	Project Name:	rowbridge WRC					boarer 1	.20	0.50		1000101
	Droject Numbers								0.50		Ъ
	Client:	Massay Water Services Ltd				0	.50	Pit Dim	ension	ıs (m)	Degree
HFU2	Dient: Uand table	Chart & End Date:	10/11/2020			Ctobilit					
<u></u>			2047505 15072 41				Ly: Fai	r			
Ground Level (m AOD): 42.49	Eastings & Northings:	384/58E 158/24N			Enginee	er: IW		Chec	ker: l	_C
		Strata				Sample	es		In-Sit	tu Tests	;
ter Strike Backfill	Vel (m NOD)	Description		Legend (m bgl)	Туре	From (m)	To (m)	Туре	Depth (m)	Re	sult
0. 4: 0. 4:	20m (Topsoil) 2.29 Soft to firm brown angular medium a base. 1.99 0.30m - 0.50m: Beau	n and orangish brown slightly and coarse concrete and limes <u>coming very gravelly.</u> Hole Terminated at 0.50	gravelly silty CLAY. Gravel is stone. Limestone cobble at		D1 ES1 D2 ES2	0.10 0.10 0.30 0.30	0.10 0.30 0.30				
Reason for Term Terminated on lin Groundwater No No groundwater Other Remarks: 1. Hand pit backl	ination: mestone cobble. otes: encountered. filled with arisings on cor	mpletion. 2. No visual or olfact	Remarks	noted.						BV	

LOCATION I	D: Prc	ject Name: Tro	owbridge WRC								0.50		
	Prc	Diect Number: BN	 //G2109										٦
HP03	Clic	ent: We	essex Water Services Ltd					0	.50	Pit Dim	iensior	ıs (m)	Degree
	Pla	Int: Hand tools	Start & End Date:	10/11/2020				Stabilit	⊥ ⊥y: Fai	i r			
Ground Leve	el (m A	OD): 41.94	Eastings & Northings:	384846E 158813N			E	Inginee	er: IW	,	Cher	cker:	LC
			Strata					Sample	s		In-Si	itu Test	s
Groundwa tar Strika Backfill	Level (m		Description		Legend	Depth	Type	From (m)	To (m)	Туре	Depth	R ⁱ	esult
	AUD	Grass covered soft	dark brown silty CLAY. Rootl	ets present throughout.		(m bgi)	- 71				(m)	<u> </u>	
	0.20m 41.74	(Topsoil) Soft light orangish b brown sandy lenses (Kellaways Formation)	Prown mottled greyish brow s throughout. on) Hole Terminated at 1.20	n silty CLAY. Frequent orangish			D1 ES1 D2 ES2 B1	0.10 0.10 0.50 0.50	0.10 0.10 0.50 0.50				
Reason for Te Terminated at Groundwater No groundwat Other Remarl	rminati : target : • Notes: ter encc ks:	on: depth. puntered.		Remarks									

LOCATION ID	: Pro	ject Name	: Tro	rowbrid	dge WRC										0.50		
	Pro	ject Numb	er: BN	MG21(09												٦
HP04	Clie	nt:	W	√essex	Water Serv	vices Ltd						0	.50 [Pit Dim	iension	.s (m)	Degree
	Plar	nt: Hand	tools	Sta	art & End D	ate:	10/11/20	20				Stabilit	ıy: Fai	.r			
Ground Level	(m A()D): 38.	.10	Eas	stings & Nc	orthings:	384919E	158761N			E	Enginee	er: IW		Chec	ker:	LC
					Strat	a						Sample	:S		In-Si	tu Test	s
Groundwa ter Strike Backfill	evel (m AOD)				De	scription			Legend	Depth (m bgl)	Туре	From (m)	To (m)	Туре	Depth (m)	Re	esult
	.20m ;7.90 .00m	Grass cove cobble con quartzite a membrane (Made Gro Soft friable coarse bric (Made Gro	red soft : itent. Gra nd concr at base. <u>und)</u> corangisl k and flin und)	t friable ravel is crete. C 2. Rootl sh brow lint. Fre	 dark brown angular to r bobbles are s lets present vn slightly gr quent orang 	i very grave ounded fin- subangular throughout ravelly silty ge sandy ler	Ily CLAY with e to coarse n concrete. Wo :. CLAY. Gravel nses through	i a moderate hudstone, oven plastic is angular fine t out.	to		D1 ES1 D2 ES2 B1	0.10 0.10 0.50 0.50	0.10 0.10 0.50 0.50				
										-							
							Por	narks								L	
Reason for Terr	ninatio	on:															
Terminated at ta Groundwater N No groundwate	ırget d I otes: r enco	epth. untered.													Г		

TRIAL	. PI 1	r log									Scale: 1	:20		S	heet 1 of
LOCATION	ID: Pr	roject Name: T	rowbridge WRC										0.50		
	Pr	roject Number: B	3MG2109								5.0]
HP0	5 ci	ient: V	Nessex Water Servic	es Ltd						0	.50	Pit Dim	nensior	ıs (m)	Degree
	Pl	ant: Hand tools	Start & End Dat	te:	10/11/2020					Stabilit	y: Fai	r			
Ground Lev	/el (m /	AOD): 37.20	Eastings & Nort	things:	384970E 15	8822N			E	inginee	er: IW		Che	cker: I	_C
			Strata						S	ample	s		In-Si	itu Tests	\$
Groundwa ter Strike Backfi	II Level (m AOD)	n	Descr	ription			Legend	Depth - (m bgl)	Гуре	From (m)	To (m)	Туре	Depth (m)	Re	sult
	0.30m 36.90 0.15m 36.75 0.25m 36.50 0.00m	Grass covered sof moderate cobble subangular fine to with frequent gla brick and concret (Made Ground) Dark greyish brow (Made Ground) Soft friable orang angular to subang (Made Ground) Concrete. (Made Ground)	It friable dark greyish l content. Sand is fine to coarse asphalt, brick ss and ceramic inclusi- e. Rootlets present th vn slightly clayey GRA ish brown mottled bro gular fine and medium Hole Terminate	brown sai to coarse. <, concrete ons. Cobb iroughout VEL of and own slight n brick, m ad at 0.70m	ndy gravelly CLJ. Gravel is angular e, quartzite and bles are angular t. gular coarse lim tly gravelly silty nudstone and ra n bgl.	AY with a ar to I mudstone to subangular restone. CLAY. Gravel is re ash.			ES1 B1 D1 ES2 ES3 B2 D3 ES4	0.10 0.20 0.20 0.35 0.35 0.50 0.50	0.10 0.20 0.20 0.35 0.50 0.50 0.50				
								-							
					Rema	rks								<u> </u>	
Reason for T	ermina	tion:													
Terminated of Groundwate No groundw	on conci er Notes ater end	rete obstruction. :: countered.											F		
Other Rema 1. Hand pit b	rks: backfille	d with arisings on cor	mpletion. 2. No visual	or olfacto	ory evidence of	contamination n	oted.								V/P

LOCATION	ID: Pre	oject Name: Tr	rowbridge WRC							0.50	
	Pre	oiect Number: Bl	MG2109					—]
нроғ	a cli	ent: W	Vessex Water Services Ltd				0	1.50	Pit Din	nensior	ıs (m) Degree
	Pla		Start & End Date:	10/11/2020			Stabili	tv∙ Fai	 ir		
Cround Lov			Eastings & Northings					~r· 1\//	,	Che	
Ground Lev	ai (in A	ODJ: 55.72		382U33E 120/4/IN		<u> </u> '	Elikinee	31: 144			
	Lavel (m		Strata		Dopth		Sample	؛S ⊤		In-Si	itu Tests
ter Strike Backfill	AOD)		Description	·····	Legend (m bgl)	Туре	From (m)	To (m)	Туре	(m)	Result
	0.15m 35.57	Grass covered soft subangular fine to plastic membrane (Made Ground) Soft orangish broy	dark brown slightly gravelly coarse brick, mudstone, ash at base. Rootlets present th	silty CLAY. Gravel is angular to and rare asphalt. Woven iroughout.	0.15	D1 ES1 D2 ES2	0.10 0.10 0.20 0.20	0.10 0.10 0.20 0.20			
	0.35m 35.22	angular to subangu throughout. (Made Ground) 0.40m: Plastic pipe	ular fine to coarse flint and r	nudstone. Rootlets present					HSV	0.40	(91, 73, 70)kPa
	0.50m	Soft dark brown sli fine to coarse brick (Made Ground)	ightly gravelly silty CLAY. Gra k and flint with rare glass an	vel is angular to subangular d metal inclusions.		B1 D3 ES3	0.60 0.60 0.60	0.60 0.60 0.60			
	4 34.72 34.72	Obstruction.			1.00	l					
	0.00m	(Made Ground)	Hole Terminated at 1.0	0m bgl.	-/ [
	inot	•		Remarks							
Terminated o	n obstru،	uction.									
Groundwate	r Notes:	:									
No groundwa	iter enco	ountered.									
Other Remar	·ks:										
1. Hand pit ba	ackfilled	with arisings on com	pletion. 2. No visual or olfac	tory evidence of contamination r	noted.					0	BWE ONSULTANCY ENVIRONME

LOCATION	D: Pro	Diect Name: T	Frowbridge WRC					Source 1			J	
LOCATION	D. 110	viact Number				_				0.50		٦
		opt:	Noscov Water Services Ltd				0	.50	Pit Dim	ensior	ns (m)	Degree
HFU/	Dia	nt: Hand tools	Start & End Data:	10/11/2020			Stabilit	L Eai	r			
Ground Love	/m A		Eastings & Northings:	2840625 159727N			Engino	vr. IVA	,	Cho	kor: I	<u> </u>
Ground Leve	n (m A	50.5 2	Eastings & Northings:	584902E 158727N			Commune					<u></u>
Groundwa –	Level (m		Strata		Depth	-	Sample	es	_	Depth	tu lests	;
ter Strike Backfill	AOD)	Light orangish br	Description	angular to subrounded fine to	Legend (m bgl)	Туре	From (m)	To (m)	Туре	(m)	Re	sult
	0.30m	coarse flint, mud: (Made Ground)	stone and concrete. Sand is fi	ne to coarse.		ES1 D1 ES2	0.10 0.20 0.20	0.10 0.20 0.20				
	36.02 0.20m 35.82	Soft to firm friabl brown mottling g coarse brick, con inclusions. Concre (Made Ground)	e dark blackish grey with rare gravelly silty CLAY. Gravel is ang crete and mudstone with freq ete at base.	lightly grey and orangish gular to subangular fine to juent wood, metal and glass	0.30	B1 D2 ES3	0.40 0.40 0.40	0.40 0.40 0.40				
			Hole Terminated at 0.50	Om bgl.								
					-							
				Romarka	-							
Reason for Te	rminati	ion:		Activa No								
Terminated or Groundwater No groundwat	limest Notes: er enco	one cobble. puntered.										
Other Remarl 1. Hand pit ba	s: ckfilled	with arisings on co	mpletion. 2. No visual or olfac	tory evidence of contamination	n noted.							

Appendix 2: Driller's Logs

JACKSON DRILLING	LTD.	Email: info@ja	acksondrilling.c	o.uk * Telephone: 01	458 851276	• Fax: 0	1458 850544	DRIL	LER'S	-OG
Site Name: Troisonde BMC	72109	Job No:	Date: 1	o U. 7A Sheet	of		Borehole No			
Depth Soil Description	Sample/Test	Depth (m)	U1005	Standard Penetration Test	S Casing	Water		Chiselling		
	Type No.	From To	Blows Length	2 3 4 5 6	Pen Depth (m)	Level (m)	Depth (m)	T	me	Hours
	χ ί -	3					From To	From	То	
.2 Hurchcore.	Di N-									
2	S	1.2		12111			Water Entries	1	2	w
2 Clay Store	D	41	-				Depth Struck			
13- 2 . HSL	S S	2		- 1 1 1 1 1	4.1	22	Casing Depth			
25 Brich Full.	06	2:5				-	Depth 5 mins			
	N I I I	6		1111	Ŵ	61	Depth 10 mins			
2.5 Very Seft Brown	100	25					Depth 20 mins		~	
- Cray	09	34					Cut off at			
3.5 Silt	UT lo	Ł	1 I I				Water Added	From To	Piezo / St	andpipe
	6	5.2		Shore	-		Water			
The second second		n :		2	-)				
17 Clary		UN 1	1		I T T	UN	Borehole kept Full			
	UT IS	6	29				Piezometer/Standpipe	From To		
H.T Diam (ray	5 16	6.5	. 8	She			Plain Pipe			
Dandy Dandy	シーチ	++				1	Slotted Pipe		_	
Ou Clay.	5	NH H)	14		Filter			
55 from Grey	0U 6-1		N	5 2 2 4 G	6	Py-	Grout/Backfill			
9 Clay							Borehole Diameter	9		
End of Shift - Borehole Complete/Incomplete							(mm)	ju (-	_
Remarks: (Standing time, day works, visitors, we	ather etc.)		Driller	Sixont	Rig	and	3000			
US. OC TO OQ US N	nduch	on/wait	Crew:	Kones	Additional Equip	ment:	6002			
the total total			Excavation	Backfill;		lota	Number of Samples			BI
In Cit.					Sb1	С	B	W	P	.oN
)					U	N	5			
Driller's Name	Clien	t's Signature	Received		Approved:					
				and the second se						

)	-											and the second s			
Site Namer Youbridge Bu	Q 12	2	ob No:		ate: 17	11-0	3	She	et	of		Boreh	ole No.	-		
Depth Soil Description	Sample	Test	Depth (m)	U100s		Stand	lard Pene	etration T	ests	Casing	Water			Chiselling		
	Туре	No.	rom To	Blows Le	ngth	2	3 4	Uri	6 Pe	n Depth (m) Level (m)	Dep	th (m)	-	me	Hours
Start of Shift									_	and the second s		From	Б	From	То	
9 Ann SHIP	5	2	م	37					_						1	
>	00	22 0	in			Y	R									
haven	0	23 1	Ó									Water E	ntries	-	2	ω
16.8 Clay	S	24 10	5			5	30	0	õ	0	2	Depth S	ruck			
	6	25 11	in									Casing D	epth			
	F	1 92	12	50-6	0	-						Depth 5	rnins			
	0	27 1	2.4			5	10					Depth II) mins			
	D	28	W					1				Depth 20) mins			
	sus	2	5		()	5	5	10	2	۶	5	Cut off a				
	C	50 1	5									Water A	dded	From To	Piezo /	Standpipe
	51	32	50		I	-	-	ć	0	1	5	Ad	ded			
	U	33 6	4		Ц	F	2120		_	1	\$	Bore	thole Full			
		-	3				-		_			Piezomete	'/Standpipe	From To		
				1		-				-		Plain Pipe				
												Slotted P	pe			
				-	- }							Filter				
		-	-			1	-		-			Bentonite	Seal			
		-	-	-	-		+		-			Grout/Ba	-kfill			
End of Shift - Borehole Complete/Incomplete		_			-		_		-			Borehole (mm)	Diameter	18		
Remarks: (Standing time, day works, visitors, we	ather etc.)			100		No la	+		P. Da	1-)	and	(N)	8			1.00
the is kotoy cush	Là	241-1)	- -	New	V	k	•	Ad	ditional Equi		000				
				Ex	cavation		Backfill:				Total	Number c	f Samples			1-18
									T	IdS	1 c	0 1	œ	~	٩	.oN
										T	N	+				
Driller's Natrie	W	Client's Si	gnature	Re	ceived:				App	proved:						

Site Name Trois bridge Bul	- 210	9	ob No		Dat	e:	10	>	Shee	et	of		Bo	rehol	No.	P		
Depth Coll Doctorio + i or	Sample	Test	Depth (r	n) (n	0100s		Standar	d Penet	ration T	ests	Casin	g Wate				Chiselling		
(m) SOH Description	Туре	No. F	TOM	To Blov	vs Lengt	-	2		5 Ch	6 Pc	2n Depth	m) Level (n)	Depth	(m)	-	me	Hours
Start of Shift							-			-		_	F	n	То	From	То	
	DÌ	-	5	R	_		-			_		1						
Hordcore	0	2	n											_				
	5	W	N			-	1	-	-	Z	~		Wa	iter Entri	es	-	2	ω
	v	r	2				2	-	1		4.1	202	Dep	pth Stru	×			
3 Clay Sal Stone Brich	5	5		~				-					Cas	ing Dep	th			
Br Sace	S	0	ц U	Part 6		-	1	1	-	1	V	11	Dep	oth 5 mi	SUL			
h- aut.	0	4	5				_	-					Dep	oth 10 n	lins			
	v.	R	-			1	1	-	-	-	•	*	Dep	oth 20 m	lins			
He Crey Brown Black	60	2	I.	ふ	i								Cut	off at				
V Soft	0	6	3			~		-					Wa	ter Add	d	From To	Piezo /	Standpipe
45 Cleur	5	5	S	2	10									Wate				
	00	A.	14			N	Kos			-		-	-	Adde	Ω.			
AU V. JOHT NEL	A (50	24			-	2	~ С	r	1)	-	2		kept Fi	AL O	-		
S.S. Clan	0	1-	in				-	-					Piez	ometer/S	tandpipe	From To		
	2	6	4	9			_			_		i 1	Plair	n Pipe				
SS SOF AR	5-1	せ	in	2	- 4		-			_			Slot	ted Pipe	-	1		
1. Crey	0	2	d's			ch	inc.			-			Filte	9				
Clay	0	19 00	is						4	-			Ben	tonite S	हत:			
	U.	20 0	2	-		N	NC	U	60	0)	1	5	Gro	ut/Backf				
End of Shift - Borehole Complete/Incomplete				-						-	-		Borr (mn	ehole D n)	ameter	150		
Remarks: (Standing time, day works, visitors, we	ather etc	·		1		V.	2	T		 22	úa	0	nelo	1.3	rece	G.		
					Crew	U =	S'	S		Þ	dditional E	juipment:	0	0	ñ			
					Excav	/ation:	_	Backfill:		_			otal Nun	nber of :	Samples			ня
											SpT	С			σ	\leq	-0	.oN
											6	12	00)	T			
Driller's Name		Client's S	ignature		Recei	ived:				Þ	oproved:							
	and the second sec																	

JACKSON DRILLING	LTD.	Em	ail: info@	jackson	drilling.c	o.uk •	Telepho	one: 014	58 85 1 2	76 • F	ax: 01	158 85054	4	DRILL	ER'S	00
Site Name Troubridge Bud	7210	s Jot	No:		Date: 1	1.11.	62	Sheet		f		Borehole I	40.	N		
Contract Con	Sample/		epth (m)	2010	- 00s	Standa	ard Penetra	ation Tests		M gnis	/ater		10	hiselling		
	Туре	NO. HO	m IO	Blows	Length	2	4	6	Pen Uepa	n (m) Lev	ei (m)	Depth (m)		Tim	ē	Hours
Start of Shift	}					-						From	Б	From	б	
や いた い いち	0	21 10	U											10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		
" " Cren	SA N	5	5	48				-					_			
is Clay	6	23 11				5000	la					Water Entries		-	2	ω
	D	1	5							_		Depth Struck				
	N.	19-12	1-			2 ()	03 00	80	T	4	2	Casing Depth				
	0	6	w							_	-	Depth 5 mins				
	N N	4	S			50	יי 2	12 15	5		3	Depth 10 mins		-		
	D	11 8							-			Depth 20 mins				
	3	2	0		~	5	6 25	117	0	1	,	Cut off at				
												Water Added	Fro	ym To	Piezo / St	andpipe
		_										Water Added	-			
												Borehole kept Full				
												ezometer/Stanc	tpipe Frc	m To		
											-	Vain Pipe				
											10	lotted Pipe				
				*	_							liter				
										_		Bentonite Seal				
		-								-	0	Grout/Backfill				
End of Shift - Borehole Complete/Incomplete		-			-	-		1		-		dorehole Diam mm)	eter }	50		
Remarks: (Standing time, day works, visitors, wea	ather etc.)					Siver	t		Rig:	Q	und	300	0			
All and a start and a start and a start and a start a	1	47			Crew:	K	es.		Acditional	Bruinnen	0	12				
					Excavation		Backfilt:				Total N	lumber of Sam	ples			H8
									SPT	-				~	0-	.oN
									ŝ			U.				
Driller's Name		Client's Sign	ature		Received:				Approved					-		

Site Name: Troubring a	MG	100	Job No:		Date	12	.11.2	12 St	leet	0		B	orehol	P No.	N		
Depth Soil Description	San	ple/Test	Depth (m)	0	U100s	-	Standard	Penetratic	n Tests	Casir	19 Wat	e. 			Chiselling		
(II)	Туре	No.	From To	o Blo	ws Length	-	7 3	4 5	6	Pen Depth	(m) Level	(m)	Depth	(m)	Ta	ne	Hour
Start of Shift	2	:6	2	-	1					1			rom	ы	From	5	
Hardrive	υσ	J-	10	+	+		-					-					
	N D	14	50			-		-				1.	lator Entr	2	nu		J
	51	50	14	-	+	-	1		-		-		anth Ctru	1	-	~	U
C Ola Chan D	5	נח	1-1	+	+		1)) (nac anda	CK.			
in the series of the series	たい	U	N			1	1	1	1	E	50	6	asing Dep	th	1		
metal	6	0	25			1						D	epth 5 mi	ns			
Silley Clay	5	4	U	-	-		1	1 1	-	ci	5	D	epth 10 n	ins			
Call.	D	20	W W	1	-							D.	epth 20 n	ins			
	0	٩	Wig					_				0	it off at				
S.X Arm	n	6	F	<u> </u>		-	-	1 1	2	i	1	~	ater Add	bd	From To	Piezo /	Standpipe
Key	0	4	I in	>	1						1		Wate	-7			
han a	2	ī	; (1	00	-	-		1	1		-			-		
	アち	FU	555			U	R			-		-	Boreinc kept Fu	il e			
	S	び	5			w	5 5	5 2	5	6	2	Pie	zometer/S	andpipe	From To		
	ь	6	63								-	Pla	in Pipe				_
	D	-4	6									Sic	stted Pipe		_		
	5-1	R	24	29	515		20					Filt	e				
	63	19	2 St									Be	ntonite Se	al			
	5	20	200	-								G.	out/Backfi				
End of Shift - Borehole Complete/Incomple	ete			-				-		-	-	Bo (m	rehole Di m)	ameter	150		
Remarks: (Standing time, day works, visitor:	; weather e	tc.)			Driller	UN	went -			Rig	D	ndo	W	80			-
					V Crew	V	Qres	•		Additional Ec	quipment:	R	000				
					Excava	tion:	Ba	ckfilt				otal Nu	mber of S	amples			H8
										SPT	C		0	8	W	P	.oN
										S	N	0		Γ.			
Driller's Name		Client	's Signature		Receive	ed.	-			Approved:		-	-	-	1		

Driller's Name					Dry the Called Convel Car	Remarks: (Standing time, day works, visitors, weathe	End of Shift - Borehole Complete/Incomplete					3. Slotted.	3n plan		Som Pipe to Ga	Sr Dotted.	Ar Dan		19mm pipe to 12m				0	125 Clay. u	Crey S	Rist King	Start of Shift		Depth Soil Description	Site Name Trown dye Bug	JACKSON DRILLING LT
Client's				}	ent	r etc.)	1 1 1														22	25	24	7 23	22	22		pe No.	ample/Test	2109	Ģ
s Signature									-											-	12	11.5	11	5.0	0	م		From To	Depth (m)	Job No:	Email: info
														-						-				39				Blows	UIO		@jacksonc
Received:			Excavation:	2	Crew:	Driller:														1	N		1.8	ols.	(J.		Length I	20	Date:12	drilling.co.
			Back	soves.		rat								1							5	1	Shoe		(r R		2 3	Standard Pe	11.20	uk • Tele
			GII;					-													オキーの		1		(なられ		4 5 6	enetration lests	Sheet	phone: 014
Approved:	2	SPT			Additional Eq	Rig:															7					いよ		Pen Depth (1	Casing	of	158 85 1 2 7 6
	~	С	Tota	R	ubment:	molo															5				5	2		n) Level (m)	Water		• Fax: 0
	63	DB	I Number of Samples	02		3000	Borehole Diameter (mm)	Grout/Backfill	Bentonite Seal	Filter.	Slotted Pipe	Plain Pipe	Piezometer/Standpipe	kept Full	Borehole	Water Added	Water Added	Cut of at	Depth 20 mins	Depth 10 mins	Depth 5 mins	Casing Depth	Depth Struck	Water Entries			From To	Depth (m)		Borehole No.	1458 850544
		8					150						From To				From To							-		4	From	Tir	Chiseling	CJ	DRIL
		σ											17				Piezo / Sta							2			То	ne			LER'S L
		.0M	1-18														ndpipe							ω				Hours	-		OG

	BH No.	Move From:		Ø	ignature	Driller's S		ly Record	illing Dai	Rotary Dr		ckson Drilling Limited	Ja
	DATE 11/11/2c	DAY WEDNESORY		Atom	P.M	Crew				8		ns backfilling hole.	30 mi
$ \begin{array}{ $	Comp or BOUSER											uns pulling casing	30 0
$ \begin{array}{ $	RIG TYPE (SMACHO	JOB No.	ak Work	and Bro	Drill St	Move	-					ins filling water bouser.	45 m
$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	WNTW	TROWBRIDGE					1					setup	han
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		SITE	ise W	Hole	Core O/I	S/C (-				s: Visitors, Instructions, Weather, etc.	Remark
$ \begin begin be$												Borehole Complete / Incomplete	
from irred ir	Backfill:	Excavation Dimensions:							_				
$\begin begin beg$		Borehole Dia.											
$ f_{from} l_{cov} $	20 25 20 Flush	Grout/Backfill											
$ f_{ran} h_{eo} h_{eo}$		Bentonite Seal	_										
$ f_{ron} l_{ept} l_{ept} l_{eqt} l$	Type 16, 30 40	Filter											
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Flush	Slotted Pipe											
$\begin{tabular}{ c c c c c c c c } \hline Precise from the constant of the consta$	AIRMIST From	Plain Pipe	pth Level	ngth De	C Le				6	=010			
$\begin{tabular}{ c c c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	om To FLUSH	Piezometer/Standpipe Fr	sing Water	nple Ca	Blows Sar	5 6 Z	2 3 4	Type I	, 	from			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IELD RECORDS	Ē			npling	ind Sar	Testing a	etration	Pen				
Upp OH/Ceve N/M K/M Length Recov PHUS VMATER ENCOUNTERD PECOMETER / STANDPRE IS.coc III.Coc III.Coc O/L O/L IC IC <t< td=""><td></td><td>Other</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Other											
Depth to OH/Core Oth/Core Mint Length Recov Hust Depth Length Casing Matrix VATER ENCOUNTERED PEZOMETER / STANDPPE 15.000 16.500 0/H 0:000 1/S 200 1/S 1/S </td <td></td> <td>Evening</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>		Evening							_				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SOP	Morning 10.50 16											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	asing Time	Depth Ca							-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S	WATER LEVEL		-									
Depth to OH/Core Itme Num Core Fead Run Core Hub Casing Water WATER ENCOUNTERED PEZOMETER / STANDPIER IS.co I6.50 OH OH/Core IS - - Ics Percov Percov Percov Percov PEZOMETER / STANDPIER PEZOMETER / STANDPIER IS.co I6.50 OH/Core IS - Is Percov Percov Percov PEZOMETER / STANDPIER IS.co I6.50 OH/Core IS - Is		Cut off at											
Depth to OH/Core Itme Kun Core Form Vater WATER ENCOUNTERED WATER ENCOUNTERED PEZOMETER / STANDPPE IS.coc I6.50 O.H ID:coc IS.coc		Depth 20 mins			1.90 1).80	3		15.00 "	24.00 \$	¥	łę.	2500
Image OH/Core Image Number Core Gore Hub Casing Water WATER ENCOUNTERED PECOUNTERED PECOMETER / STANDPIPE IS.co I6.50 O/H D/Core IS.co I6.50 O/H D/Core IS.co		Depth 15 mins		10		1	S		24.00 1	22.50	**	x	24.00
Depth Image OH/Core I Image Kun Core Form Core Fund Core Hush Casing Water WATER ENCOUNTERED PEZOMETER / STANDPIPE IS.coc I6.So OH Dotoo IS I- I6.So Depth Level Depth Level Depth Stand PEZOMETER / STANDPIPE IS.coc I8.coc I9.coc Office Zo I.So I.So <thi.so< th=""> I.So I.So</thi.so<>		Depth 10 mins		21	-	50	20		22.50 #	21.00	×	a	22.50
Depth to OH/Core I med Kun Core Form Core Hush Casing Water WATER ENCOUNTERED PEZOMETER / STANDPIPE IS.co I6.50 O/H IO:co IS - - IE Depth Level 1 2 3 PEZOMETER / STANDPIPE IS.co I8.co O/H IO:co IS - - IE Depth Evel 1 2 3 PEZOMETER / STANDPIPE I/S.co I8.co O/H IS 1 IS		Depth 5 mins		4	11 11		20		21.08	19.50	10	z	21.00
Depth from to OH/Core I ime ordext Kun (mins) Lore Core Hush return Casing Depth Water WATER ENCOUNTERED PIEZOMETER / STANDPIPE IS.co I6.50 O/H ID:co IS - - I6.50 Depth 1 2 3 PIEZOMETER / STANDPIPE IS.co I8.co 0665 - I.50 I.50 I.50 I.50 I.50 Casing Depth Casing Depth -		Inflow			1	e) *	15	~	19.50 .	18.00	34	И	19.50
Depth from to OH/Core I me oddox (mins) Core Core Hush Casing Water WATER ENCOUNTERED PIEZOMETER / STANDPIPE IS.co I6.50 O/H ID:co IS - - I6.50 Depth Level PIEZOMETER / STANDPIPE		Casing Depth		36 1	8	iso I	20	YEE	18.00 a	6.50	(PWF)	Mudsione	18.00
from to OH/Core o'clock (mins) Length Recov return Depth Level VATER ENCOUNTERED NATER / STANDPIPE		Depth Struck	8.	- 16	-	1	5	NH 10:0	16.50 (15.00		Cleaning all casing	1650
	2 3 PIEZOMETER / STANDPI	WATER ENCOUNTE	2pth Level	iush C	Core f Recov' re	Core Length	e Run :k (mins)	H/Core o'clos	r Q	Depth from		Description	Depth
Drill Run Record Groundwater Records	ndwater Records	Grou		-	-	ecord	Run Re	Drill				Strata Record	
LTD. Email: info@jacksondrilling.co.uk • Telephone: 01458 851276 • Fax: 01458 850544 DRILLER'S LOG	DRILLER'S LOG	Fax: 01458 850544	51276 •	1458 8	hone: 0	Telepl	g.co.uk	ksondrillin	il: info@jac	D. Ema	GLT	CKSON DRILLIN	JAC

QMF I7A

SHO2	Mave From:		Se al a a a a a a a a a a a a a a a a a a	lature	llers Sign	5	cord	aily Re	rilling E	Rotary D		rilling Limited	tickson Dr	Ja
C7 111 / 71	Lindensi		S A	MARLO	-	7								
DATE	DAY			102	, D M	2								
COMP & BOWER			-		>)						C		
RIG TYPE COMPLEHIO 205	JOB No.	k Work	Brea	II Stan	Dr	3						alling	mins insta	450
Σ	TROWBRIDGE WWI		,)	,								ir set up	- Fo
	SITE	se X	le Cas	e O/H	0	S						ructions, Weather, etc.	<s:< b=""> Visitors, Inst</s:<>	Remark
											ete	hole Complete / Incompl	Borel	
Backfill:	Excavation Dimensions:													
Ø	Borehole Dia. VIS. oc 25.													
E Loss of	GroubBackfill VIO.co 12.0													
	Bentonite Seal			-							a.			
Type D 30 2S 30	Filter													
Flush	Slotted Pipe 1.00 3.00												c	
2 AIR MINT From To	Plain Pipe 0.00 12.0	th Level	th Dep	Leng					6	fom		17°	hush care	
FLUSH	Piezometer/Standpipe From To	ing Water	Cas	ows Sam	ہ Z Bl	4	2 3	Туре		Dept	with	and som pipe	19mm pipe	
CORDS	FIELD RE		-	oling	d Samp	ing an	tion Test	enetrat			an both	s and end caps	Gas bung	
228	Other													
	Evening													
	Morning													
1e ////	Depth Casing Tin													
3.00	WATER LEVELS													
////	Cut off at		-	5	**	0		*	25.00	24.00	14		14	2500
	Depth 20 mins		14	3		= S		R	24.00	22.50	14		*	24-00
	Depth 15 mins		¥	۲		0	N	=	2250	21.00	16		11	22.50
F:8	Depth 10 mins		2	4	10	0	N	11	21.00	19.50	14		ş.	2.00
1/8/1/ 3 00	Depth 5 mins		64			0	2	ň	19.50	18.00	1		÷.	19.50
	Inflow		5	£	<i>.</i> .	s s	-	ļ	18.00	16.50	И		11	18.00
	Casing Depth		x 3	o lia	8. 	0		COLL	16.50	15.00	(PWF)	e (Mudshark	16.50
	Depth Struck	8	IS	í	1	0	07:00	99	15,00	13.50		alt craining	Clearing	58
PIEZOMETER / STANDPIPE	WATER ENCOUNTERED	ng Water pth Level	rn Cas	ov' Flu	ingth Rec	(mins) Le	Time o'clock	OH/Core	th to	from	6	Description		Depth
er Records	Groundwat				ord	In Reco	Drill Ru					rata Record	St	
VILLER'S LOG	Fax: 01458 850544 DF	• 12/6	58 84	ne: UI	lelepho	.uk •	drilling.co	Jackson	all: Into@					5
				2		e l		>	-:!: :~f~@	J			-KSON	

QMF I7A

Appendix 3: SPT Calibration Certificates

Diameter	<i>d</i> _r = 0.052 m
Length of instrumented rod	0.558 m
Area	A = 11.61 cm ²
Modulus	$E_a = 206843$ MPa

Equipe Group, The Paddocks, Home Farm Offices, The Upton Estate, Banbury, Oxfordshire, OX15 6HU © Copyright 2020

Email: info@equipegroup.com Tel: +44 (0)1295 670990 Fax: +44 (0)1295 678232

Appendix 4: Permeability Testing

PIEZOMETER FALLING HEAD PERMEABILITY TEST

Project Name:	Trowbridge WRC
Project Number:	BMG2109
Borehole Ref:	BH03
Date:	13-Nov-20
Borehole Diameter (mm):	50
Resting Water Level (m bd):	3.35
Length (L) of Response Zone (m):	3.00

[ime (mins]	Hi(mbd)	H(head)	H/Ho
0.00	1.300	2.050	1.000
1.00	1.380	1.970	0.961
3.00	1.500	1.850	0.902
5.00	1.610	1.740	0.849
7.50	1.910	1.440	0.702
10.00	2.210	1.140	0.556
15.00	2.620	0.730	0.356
20.00	2.900	0.450	0.220
25.00	3.070	0.280	0.137
30.00	3.140	0.210	0.102
35.00	3.180	0.170	0.083
40.00	3.220	0.130	0.063
45.00	3.250	0.100	0.049
50.00	3.270	0.080	0.0390
55.00	3.290	0.060	0.029
60.00	3.300	0.050	0.024
65.00	3.310	0.040	0.020
70.00	3.310	0.040	0.020
90.00	3.330	0.020	0.010
120.00	3.350	0.000	0.000

	INFRASTRUCTURE BUILDINGS
Base of Standpipe (m):	6.00
Geology:	Made Ground
Borehole Diameter (D) (m):	5.00E-02
Scenario (F):	d2
F Value	4.50E+00
Area (A) of Borehole (m ²)	1.96E-03

PIEZOMETER RISING HEAD PERMEABILITY TEST

Project Name:	Trowbridge WRC
Project Number:	BMG2109
Borehole Ref:	BH03
Date:	13-Nov-20
Borehole Diameter (mm):	50
Resting Water Level (m bd):	3.35
Length (L) of Response Zone (m):	3.00

lime (mins	Hi(mbd)	H(head)	H/Ho
0.00	4.750	-1.400	1.000
0.50	4.735	-1.385	0.989
1.00	4.710	-1.360	0.971
1.50	4.690	-1.340	0.957
2.00	4.660	-1.310	0.936
3.00	4.620	-1.270	0.907
4.00	4.570	-1.220	0.871
5.00	4.520	-1.170	0.836
7.00	4.450	-1.100	0.786
8.00	4.405	-1.055	0.754
9.00	4.370	-1.020	0.729
10.00	4.330	-0.980	0.700
12.00	4.275	-0.925	0.661
15.00	4.190	-0.840	0.6000
20.00	4.065	-0.715	0.511
25.00	3.960	-0.610	0.436
30.00	3.857	-0.507	0.362
35.00	3.790	-0.440	0.314
40.00	3.715	-0.365	0.261
60.00	3.555	-0.205	0.146

	CONSULTANCY ENVIRONMENT INFRASTRUCTURE BUILDINGS
Base of Standpipe (m):	6.00
Geology:	Made Ground
Borehole Diameter (D) (m):	5.00E-02
Scenario (F):	d2
F Value	4.50E+00
Area (A) of Borehole (m ²)	1.96E-03

Appendix 5: Ground Gas and Groundwater Monitoring Results

BWB GAS AND GROUNDWATER MONITORING

Site:				Trowbridge \	WRC]	NR = Not I	Recorded		West	or Conditions	Ctort	End
Client:				Wessex Wate	er Services Ltc	ł						Dry = No (Groundwater		wear		Start	Elia
Job No.:				BMG2109											(Dry / Raining)		DRY	DRY
Date:				13th Novem	ber 2020										Wind Strength (m	/s)	4.0	4.0
Start / End Time:				8.30/9.00											Wind Direction (fr	om)	W	W
Engineer:				IW											Temperature (°C)		8.0	8.0
Monitoring Equipment:			Gas Meter ID	BWB00960											Barometric Pressu	re (h Pa / mB)	1007.0	1006.0
			PID ID	BWB00946											App 12 Hour Pres	sure (h Pa / mB)	1008.0	
			Dip Tape	BWB00978							CONSUL	TANCY		NMENT	12 Hour Pressure	frend	FAL	LING
			Other	r							INFRASI	RUCTU	RE BUIL	DINGS	PID - Air			
															PID - Calibration	Gas		
				Methan		Carbon Dic		Oxyger			Carbon	PID	Depth to	Base of	Free-Phase	Groundwater	Note	
Location Reference	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	sulphide (ppm)	(ppm)	(ppm)	water (m)	Zone (m)	Top (m)	Elevation (m AOD)		
Ambient Air Start (Calibration)	<0.1		<0.1		<0.1		<0.1		18.4	<1	<1	<0.1						
Ambient Air Finish (Calibration)	<0.1		<0.1		<0.1		<0.1		18.5	<1	10	<0.1						
BH02 (S)	<0.1		<0.1		<0.1		2.4		14.0	<1	<1	0.4	1.97	3.07		34.13		
BH02 (D)	<0.1		<0.1		<0.1		0.1		17.2	<1	110.0	<0.1	NR	NR			Could not get dip tape in to measure	groundwater level.
BH03 (S)	<0.1		<0.1		<0.1		1.1		17.5	<1	39.0	0.8	3.35	6.08		32.38		
PLO2 (D)	<0.1		< 0.1		< 0.1		0.3		17.7	<1	20.0 0.3 3.60 12.08				32.13			

BWB GAS AND GROUNDWATER MONITORING

Site:		Trowbridge WRC	NR = Not Recorded	Weather Conditions	Stort	End
Client:		Wessex Water Services Ltd	Dry = No Groundwater	weather conditions		
Job No.:		BMG2109		(Dry / Raining)	DRY	DRY
Date:		20th November 2020		Wind Strength (m/s)	5.4	5.4
Start / End Time:				Wind Direction (from)	SW	SW
Engineer:		DL		Temperature (°C)	9.0	9.0
Monitoring Equipment:	Gas Meter ID			Barometric Pressure (h Pa / mB)	1029.0	1029.0
	PID ID			App 12 Hour Pressure (h Pa / mB)	103	34.0
	Dip Tape		CONSULTANCY ENVIRONMENT	12 Hour Pressure Trend	FALL	ING
	Other		INFRASTRUCTURE BUILDINGS	PID - Air		
				PID - Calibration Gas		

		Flow		Methane		Carbon Dic		Oxyger		Hydrogen Sulphide	Carbon Monoxide		Depth to	Base of Response	Free-Phase Product Level	Groundwater	Notes
Location Reference	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)		water (m)	Zone (m)	Top (m)	Elevation (m AOD)	
Ambient Air Start (Calibration)																	
Ambient Air Finish (Calibration)																	
BH02 (S)	-0.0500		<0.1		<0.1		4.1		14.1	<1	1	NR	2.53	2.99		33.57	
BH02 (D)																	Borehole flooded, unable to monitor.
BH03 (S)	0.0200		-0.8		0.2		0.6		19.6	<1	8	NR	3.07	6.01		32.67	
BH03 (D)	0.0300		-0.1		<0.1	1.4	0.3	19.7	20.7	<1	<1	NR	3.26	12.04		32.47	

BWB GAS AND GROUNDWATER MONITORING

Site:		Trowbridge WRC	NR = Not Recorded	Weather Conditions	Start	End
Client:		Wessex Water Services Ltd	Dry = No Groundwater	weather Conditions		
Job No.:		BMG2109		(Dry / Raining)	DRY	DRY
Date:		26th November 2020		Wind Strength (m/s)	1.3	1.3
Start / End Time:				Wind Direction (from)	NE	ME
Engineer:		D		Temperature (°C)	8.0	8.0
Monitoring Equipment:	Gas Meter ID			Barometric Pressure (h Pa / mB)	1018.0	1018.0
	PID ID			App 12 Hour Pressure (h Pa / mB)	102	20.0
	Dip Tape		CONSULTANCY ENVIRONMENT	12 Hour Pressure Trend	FAL	ING
	Other		INFRASTRUCTURE BUILDINGS	PID - Air		
				PID - Calibration Gas		

		Flow		Methan		Carbon Dic		Oxyger		Hydrogen Sulphide	Carbon Monoxide	PID	Depth to	Base of Response	Free-Phase Product Level		Notes
Location Reference	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	water (m)	Zone (m)	Top (m)	Elevation (m AOD)	
Ambient Air Start (Calibration)																	
Ambient Air Finish (Calibration)																	
BH02 (S)	<0.1		<0.1		<0.1		5.9		12.4	<1	4		1.57	2.96		34.53	
BH02 (D)	0.0200		<0.1		<0.1		0.6		20.8	<1	2		1.26	13.97		34.84	
BH03 (S)	0.0200		<0.1	0.1	<0.1		3.4		12.7	<1	<1		3.33	6.01		32.40	
BH03 (D)	<0.1		<0.1		<0.1	0.5	0.4	19.9	20.6	</td <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1						

DWD GAS AND GROUNDWATER MONITORING

Site: Client:		Trowbridge WRC Wessex Water Services Ltd	NR = Not Recorded Dry = No Groundwater	Weather Conditions	Start	End
Job No.:		BMG2109		(Dry / Raining)	DRY	DRY
Date:		7th December 2020		Wind Strength (m/s)	2.5	2.5
Start / End Time:				Wind Direction (from)	NE	NE
Engineer:		ar		Temperature (°C)	3.0	3.0
Monitoring Equipment:	Gas Meter ID			Barometric Pressure (h Pa / mB)	996.0	996.0
	PID ID			App 12 Hour Pressure (h Pa / mB)	999.0	
	Dip Tape		CONSULTANCY ENVIRONMENT	12 Hour Pressure Trend	FALL	LING
	Other		INFRASTRUCTURE BUILDINGS	PID - Air		
				PID - Calibration Gas		

		Flow		Methan		Carbon Dio		Oxyger		Hydrogen Sulphide	Carbon Monoxide	PID	Depth to	Base of Response	Free-Phase Product Level	Groundwater	Notes
Location Reference	Relative Pressure (Pa)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	water (m)	Zone (m)	Top (m)	Elevation (m AOD)	
Ambient Air Start (Calibration)																	
Ambient Air Finish (Calibration)																	
BH02 (S)	0.0300		<0.1		<0.1		5.4		8.3	<1	<1		2.36	2.98		33.74	
BH02 (D)	0.0500		<0.1		<0.1		0.2	20.1	21.9	<1	<1		3.36	13.96		32.74	
BH03 (S)	0.0200		<0.1		<0.1		2.3		18.9	<1	12			6.01			
BH03 (D)	<0.1		<0.1		<0.1	0.2	0.1	21.1	22.1	</td <td>4</td> <td></td> <td>2.90</td> <td>12.06</td> <td></td> <td>32.83</td> <td></td>	4		2.90	12.06		32.83	

Appendix 6: TRL DCP Testing Results

PROJECT NUMBER	BMG2109	
PROJECT TITLE	Trowbridge WRC	
TEST REFERENCE	DCP01	
DATE	10-Nov-20	
MATERIAL/ STRATA TYPE	Made Ground	
START DEPTH (mm bgl)	0	
WEATHER/ GROUND CONDITION	Dry	

			Layer	Total	
Layer	Blows	Cumulative Blows	Thickness	Depth	CBR (%)
			(mm)	(mm bgl)	
1	9	9	207	207	11.0
2	55	64	260	467	58.5
3	22	86	418	885	13.4

CBR Interpretation based on the TRL Equation: Log10(CBR) = 2.480 - [1.057 x Log 10(DCP Strength)]

PROJECT NUMBER	BMG2109	
PROJECT TITLE	Trowbridge WRC	
TEST REFERENCE	DCP02	
DATE	10-Nov-20	
MATERIAL/ STRATA TYPE	Made Ground	
START DEPTH (mm bgl)	0	
WEATHER/ GROUND CONDITION	Dry	

	.		Layer	Total	000 (01)
Layer	Blows	Cumulative Blows	Thickness	Depth	CBR (%)
			(mm)	(mm bgl)	
1	37	37	201	201	50.5
2	17	54	259	460	17.0
3	49	103	255	715	52.8
4	10	113	138	853	18.8

CBR Interpretation based on the TRL Equation: Log10(CBR) = 2.480 - [1.057 x Log 10(DCP Strength)]

PROJECT NUMBER	BMG2109	
PROJECT TITLE	Trowbridge WRC	
TEST REFERENCE	DCP02	
DATE	10-Nov-20	
MATERIAL/ STRATA TYPE	Made Ground	
START DEPTH (mm bgl)	0	
WEATHER/ GROUND CONDITION	Dry	

Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bal)	CBR (%)
1	23	23	172	172	36.0
2	10	33	369	541	6.7
3	14	47	145	686	25.5
4	10	57	200	886	12.7

CBR Interpretation based on the TRL Equation: Log10(CBR) = 2.480 - [1.057 x Log 10(DCP Strength)]

PROJECT NUMBER	BMG2109	
PROJECT TITLE	Trowbridge WRC	
TEST REFERENCE	DCP04	
DATE	10-Nov-20	
MATERIAL/ STRATA TYPE	Made Ground	
START DEPTH (mm bgl)	0	
WEATHER/ GROUND CONDITION	Dry	

			Layer	Total	
Layer	Blows	Cumulative Blows	Thickness	Depth	CBR (%)
			(mm)	(mm bgl)	
1	24	24	306	306	20.5
2	5	29	265	571	4.5
3	18	47	273	844	17.1

CBR Interpretation based on the TRL Equation: Log10(CBR) = 2.480 - [1.057 x Log 10(DCP Strength)]

PROJECT NUMBER	BMG2109	
PROJECT TITLE	Trowbridge WRC	
TEST REFERENCE	DCP05	
DATE	10-Nov-20	
MATERIAL/ STRATA TYPE	Made Ground	
START DEPTH (mm bgl)	0	
WEATHER/ GROUND CONDITION	Dry	

			Layer	Total	
Layer	Blows	Cumulative Blows	Thickness	Depth	CBR (%)
			(mm)	(mm bgl)	
1	3	3	261	261	2.7
2	25	28	361	622	18.0
3	2	30	103	725	4.7

CBR Interpretation based on the TRL Equation: Log10(CBR) = 2.480 - [1.057 x Log 10(DCP Strength)]

PROJECT NUMBER	BMG2109	
PROJECT TITLE	Trowbridge WRC	
TEST REFERENCE	DCP06	
DATE	10-Nov-20	
MATERIAL/ STRATA TYPE	Made Ground	
START DEPTH (mm bgl)	0	
WEATHER/ GROUND CONDITION	Dry	

		Ourselation Discuss	Layer	Total	
Layer	BIOWS	Cumulative Blows	Ihickness (mm)	Depth (mm bgl)	CBR (%)
1	63	63	250	250	70.4
2	60	123	226	476	74.3

CBR Interpretation based on the TRL Equation: Log10(CBR) = 2.480 - [1.057 x Log 10(DCP Strength)]

Appendix 7: Soil Chemical Testing Results

Imogen Wort BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: imogen.wort@bwbconsulting.com

Analytical Report Number : 20-42335

Replaces Analytical Report Number: 20-42335, issue no. 1 Additional analysis undertaken.

Project / Site name:	Towbridge WRC	Samples received on:	13/11/2020
Your job number:	BMG2109	Samples instructed on/ Analysis started on:	19/11/2020
Your order number:	POR032908	Analysis completed by:	18/12/2020
Report Issue Number:	2	Report issued on:	18/12/2020
Samples Analysed:	1 leachate sample - 4 soil samples		

Durado Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
eachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number	1689562	1689563	1689564	1689565			
Sample Reference	BH02	BH02	BH03	BH03			
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)	1.00-1.00	4.00-4.00	3.50-3.50	7.50-7.50			
Date Sampled				11/11/2020	11/11/2020	12/11/2020	12/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detecti	Accreditation Status				
	0/	on of	NONE				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	% ka	0.01	NONE	/	20	24	19
I otal mass of sample received	ĸġ	0.001	NONE	2	2	2	2
				Chrycotilo		Chrycotilo	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chirysothe	-	Chirysoule	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	-	< 0.001	-
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-	< 0.001	-
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	9.6	7.9	8	8.4
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Total Organic Carbon (TOC)	%	0.1	MCERTS	2.1	0.6	2.3	1.4
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.5	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	0.58	< 0.05	0.69	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.6	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	5.6	< 0.05	8.5	0.28
Anthracene	mg/kg	0.05	MCERTS	1.3	< 0.05	3.7	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	9.3	< 0.05	20	0.61
Pyrene	mg/kg	0.05	MCERTS	8.2	< 0.05	16	0.52
Benzo(a)anthracene	mg/kg	0.05	MCERTS	6.9	< 0.05	13	0.4
Chrysene	mg/kg	0.05	MCERTS	4.5	< 0.05	8.2	0.28
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	5.6	< 0.05	11	0.4
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	3.8	< 0.05	6	0.22
Benzo(a)pyrene	mg/kg	0.05	MCERTS	5.4	< 0.05	10	0.37
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.8	< 0.05	5	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.85	< 0.05	1.4	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	3.1	< 0.05	5.2	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	57.9	< 0.80	115	3.08
Heavy Metals / Metalloids							
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	12	4.5	27	< 1.0
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	23	21	32	12
Barium (aqua regia extractable)	mg/kg	1	MCERTS	400	74	940	66
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	3	< 0.2	2.1	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	200	36	140	38
Copper (aqua regia extractable)	mg/kg	1	MCERTS	270	30	91	22
Lead (aqua regia extractable)	mg/kg	1	MCERTS	350	44	770	46
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.6	< 0.3	0.9	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	5.1	1.7	1.5	0.91
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	87	40	28	32
Selenium (aqua regia extractable)	mg/kg	1	MCEDIC	< 1.0	< 1.0	< 1.0	< 1.0
	mg/kg	1	MCERTS	8/	59	38	30
בוווב (מעום ובשום בגנו לנולטופ)	פיי ופייי	-		/10	100	1900	190

Monoaromatics & Oxygenates

Lab Sample Number	1689562	1689563	1689564	1689565			
Sample Reference	BH02	BH02	BH03	BH03			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00-1.00	4.00-4.00	3.50-3.50	7.50-7.50
Date Sampled				11/11/2020	11/11/2020	12/11/2020	12/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons							

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	1.8	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	15	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	30	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	24	< 8.0	130	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	32	< 10	170	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001

TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	9.4	< 2.0	6	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	37	< 10	59	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	73	< 10	110	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	120	< 10	170	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1689562	BH02	1.00-1.00	133	Loose Fibres	Chrysotile	< 0.001	< 0.001
1689564	BH03	3.50-3.50	118	Loose Fibres & Bitumen	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Your Order No: POR032908

Lab Sample Number		1689566		
Sample Reference				BH02
Sample Number				None Supplied
Depth (m)		4.00-4.00		
Date Sampled		11/11/2020		
Time Taken	None Supplied			
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

рН	pH Units	N/A	ISO 17025	7.7
Total Cyanide	µg/l	10	ISO 17025	< 10
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1
Sulphate as SO4	mg/l	0.1	ISO 17025	170
Ammoniacal Nitrogen as N	µg/l	15	NONE	990

Total Phenols

Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	NONE	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	NONE	< 0.01
Benzo(ghi)perylene	µg/I	0.01	NONE	< 0.01

Total PAH

Total EPA-16 PAHs	µg/l	0.2	NONE	< 0.2

Heavy Metals / Metalloids

Arsenic (dissolved)	µg/l	1	ISO 17025	< 1.0
Boron (dissolved)	µg/l	10	ISO 17025	630
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0
Chromium (III)	µg/l	1	NONE	< 1.0
Chromium (dissolved)	µg/l	0.4	ISO 17025	0.6
Copper (dissolved)	µg/l	0.7	ISO 17025	9.2
Lead (dissolved)	µg/l	1	ISO 17025	5.7
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5
Nickel (dissolved)	µg/l	0.3	ISO 17025	4
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0
Zinc (dissolved)	µg/l	0.4	ISO 17025	16

Your Order No: POR032908

Lab Sample Number	1689566			
Sample Reference	BH02			
Sample Number				None Supplied
Depth (m)				4.00-4.00
Date Sampled	11/11/2020			
Time Taken	None Supplied			
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status	

Monoaromatics & Oxygenate

Benzene	µg/l	1	ISO 17025	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	10	NONE	< 10

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1689562	BH02	None Supplied	1.00-1.00	Brown loam and sand with gravel.
1689563	BH02	None Supplied	4.00-4.00	Brown clay with gravel.
1689564	BH03	None Supplied	3.50-3.50	Brown clay with gravel.
1689565	BH03	None Supplied	7.50-7.50	Grey clay.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	w	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025
Hexavalent chromium in leachate	Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE
Monohydric phenols in leachate	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	w	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In house method.	L005-PL	w	ISO 17025
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
TPHCWG (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	w	NONE
Total cyanide in leachate	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
BTEX and MTBE in leachates (Monoaromatics)	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	ISO 17025
Ammoniacal Nitrogen as N in leachate	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	NONE
Cr (III) in leachate	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Free cyanide in leachate	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH02	None Supplied	S	1689562	с	Free cyanide in soil	L080-PL	с
BH02	None Supplied	S	1689563	с	Free cyanide in soil	L080-PL	с
BH03	None Supplied	S	1689564	с	Free cyanide in soil	L080-PL	с
BH03	None Supplied	S	1689565	с	Free cyanide in soil	L080-PL	с

Imogen Wort BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: imogen.wort@bwbconsulting.com

Analytical Report Number : 20-42481

Replaces Analytical Report Number: 20-42481, issue no. 1 Additional analysis undertaken.

Project / Site name:	Trowbridge WRC	Samples received on:	12/11/2020
Your job number:	BMG2109	Samples instructed on/ Analysis started on:	19/11/2020
Your order number:	PORO32913	Analysis completed by:	18/12/2020
Report Issue Number:	2	Report issued on:	18/12/2020
Samples Analysed:	10 leachate samples - 16 soil samples		

Durado Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
eachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Canada Number				1000000	1000001	1000005	1000000	1000007			
Lab Sample Number				1690323	1690324	1690325	1690326	1690327			
Sample Reference				BH01	BH01	HP01	HP01	HP01			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				0.70-0.70	3.00-3.00	0.10-0.10	0.30-0.30	0.60-0.60			
Date Sampled				10/11/2020	10/11/2020	10/11/2020	10/11/2020	10/11/2020			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status								
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Moisture Content	%	0.01	NONE	14	18	21	18	17			
Total mass of sample received	kg	0.001	NONE	1.7	1.2	1.2	1.2	1.2			
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-			
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected			
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-			
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-			
General Inorganics											
pH - Automated	pH Units	N/A	MCERTS	7.8	7.8	7.9	7.8	8.1			
Free Cvanide	ma/ka	1	MCERTS	< 1	< 1	< 1	< 1	< 1			
Total Organic Carbon (TOC)	%	0.1	MCERTS	3.8	0.5	31	17	0.7			
				5.0	0.5	5.1	1.7	0.7			
Speciated PAHs											
Nanhthalene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Acenanhthylene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Fluorene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Phenanthrene	ma/ka	0.05	MCERTS	0.47	< 0.05	< 0.05	< 0.05	< 0.05			
Anthracene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Fluoranthene	ma/ka	0.05	MCERTS	0.96	< 0.05	0.65	< 0.05	< 0.05			
Pyrene	ma/ka	0.05	MCERTS	0.98	< 0.05	0.56	< 0.05	< 0.05			
Benzo(a)anthracene	ma/ka	0.05	MCERTS	0.74	< 0.05	0.4	< 0.05	< 0.05			
Chrysene	ma/ka	0.05	MCERTS	0.54	< 0.05	0.1	< 0.05	< 0.05			
Benzo(h)fluoranthene	ma/ka	0.05	MCERTS	0.98	< 0.05	0.25	< 0.05	< 0.05			
Benzo(k)fluoranthene	ma/ka	0.05	MCERTS	0.29	< 0.05	0.36	< 0.05	< 0.05			
Benzo(a)pyrene	ma/ka	0.05	MCERTS	0.25	< 0.05	0.26	< 0.05	< 0.05			
Indeno(1,2,3-cd)nyrene	ma/ka	0.05	MCERTS	0.37	< 0.05	< 0.05	< 0.05	< 0.05			
Dibenz(a h)anthracene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Benzo(ghi)pervlene	mg/kg	0.05	MCERTS	0.57	< 0.05	< 0.05	< 0.05	< 0.05			
Total PAH				0.07							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	6.49	< 0.80	2.67	< 0.80	< 0.80			
			1	0.15	\$ 0.00	2.07	\$ 0.00	- 0.00			
Heavy Metals / Metalloids											
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	23	2.6	< 1.0	2.5	< 1.0			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	64	14	11	9.3	9.1			
Barium (aqua regia extractable)	mg/kg	1	MCERTS	840	63	94	54	39			
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	4.3	< 0.2	0.5	0.3	< 0.2			
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0			
Chromium (agua regia extractable)	mg/kg	1	MCERTS	53	28	27	19	22			
Copper (agua regia extractable)	mg/kg	1	MCERTS	1100	31	29	13	13			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	910	33	63	33	19			
Mercury (agua regia extractable)	mg/kg	0.3	MCERTS	5	0.4	< 0.3	0.4	< 0.3			
Molybdenum (agua regia extractable)	mg/kg	0.25	MCERTS	9.7	1.4	1.4	1.2	1.2			
Nickel (agua regia extractable)	mg/kg	1	MCERTS	83	25	13	10	12			
Selenium (agua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
Vanadium (agua regia extractable)	mg/kg	1	MCERTS	72	43	34	31	31			
Zinc (aqua regia extractable)	ma/ka	1	MCERTS	1200		160	62	57			

ab Sample Number				1690323	1690324	1690325	1690326	1690327
Sample Reference				BH01	BH01	HP01	HP01	HP01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.70-0.70	3.00-3.00	0.10-0.10	0.30-0.30	0.60-0.60
Date Sampled				10/11/2020	10/11/2020	10/11/2020	10/11/2020	10/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates	-		-		-			
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	6.5	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	9.8	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	16	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	100	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	140	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	14	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	32	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	47	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1690328	1690329	1690330	1690331	1690332			
Sample Reference				HP03	HP03	HP04	HP04	HP05			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				0.10-0.10	0.50-0.50	0.10-0.10	0.50-0.50	0.10-0.10			
Date Sampled				10/11/2020	10/11/2020	10/11/2020	10/11/2020	10/11/2020			
Time Taken		-	•	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status								
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Moisture Content	%	0.01	NONE	18	16	10	17	15			
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	1.2	1.7			
·											
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-	-	-	-	-			
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected			
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-			
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-			
· · · · · · · · · · · · · · · · · · ·											
General Inorganics											
pH - Automated	pH Units	N/A	MCERTS	8.1	8	8.1	7.9	8			
Free Cvanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1			
Total Organic Carbon (TOC)	%	0.1	MCERTS	2.2	0.5	2	0.4	1.9			
						_					
Speciated PAHs											
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.26			
Eluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.47			
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	3.7			
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	1.3			
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.48	< 0.05	7.8			
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.49	< 0.05	6.6			
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.42	< 0.05	1.9			
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.28	< 0.05	3.7			
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.47	< 0.05	3			
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.21	< 0.05	1.6			
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.31	< 0.05	2			
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.24	< 0.05	1.2			
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.29	< 0.05	1.6			
Total PAH											
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	3.19	< 0.80	35			
	1										
Heavy Metals / Metalloids											
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	2.8	< 1.0	< 1.0	3.3	6.1			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	9	12	14	19			
Barium (aqua regia extractable)	mg/kg	1	MCERTS	81	36	360	43	250			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.4	< 0.2	0.6	< 0.2	1.4			
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29	22	42	29	42			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	79	18	56	16	95			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	67	20	63	17	130			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	0.7			
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.1	0.55	1.3	0.95	1.8			
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	18	15	26	16	37			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	32	29	43	43	37			
Zinc (aqua regia extractable)	ma/ka	1	MCERTS	120	65	200	64	250			

Lab Sample Number	b Sample Number					1690330	1690331	1690332
Sample Reference				HP03	HP03	HP04	HP04	HP05
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10-0.10	0.50-0.50	0.10-0.10	0.50-0.50	0.10-0.10
Date Sampled				10/11/2020	10/11/2020	10/11/2020	10/11/2020	10/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates					8		-	
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

MCERTS

MCERTS

MCERTS

mg/kg

mg/kg

mg/kg

10

10

10

< 10

< 10

< 10

< 10

< 10

< 10

13

30

43

U/S = Unsuitable Sample I/S = Insufficient Sample

TPH-CWG - Aromatic >EC16 - EC21

TPH-CWG - Aromatic >EC21 - EC35

TPH-CWG - Aromatic (EC5 - EC35)

< 10

< 10

< 10

22

50

71

Lab Sample Number				1600333	1600334	1600335	1600336	1600337			
Sample Reference				HP05	HP05	HP06	HP06	HP07			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Denth (m)								0.20-0.20			
Date Sampled				10/11/2020	10/11/2020	10/11/2020	10/11/2020	10/11/2020			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
	1	-		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	imit of detection	Accreditation Status								
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Moisture Content	%	0.01	NONE	8.9	16	7.9	21	10			
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	1.7	1.2			
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	Chrvsotile			
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Detected			
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	< 0.001			
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	< 0.001			
								0.001			
General Inorganics											
pH - Automated	nH Units	N/A	MCERTS	77	74	Q	Q	8.2			
Eree Ovanide	ma/ka	1	MCERTS	7.7	7.7	0	0	0.2			
Total Organic Carbon (TOC)	%	0.1	MCERTS	23	0.8	2	36	17			
Total organic carbon (Toc)				2.5	0.0	Ζ.	5.0	1./			
Speciated DAHs											
Specialeu PARS	ma/ka	0.05	MCEDTC	- 0.05	- 0.05	- 0.05	. 0.05	. 0.05			
Naphthalene	mg/kg	0.05	MCEDTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
	mg/kg	0.05	MCEDTS	< 0.05	< 0.05	< 0.05	1.3	< 0.05			
Acenaphthene	mg/kg	0.05	MCEDIC	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Fluorene	mg/kg	0.05	MCEDIC	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Anthunan	mg/kg	0.05	MCEDIC	1.6	< 0.05	0.98	2.2	3.0			
	mg/kg	0.05	MCEDTS	0.56	< 0.05	0.41	0.92	1.2			
Fluoranthene	mg/kg	0.05	MCEDTS	4.1	< 0.05	3	5.1	5.8			
Pyrene	mg/kg	0.05	MCEDTC	3.8	< 0.05	2.6	5.9	4.0			
Benzo(a)anthracene	mg/kg	0.05	MCEDTS	1.9	< 0.05	1.5	3.3	1.7			
Chrysene	mg/kg	0.05	MCEDTS	1.5	< 0.05	1.2	2.4	2.5			
Benzo(b)nuorantnene	mg/kg	0.05	MCEDTS	2.1	< 0.05	1.6	3./	1.9			
Benzo(k)nuorantnene	mg/kg	0.05	MCEDTS	1.2	< 0.05	0.83	2	1.1			
Benzo(a)pyrene	mg/kg	0.05	MCEDTS	1.7	< 0.05	1	4.3	1.5			
Dibenz(a,b)anthracene	mg/kg	0.05	MCERTS	1.4	< 0.05	0.91	2.0	1			
Didenz(d,ii)antinacene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Benzo(gni)perviene	iiig/kg	0.05	TICERTS	1.0	< 0.05	0.97	3.3	1.2			
THEFT											
	ma/ka	0.8	MCEDTC								
Speciated Total EPA-16 PAHs	iiig/kg	0.8	MCLK13	21.4	< 0.80	15.1	37.4	26.1			
Heavy Metals / Metalloids			100 17005	-	-			-			
Antimony (aqua regia extractable)	mg/kg	1	ISO 1/025	7.6	3.1	2.8	11	6.4			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	25	14	17	28	27			
Barium (aqua regia extractable)	mg/kg	1	MCERTS	450	81	300	420	400			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	1.7	< 0.2	0.9	2.5	2.2			
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	55	37	39	130	62			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	150	24	63	260	150			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	260	32	110	450	260			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.9	< 0.3	< 0.3	1.7	< 0.3			
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	3.1	1.7	2.5	3.8	2.4			
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	39	24	21	40	27			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	1			
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	38	42	22	41	28			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	420	77	200	760	470			

Lab Sample Number	b Sample Number				1690334	1690335	1690336	1690337
Sample Reference				HP05	HP05	HP06	HP06	HP07
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)			0.20-0.20	0.50-0.50	0.10-0.10	0.60-0.60	0.20-0.20	
Date Sampled				10/11/2020	10/11/2020	10/11/2020	10/11/2020	10/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates					-			
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	13	5
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	84	18
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	600	83
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	700	110
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	ma/ka	0.001	MCEDTC	0.001	0.001	0.001	0.001	0.001

TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	4.2	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	12	< 10	13	46	19
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	34	< 10	42	380	52
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	46	< 10	55	430	71

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1690338
Sample Reference				HP07
Sample Number				None Supplied
Depth (m)	0.40-0.40			
Date Sampled	10/11/2020			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	18
Total mass of sample received	kg	0.001	NONE	1.7

Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile
Asbestos in Soil	Туре	N/A	ISO 17025	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.6
Free Cyanide	mg/kg	1	MCERTS	< 1
Total Organic Carbon (TOC)	%	0.1	MCERTS	3.4

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	1.5
Anthracene	mg/kg	0.05	MCERTS	0.8
Fluoranthene	mg/kg	0.05	MCERTS	4.4
Pyrene	mg/kg	0.05	MCERTS	4.2
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.4
Chrysene	mg/kg	0.05	MCERTS	2.4
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	3.1
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.5
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.5
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.7
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.53
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	2

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	26.8

Heavy Metals / Metalloids

Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	17
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	41
Barium (aqua regia extractable)	mg/kg	1	MCERTS	540
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	2.7
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	130
Copper (aqua regia extractable)	mg/kg	1	MCERTS	340
Lead (aqua regia extractable)	mg/kg	1	MCERTS	490
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	2
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	5.9
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	57
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	51
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	860

Lab Sample Number	1690338				
Sample Reference	HP07				
Sample Number				None Supplied	
Depth (m)				0.40-0.40	
Date Sampled				10/11/2020	
Time Taken				None Supplied	
Analytical Parameter (Soil Analysis)	Accreditation Status				
Monoaromatics & Oxygenates					
Benzene	µg/kg	1	MCERTS	< 1.0	
Toluene	µg/kg	1	MCERTS	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	< 1.0	
o-xylene	µg/kg	1	MCERTS	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	27
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	72
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	260
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	360

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	6.7
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	40
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	120
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	170

U/S = Unsuitable Sample I/S = Insufficient Sample

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1690337	HP07	0.20-0.20	162	Loose Fibres	Chrysotile	< 0.001	< 0.001
1690338	HP07	0.40-0.40	145	Loose Fibres	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Your Order No: PORO32913

Lab Sample Number				1690339	1690340	1690341	1690342	1690343
Sample Reference				BH01	BH01	HP01	HP03	HP04
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.70-0.70	3.00-3.00	0.60-0.60	0.10-0.10	0.50-0.50
Date Sampled				10/11/2020	10/11/2020	10/11/2020	10/11/2020	10/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
рН	pH Units	N/A	ISO 17025	8.1	8	7.8	8	7.9
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1	< 1	< 1	< 1	< 1
Sulphate as SO4	mg/l	0.1	ISO 17025	50.7	109	12.2	2.6	11.7
Ammoniacal Nitrogen as N	µg/l	15	NONE	300	3100	< 15	16	35
Total Phenols								
Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

	1.01							
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	µg/l	0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Heavy Metals / Metalloids

Arsenic (dissolved)	µg/l	1	ISO 17025	2.1	2.9	3.9	< 1.0	< 1.0
Boron (dissolved)	µg/l	10	ISO 17025	120	710	52	29	40
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	U/S*	< 5.0	< 5.0
Chromium (III)	µg/l	1	NONE	5.1	< 1.0	U/S*	1.3	< 1.0
Chromium (dissolved)	µg/l	0.4	ISO 17025	5.1	< 0.4	1.1	1.3	0.9
Copper (dissolved)	µg/l	0.7	ISO 17025	16	7.8	12	13	6.8
Lead (dissolved)	µg/l	1	ISO 17025	8.8	7.3	< 1.0	3.4	2.5
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel (dissolved)	µg/l	0.3	ISO 17025	1.4	2.2	1.9	1	0.9
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Zinc (dissolved)	µg/l	0.4	ISO 17025	38	8.4	33	18	13

Your Order No: PORO32913

Lab Sample Number				1690339	1690340	1690341	1690342	1690343
Sample Reference				BH01	BH01	HP01	HP03	HP04
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.70-0.70	3.00-3.00	0.60-0.60	0.10-0.10	0.50-0.50
Date Sampled				10/11/2020	10/11/2020	10/11/2020	10/11/2020	10/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
			100 1005 -					
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

 $*\mbox{U/S}$ due to high variances between chromium (hexavalent) and chromium (dissolved) caused by method differences.

Your Order No: PORO32913

Lab Sample Number				1690344	1690345	1690346	1690347	1690348
Sample Reference				HP05	HP05	HP06	HP06	HP07
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10-0.10	0.50-0.50	0.10-0.10	0.60-0.60	0.40-0.40
Date Sampled				10/11/2020	10/11/2020	10/11/2020	10/11/2020	10/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
рН	pH Units	N/A	ISO 17025	8	7.9	8	7.8	7.6
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1	< 1	< 1	< 1	< 1
Sulphate as SO4	mg/l	0.1	ISO 17025	15.4	33.1	3.9	41.1	426
Ammoniacal Nitrogen as N	µg/l	15	NONE	38	38	29	34	43
Total Phenois	ug/l	10	ISO 17025	. 10		. 10	10	16
Total Phenois (mononydric)	μ9/1	10	150 17025	< 10	< 10	< 10	19	16
Speciated PAHs								
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Fluoranthene	µg/i	0.01	130 17023	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	µg/l	0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Heavy Metals / Metalloids

Arsenic (dissolved)	µg/l	1	ISO 17025	< 1.0	< 1.0	6	9.7	< 1.0
Boron (dissolved)	µg/l	10	ISO 17025	120	64	20	63	590
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08	< 0.08	0.09
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (III)	µg/l	1	NONE	1.7	1.9	3.5	4.6	1.7
Chromium (dissolved)	µg/l	0.4	ISO 17025	1.7	1.9	3.5	4.6	1.7
Copper (dissolved)	µg/l	0.7	ISO 17025	17	8.3	17	14	14
Lead (dissolved)	µg/l	1	ISO 17025	5.7	4.2	5.2	9.7	6
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel (dissolved)	µg/l	0.3	ISO 17025	1.3	1.2	0.8	1.4	2.6
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Zinc (dissolved)	µg/l	0.4	ISO 17025	14	19	26	47	70

Your Order No: PORO32913

Lab Sample Number				1690344	1690345	1690346	1690347	1690348
Sample Reference				HP05	HP05	HP06	HP06	HP07
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10-0.10	0.50-0.50	0.10-0.10	0.60-0.60	0.40-0.40
Date Sampled				10/11/2020	10/11/2020	10/11/2020	10/11/2020	10/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
			-					
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

TPH-CWG - Alomatic >C/ - Co	µ9/1	1	130 17023	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

* U/S due to high variances between chromium (hexavalent) and chromium (dissolved) caused by method differences.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *	
1690323	BH01	None Supplied	0.70-0.70	Brown loam and sand with gravel.	
1690324	BH01	None Supplied	3.00-3.00	Light brown sandy clay.	
1690325	HP01	None Supplied	0.10-0.10	Brown loam and clay with vegetation.	
1690326	HP01	None Supplied	0.30-0.30	Light brown sandy clay.	
1690327	HP01	None Supplied	0.60-0.60	Light brown clay.	
1690328	HP03	None Supplied	0.10-0.10	Brown loam and clay with vegetation.	
1690329	HP03	None Supplied	0.50-0.50	Light brown clay with vegetation.	
1690330	HP04	None Supplied	0.10-0.10	Light brown loam and clay with gravel and vegetation.	
1690331	HP04	None Supplied	0.50-0.50	Light brown clay.	
1690332	HP05	None Supplied	0.10-0.10	Grey loam and clay.	
1690333	HP05	None Supplied	0.20-0.20	Grey loam and clay with gravel.	
1690334	HP05	None Supplied	0.50-0.50	Light brown loam and clay with gravel.	
1690335	HP06	None Supplied	0.10-0.10	Light brown loam and clay with gravel.	
1690336	HP06	None Supplied	0.60-0.60	Brown loam and clay with gravel and vegetation.	
1690337	HP07	None Supplied	0.20-0.20	Light brown loam and clay with gravel.	
1690338	HP07	None Supplied	0.40-0.40	Light brown loam and clay with gravel.	

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name Analytical Method Description		Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025
Hexavalent chromium in leachate	Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in leachate	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	w	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In house method.	L005-PL	w	ISO 17025
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
TPHCWG (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	w	NONE
Total cyanide in leachate	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
BTEX and MTBE in leachates (Monoaromatics)	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	ISO 17025
Ammoniacal Nitrogen as N in leachate	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	NONE
Cr (III) in leachate	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Free cyanide in leachate	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH01	None Supplied	S	1690323	с	Free cyanide in soil	L080-PL	С
BH01	None Supplied	S	1690324	с	Free cyanide in soil	L080-PL	с
HP01	None Supplied	S	1690325	С	Free cyanide in soil	L080-PL	с
HP01	None Supplied	S	1690326	с	Free cyanide in soil	L080-PL	с
HP01	None Supplied	S	1690327	с	Free cyanide in soil	L080-PL	С
HP03	None Supplied	S	1690328	с	Free cyanide in soil	L080-PL	С
HP03	None Supplied	S	1690329	с	Free cyanide in soil	L080-PL	с
HP04	None Supplied	S	1690330	с	Free cyanide in soil	L080-PL	с
HP04	None Supplied	S	1690331	с	Free cyanide in soil	L080-PL	с
HP05	None Supplied	S	1690332	с	Free cyanide in soil	L080-PL	с
HP05	None Supplied	S	1690333	с	Free cyanide in soil	L080-PL	с
HP05	None Supplied	S	1690334	с	Free cyanide in soil	L080-PL	с
HP06	None Supplied	S	1690335	с	Free cyanide in soil	L080-PL	с
HP06	None Supplied	S	1690336	с	Free cyanide in soil	L080-PL	с
HP07	None Supplied	S	1690337	с	Free cyanide in soil	L080-PL	С
HP07	None Supplied	S	1690338	С	Free cyanide in soil	L080-PL	с

Appendix 8: Geotechnical Testing Results

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client:	BWB Consulting Limited	Client Reference: BMG2109
Client Address:	5th Floor, Waterfront House,	Job Number: 20-44142 Date Sampled: 10/11/2020
	Nottingham, NG2 3DQ	Date Received: 18/11/2020
Contact:	Imogen Wort	Date Tested: 04/12/2020
Site Address:	Trowbridge WRC	Sampled By: Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	1699727	Depth Top [m]: 3.00
Hole No.:	BH01	Depth Base [m]: 3.45
Sample Reference:	Not Given	Sample Type: D
Soil Description:	Brown slightly gravelly sandy CLAY	

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
27	37	19	18	95

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: n. This fourthe

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Burokele

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client:	BWB Consulting Limited	Client Reference:	BMG2109
Client Address:		Job Number:	20-44142
	Stn Floor, Waterfront House,	Date Sampled:	10/11/2020
	Nottingham, NG2 3DQ	Date Received:	18/11/2020
Contact:	Imogen Wort	Date Tested:	04/12/2020
Site Address:	Trowbridge WRC	Sampled By:	Not Given
Testing carried out at i2	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland		
Test Results:			
Laboratory Reference:	1699733	Depth Top [m]:	7.00
Hole No.:	BH01	Depth Base [m]:	7.00
Sample Reference:	Not Given	Sample Type:	D
Soil Description:	Dark grey slightly gravelly sandy CLAY		

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
16	37	17	20	90

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Juosetle

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

	Tested in Accordance with DS 1377-2, 1990. Clause 4.3 and 3	
Client:	BWB Consulting Limited	Client Reference: BMG2109
Client Address:	5th Floor, Waterfront House	Job Number: 20-44142
	Nottingham NG2 3DO	Date Sampled: 10/11/2020
	Notungham, NG2 3DQ	Date Received: 18/11/2020
Contact:	Imogen Wort	Date Tested: 04/12/2020
Site Address:	Trowbridge WRC	Sampled By: Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	1699737	Depth Top [m]: 14.00
Hole No.:	BH01	Depth Base [m]: 14.00
Sample Reference:	Not Given	Sample Type: D
Soil Description:	Dark brown slightly sandy CLAY	

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
22	48	23	25	100

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client:	BWB Consulting Limited	Client Reference:	BMG2109
Client Address:	File File on Mathematic Lines of	Job Number:	20-44142
	5th Floor, Waterfront House,	Date Sampled:	10/11/2020
	Notanghani, NG2 SDQ	Date Received:	18/11/2020
Contact:	Imogen Wort	Date Tested:	04/12/2020
Site Address:	Trowbridge WRC	Sampled By:	Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland		
Test Results:			
Laboratory Reference:	1699755	Depth Top [m]:	4.00
Hole No.:	BH02	Depth Base [m]:	4.45
Sample Reference:	Not Given	Sample Type:	D
Soil Description:	Dark brown slightly gravelly slightly sandy CLAY		

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
28	46	23	23	87

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Havika PLD Duroside for a

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

TIKA							quiù allu Fi		15	Northamp	ton NN4 /EI	3	A			
TESTING 4041	>			-				077 0 4000 6		_		Envir	onmental Se			
Clien	nt.		BWB Consult	ina Limited	sted in .	Accorda	ance with: BS 1	377-2: 1990: 0	Jause 4.3 and	o Client	Reference [.]	BMG2109				
Clien	nt. It Addre	SS:	BWB Consul							Job Number: 20-44142						
			5th Floor, Wa	terfront Hous	e,					Date	e Sampled:	10/11/2020				
Nottingham, NO2 3DQ										Date	Received:	18/11/2020				
Contact: Imogen Wort										Da	ate Tested:	04/12/2020				
Site /	Address	3: iod out ot i'	I rowbridge W	/RC nitod ul Dior	iorow	20 11	711 Duda S	laaka Dalan	d	Sa	ampled By:	Not Given				
Test			: Anaiyucai Lin	nitea, ul. Pior	lierow	39, 41	-711 Ruua S	iaska, Polan	u							
Labo	ratory F	Reference [.]	1699758							Dep	th Top [m] [.]	5.50				
Hole	No.:		BH02							Depth	n Base [m]:	5.50				
Sam	ple Refe	erence:	Not Given							Sa	mple Type:	D				
Soil I	Descript	tion:	Brown CLAY													
Som	nla Drar	aration	Tested in nat	ural condition												
Sam	pie Fiel	Jaralion.	rested in nat													
A	s Recei	ved Moist	ure	Liquid Limi	t		Plastic	Limit	Plas	ticity Index	9	% Passing 42	5µm			
_	Conte	ent [W] %		[WL]%			[Wp]%		[lp] %		BS Test Sie	ve			
		33		63			27	,		36		100				
PLASTICITY INDEX	70 - 60 - 50 - 40 - 30 - 20 - 10 -			CIL			CIM	C C	н	C	V A lir					
	0 -		CIL - SiL	SiL			SiM									
	~ 1				-											

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil Liquid Limit Plasticity CI Clay Low below 35 L Si Silt Μ Medium 35 to 50 Н High 50 to 70

50

LIQUID LIMIT

40

VVery highexceeding 70OOrganicappend to classification for organic material (eg CIHO)

30

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

10

Remarks:

0

Signed:

Marika

Page 1 of 1

60

70

80

90

100

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

20

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client:	BWB Consulting Limited	Client Reference: BMG2109					
Client Address:	5th Floor, Waterfront House, Nottingham, NG2 3DQ	Job Number: 20-44142 Date Sampled: 10/11/2020 Date Received: 18/11/2020					
Contact:	Imogen Wort	Date Tested: 04/12/2020					
Site Address:	Trowbridge WRC	Sampled By: Not Given					
Testing carried out at it	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland						
Test Results:							
Laboratory Reference:	1699762	Depth Top [m]: 8.00					
Hole No.:	BH02	Depth Base [m]: 8.00					
Sample Reference:	Not Given	Sample Type: D					
Soil Description:	Dark brown slightly gravelly sandy CLAY						

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
18	39	16	23	80

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Marika PL Junosile for

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client:	BWB Consulting Limited	Client Reference: BMG2109
Client Address:		Job Number: 20-44142
	Stin Floor, Waterfront House,	Date Sampled: 10/11/2020
	Nounghan, NG2 SDQ	Date Received: 18/11/2020
Contact:	Imogen Wort	Date Tested: 04/12/2020
Site Address:	Trowbridge WRC	Sampled By: Not Given
Testing carried out at i	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	1699766	Depth Top [m]: 12.00
Hole No.:	BH02	Depth Base [m]: 12.45
Sample Reference:	Not Given	Sample Type: D
Soil Description:	Dark brown slightly gravelly very sandy CLAY	

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
18	34	17	17	99

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Page 1 of 1

louika PL Deputy Head Guide for and on behal

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client:	BWB Consulting Limited	Client Reference: BMG2109
Client Address:	5th Floor, Waterfront House, Nottingham, NG2 3DQ	Job Number: 20-44142 Date Sampled: 10/11/2020 Date Received: 18/11/2020
Contact:	Imogen Wort	Date Tested: 04/12/2020
Site Address:	Trowbridge WRC	Sampled By: Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	1699769	Depth Top [m]: 6.00
Hole No.:	BH03	Depth Base [m]: 6.45
Sample Reference:	Not Given	Sample Type: D
Soil Description:	Brown slightly gravelly slightly sandy CLAY	

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
36	53	21	32	91

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Burokele

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

	Tested in Accordance with DS 1377-2. 1990. Clause 4.5 and 5	
Client:	BWB Consulting Limited	Client Reference: BMG2109
Client Address:	5th Floor, Waterfront House, Nottingham, NG2 3DQ	Job Number: 20-44142 Date Sampled: 10/11/2020 Date Received: 18/11/2020
Contact:	Imogen Wort	Date Tested: 04/12/2020
Site Address:	Trowbridge WRC	Sampled By: Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	1699770	Depth Top [m]: 6.80
Hole No.:	BH03	Depth Base [m]: 6.80
Sample Reference:	Not Given	Sample Type: D
Soil Description:	Dark grey slightly gravelly slightly sandy CLAY	

Sample Preparation: Tested after >425um removed by hand

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
25	56	22	34	98

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

 gned:
 Monika Janoszek

 Imika
 PL Deputy Head of

 Imika
 for and on behalt

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client:	BWB Consulting Limited	Client Reference: BMG2109
Client Address:	5th Floor, Waterfront House, Nottingham, NG2 3DQ	Job Number: 20-44142 Date Sampled: 10/11/2020 Date Received: 18/11/2020
Contact:	Imogen Wort	Date Tested: 04/12/2020
Site Address:	Trowbridge WRC	Sampled By: Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	1699772	Depth Top [m]: 8.50
Hole No.:	BH03	Depth Base [m]: 8.50
Sample Reference:	Not Given	Sample Type: D
Soil Description	Brown slightly gravelly slightly sandy CLAY	

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
29	52	22	30	98

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: n. This Kouika

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Burokele

Summary of Classification Test Results

Tested in Accordance with:

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN

17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test),

Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: BMG2109 Job Number: 20-44142 Date Sampled: 10/11 - 11/11/2020 Date Received: 18/11/2020 Date Tested: 04/12/2020 Sampled By: Not Given

BWB Consulting Limited

5th Floor, Waterfront House, Nottingham, NG2 3DQ

Contact:Imogen WortSite Address:Trowbridge WRCTesting carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

4041

Client Address:

Client:

			Sample					ntent	tent		Atte	berg		Density			#	
Laboratory Reference	Hole No.	Reference Top Base Type Description		Remarks	Moisture Co [W]	Water Con [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity				
4000705	DU 0 /		m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
1699725	BH01	Not Given	2.00	2.45	D	Dark brown slightly gravelly CLAY		38										
1699727	BH01	Not Given	3.00	3.45	D	Brown slightly gravelly sandy CLAY	Atterberg 4 Point	27		95	37	19	18					
1699729	BH01	Not Given	4.50	4.50	D	Brown to grey CLAY		24										
1699731	BH01	Not Given	6.50	6.50	D	Dark brown CLAY		18										
1699733	BH01	Not Given	7.00	7.00	D	Dark grey slightly gravelly sandy CLAY	Atterberg 4 Point	16		90	37	17	20					
1699735	BH01	Not Given	9.50	9.50	D	Dark grey CLAY		21										
1699736	BH01	Not Given	13.50	13.95	D	Dark grey CLAY		19										
1699737	BH01	Not Given	14.00	14.00	D	Dark brown slightly sandy CLAY	Atterberg 4 Point	22		100	48	23	25					
1699743	BH01	Not Given	19.20	19.46	С	Dark grey LIMESTONE		6.6										
1699745	BH01	Not Given	19.85	20.10	С	Grey LIMESTONE with fragments of shell		4.8										

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Burokile

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Summary of Classification Test Results

Tested in Accordance with:

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN

17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test),

Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: BMG2109 Job Number: 20-44142 Date Sampled: 11/11/2020 Date Received: 18/11/2020 Date Tested: 04/12/2020 Sampled By: Not Given

BWB Consulting Limited

5th Floor, Waterfront House, Nottingham, NG2 3DQ

Contact:Imogen WortSite Address:Trowbridge WRCTesting carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

4041

Client Address:

Client:

			Sample	9				ntent	tent		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Moisture Co [W]	Water Con [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total	
1000710	El la t		m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
1699748	BH01	Not Given	22.23	22.63	С	Dark brown LIMESTONE		10										
1699750	BH01	Not Given	24.16	24.39	С	Grey LIMESTONE		1.1										
1699752	BH01	Not Given	24.52	24.56	С	Greenish grey LIMESTONE		8.7										
1699754	BH02	Not Given	2.00	2.45	D	Dark brown slightly gravelly CLAY		24										
1699755	BH02	Not Given	4.00	4.45	D	Dark brown slightly gravelly slightly sandy CLAY	Atterberg 4 Point	28		87	46	23	23					
1699758	BH02	Not Given	5.50	5.50	D	Brown CLAY	Atterberg 4 Point	33		100	63	27	36					
1699759	BH02	Not Given	5.70	5.70	D	Dark brown CLAY		28										
1699762	BH02	Not Given	8.00	8.00	D	Dark brown slightly gravelly sandy CLAY	Atterberg 4 Point	18		80	39	16	23					
1699763	BH02	Not Given	9.00	9.45	D	Brown CLAY		22										
1699765	BH02	Not Given	11.50	11.50	D	Brown to grey CLAY		24										

Note: # Non accredited; NP - Non plastic

Comments:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Houte

Burokile

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Date Reported: 15/12/2020

Monika Janoszek

Summary of Classification Test Results

Tested in Accordance with:

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN

17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test),

Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: BMG2109 Job Number: 20-44142 Date Sampled: Not Given Date Received: 18/11/2020 Date Tested: 04/12/2020 Sampled By: Not Given

BWB Consulting Limited

5th Floor, Waterfront House, Nottingham, NG2 3DQ

Contact:Imogen WortSite Address:Trowbridge WRCTesting carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

4041

Client Address:

Client:

			Sample	9				ntent	tent		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Moisture Co [W]	Water Con [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
1699766	BH02	Not Given	12.00	12.45	D	Dark brown slightly gravelly very sandy CLAY	Atterberg 4 Point	18		99	34	17	17					
1699767	BH02	Not Given	15.00	15.45	D	Brown CLAY		23										
1699769	BH03	Not Given	6.00	6.45	D	Brown slightly gravelly slightly sandy CLAY	Atterberg 4 Point	36		91	53	21	32					
1699770	BH03	Not Given	6.80	6.80	D	Dark grey slightly gravelly slightly sandy CLAY	Atterberg 4 Point	25		98	56	22	34					
1699772	BH03	Not Given	8.50	8.50	D	Brown slightly gravelly slightly sandy CLAY	Atterberg 4 Point	29		98	52	22	30					
1699773	BH03	Not Given	10.00	10.00	D	Brown slightly gravelly CLAY		22										
1699775	BH03	Not Given	12.00	12.45	D	Brown CLAY		23										

Note: # Non accredited; NP - Non plastic

Comments:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Houte

Burokile

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Date Reported: 15/12/2020 GF 238.12

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404																																		TIVITO	an in	ente	1 30
Clie	nt:			BWB	3 Coi	nsultir	ng Li	mite	d																С	lient	Re	efe	ren	ice:	B	MG2	109)			
Clie	nt Ac	ldress:																								J	ob	Nu	ımt	oer:	20)-441	142				
				5th F	loor	, Wate	erfror	nt Ho	ouse	Э,																Da	te S	Sar	npl	led:	10)/11/	202	0			
				NOTTI	ngna	am, N	G2 3	JQ																		Dat	e F	Rec	eiv	ed:	18	3/11/	202	0			
Cor	tact:			Imog	jen V	Nort																				D	Date	эT	est	ted:	04	/12/	202	0			
Site	Add	ress:		Trow	/brid	ge WF	RC																			5	San	nple	ed	By:	N	ot Gi	ven				
Tes	ting o	carried o	ut at i2	Anal	vtica	- al Limi	ited.	ul. F	Pioni	erov	v 39	, 41-	71	1 Ru	da S	Slas	ka, I	Pola	and											,							
Tes	st Re	sults:																																			
Lah	orato	rv Refer	ence.	1699	726																					De	nth	То	n [mŀ	3	00					
Hol	a No		onee.	BH01	1																				г	Dept	th F	Ras	e [ml.	3	50					
San	nnle l	Referenc	e.	Not C	Give	n																			-	S	ami	nle	Tv	ne:	B						
Sar	nple I	Descripti	ion:	Brow	/n ve	erv cla	vev	verv	san	dv S	SILT																	p	• •	p 0 .	_						
Sar	nple	Preparati	ion:	Sam	ple v	, was qu	uarte	ered,	ove	n dr	ied	at 10	06.0	°C a	and	bro	ken	dov	vn b	y h	and	ł.															
	· ·				SI	LT .							SA	AND						,		GF	RAV	'EL							Ee				20		-
		CLAY	Fine	•	Mec	dium	C	oarse	;	F	ine		Me	dium		Со	arse		Fi	ne		Me	ediu	ım		Coar	se			DDL			800		(5		_
	100																1				1	TII	Î	Î						ĪΤ			1				1
	90	╂──┼						\vdash				\land	_		+		-	_					+	-	-		-				++	+-	+	\vdash	┼┼		
	80																																			11	
	70									\boldsymbol{X}																											
%	70																																		TT		
b	60	╏──┤			$\left \right $			Æ	┼╋	$\left \right $			+	+		++	-	╀		+		+++	-	+	+		\vdash	H			+	+-	+	+	┼┼	₩	
ssir	50								_ _															_							4	_		\square			
Ра	40																																				
age	40			\square																															Π		
enti	30												-				+			+				+	+						+	+	+	++	╈	++	
erc	20	┟──┼											_	_			-						-		-						H	_	—	\vdash			
σ.	10																																				
	10																																				
	0					1					1	<u> </u>	-		-	+ 1	-	-		_			10	-	-				1	100	<u> </u>	_	_			10	00
	0.	001			0.0	, ,				0.	. 1			Pa	rticl	e S	ize	mr	n				10							100						10	00
			Sie	ving			Т			Se	dim	enta	tio	n						S	am	ple	Pr	оро	rtio	ns						% (dry i	mas	s		
	Do	rtiolo Siz	70 mm	0/	Do	ooing		Dortic			mm		0/. r	2000	ina			V	ery	coa	irse												0.0	0			
	га			70	Га	ssing		antic	Je c	bize			70 F	-ass	ing			G	rave	əl													0.70	0			
		500			10	00			0.06	630				68				S	and													3	31.1	0			
		300			10	00			0.04	92				65				Si	ilt														36.8	0			
		150			10	00			0.03	350				63				С	lay														31.4	.0			
	\vdash	120 QA			10	0	_⊩		0.02	81		+		<u>00</u>		_																					
		75			10	00			0.01	33				46				Г			Gra	ndin	na	Δna	lvsi	\$			T								
	⊢	63			10	00			0.00)17		+		30		_		D	100				- 3 '		.,	-	m	m	┢				10	l			
		50			10	00	─╟					\mathbf{T}						D	60								m	m	t			0	.03	14			-
		37.5			10	00				_								D	30			_		_			m	m	L								
		28			10	00												D	10								m	m									
		20			10	00												U	nifo	rmi	ty C	Coef	fici	ent									> 19	9			
		14			10	00												C	urva	atur	e C	oef	fici	ent		~			Ļ		_			<u> </u>			
		10			10	00						-						0	nito	rmi dər	ty C	Joet	TICI	ent	And		e⊞ 1⊿6		nt o	01 (20	Jur	/atur ⊥ ^1	e ca	alcu	late	ed i	n
		0.3			10	0						-						a	5001	uai	ice	witi		5 L	IN IC	50	140	000	-2.	20	04	FAI	. 20	15			
		3.35			10)0		Part	icle	den	sitv	(as	sun	ned)		_																					
		2			99	9			2.6	65 65	0.1	Mg	/m3	3																							
		1.18			99	9						<u> </u>																									
		0.6			99	9																															
		0.425	5		98	8																															
		0.3			9	7																															
		0.212	2		94	4	_																														
	⊢	0.15	3		90	0 8	_																														
Not		sted in A	, Accord	ance	with	BS12	 77·P	art 0	>-10(، nc	lau	sec (२ २	and	95																						
								Z		, (2.0																						

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed: Houika

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Clear. We Consuling Limited Clear. Biology and State S	404	1									Environme	ental Sc
Client Address Bit Floor, Waterfront House, Not Stander, 2004 1970 2020 Data Recordse, 2014 2010 Data Recordse, 2014 2015 Data Reco	Clie	ent:	BWB Consulting	Limited					Client Refe	erence: BN	/IG2109	
Contact: Indegree/With Date Received: With 1/2/2020 Site Actives: Troubling careful of all and received: Sampled By: Not Given Test Results: International and and received: Depth Top [m] 7.00 Sample Reference: 199722 Depth Top [m] 7.00 Sample Reference: Not Given Sample Reference: Sample Reference: Sample Reference: Sample Reference: Sample Reference: Not Given Sample Reference: Sample Reference: Not Given Sample Reference: Sample Reference: Not Given Sample Reference: Sample Reference: Sample Reference: Not Given Sample Reference: Sample Reference: Sample Reference: Sample R	Clie	ent Address:	5th Floor, Waterf Nottingham, NG	front House, 2 3DQ					Job Ni Date Sa	umber: 20 mpled: 10	-44142 /11/2020	
Contact: Indeget work Date Tester: Testing carried out at 2 Analytical Limited; ul. Pionierow 39, 41-711 Rude Sleeke, Polend Depth Top [m]; 7.00 Test Results: Depth Top [m]; 7.00 Sample Bescherne: Sample Bescherne: Bid90732 Depth Top [m]; 7.00 Sample Bescherne: Not Given Sample Assemption: Sample Assemption: Sample Bescherne: Not Given Sample Assemption: Sample Assemption: Sample Assemption: Sample Description: Somple Wass quatered, oven dired at 077 7° card broken down by hard. Coaster Coaster Coaster Boulders Boulders Update Fine Medium Coaster Fine Medium Coaster Coaster Boulders Boulders Update Fine Medium Coaster Fine Medium Coaster Coaster Coaster Boulders Boulders <td>~</td> <td></td> <td>luce and a Minut</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Date Red</td> <td>ceived: 18</td> <td>/11/2020</td> <td></td>	~		luce and a Minut						Date Red	ceived: 18	/11/2020	
Sample OP, Not Swell Test Results: Depth Top (m): 7.00 Depth Top (m): 7.00 Depth Top (m): 7.00 Sample Reference: 1099732 Depth Top (m): 7.00 Sample Reference: Not Given Sample Reference: Not Given Sample Reference: Not Given Sample Reference: Sample was guadred; core wided al 10.77 °C and broken down by hard. Sample Reference: Sample was guadred; core wided al 10.77 °C and broken down by hard. Out of the Meduation Coaree for the Meduation Coaree for the Meduation Coaree for the Meduation Coaree for the Meduation of the Meduatio of the Meduation of the Meduation of the	Col	ntact:	Imogen wort	~					Date I	ested: 04	/12/2020	
Status Status Depth Tap (m): 7.00 Laboratory Reference: Br09732 Depth Tap (m): 7.00 Sample Reference: Not Given Sample S		e Address.	i2 Analytical Limite	d ul Pionierow 30	11-711 Ruda	Slaska H	Poland		Samp	еа Бу. но	Given	
Test Netality Depth Top (m): 200 Depth Top (m): 7.00 Sample Reference: Not Gven Sample Reference: Not Sven Sample Reference: Not Sven Sample	Tes	st Booulto	iz Analytical Limite	u, ul. Fionierow 39	, 41-711 Ruua	31d3Kd, F	-Olariu					
Labola No. Biology Relience 1039 22 Buble No. Biology Relience 1039 22 Sample Relience: Not Given Synthy gravely very sandy sity CLAY Sample Despiration: Srown sightly gravely very sandy sity CLAY Sample Dreparation: Sample was quatered, oven dried 107.7 °C and broken down by hand. CLAY Fine Medum Course Fine Medum Course Fine Medum Course COBRES BOULDERS CLAY Fine Medum Course Fine Medum Course Fine Medum Course COBRES BOULDERS CLAY Fine Medum Course Fine Medum Course Fine Medum Course COBRES BOULDERS Medum Course Fine Medum Course COBRES BOULDERS CLAY Fine Medum Course Fine Medum Course COBRES BOULDERS Medum Course C	le	St Results:	1600722						Donth T	on [m], 7 (0	
Note The theorem Description Derive Stample Reference: Not Given Sample Reference: Sample Re	Lac		BH01						Depth Ro	op [m]: 7.0	50	
Sample Description: Brown Bighty gravely very sandy silty CLAY Sample Description: Sample Description: Sample Description: South of the second sec	Sar	e No nnle Reference [.]	Not Given						Sample	ο Τνηρ΄ Β	0	
Sample Programitie: Sample was quartered, oren dired at 17.7 °C and broken down by hand. Image: Programitie: Sample was quartered, oren dired at 17.7 °C and broken down by hand. Image: Programitie: Sample vas quartered, oren dired at 17.7 °C and broken down by hand. Image: Programitie: Sample vas quartered, oren dired at 17.7 °C and broken down by hand. Image: Programitie: Sample vas quartered, oren dired at 17.7 °C and broken down by hand. Image: Programitie: Sample vas quartered, oren dired at 17.7 °C and broken down by hand. Image: Programitie: Sample vas quartered, oren dired at 17.7 °C and broken down by hand. Image: Programitie: Sample vas quartered, oren dired at 17.7 °C and broken down by hand. Image: Programitie: Sample vas quartered, oren dired at 17.7 °C and broken down by hand. Image: Programitie: Sample Programitie:	Sar	nple Reference.	Brown slightly ar	avelly very sandy s	silty CLAY				Gampie	стуре. В		
Shot Shot Grading Coarse Consults noutbers 0 <	Sar	nple Preparation:	Sample was qua	rtered, oven dried	at 107.7 °C and	d broken	down by har	nd.				
Ucht Fine Medium Coarse Fine Medium Fine Medium Fine <			SILT		SAND			GRAVEL		COBBLES		
Note Section S			ne Medium	Coarse Fine	Medium	Coarse	Fine	Medium	Coarse	OODDEED	BOOEDERG	
Single Proportions % dry mass Particle Size mm % Passing Particle Size mm % dry mass Sizeving Seleving Seleving Seleving Seleving Particle Size mm % Passing Particle Size mm % dry mass Sizeving Seleving Seleving Seleving Seleving Particle Size mm % Passing Particle Size mm % dry mass Sizeving Seleving Seleving Seleving Sizeving Sizeving Seleving Seleving Sizeving Sizeving Seleving Seleving Sizeving Sizeving Seleving Seleving Sizeving Sizeving Sizeving Sizeving Sizeving Sizeving Sizeving Sizeving <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>												
Note Section S		90										
Note: Size/m Reading Particle Size mm Nessing Particle Size Mg Ne		80		/								
Signature Section		70										
Sieving Sedimentation Particle Size mm % Passing Particle Size mm % Passing Sieving Sedimentation mm 10 10 0.01 0.01 0.01 0.027 58 10 0.01 10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0247 58 0.010 0.0179 0.017 30 0.017 30 0.017 30 0.017 30 0.010 0.017 0.0100 0.017 0.0100 0.017 0.0100 0.017 0.0100 0.017 0.0100 0.017 0.0100<	%											
Signed 0 Signed 0	ing	60		a								
Sieving Sedimentation Particle Size mm % Passing Particle Size mm % Passing Sieving Sedimentation Topological 0.01 Sieving Sedimentation Sieving Particle Size mm 90 100 0.01 0.01 0.01 0.01 0.01 0.0490 125 100 125 100 0.0176 55 63 100 125 100 0.0176 55 100 0.017 28 100 14 100 10 100 114 100 10 100 114 100 10.6 95 0.3 89 0.15 82 0.212 85 0.3 89 0.15 82 0.212 85 0.15	ass	50										
000000000000000000000000000000000000	Б	40										
Bill Section	ntag	30										
B 20 10 10 10 10 10 100 100 100 Sieving Sedimentation mm 10 100 1000 1000 Sieving Particle Size mm % Passing Particle Size mm % Passing Sedimentation mm 10 100 1000 Size ing 0.0100 0.0630 62 300 100 0.0346 60 35.80 Sitt 30.50 Clay 31.60 Sitt 30.50 Clay Sitt Sitt	Cer											
10 0.01 0.1 Particle Size mm 10 100 1000 Sieving Sedimentation Particle Size mm 10 100 1000 500 100 0.0630 62 300 100 0.0346 60 125 100 0.0247 58 63 30.50 Clay 31.60 125 100 0.0176 55 56 56 56 56 56 56 56 56 56 56	Ре	20										
Sieving Sedimentation Particle Size mm % Passing 500 100 0.0630 62 300 100 0.0490 60 125 100 0.0247 58 90 100 0.0129 53 63 100 0.0129 53 63 100 0.0176 55 63 100 0.0172 50 10 100 0.0176 55 63 100 0.0176 55 100 0.0172 50 10 100 0.0176 55 100 0.0176 55 100 0.0176 55 100 0.0176 50 100 0.0176 100 20 100 mm 0.0501 10 100 mm 0.0501 10 100 mm 0.0174 10 100 mm 0.0174		10										
0.001 0.01 0.1 Particle Size mm 10 100 1000 Particle Size mm % Passing Particle Size mm % Passing Sample Proportions % dry mass 500 100 0.0630 62 Sand 35.80 300 100 0.0346 60 Sand 35.80 125 100 0.0247 58 Sand Silt 30.50 75 100 0.0176 55 5 5 100 0.0172 50 50 100 0.0017 30 100		0										<u> </u>
Sieving Sedimentation Particle Size mm % Passing particle Size mm % Passing 500 100 0.0630 62 300 100 0.0490 60 150 100 0.0346 60 125 100 0.0247 58 90 100 0.0129 53 63 100 0.0017 30 50 100 0.0017 30 28 100 100 100 20 100 100 100 14 100 100 100 5 100 100 100 14 100 100 100 3.35 99 Particle density (assumed) 2.65 Mg/m3 1.18 97 0.6 95 0.3 89 0.212 85 0.15 82 0.063 62 Note: Tested in Accordance with BS 1377:Part 2:1990, clauses 9.2 and 9.5		0.001	0.01	0.1	Partic	le Size	mm	10		100	-	1000
Particle Size mm % Passing Particle Size mm % Passing 500 100 0.0630 62 300 100 0.0490 60 150 100 0.0346 60 125 100 0.0247 58 90 100 0.0176 55 75 100 0.0177 30 50 100 0.0017 30 50 100 0.0017 30 28 100 100 100 10 100 100 100 14 100 100 101 10 100 100 101 11 10 100 100 2 98 2.65 Mg/m3 0.425 93 0.3 89 0.212 85 0.16 82 0.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2: 1990, clauses 9.2 and 9.5		Si	eving	Sedimo	entation		Sar	nple Propor	rtions		% dry mass	
500 100 0.0630 62 300 100 0.0490 60 150 100 0.0247 58 90 100 0.0176 55 75 100 0.0017 30 63 100 0.0017 30 50 100 0.0017 30 50 100 0.0017 30 20 100 0.0017 30 20 100 0.00174 20 10 100 100 100 3.35 99 Particle density (assumed) 20 3.35 99 Particle density (assumed) 2.65 0.6 95 0.425 93 0.3 89 0.212 85 0.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		Particle Size m	m % Passing	Particle Size mm	% Passing		Very coars Gravel	e			2.10	
300 100 0.0490 60 150 100 0.0346 60 125 100 0.0247 58 90 100 0.0176 55 75 100 0.0129 53 63 100 0.0017 30 50 100 0.0017 30 28 100 100 100 20 100 100 100 10 100 100 100 3.35 99 Particle density (assumed) 2.65 Mg/m3 1.18 97 0.6 95 0.15 82 0.212 85 0.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		500	100	0.0630	62		Sand				35.80	
150 100 0.0346 60 125 100 0.0247 58 90 100 0.0176 55 75 100 0.0129 53 63 100 0.0017 30 50 100 0.017 30 28 100 0.00174 100 28 100 0.00174 100 10 100 0.00174 100 10 100 0.00174 100 10 100 0.00174 29 14 100 0.00 100 3.35 99 Particle density (assumed) 2.65 Mg/m3 1.18 97 0.6 95 0.14688-2: 2004 + A1: 2013 0.212 85 0.15 82 0.063 62 Note: Tested in Accordance with BS S1377:Part 2:1990, clauses 9.2 and 9.5 10.5 10.5		300	100	0.0490	60		Silt				30.50	
125 100 0.0247 58 90 100 0.0176 55 75 100 0.0129 53 63 100 0.0017 30 50 100 0.0017 30 37.5 100 0.0017 30 28 100 0.00174 0.00174 20 100 0.00174 0.00174 14 100 0.00174 0.00174 14 100 0.00174 0.00174 10 100 0.00174 0.00174 10 100 0.00174 0.00174 10 100 0.00174 0.00174 10 100 0.00174 0.00174 10 100 0.00174 0.00174 10 100 0.00174 0.00174 10 100 0.00174 0.00174 10.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		150	100	0.0346	60		Clay				31.60	
90 100 0.0176 55 75 100 0.0129 53 63 100 0.0017 30 50 100 100 100 37.5 100 100 100 28 100 100 100 100 14 100 100 100 29 14 100 100 100 29 3.35 99 Particle density (assumed) 2.65 Mg/m3 1.18 97 0.6 95 0.425 93 0.3 89 1.18 97 0.63 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5 9.5 9.5		125	100	0.0247	58							
10 100 0.017 30 63 100 0.0017 30 50 100 0 0 37.5 100 0 0.0017 28 100 0 0.00174 20 100 0 0.00174 10 100 0 0.00174 10 100 0 0.00174 10 100 0 0.00174 3.35 99 Particle density (assumed) 2.65 0.6 95 0.425 93 0.3 89 0.212 85 0.063 62 0.063 62		90 75	100	0.0176	53		G	rading Anal	veie	1		
50 100 mm 0.0501 37.5 100 0 0.00174 28 100 0 0.00174 20 100 0 0.00174 10 100 0 0.00174 10 100 0 0.00174 10 100 0 0.00174 10 100 0 0.0174 3.35 99 Particle density (assumed) 2.65 Mg/m3 1.18 97 0.6 95 0.425 93 0.212 85 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5 9.5		63	100	0.00120	30		D100		ysis mm		6.3	
37.5 100 mm 0.00174 28 100 <td></td> <td>50</td> <td>100</td> <td></td> <td></td> <td></td> <td>D60</td> <td></td> <td>mm</td> <td></td> <td>0.0501</td> <td></td>		50	100				D60		mm		0.0501	
28 100 mm 20 100 mm 14 100 mm 10 100 mm 6.3 100 mm 5 100 mm 3.35 99 Particle density (assumed) 2 98 2.65 0.6 95 0.425 93 0.3 89 0.212 85 0.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		37.5	100				D30		mm		0.00174	
20 100 > 29 14 100		28	100				D10		mm			
14 100 Image: Curvature Coefficient 10 100 Image: Curvature Coefficient 6.3 100 Image: Curvature Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013 3.35 99 Particle density (assumed) 2 98 2.65 1.18 97 0.6 95 0.425 93 0.3 89 0.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		20	100				Uniformity	Coefficient		_	> 29	
10 100 Information of constants of		14	100	_			Luniformity		and Cooffici	opt of Cur	vaturo calculato	d in
5 100 3.35 99 Particle density (assumed) 2 98 2.65 Mg/m3 1.18 97 0.6 95 0.425 93 0.3 89 0.212 85 0.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		6.3	100	_			accordance	e with BS EN	N ISO 14688	3-2: 2004 +	- A1: 2013	um
3.35 99 Particle density (assumed) 2 98 2.65 Mg/m3 1.18 97 0.6 95 0.6 95 0.425 93 0.3 89 99 0.212 85 0.15 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		5	100									
2 98 2.65 Mg/m3 1.18 97 0.6 95 0.425 93 0.3 89 0.212 85 0.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		3.35	99	Particle density	(assumed)							
1.18 97 0.6 95 0.425 93 0.3 89 0.212 85 0.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		2	98	2.65	Mg/m3							
0.0 95 0.425 93 0.3 89 0.212 85 0.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		1.18	97	-1								
0.3 89 0.212 85 0.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		0.6	95	-1								
0.212 85 0.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		0.425	89	-1								
0.15 82 0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		0.212	85	Ť								
0.063 62 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		0.15	82]								
Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5		0.063	62									
	Not	e: Tested in Accor	dance with BS1377	(:Part 2:1990, claus	ses 9.2 and 9.5)						

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404	1									Environmen	tal Sc
Clie	ent:	BWB Consulting	Limited					Client Refe	erence: BN	IG2109	
Clie	ent Address:	5th Floor, Water Nottingham, NG	front House, 2 3DQ					Job Ni Date Sa	umber: 20 mpled: 10	44142	
Cal	ataati	Imagan Wort						Date Red	Ceived: 18	11/2020	
Site	Address	Trowbridge WR	.					Samp	led By: No	t Given	
Tes	stina carried out at	i2 Analvtical Limite	- ed. ul. Pionierow 39	. 41-711 Ruda	Slaska. H	Poland		oump	icu by. He		
Te	st Results:			,							
Lab	oratory Reference	: 1699756						Depth T	op [m]: 4.0	0	
Hol	e No.:	BH02						Depth Ba	se [m]: 4.4	.5	
Sar	mple Reference:	Not Given						Sample	e Type: B		
Sar	mple Description:	Brown very claye	ey very sandy SILT								
Sar	mple Preparation:	Sample was qua	artered, oven dried	at 107.7 °C and	l broken	down by har	nd.		1		÷
	CLAY	SILT ne Medium	Coarse Fine	SAND Medium	Coarse	Fine	GRAVEL Medium	Coarse	COBBLES	BOULDERS	
	100										1
	90										-
	80										
	50										
%	70										1
ng	60										-
assi	50										-
e D	40										-
itag	30										
rcer	00										
Pe	20										1
	10										-
	0										4
	0.001	0.01	0.1	Partic	le Size	mm	10		100	10	000
	Si	ieving	Sedim	entation		Sar	nple Propo	rtions		% dry mass	
	Particle Size mr	m % Passing	Particle Size mm	% Passing		Very coars	e			0.00	
	500	100	0.0630	64		Sand				34.50	
	300	100	0.0502	61		Silt				37.10	
	150	100	0.0357	58		Clay				27.20	
	125	100	0.0257	50							
	90 75	100	0.0136	38		G	rading Anal	vsis			
	63	100	0.0017	26		D100	i uuiiig / iiui	mm		14	
	50	100				D60		mm		0.0432	
	37.5	100				D30		mm		0.00332	
	28	100				D10 Uniformity	Coefficient	mm		> 25	
	14	100				Curvature	Coefficient			~ 25	
	10	99				Uniformity	Coefficient a	and Coefficie	ent of Curv	ature calculated	in
	6.3	99				accordanc	e with BS El	N ISO 14688	3-2: 2004 +	A1: 2013	
	5	99									
	3.35	99	Particle density	(assumed) Ma/m3							
	1.18	98	2.00	Wg/III3							
	0.6	98	1								
	0.425	97									
	0.3	95	μ								
	0.212	92	-								
	0.063	64	1								
Not	te: Tested in Accor	dance with BS1377	7:Part 2:1990, claus	ses 9.2 and 9.5							
_											

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404	1																																		-		21111	iein	
Clie	ent:			BWB	Со	onsultin	ng Lim	ited	l																	(Clie	nt l	Ref	fere	enc	ce:	ΒN	G2′	109				
Clie	ent A	Address:		5th FI Nottin	looi ngh	r, Wate am, N	erfront G2 3D	Ho Q	use	,																	D	Jo ate	b N Si	Nun am	nb iple	er: ed:	20- 10/	441 11/2	42 2020	0			
Cal		4.		Imog	on I	Wort																					D	ate	Re	ece	eive	ed:	18/	11/2	2020	U n			
Site		l. droce:		Trowl	brid	lae WF	25																					Da	aie	ne olo	d F	eu. Rv:	No ⁴	t Giv	2021 Ven	0			
Tes	tino	u carried	out at i	2 Analy	/tic:	al Limi	ted u	I Pi	onie	ero	w.3	94	1-71	11 F	ิเมสะ	a .S	las	ska F	Pola	nd								08	ann	pie	u	Jy.	110		/011				
Te	st R		our ur iz		1100		icu, u		orne	,10	W 0	<u>,</u> т			luud	10	nac	sna, r	014	nu																			
l ob	orat	tory Refe	, aronco:	16007	760)																					П)on	th -	Tor	n [r	m].	70	0					
Hol	o No		nence.	BH02	, 00	,																					De	ocp onth	ui NR:	ase	ין כ רו כ	m]·	7.5	0					
Sar	nple	e Referer	nce.	Not G	Sive	en																						Sar	np	le 1	Γvr	ne.	B	0					
Sar	nple	Descrip	tion:	Brown	n sl	liahtly o	aravel	lv s	and	v v	erv	siltv		AY														ou.	ΠP				-						
Sar	, nple	· Prepara	ation:	Samp	ble	was qu	Jartere	ed, o	ove	n d	riec	lat	106.	.3 °(C ai	nd	bro	oken	dow	/n by	y ha	and	ł.																
					S	ILT							S	SAN	D						-		G	RA۱	/EL					с	OB	BLE	s	F		DEI	25		T
	100		Fin	e	Me	dium	Coa	arse		F	Fine		M	ediu	Im		Co	arse		Fir	ne		Μ	ediu	Im		Co	arse	Э										
	100	, 1														-			77			Π								Π		Π	ļ						
	90)										<u> </u>	-								+				+	+			1					-					
	80) 								\rightarrow	\sim			\vdash			$\left \cdot \right $		+		+			+		+		+	+				+	-	+	\vdash		++	
	70	,					<u> </u>					-									_													_		\square			H
%	60																																						
sing	00	1			1					П																											П		
ase	50)							-												+				t	+			+				+	-	+				-
Jе F	40)							_			-	-				$\left \cdot \right $		-		+		++-	+	+	+	+		+				+	-	+	\vdash		++	
ntaç	30	,																			_				-				4				_			\square			H
irce	20																																						
Ре	20	1								Π									Т		Τ																		
	10)																			1			T	1				1										-
	C) —			Щ				_		-	!	-							- !!				4		-						<u> i</u>	-		-				4
	C	J.001			0.0	J1				0).1			F	Part	icle	e S	ize	mn	n				10							1	00						10	000
	Г		Sie	ving						Se	din	nen	atio	on							Sa	am	ple	Pr	opo	orti	ons	s		Т			C	% d	ry r	nas	s		
		Particle S	izo mm	0/2	Pa	eeina	Pa	ortic	<u>ہ</u>	izo	m	n	%	Pa	eeir	a			Ve	ery c	coa	rse												(0.00)			
	Ľ			/0	i a	Issing				120	,		70	i a	3311	ig			Gı	rave														2	2.60)		_	
	_	50	0		1(00		0	0.06	41		_		7	7				Sa	and														2	20.5	0			
	-	30	0		1(00			0.04	26		-		7	<u>р</u> 2				C	IL av														3 4	4.0	0			
	-	12	5		1(00		0	0.02	30		-		7	3		_		0	ay														-	- 0	0			
		90)		1(00		C	0.01	65				6	9																								
		75	6		1(00		C	0.01	22				6	4						(Gra	adir	١g	Ana	alys	sis												
	L	63	}		1	00		C	00.00	16				4	2				D	100								1	mm	۱					14				
		50)		1(00	_ _					+							De	50								1	mm	1				0.0	008	27			
	-	28	5 k		1(00						_							D.	10								r 	mn mm	1									
	┢	20)	1	1(00						+					-		Ur	nifor	mit	ty C	Coe	ffic	ent			-		-				>	> 5.	1			
	F	14	ļ		1(00						╧							С	ırva	ture	e C	oef	fici	ent														
		10)		9	9													Ur	nifor	mit	ty C	Coe	ffic	ient	an	d C	Coe	ffic	ien	nt c	of C	urv	atur	e ca	alcu	lat	ed	in
		6.3	3		9	8						_							ac	cord	dan	nce	wit	h E	IS E	ΞN	ISC) 14	468	38-2	2: 2	200)4 +	A1:	20	13			
		5	F		9	8		orti		dor	a dita				<u>ط</u>)																								
	-	3.3	5		9	70 17	-	antio	26	uer 5	ISIL	6) / M	a/m	me 3	u)																								
	-	1.1	8		9)7			2.0	<u> </u>			9/11																										
		0.6	6		9	5																																	
		0.42	25		9	94																																	
		0.3	3		01																																		
	┢	0.2	12 5		8 9	58 16																																	
	\vdash	0.0	53 53		7	7	\neg																																
Not	ட е: Т	ested in	Accord	ance w	vith	BS13	77:Pa	rt 2:	199	90,	cla	uses	9.2	2 an	id 9.	5																							

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404	1	1																																	E	nvirc	nm	ent	al Sc
Clie	ent:			BWB	S Co	nsultir	ng Li	imite	əd																	(Clie	nt F	Ref	ere	enc	ce:	ВM	iG2′	109				
Clie	ent A	Address:		Eth E	-	Mat	orfro	mt L	lour																			Jol	ъN	lum	۱be	er:	20-	441	42				
				5th F	loor	, vvate am N		nt H	າous າ	se,																	D	ate	Sa	amp	ple	ed:	10/	11/2	202	0			
				Notti	iyna	ann, n	02 (JDQ	-																		D	ate	Re	cei	ive	ed:	18/	11/2	202	С			
Cor	ntac	t:		Imog	en V	Nort																						Da	te	Tes	ste	ed:	04/	12/2	202	С			
Site	e Ad	dress:		Trow	brid	ge WF	RC																					Sa	mp	olec	d E	3y:	Not	t Giv	/en				
Tes	sting	r carried o	ut at i2	? Analy	ytica	al Limi	ited,	ul. I	Pior	niero	ow 3	9, 4	1-71	11 Ri	uda	Sla	ska	, P	Pola	nd																			
Te	st R	Results:																																					
Lab	ora	tory Refer	ence:	1699	768																						D	ept	h T	ор	[n	n]:	5.5	0					
Hol	e No	0.:		BH03	3																						De	pth	Ba	ise	[n	n]:	6.0	0					
Sar	nple	e Referenc	ce:	Not G	Sive	n																					:	San	npl	еT	Ър	be:	В						
Sar	nple	e Descripti	ion:	Brow	n sli	ightly	grav	elly.	clay	yey	silty	SAI	ND		_																								
Sar	nple	Preparat	ion:	Samp	ple v	was qu	uarte	ered	, ov	en o	dried	at 1	107.	.7 °C	; an	d br	oke	n c	wot	n by	y ha	and	d.																F
		CLAY	Fine		SI Mer	l <u>L I</u> dium	0	oars	-		Fine		<u>м</u>	<u>AND</u> ediun) m	C	oars	2		Fir	10		GI M	RA edi	<u>VEL</u> um		Co	arse		С	OBI	BLE	s	E	3001	_DEF	RS		
	100)				aiain						!			<u> </u>											•		130	+	!Tł	T ?	f	<u> </u>	_					-
	ar																	_		-	1			T															
	30	, I																																					
	80)					-	\square													1			Ħ		+		1	+				t	+	+		+	╈	
	70)					-	+	\rightarrow			F	-			+++			_		-	+		╟	-	+	-	+	+				+	+-	-	\vdash	┼┼	┼┼	
۲ ۳	60)									\boldsymbol{V}					Ш.								4									1				Ц		
sinç																																							
Jas	50	,						\square		/																											Π		
ge	40)			_	_			-						++						+			╈	+	+					H		+	+	+	+	+	╈	
nta	30)					_	\vdash	\rightarrow				-						_	_	_			4	-	-		-	-	-	4		+	-	-	\vdash	╟		
erce	20																																						
Å,	20																																						
	10)						\square														T		T									1	<u> </u>	\top				
	C										<u>Ц</u>	!	-						_					4		-	_		<u> </u>	Цi			-		-				
	(J.001			0.0)1					0.1			Ρ	artio	cle S	1 Size	•	mm	ı				10							1(00						10	100
	Г		Sie	vina			П			S	edin	nent	atic	on			1		—		Sa	am	ole	P	qor	orti	ion	s		T			C	% d	rv r	nas	s		
) a mti a la Cia		J ov	De	!		Davit	iala	<u></u>			0/	Daa			1		Ve	ery c	coa	rse)				-	-						(0.00)			
	F	article Siz	ze mm	%	, Pa	ssing	1	Part	icie	SIZ	e mn	n	%	Pas	sing	J			Gr	ave	el												_	(ð.40)			
		500			10	00			0.0	630)			45	j				Sa	and														4	8.2	0			
		300			10	00			0.0)512	2			43	<u>;</u>				Sil	t														2	3.9	0			
	_	150			10	00	-		0.0	364	1	_		41	<u> </u>		4		Cla	ay														2	1.5	0			
	_	90			10	00			0.0	120	1			36	, 																								
		75			10	00			0.0)135	5			34							(Gra	adiı	na	An	alv	sis			T									
	F	63			10	00	─╟		0.0	017	7	+		20)		1		D1	00				. 9				n	nm	╈					14				
		50			10	00											1		D6	60								n	nm	Ť				0	.09	9			
		37.5			10	00]		D3	30								n	nm					0.0	007	32			
	Ĺ	28			10	00													D1	0								n	nm	T			_		_	_			
		20			10	00						_							Un	hifor	mit	ty (Coe	ffic	ien	t				_			_		> 58	}			
	-	14			10	JU 7						_					-			irva	ture			ffic	ient	t or	40	`oof	fici	0.001	t 0	f C		otur			lot	ad	in
	_	6.3			9	/ 6													ac	cor	mii dan	iy t ice	wit	h F	sen SS F	⊺ar =N	ia C ISC	,0ei) 14	68	en 8-2	ιυ 		4 +		- 20	13	au	eu	IU
		5			9	5																								° -			•	,					
		3.35			9	5		Par	ticle	e de	nsity	/ (a	ssu	med	1)																								
		2			9	4			2.	.65	-	M	g/m	3																									
		1.18			9	2																																	
	Ļ	0.6			8	8											1																						
	┝	0.425	2		8	4	\parallel										1																						
	┝	0.3	2		7	9 6	∦		—								1																						
	┢	0.212	-		7	3																																	
	┢	0.063	3		4	5																																	
Not	e: T	ested in A	Accord	ance v	with	BS13	77:F	'art	<u>2:1</u> 9	<u>990</u> ,	, clau	ises	9.2	2 and	<u>19.5</u>	5																							
_																																							

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed: Marika

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041																																						inte	-	
Clie	nt:			В	WB	B Co	onsultir	ng L	imit	ed																		Clie	ent	Ref	ere	enc	e:	BMG	G21	09				
Clie	nt Ao	ddress	:	5	th F	loo	r, Wate	erfrc	ont H	Hou	se,																	_	Jo	b٨	lun	nb	er:	20-4	414	2				
				N	lottii	ngh	am, N	G2 (3DC	כ	,																		Date	Sa Sa	am	ple	ed:	10/1 10/1	1/2	020				
Com	to ot.			lr.		ion	Wort																					D	ate	Re	ece	IVE	ed:	18/1 n4/1	1/2	020				
Con	act:	r000.		н Т	irow	bric	100 W/F	PC																					Da			รเย	ea:	04/ I Not	Civ	020 on				
	Auu tina i	ness. carrier		י א <i>ו 1</i> 2 ל	10w Naali	vtic	aye wi al Limi	itod		Dio	nior	<u>~</u> w	30	11.	71	1 P	uda	SI	acl	ra E	Polar	d							30	1111	Jiet		by.	NOL						
Tes	any o		1 Out 6	al IZ F	liaij	yuc	ai Liitii	ieu,	uı.	FIU	niei	0	39,	41	71		uua	310	asr	а, г	Ulai	u																		
Lob	or ne		s. Foron	oo· 1	600	771	1																					г	200	16 7	Fon	. Г и	<u>_1</u> .	7 50	`					
			leren	B	099	יייי א	I																						oep			יןן י הן י	nj. nl:	1.30 8.00	,)					
San	nle	 Refere	ance.	N	Int C	J Give	n																					De	spu Sai	n Da mnl	عدد م T	; [II [Vr	п]. 	8.00 R	,					
San	nple	Descri	intion	· B	row	nis	h arev	slia	htlv	sar	ndv	ver	v cla	ave	v S	ILT													oui	ΠP	0 1	۶ŀ	<i>.</i>							
San	elar	Prepa	ration	: S	am	ple	was qu	uarte	erec	 ۱, ۵۱	/en	drie	ed a	t 10) 06.3	 3 °C	; an	d b	roł	(en d	dowr	ו by	hai	nd.																
		0.4				's	ILT ·			,					SA	١ND)					,			GR	AVE	L				0				P	~~~		<u> </u>		•
		CLA	Y	Fine		Ме	dium	С	Coars	se		Fir	ne		Ме	diun	n	(Coa	rse		Fine	9		Me	dium		Co	arse		0			,	D	JULL		S		-
	100											_	-	1	-									Î	Π				Î		Î									
	90	-	+-			_		+	-				+		-			╫	╟		+				╫	-		-	+	+										
	80		_											_	_	_			4										4										_	
	70						1 mm	1																																
%	10					\checkmark	ſ																																	
ng	60							-										╈	H					+		\vdash				+										
assi	50	-		\wedge				-				_		-	_	-		┼┼	+		-		\square	-	╟	—	_	_	+	+								_		
പ്	40		4												_			Щ	4						1															
tag	20																																							
cen	30																	Π							Π															
Per	20					_		-										╈	Ħ											+										
	10	-	_	+				-					_	-	_	_		┼┼	+	-	-			-	╟	-	_			+							+			
	0						ļ					Ц				ļ			Ļ										ļ				L							
	0.	.001				0.0	01					0.1	1			Р	arti	cle	sliz	7e	mm				1	0						1(00						100)0
	_			<u></u>				—п									arti	010	- -				_																	
				Sievi	ng						2	sed	ime	nta	tio	n			_		Ve		Sai	mp	le I	ro	oort	ion	s		_			%	o dr	y m	ass			
	Pa	article	Size ı	mm	%	Pa	assing	ľ	Parl	ticle	Siz	ze r	nm		% F	Pas	sing	9			Gra	avel	Jais	se							+				0	.00				_
		50	00			1	00	-		0.0	065	2				94					Sa	nd									+				5	.70				
		30	00			1	00			0.0	046	5				91					Silt														49	9.80				
		1:	50			1	00			0.0	033	1				88	5				Cla	ıy													44	1.10				
		12	25			1	00	\square		0.0	023	8				83	5																							
	_	9	0			1	00	-		0.0	017	2				74			_						l'an a		lu				-									
		6	3			1	00	-		0.0	012	7				41	-		-		D1	00	G	rac	jini	y Ai	ialy	SIS		nm	+					5				
	-	5	0			1	00	-		0.1	001	1				- 1					D6	00								nm					0.0	057	7			
		37	7.5			1	00														D3	0							I	nm	ı									-
		2	8			1	00														D1	0							l	nm	۱									
		2	20			1	00														Un	iforn	nity	Сс	beff	icie	nt								>	3.5				
	_	1	4			1	00	\rightarrow											_		Cu	rvati	ure	Co	effi	cier	nt .													
		1	2			1	00	-											-		Un	itorn	nity		oeff vith	ICIE RS	nta ⊏N	nd (0e 1 ר	111C	ien	t 0		ırva 1 +	ture A 1 ·	cal 201	CUI8 ว	ate	d Ir	ı
		0	.3 5			1	00	-											-		act	Joru	and	,C V	vitii	00		100		+00	0-2	<u> </u>	200	+ · /	<u> </u>	201	0			
	_	3.	35			1	00	╉	Pa	rticl	e de	ens	ity	(as	sun	ned)																							
		2	2			1	00			2	2.65		,	Ňд	/m3	3	,																							
		1.	18			ç	99												1																					
		0	.6			ç	98																																	
		0.4	125			9	98	\parallel																																
	-	0	.ა 212			- <u>-</u> -	20 28																																	
	┢	0.2	15			ç	97	\neg																																
		0.0	163			- C	24	-																																
		0.0	000				74																																	
Note	e: Te	ested in	n Acc	ordan	ce v	with	BS13	77:F	Part	2:1	990), cl	aus	es (9.2	anc	19.5	5																						

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed: Marika Buroshile

Client:

BWB Consulting Limited

Moisture content

TEST CERTIFICATE

Determination of California Bearing Ratio

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: BMG2109

days

days mm Mg/m3

kg

kPa

Client Address:				Job Numbe	r: 20-44142
	Nottingham NG2 3DO	se,		Date Sample	d: 10/11/2020
	Nottingham, NG2 3DQ			Date Receive	d: 18/11/2020
Contact:	Imogen Wort			Date Teste	d: 08/12/2020
Site Address:	Trowbridge WRC			Sampled B	y: Not Given
Testing carried out at i2	? Analytical Limited, ul. Pior	nierow 39, 41-3	711 Ruda Slaska, Polano	d	
Test Results:					
Laboratory Reference:	1699724			Depth Top [m]: 0.20
Hole No.:	BH01			Depth Base [m]: 0.50
Sample Reference:	Not Given			Sample Type	e: D
Sample Description:	Brownish grey gravelly CL	AY			
Specimen Preparation	1:				
Condition	Remoulded			Soaking details	Not soaked
Details	Recompacted with specific	ed standard ef	fort using 2 5kg rammer	Period of soaking	
				Time to surface	
				Amount of swell recorded	
Material retained on 20	mm sieve removed	15	%	Dry density after soaking	
Initial Specimen details	Bulk density	2.06	Mg/m3	Surcharge applied	8
	Drv density	1.75	Ma/m3		4.8

Force v Penetration Plots

%

18

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior writen approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Houks Burokele

TEST CERTIFICATE

Determination of California Bearing Ratio

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Client Address:	BWB Consulting Limited 5th Floor, Waterfront House, Nottingham, NG2 3DQ			Client Reference: Job Number: Date Sampled: Date Received:	BMG2109 20-44142 10/11/2020 18/11/2020	
Contact:	Imogen Wort			Date Tested:	08/12/2020	
Site Address:	Trowbridge WRC			Sampled By:	Not Given	
Testing carried out at i2	? Analytical Limited, ul. Pionierow	39, 41-7	711 Ruda Slaska, Poland			
Test Results:						
Laboratory Reference:	1699753			Depth Top [m]:	2.00	
Hole No.:	BH02			Depth Base [m]:	3.00	
Sample Reference:	Not Given			Sample Type:	В	
Sample Description:	Dark brown slightly gravelly sand	dy CLAY				
Specimen Preparation	1:					
Condition	Remoulded			Soaking details	Not soaked	
Details	Recompacted with specified star	ndard eff	fort using 2.5kg rammer	Period of soaking Time to surface Amount of swell recorded		days days mm
Material retained on 20	mm sieve removed	12	%	Dry density after soaking		Mg/m3
Initial Specimen details	Bulk density	1.87	Mg/m3	Surcharge applied	8	kg
	Dry density	1.45	Mg/m3		4.9	kPa
	Moisture content	29	%			

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Harika Burokele

Summary of Point Load Strength Index Tests Results

Tested in Accordance with: ISRM: 2007, pages 125-132

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: BMG2109 Job Number: 20-44142 Date Sampled: 10/11 - 11/11/2020 Date Received: 18/11/2020 Date Tested: 07/12/2020 Sampled By: Not Given

BWB Consulting Limited

Client Address:

4041 Client:

5th Floor, Waterfront House, Nottingham, NG2 3DQ

Imogen Wort Contact: Site Address: Trowbridge WRC Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	2				ence	Test see l	Type SRM			Dime	nsions			be H	Point Strengt	t Load th Index
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks # (including water content if measured)	Specimen Refere	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	۶ ۳۳	Dps	Dps'	Force P	g Equivale 3 diameter,	ls MPa	ls(50)
1699738	BH01	Not Given	16.50	16.95	D	Dark grey CLAY	WC = 13.5%	1	D	U	YES	37.4	40.2	40.0	29.0	0.3	34.1	0.26	0.22
1699739	BH01	Not Given	16.57	17.20	С	Dark grey silty sandy CLAY	WC = 11.5%	1	D	U	YES	51.5	88.5	88.0	70.0	0.8	78.7	0.13	0.16
1699740	BH01	Not Given	17.20	17.61	С	Dark grey LIMESTONE	WC = 2.5%	1	D	U	YES	59.3	87.0	86.0	81.0	3.4	83.9	0.48	0.60
1699741	BH01	Not Given	18.45	18.61	С	Dark grey silty CLAY	WC = 11.9%	1	D	U	YES	84.3	87.4	87.0	72.0	0.5	79.3	0.07	0.09
1699742	BH01	Not Given	18.88	19.20	С	Dark grey LIMESTONE	WC = 0.7%	1	D	U	YES	67.4	87.0	87.0	76.0	28.1	81.3	4.25	5.29
1699744	BH01	Not Given	19.58	19.72	С	Dark grey LIMESTONE	WC = 5.3%	1	D	U	YES	62.5	87.6	88.0	82.0	3.8	84.8	0.53	0.67
1699746	BH01	Not Given	20.27	20.39	С	Dark grey LIMESTONE	WC = 5.3%	1	D	U	YES	60.4	87.4	87.0	80.0	9.2	83.6	1.31	1.65
1699749	BH01	Not Given	22.70	22.82	С	Dark grey LIMESTONE	WC = 6.1%	1	А	U	YES	-	86.7	54.0	39.0	2.7	65.6	0.62	0.70
1699751	BH01	Not Given	24.40	24.45	С	Dark grey LIMESTONE	WC = 10.8%	1	A	U	YES	-	86.4	51.0	46.0	2.4	71.1	0.46	0.54
1699777	BH02	Not Given	18.00	18.26	С	Dark grey LIMESTONE	WC = 0.8%	1	D	U	YES	75.3	88.4	88.0	81.0	25.1	84.6	3.51	4.44

Dimensions: Dis - Distance between platens (platen separation), Dps⁴ - afailure (see ISRM note 6), Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions, based on ISRM, is shown above; Size factor, F = (De/S0)0.45 for all tests

Comments:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Hanks

Burokile

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Monika Janoszek

Date Reported: 15/12/2020

Summary of Point Load Strength Index Tests Results

Tested in Accordance with: ISRM: 2007, pages 125-132

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: BMG2109 Job Number: 20-44142 Date Sampled: Not Given Date Received: 18/11/2020 Date Tested: 07/12/2020 Sampled By: Not Given

BWB Consulting Limited

Client Address:

4041 Client:

5th Floor, Waterfront House, Nottingham, NG2 3DQ

Imogen Wort Contact: Site Address: Trowbridge WRC Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	e				ence	Test see I	Type SRM			Dime	nsions			De r	Point Strengt	: Load :h Index
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # (including water content if measured)	Specimen Refer	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	w	Dps	Dps' mm	Force P kN	3 Equivale 3 diameter,	ls MPa	ls(50) MPa
1699778	BH02	Not Given	19.20	19.45	С	Dark grey LIMESTONE	WC = 6.0%	1	D	U	YES	115.3	88.3	88.0	78.0	2.7	83.0	0.39	0.49
1699779	BH02	Not Given	24.00	24.33	С	Dark grey LIMESTONE	WC = 11.2%	1	А	U	YES	-	85.3	63.0	57.0	0.6	78.7	0.10	0.12
1699780	BH02	Not Given	24.57	24.70	С	Dark grey LIMESTONE	WC = 7.2%	1	D	U	YES	70.0	86.5	86.0	80.0	1.3	83.2	0.18	0.23
1699781	BH02	Not Given	24.84	24.93	С	Dark grey LIMESTONE	WC = 5.5%	1	D	U	YES	50.3	84.6	83.0	81.0	0.3	82.8	0.04	0.05

Dimensions: Dis - Distance between platens (platen separation), Dps⁴ - afailure (see ISRM note 6), Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions, based on ISRM, is shown above; Size factor, F = (De/S0)0.45 for all tests

Comments:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Signed:

Houte

Summary of Uniaxial Compression Test on Rock Test Results

Tested in Accordance with: ISRM, 2007, p153, part 1

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: BMG2109 Job Number: 20-44142 Date Sampled: 11/11/2020 Date Received: 18/11/2020 Date Tested: 07/12/2020 Sampled By: Not Given

BWB Consulting Limited

Client Address:

4041 Client:

.

5th Floor, Waterfront House, Nottingham, NG2 3DQ

 Contact:
 Imogen Wort

 Site Address:
 Trowbridge WRC

 Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

	Hole No.	Sample						Specimen Dimensions (2)				Bulk		Uniaxial Compression (3)			
Laboratory Reference		Reference	Depth Top	Depth Base	Туре	Description	Remarks	Diameter	Length	H/D	Orientation of sample	density (2)	Water Content (1)	Condition	Stress Rate	Mode of failure	UCS
			m	m				mm	mm			Mg/m3	%		Mpa/s		Мра
1699747	BH01	Not Given	21.50	22.22	с	Grey LIMESTONE	Sample is below recommended length to diameter ratio.*	86.3	143.3	1.7	Vertical	2.27	11.6	oven dried	0.0513	MS + AC	14.9
1699776	BH02	Not Given	16.81	17.14	С	Dark grey LIMESTONE	Sample is below recommended length to diameter ratio.	86.5	204.6	2.4	Vertical	2.31	11.0	as received	0.0340	MS + AC	13.8
1 - ISRM	p87 test 1, water co	ntent at 105 ± 3 oC.	, specimer	n as tested	for UCS, 2	ISRM p86 clause (vii), Caliper method used for determination	n of bulk volume and derivation	of bulk d	ensity, 3 -	ISRM p15	3 part 1, determinat	ion of Unia	xial Comp	ressive Strength (L	JCS) of R	ock Mater	ials,

Note: above notes apply unless annotated otherwise in the remarks. Compaction machine: VJ Tech AUTOCON - VJT 51-3011; Mode of failure legend: S - Single shear, MS - multiple shear, AC - Axial cleavage, F - Fragmented

Comments: *Duration of test, fell below time specified in ISRM method, 2007, p153, part1

Signed: Hanks

Burokele

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Unit 8 Harrowden Road Brackmills Industrial Estate Unconsolidated Undrained Triaxial Compression Northampton NN4 7EB

i2 Analytical Ltd

Remarks: Correction values: 40kPa=18N, 80kPa=35N, 120kPa=54N

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed: s Marike Groutle

Unconsolidated Undrained Triaxial Compression Northa

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 9 **BWB** Consulting Limited Client Reference: BMG2109 Client: Client Address: Job Number: 20-44142 5th Floor, Waterfront House, Date Sampled: 10/11/2020 Nottingham, NG2 3DQ Date Received: 18/11/2020 Contact: Imogen Wort Date Tested: 04/12/2020 Site Address: Trowbridge WRC Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 1699730 Depth Top [m]: 6.00 BH01 Depth Base [m]: 6.45 Hole No.: Sample Reference: Not Given Sample Type: U Sample Description: Brownish grey CLAY Length 201.62 mm Rate of Strain 1.98 %/min 101.36 2 Diameter mm Stage Number 1 3 **Bulk Density** 2.09 Mg/m3 Cell Pressure 60 120 180 kPa **Moisture Content** 24 % Axial Strain at failure 3.7 6.3 12.9 % 1 68 kPa Dry Density Mg/m3 Deviator Stress, (σ 1 - σ 3)f 137 163 177 69 0.24 Shear strength, cu 82 88 Membrane thickness kPa mm Mode of failure Compound Membrane Correction 0.24 0.39 0.64 kPa Deviator Stress v Axial Strain -test 1 test 2 test 3 300 Corrected Deviator Stress kPa 250 200 150 100 50 0 0 2 3 5 6 8 9 11 13 14 16 17 19 20 22 23 25 Axial Strain % **Mohr Circles** ----- linear regression Test 1 2 3 300 250 200 1.44 Shear Strength kPa 150 Position within sample 100 50 0 0 50 100 150 200 250 300 350 400 450 500 600 550 Linear Regression Normal Stresses kPa φu 8.1 52 kPa cu Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Remarks: Correction values: 60kPa=30N, 120kPa=62N, 180kPa=94N

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. Th report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

	Signed:
is	Houke Brokele

 IEST CENTIFICATE
 i2 Analytical Ltd

 Unit 8 Harrowden Road
 Unit 8 Harrowden Road

 Brackmills Industrial Estate
 Northampton NN4 7EB

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. The report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

	Signed:
nis	Houke Brokele

Unit 8 Harrowden Road **Brackmills Industrial Estate Unconsolidated Undrained Triaxial Compression** Northampton NN4 7EB

i2 Analytical Ltd

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed: Hanks Burokele

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

```
Date Reported: 15/12/2020
```


Unit 8 Harrowden Road Brackmills Industrial Estate Unconsolidated Undrained Triaxial Compression Northampton NN4 7EB

i2 Analytical Ltd

Tested in Accordance with: BS 1377-7: 1990: Clause 9 **BWB** Consulting Limited Client Reference: BMG2109 Client: Client Address: Job Number: 20-44142 5th Floor, Waterfront House, Date Sampled: 10/11/2020 Nottingham, NG2 3DQ Date Received: 18/11/2020 Contact: Imogen Wort Date Tested: 04/12/2020 Trowbridge WRC Site Address: Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 1699764 Depth Top [m]: 10.50 BH02 Depth Base [m]: 10.95 Hole No.: Sample Reference: Not Given Sample Type: U Sample Description: Grey CLAY Length 201.83 Rate of Strain 1.98 %/min mm 103.75 2 Diameter mm Stage Number 1 3 **Bulk Density** 2.14 Mg/m3 Cell Pressure 105 210 315 kPa Moisture Content 20 % Axial Strain at failure 4.2 6.4 13.7 % 1.78 294 kPa Dry Density Mg/m3 Deviator Stress, (σ 1 - σ 3)f 343 387 147 171 Shear strength, cu 194 Membrane thickness 0.27 kPa mm Mode of failure Compound Membrane Correction 0.30 0.43 0.74 kPa Deviator Stress v Axial Strain -test 1 test 2 test 3 600 Corrected Deviator Stress kPa 500 400 300 200 100 0 2 3 5 6 8 9 11 13 14 16 17 19 20 22 23 25 0 Axial Strain % **Mohr Circles** ----- linear regression Test 1 2 3 600 500 400 Shear Strength kPa 300 Position within sample 200 100 0 0 100 200 300 400 500 600 700 800 900 1000 1200 1100 Linear Regression Normal Stresses kPa φu 10.5 103 kPa cu Note: Mohr circles and their interpretation is not covered by BS1377. These are provided for information only. Correction values: 75kPa=37N, 150kPa=74N, 225kPa=113N Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. Th report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

	Signed:
nis	Marika Broude

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Unit 8 Harrowden Road Brackmills Industrial Estate Unconsolidated Undrained Triaxial Compression Northampton NN4 7EB

i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Signed:

Hanks

Page 1 of 1

Date Reported: 15/12/2020

PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Monika Janoszek

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041 Tested in Accordance with: BS 1377-5: 1990: Clause 3 **BWB** Consulting Limited Client Reference: BMG2109 Client: Client Address: Job Number: 20-44142 5th Floor, Waterfront House, Date Sampled: Not Given Nottingham, NG2 3DQ Date Received: 18/11/2020 Imogen Wort Date Tested: 07/12/2020 Contact: Site Address: Trowbridge WRC Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 1699757 Depth Top [m]: 5.00 BH02 Hole No .: Depth Base [m]: 5.45 Not Given Sample Type: U Sample Reference: Mottled brown CLAY Sample Description: 0.760 0.740 0 0.720 0.700 Voids Ratio 0.680 0.660 0.640 0.620 0.600 0.580 0.560 25.00 Cv m²/yr (log time) 20.00 15.00 10.00 5.00 0.00 10 1000 10000 100 1 Applied Pressure kPa C٧ Applied Voids Cv Preparation Μv Csec (t90, root Pressure t50, log) ratio kPa m2/MN m2/yr m2/yr 0.741 0 Index tests 25 0.729 0.28 N/A N/A N/A Vertical Orientation of the sample 50 0.714 0.34 22 51 0.00043 assumed 2.65 Particle density Mg/m3 100 0.687 0.32 11 21 0.0013 Liquid limit N/A % 200 0.649 0.23 7.3 18 0.0013 Plastic limit N/A % 400 0.598 6.8 20 0.0019 0.15 200 0.609 0.034 Initial Final Specimen details 0.645 50 0.15 Diameter 50.07 mm 20.02 18.92 Height mm Moisture Content 27 26 % Bulk density 1.93 2.03 Mg/m3 Dry density 1.52 1.61 Mg/m3

Note: Cv corrected to 20°C

Remarks: Stage 1 - swelling

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

0.741

95

22.0

Not measured

0.645

107

%

°C

kPa

%

Voids Ratio

Avg. temperature for test

Settlement on saturation

Swelling Pressure

Saturation

SUMMARY REPORT

Summary of Point Load Strength Index Tests Results

Tested in Accordance with: ISRM: 2007, pages 125-132

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: BMG2109 Job Number: 20-46686 Date Sampled: Not Given Date Received: 18/11/2020 Date Tested: 21/12/2020 Sampled By: Client

BWB Consulting Limited

Client Address:

4041 Client:

Eleor Waterfront House

5th Floor, Waterfront House, Nottingham, NG2 3DQ

 Contact:
 Imogen Wort

 Site Address:
 Trowbridge WRC

 Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	e								ence	Test Type see ISRM			Dime	Dimensions			ĔĔ	Point Load Strength Inde	
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # (including water content if measured)	Specimen Refer	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne mm	w mm	Dps mm	Dps' mm	Force P kN	B Equivale B diameter,	ls MPa	ls(50) MPa			
1713318	BH02	Not Given	18.29	18.53	С	Grey LIMESTONE	WC = 1.5%	1	D	U	YES	57.4	89.0	88.0	82.0	22.2	85.4	3.04	3.87			
Note: # non accredited; Test T	ype: D - Diametral, A - Axial, I	- Irregular Lump, B - Block; Dire	ection: L - parall	el to planes of w	eakness, P - perper	ndicular to planes of weakness, U - unknown or random;																

Note: # hon accreations: test type: U - Diametal, A - Avait, I - integuiar Lump, B - block: Direction: L - parallet to planes or weakness, P - perpendicular to planes or weakness, U - unknown or random; Dimensions: Dps - Distance between platens (platen separation), Dps' - at failure (see ISRM note 6), Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions, based on ISRM, is shown above; Size factor, F = (DeS0)0.45 for call tests

Detailed legend for test and dimensions, based on ISRM, is shown above; Size factor, F = (De/50)0.45 for all tes

Comments: Re-issue 1: Hole number amendment as per client request

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

SUMMARY REPORT

Summary of Uniaxial Compression Test on Rock Test Results

Tested in Accordance with: ISRM, 2007, p153, part 1

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: BMG2109 Job Number: 20-46686 Date Sampled: Not Given Date Received: 18/11/2020 Date Tested: 21/12/2020 Sampled By: Client

BWB Consulting Limited

Client Address:

4041 Client:

Ũ

5th Floor, Waterfront House, Nottingham, NG2 3DQ

 Contact:
 Imogen Wort

 Site Address:
 Trowbridge WRC

 Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	2				Specimen Dimensions (2)						Uniaxial Compression (3)					
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Diameter	Length	H/D	Orientation of sample	density (2)	Water Content (1)	Condition	Stress Rate	Mode of failure	UCS		
			m	m				mm	mm			Mg/m3	%		Mpa/s		Мра		
1713319	BH02	Not Given	18.72	18.96	С	Grey LIMESTONE	Sample is below recommended length:diameter ratio.*	88.8	126.2	1.4	Vertical	2.18	7.6	as received	0.0323	MS + AC	4.23		
Note: 1 - ISRM above no	p87 test 1, water co tes apply unless an	ontent at 105 ± 3 oC, notated otherwise in	, specimen the remar	as tested ks. Compa	for UCS, 2 - action machi	ISRM p86 clause (vii), Caliper method used for determination ne: VJ Tech AUTOCON - VJT 51-3011; Mode of failure legen	n of bulk volume and derivation d: S - Single shear, MS - multip	of bulk de ble shear,	ensity, 3 - I AC - Axial	SRM p15 cleavage	3 part 1, determinati , F - Fragmented	on of Unia	xial Comp	ressive Strength (L	JCS)of R	ock Materi	ials,		

*Testing completed above time specified in ISRM method, 2007, p153, part1. Re-issue 1: Hole number

Comments: amendment as per client request

Signed:

Grupon Baltaz

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 02/02/2020 GF 223.13

i2 Analytical Ltd Unit 8 Harrowden Road **Brackmills Industrial Estate** Northampton NN4 7EB

4041 Tested in Accordance with: BS 1377-5: 1990: Clause 3 **BWB** Consulting Limited Client Reference: BMG2109 Client: Client Address: Job Number: 20-46686 5th Floor, Waterfront House, Date Sampled: Not Given Nottingham, NG2 3DQ Date Received: 18/11/2020 Imogen Wort Date Tested: 15/12/2020 Contact: Site Address: Trowbridge WRC Sampled By: Client Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 1713317 Depth Top [m]: 12.00 BH03 Hole No .: Depth Base [m]: Not Given Not Given Sample Type: B Sample Reference: Grey CLAY Sample Description: 0.500 e。 0.480 0.460 0.440 Voids Ratio 0.420 0.400 0.380 0.360 0.340 0.320 0.300 10.00 Cv m²/yr (log time) 8.00 6.00 4.00 2.00 0.00 10 1000 10000 100 1 Applied Pressure kPa C٧ Applied Voids Cv Preparation Μv Csec Pressure t50, log) (t90, root ratio m2/MN kPa m2/yr m2/yr 0.488 0 Index tests 50 0.483 0.074 N/A N/A N/A Vertical Orientation of the sample 100 0.476 0.091 N/A N/A N/A assumed 2.65 Particle density Mg/m3 200 0.460 0.11 9.6 23 0.00064 Liquid limit N/A % 0.434 0.0013 400 0.089 3.1 15 Plastic limit N/A % 800 0.405 16 0.0013 0.051 2.9 1 600 0.374 0.028 2.2 6.6 0.0013 Initial Final Specimen details 800 0.383 0.0088 Diameter 50.00 mm 200 0.414 0.037 20.05 19.05 Height mm Moisture Content 18 18 % Bulk density 2.09 2.22 Mg/m3 Dry density 1.78 1.87 Mg/m3 0.488 0.414 Voids Ratio 95 118 % Saturation

Note: Cv corrected to 20°C

Stage 1,2 - swelling. Re-issue 1: Hole number amendment as per client request Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:	
Sergen	

Avg. temperature for test Swelling Pressure

Settlement on saturation

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

22.0

Not measured

°C

kPa

%

Imogen Wort BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: imogen.wort@bwbconsulting.com

Analytical Report Number : 20-44149

Project / Site name:	Trowbridge WRC	Samples received on:	18/11/2020
Your job number:	BMG2109	Samples instructed on/ Analysis started on:	26/11/2020
Your order number:	POR032992	Analysis completed by:	09/12/2020
Report Issue Number:	1	Report issued on:	09/12/2020
Samples Analysed:	10 soil samples		

Record Signed:

Rachel Bradley Deputy Quality Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils- 4 weeks from reportingleachates- 2 weeks from reportingwaters- 2 weeks from reportingasbestos- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-44149 Project / Site name: Trowbridge WRC Your Order No: POR032992

Lab Sample Number				1699830	1699831	1699832	1699833
Sample Reference		BH01	BH01	BH01	BH01		
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.70-1.70	3.50-3.50	7.50-7.95	15.00-15.45
Date Sampled				10/11/2020	10/11/2020	10/11/2020	10/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	18	17	15	14
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	-	-	8.4	9.1
Total Sulphate as SO4	%	0.005	MCERTS	-	-	0.199	0.151
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	-	0.83	0.52
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	-	834	521
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-	-	54	160
Total Sulphur	%	0.005	MCERTS	-	-	1.77	2.11
Organic Matter	%	0.1	MCERTS	12	0.2	-	-
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	-	-	< 2.0	< 2.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	-	-	65	45
Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	-	32	22

Analytical Report Number: 20-44149 Project / Site name: Trowbridge WRC Your Order No: POR032992

Lab Sample Number	1699834	1699835	1699836	1699837			
Sample Reference	BH02	BH02	BH02	BH03			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				3.50-3.50	4.50-4.50	8.50-8.50	5.50-5.50
Date Sampled				Deviating	Deviating	Deviating	Deviating
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	20	16	12	21
Total mass of sample received	NONE	0.5	0.5	0.5	0.5		

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	-	8.2	-	8.3
Total Sulphate as SO4	%	0.005	MCERTS	-	0.096	-	0.053
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.35	-	0.11
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	352	-	112
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-	13	-	13
Total Sulphur	%	0.005	MCERTS	-	0.045	-	0.038
Organic Matter	%	0.1	MCERTS	6.4	-	1.4	-
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	-	< 2.0	-	< 2.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	-	37	-	12
Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	19	-	5.8

Analytical Report Number: 20-44149 Project / Site name: Trowbridge WRC Your Order No: POR032992

Lab Sample Number				1699838	1699839
Sample Reference		BH03	BH03		
Sample Number				None Supplied	None Supplied
Depth (m)				6.50-6.50	9.00-9.45
Date Sampled				Deviating	Deviating
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	13
Total mass of sample received	kg	0.001	NONE	0.3	0.3

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	-	-
Total Sulphate as SO4	%	0.005	MCERTS	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	-
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-	-
Total Sulphur	%	0.005	MCERTS	-	-
Organic Matter	%	0.1	MCERTS	3.4	1.9
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	-	-

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	-	-
Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	-

Analytical Report Number : 20-44149 Project / Site name: Trowbridge WRC

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1699830	BH01	None Supplied	1.70-1.70	Brown loam and clay with gravel and vegetation.
1699831	BH01	None Supplied	3.50-3.50	Brown clay and sand.
1699832	BH01	None Supplied	7.50-7.95	Brown clay.
1699833	BH01	None Supplied	15.00-15.45	Brown clay.
1699834	BH02	None Supplied	3.50-3.50	Brown clay and sand with gravel.
1699835	BH02	None Supplied	4.50-4.50	Brown clay and sand.
1699836	BH02	None Supplied	8.50-8.50	Brown clay and sand.
1699837	BH03	None Supplied	5.50-5.50	Brown clay and sand.
1699838	BH03	None Supplied	6.50-6.50	Brown clay and sand.
1699839	BH03	None Supplied	9.00-9.45	Brown clay and sand.

Analytical Report Number : 20-44149 Project / Site name: Trowbridge WRC

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction.	L078-PL	W	NONE
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Analytical Report Number : 20-44149 Project / Site name: Trowbridge WRC

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH02	None Supplied	S	1699834	а	None Supplied	None Supplied	None Supplied
BH02	None Supplied	S	1699835	а	None Supplied	None Supplied	None Supplied
BH02	None Supplied	S	1699836	а	None Supplied	None Supplied	None Supplied
BH03	None Supplied	S	1699837	а	None Supplied	None Supplied	None Supplied
BH03	None Supplied	S	1699838	а	None Supplied	None Supplied	None Supplied
BH03	None Supplied	S	1699839	а	None Supplied	None Supplied	None Supplied

Appendix 9: Water Chemical Testing Results

Imogen Wort BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: imogen.wort@bwbconsulting.com

Analytical Report Number : 20-43438

Project / Site name:	Trowbridge WRC	Samples received on:	24/11/2020
Your job number:	BMG2109	Samples instructed on/ Analysis started on:	26/11/2020
Your order number:	POR032916	Analysis completed by:	02/12/2020
Report Issue Number:	1	Report issued on:	02/12/2020
Samples Analysed:	1 water sample		

Roward Signed:

Rachel Bradley Deputy Quality Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils- 4 weeks from reportingleachates- 2 weeks from reportingwaters- 2 weeks from reportingasbestos- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-43438 Project / Site name: Trowbridge WRC

Your Order No: POR032916

Lab Sample Number		1695692		
Sample Reference				BH03 (S)
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled		Deviating		
Time Taken		None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

рН	pH Units	N/A	ISO 17025	7.3
Total Cyanide	µg/I	10	ISO 17025	< 10
Complex Cyanide	µg/l	10	ISO 17025	< 10
Free Cyanide	µg/l	10	ISO 17025	< 10
Thiocyanate as SCN	µg/I	200	ISO 17025	270
Sulphate as SO4	µg/I	45	ISO 17025	104000
Sulphate as SO4	mg/l	0.045	ISO 17025	104
Elemental Sulphur	mg/l	0.02	NONE	< 0.02
Sulphide	µg/l	5	NONE	120
Chloride	mg/l	0.15	ISO 17025	22
Ammoniacal Nitrogen as N	µg/I	15	ISO 17025	4800
Total Nitrogen (Kjeldahl)	mg/l	0.1	NONE	6.6
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	11.3
Nitrate as N	mg/l	0.01	ISO 17025	0.09
Nitrate as NO3	mg/l	0.05	ISO 17025	0.41
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	1900
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	7.1

Total Phenols

Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	9.07
Acenaphthylene	µg/I	0.01	ISO 17025	4.83
Acenaphthene	µg/l	0.01	ISO 17025	6.53
Fluorene	µg/I	0.01	ISO 17025	5.93
Phenanthrene	µg/l	0.01	ISO 17025	25.9
Anthracene	µg/l	0.01	ISO 17025	9.81
Fluoranthene	µg/I	0.01	ISO 17025	52.6
Pyrene	µg/l	0.01	ISO 17025	40.1
Benzo(a)anthracene	µg/I	0.01	ISO 17025	28.7
Chrysene	µg/l	0.01	ISO 17025	22.7
Benzo(b)fluoranthene	µg/I	0.01	ISO 17025	30.1
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	14.2
Benzo(a)pyrene	µg/l	0.01	ISO 17025	29.3
Indeno(1,2,3-cd)pyrene	µg/I	0.01	ISO 17025	15.8
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	5.69
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	16.4

Total PAH

Total EPA-16 PAHs	µg/l	0.16	ISO 17025	318

Analytical Report Number: 20-43438 Project / Site name: Trowbridge WRC

Your Order No: POR032916					
Lab Sample Number				1695692	
Sample Reference					
Sample Number				None Supplied	
Depth (m)				None Supplied	
Date Sampled				Deviating	
Time Taken				None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status		
Heavy Metals / Metalloids					
Boron (dissolved)	µg/l	10	ISO 17025	420	
Calcium (dissolved)	mg/l	0.012	ISO 17025	110	
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	
Iron (dissolved)	mg/l	0.004	ISO 17025	0.038	
Magnesium (dissolved)	mg/l	0.005	ISO 17025	7.3	
Potassium (dissolved)	mg/l	0.025	ISO 17025	12	
Sodium (dissolved)	mg/l	0.01	ISO 17025	100	
Chromium (total)	ua/l	0.2	ISO 17025	6.8	
Lead (total)	µg/l	0.2	ISO 17025	7	
Mercury (total)	µg/l	0.05	ISO 17025	< 0.05	
Nickel (total)	µg/l	0.5	ISO 17025	80	
Selenium (total)	µg/!	0.6	ISO 17025	4	
Zinc (total)	μg/l	0.5	ISO 17025	6800	
Antimony (dissolved)	µg/l	0.4	ISO 17025	4	
Arsenic (dissolved)	µg/l	0.15	ISO 17025	2.98	
Barium (dissolved)	µg/l	0.06	ISO 17025	68	
Beryllium (dissolved)	µg/l	0.1	ISO 17025	< 0.1	
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02	
Manganese (dissolved)	µg/l	0.05	ISO 17025	1800	
Vanadium (dissolved)	µg/l	0.2	ISO 17025	1.9	
Copper (total)	µg/l	0.5	ISO 17025	11	

Analytical Report Number: 20-43438 Project / Site name: Trowbridge WRC

Your Order No: POR032916						
Lab Sample Number						
Sample Reference					BH03 (S)	
Sample Number					None Supplied	
Depth (m)					None Supplied	
Date Sampled					Deviating	
Time Taken					None Supplied	
Analytical Parameter (Water Analysis)	Units		Limit of detection	Accreditation Status		
Monoaromatics & Oxygenates						
Benzene	µg/I		1	ISO 17025	< 1.0	
Toluene	µg/I		1	ISO 17025	< 1.0	
Ethylbenzene	µg/I		1	ISO 17025	< 1.0	
p & m-xylene	µg/I		1	ISO 17025	< 1.0	
o-xylene	μg/I		1	ISO 17025	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/l		1	ISO 17025	< 1.0	
Petroleum Hydrocarbons						
TPH-CWG - Aliphatic >C5 - C6	μg/l		1	ISO 17025	< 1.0	
TPH-CWG - Aliphatic >C6 - C8	μg/I		1	ISO 17025	< 1.0	
TPH-CWG - Aliphatic >C8 - C10	μg/I		1	ISO 17025	< 1.0	
TPH-CWG - Aliphatic >C10 - C12	µq/l		10	NONE	16	

10

10

10

10

1

1

1

10

10

10

10

10

µg/l

NONE

NONE

NONE

NONE

ISO 17025

ISO 17025

ISO 17025

NONE

NONE

NONE

NONE

NONE

45

< 10

330

390

< 1.0

< 1.0

< 1.0

31

79

330

960

1400

TPH-CWG - Aromatic (C5 - C35)

TPH-CWG - Aliphatic >C12 - C16

TPH-CWG - Aliphatic >C16 - C21

TPH-CWG - Aliphatic >C21 - C35

TPH-CWG - Aliphatic (C5 - C35)

TPH-CWG - Aromatic >C5 - C7

TPH-CWG - Aromatic >C7 - C8

TPH-CWG - Aromatic >C8 - C10

TPH-CWG - Aromatic >C10 - C12

TPH-CWG - Aromatic >C12 - C16

TPH-CWG - Aromatic >C16 - C21

TPH-CWG - Aromatic >C21 - C35

Volatile free fatty acids Formic Acid 10 NONE < 10 mg/l Acetic Acid mg/l 10 NONE < 10 Propanoic Acid 10 NONE < 10 mg/l Isobutyric Acid mg/l 10 NONE < 10 Butyric Acid 10 < 10 NONE mg/l Isovaleric Acid mg/l 10 NONE < 10 Valeric Acid 10 NONE < 10 mg/l Hexanoic Acid 10 NONE < 10 mg/l < 10 Heptanoic Acid mg/l 10 NONE 4-methyvaleric Acid 10 NONE < 10 mg/l

Analytical Report Number : 20-43438 Project / Site name: Trowbridge WRC

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	ame Analytical Method Description Analytical Method Reference		Method number	Wet / Dry Analysis	y Accreditation Status	
Metals in water by ICP-MS (total)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025	
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025	
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025	
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	w	ISO 17025	
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	w	ISO 17025	
Complex cyanide in water	Determination of complex cyanide by calculation. Accredited matrices SW, PW, GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025	
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	w	ISO 17025	
Free cyanide in water	Determination of free cyanide by distillation followed by colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025	
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025	
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025	
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025	
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	w	NONE	
Thiocyanate in water	Determination of thiocyanate in water by discreet analyser (colorimetry). Accredited matrices SW, GW, PW.	In house method based on SMWW 4500-CN-M. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025	
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025	
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	w	NONE	
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025	

Analytical Report Number : 20-43438 Project / Site name: Trowbridge WRC

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Kjeldahl nitrogen in water	Determination of total nitrogen using the Kjeldahl- digestion method and colorimetric determination.	In house method based on BS 7755-3.7:1995 & ISO 11261:1995.	L087-PL	W	NONE
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Volatile free fatty acids in Water	Determination of volatile free fatty acids in water by HPLC.	In-house method	L105B-PL		NONE
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Elemental sulphur in water	Determination of elemental sulphur in water by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	W	NONE
Chloride in water	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample Deviation Report

Analytical Report Number : 20-43438 Project / Site name: Trowbridge WRC

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH03 (S)	None Supplied	W	1695692	а	None Supplied	None Supplied	None Supplied

Imogen Wort BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: imogen.wort@bwbconsulting.com

Analytical Report Number : 20-44136

Project / Site name:	Trwbridge WRC	Samples received on:	30/11/2020
Your job number:	BMG2109	Samples instructed on/ Analysis started on:	30/11/2020
Your order number:	POR033029	Analysis completed by:	07/12/2020
Report Issue Number:	1	Report issued on:	07/12/2020
Samples Analysed:	2 water samples		

Signed: 0

Zina Abdul Razzak Senior Quality Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

 soils
 - 4 weeks from reporting

 leachates
 - 2 weeks from reporting

 waters
 - 2 weeks from reporting

 asbestos
 - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-44136 Project / Site name: Trwbridge WRC

Your Order No: POR033029

Lab Sample Number	1699714	1699715			
Sample Reference				BH03 (D)	BH02 (D)
Sample Number				None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied
Date Sampled				Deviating	Deviating
Time Taken				None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status		

General Inorganics

рН	pH Units	N/A	ISO 17025	7.5	7.7
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10
Complex Cyanide	µg/l	10	ISO 17025	< 10	< 10
Free Cyanide	µg/l	10	ISO 17025	< 10	< 10
Thiocyanate as SCN	µg/l	200	ISO 17025	330	240
Sulphate as SO4	µg/l	45	ISO 17025	497000	803000
Sulphate as SO4	mg/l	0.045	ISO 17025	497	803
Elemental Sulphur	mg/l	0.02	NONE	< 0.02	< 0.02
Sulphide	µg/l	5	NONE	< 5.0	< 5.0
Chloride	mg/l	0.15	ISO 17025	99	840
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	190	2600
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	33.7	13.5
Nitrate as N	mg/l	0.01	ISO 17025	0.07	0.05
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	350	120
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	34	56

Total Phenols

Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10	< 10

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16

Analytical Report Number: 20-44136 Project / Site name: Trwbridge WRC

Your Order No: POR033029					
Lab Sample Number				1699714	1699715
Sample Reference					BH02 (D)
Sample Number	None Supplied	None Supplied			
Depth (m)				None Supplied	None Supplied
Date Sampled				Deviating	Deviating
Time Taken				None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status		
Heavy Metals / Metalloids					
Boron (dissolved)	µg/l	10	ISO 17025	1800	3900
Calcium (dissolved)	mg/l	0.012	ISO 17025	130	78
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0
Iron (dissolved)	mg/l	0.004	ISO 17025	0.11	0.17
Magnesium (dissolved)	mg/l	0.005	ISO 17025	8.8	21
Potassium (dissolved)	mg/l	0.025	ISO 17025	13	23
Sodium (dissolved)	mg/l	0.01	ISO 17025	380	920
		-			-
Chromium (total)	μg/l	0.2	ISO 17025	8.4	6.8
Lead (total)	µg/l	0.2	ISO 17025	37	43
Mercury (total)	µg/l	0.05	ISO 17025	< 0.05	0.15
Nickel (total)	μg/l	0.5	ISO 17025	46	27
Selenium (total)	µg/l	0.6	ISO 17025	7.8	8.7
Zinc (total)	μg/l	0.5	ISO 17025	380	220
				2	1.2
Antimony (dissolved)	µg/l	0.4	ISO 17025	3	1.3
Arsenic (dissolved)	µg/l	0.15	ISO 17025	3.98	5.56
Barium (dissolved)	µg/l	0.06	ISO 17025	46	3/
Beryllium (dissolved)	µg/l	0.1	ISO 17025	< 0.1	< 0.1
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02	< 0.02
Manganese (dissolved)	µg/I	0.05	150 17025	220	120
Vanadium (dissolved)	µg/I	0.2	ISO 17025	1.2	5.5
Coppor (total)	ug/l	0.5	ICO 1702E	20	62
Veletile free fetty seide	μg/i	0.5	150 17025	20	05
	ma/l	10	NONE	~ 10	210
	mg/l	10	NONE	< 10	< 10
Pronanoic Acid	mg/l	10	NONE	< 10	< 10
Isobutvric Acid	mg/l	10	NONE	< 10	< 10
Butyric Acid	mg/l	10	NONE	< 10	< 10
Isovaleric Acid	mg/l	10	NONE	< 10	< 10
Valeric Acid	mg/l	10	NONE	< 10	< 10
Hexanoic Acid	mg/l	10	NONE	< 10	< 10
Hentanoic Acid	mg/l	10	NONE	< 10	< 10
4-methyvaleric Acid	mg/l	10	NONE	< 10	< 10
	mg/l	10	NONE	< 10	< 10

Analytical Report Number : 20-44136 Project / Site name: Trwbridge WRC

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	alytical Test Name Analytical Method Description Analytical Method Reference als in water by ICP-MS (total) Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW. Al=SW,PW. In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace element in water by ICP-MS.		nce Method number		Accreditation Status
Metals in water by ICP-MS (total)			L012-PL	w	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	w	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	w	ISO 17025
Complex cyanide in water	Determination of complex cyanide by calculation. Accredited matrices SW, PW, GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	w	ISO 17025
Free cyanide in water	Determination of free cyanide by distillation followed by colorimetry.Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	W	NONE
Thiocyanate in water	Determination of thiocyanate in water by discreet analyser (colorimetry). Accredited matrices SW, GW, PW.	In house method based on SMWW 4500-CN-M. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	ISO 17025
Ammoniacal Nitrogen as N in water	noniacal Nitrogen as N in water Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, Greenberg & GW, PW.		L082-PL	w	ISO 17025

Analytical Report Number : 20-44136 Project / Site name: Trwbridge WRC

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	otion Analytical Method Reference		Wet / Dry Analysis	Accreditation Status
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Volatile free fatty acids in Water	Determination of volatile free fatty acids in water by HPLC.	In-house method	L105B-PL		NONE
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Elemental sulphur in water	Determination of elemental sulphur in water by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	W	NONE
Chloride in water	oride in water Determination of Chloride colorimetrically by discrete I analyser.		L082-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Analytical Report Number : 20-44136 Project / Site name: Trwbridge WRC

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation	
BH02 (D)	None Supplied	W	1699715	а	None Supplied	None Supplied	None Supplied	
BH03 (D)	None Supplied	W	1699714	а	None Supplied	None Supplied	None Supplied	