

KIRBY MISPERTON A WELLSITE

KM8 PRODUCTION WELL

HYDRAULIC FRACTURE STIMULATION

ENVIRONMENTAL MONITORING PLAN

(REF: TE-EPRA-KM8-HFS-EMP-10)

APPROVAL LIST

	Title	Name	Signature
Prepared By	HSE & Permit Advisor	Sean Smart	SMUS
Reviewed By	HSE and Planning Manager	Jonathan Foster	SHA
Approved By	Operations Director	John Dewar	John Dewar

REVISION RECORD

Version	Date	Description
PO	24 th April 2015	Draft
Rev 0	15 th May 2015	Original Issue
Rev 1	11 th August 2015	Amendment
Rev 2	18 th September 2015	Amendment
Rev 3	01 st September 2016	Amendment
Rev 4	22 nd August 2017	Amendment
Rev 5	08 th September 2017	Amendment
Rev 6	13 th September 2017	Amendment
Rev 7	21 st September 2017	Amendment
Rev 8	05 th October 2017	Amendment

COPYRIGHT

© 2017 Third Energy UK Gas Limited. All Rights Reserved.

The contents of this document may not be reproduced or copied without the express written permission of Third Energy UK Gas Limited.

CONTENTS

1	DEFINITIONS	3
2	INTRODUCTION	4
3	SCOPE	5
4	EMISSIONS MONITORING PLAN	6
5	EMISSIONS MONITORING	7
5.1	Air Quality Monitoring	7
5.1.1	Baseline	8
5.1.2	Active Site Monitoring	8
5.1.3	Methodology	8
5.1.4	Reporting	11
5.2	Groundwater Quality Monitoring	12
5.2.1	Baseline	12
5.2.2	Active Site Monitoring	12
5.2.3	Methodology	12
5.2.4	Analysis and Reporting	14
5.3	Noise Monitoring	15
5.3.1	Baseline	15
5.3.2	Active Onsite Monitoring	15
5.3.3	Methodology	15
5.3.4	Duration and Frequency	16
5.3.5	Reporting	16
5.3.6	Changes to the Noise Monitoring Plan	16
5.4	Seismic Monitoring	17
6	ADDITIONAL MONITORING	18
6.1	Gas Detection	18
6.2	Soil Analysis	18
7	MANAGEMENT OF MONITORING	19
APPEN	NDIX 1 – AIR QUALITY MONITORING PLAN	21
APPEN	NDIX 2 – GROUNDWATER MONITOING PLAN	23
APPEN	NDIX 3 – NOISE MONITORING PLAN	25

1 DEFINITIONS

ATD: Automated Thermal Desorption

BTEX: An acronym that stands for benzene, toluene, ethylbenzene, and xylenes.

DECC: Department of Energy and Climate Change

EC: Electro Conductivity;

EMP: Emissions Monitoring Plan

H2S: Hydrogen Sulphide

Km: Kilometre

KMA: Kirby Misperton A wellsite

KM8: Kirby Misperton 8 well

LA90,1hr: Noise level exceeded for 90% of the measurement period

M: Magnitude

m/s: Meters per second

NMP: Noise Management Plan

ORP: Oxidation Reduction Potential

PM10: Particulate Matter up to 10 micrometers in size

ppm: Parts per million

SEM-EDS: Scanning Electron Microscopy combined with Energy Dispersive X-Ray Analysis

TDS: Total Dissolved Solids

VOC: Volatile Organic Compounds

2 INTRODUCTION

Third Energy UK Gas Limited (Third Energy) is the operator of gas fields within the Ryedale area and, at the time of submitting this application, holds interests in a total of six (6) Petroleum Licences and one (1) Petroleum Appraisal Licence, granted by the Secretary of State at the Department of Energy and Climate Change (DECC). Under the Petroleum Licensing system this permits the licence holder to 'search, bore and get petroleum within the licence boundary' subject to the granting of planning permission, in accordance with the Town and County Planning Act 1990.

Many of the Ryedale gas fields were originally discovered by Taylor Woodrow Exploration Limited and subsequently developed by Kelt UK Limited. Kelt sold its interest in the Ryedale Gas Fields to Tullow Oil and Edinburgh Oil and Gas. Tullow Oil went on to acquire the interest held by Edinburgh Oil and Gas. The Applicant acquired the interests of the Ryedale Gas Fields from Tullow in 2003 and has subsequently undertaken an active drilling and workover programme to enhance production of gas from the gas fields located at Kirby Misperton, Pickering, Marishes and Malton. Third Energy Holdings Limited acquired Viking UK Gas in 2011 and has since continued to enhance gas production. In 2014 Viking UK Gas underwent a change of name to Third Energy UK Gas Limited.

Third Energy also holds a number of exploration licences and has previously constructed and drilled wells at Ebberston Moor, within the North York Moors National Park.

In 2013 Third Energy drilled the first of two permitted boreholes from the Kirby Misperton 1 extension, KM8. Third Energy is now proposing to hydraulically stimulate and test the various geological formations previously identified during the 2013 KM8 drilling operation and subsequent analysis of the data, followed by the production of gas from one or more of these formations into the existing production facilities.

The development will consist of five principal phases:

- 1. Pre-Stimulation Workover
- 2. Hydraulic Fracture Stimulation/Well Test
- 3. Production Test
- 4. Production
- 5. Site Restoration

During the proposed development a scheme of environmental monitoring will be undertaken. The purpose of this document is set out the monitoring arrangement, drawing together the schemes of monitoring provided by the third party consultants and Third Energy.

Proposed environmental monitoring includes:

- Air Quality;
- Groundwater & Surface Water Quality;
- Seismic Monitoring; and
- Noise.

3 SCOPE

This document has been produced to provide information relating to emissions monitoring to be undertaken at the Kirby Misperton A wellsite (KMA). This document has been produced to meet the requirements of Pre-Operational Measure 3 (PO3) within Environmental Permit EPR/DB3002HE where there is a requirement to submit and Emissions Monitoring Plan to the Environment Agency under the Environmental Permitting (England and Wales) Regulations 2016, (EPR 2016).

This Emissions Monitoring Plan is applicable to the proposed KM8 hydraulic fracturing operation to be undertaken within Kirby Misperton A wellsite, subject to obtaining all relevant planning and environmental permits. It is applicable to Third Energy UK Gas Limited, its contractors and subcontractors and can be used in support of applications to the Environment Agency under EPR 2016.

4 EMISSIONS MONITORING PLAN

The Emissions Monitoring Plan sets out the emissions that will be monitored prior to, during and, where relevant, after the proposed KM8 hydraulic fracturing operation.

Third Energy has appointed a number of contractors to undertake emissions monitoring at the KMA wellsite, emissions to be monitored include:

- Air Quality Monitoring:
- Groundwater Monitoring:
- Noise Monitoring:

A summary of the methodology, frequency, duration and reporting of each emission being monitored is provided within Section 5 of this Emissions Monitoring Plan, with full details provided within Appendix 1 to 3.

The management of emissions monitoring associated with the KM8 hydraulic fracturing operation will be coordinated by a person appointed by Third Energy, in accordance with this Emissions Monitoring Plan. The appointed person(s) shall have the necessary competence to coordinate and supervise and document the emissions monitoring. The appointed person will coordinate access to the KMA wellsite and/or offsite monitoring locations.

All providers of environmental monitoring shall be appointed in accordance with TE-HSEMS-GD02-Contractor Selection and Management document.

Emissions monitoring results will be maintained at the Knapton Generating Station and made available for inspection upon request by the relevant Regulator.

5 **EMISSIONS MONITORING**

5.1 **Air Quality Monitoring**

Third Energy has appointed Ground-Gas Solutions Limited (GGS) to conduct air quality monitoring at the KMA wellsite as part of the hydraulic fracturing stimulation operation. Full details of the KMA air quality monitoring has been provided within Appendix 1 of this Emission Monitoring Plan.

Air emissions generated within the KMA wellsite will be restricted to routine onsite operations such as exhaust systems from vehicles generators and lighting towers and any associated equipment involved within the hydraulic fracture stimulation operations. In addition, air quality monitoring will identify any abnormalities in the unlikely event of fugitive emissions.

Table 5.1 below outlines the substances to be monitored as part of the air quality monitoring programme.

Parameters	Monitoring Frequency	Required By
Methane (CH ₄)	Continuously (ten (10) minute sampling), & periodic spot monitoring	Environment Agency / NYCC
Carbon Dioxide (CO ₂)	Continuously (ten (10) minute sampling), & periodic spot monitoring	Environment Agency
Carbon Monoxide (CO)	Continuously (ten (10) minute sampling), & periodic spot monitoring	NYCC – Planning Condition 25
Oxygen (O ₂)	Continuously (ten (10) minute sampling), & periodic spot monitoring	NYCC – Planning Condition 25
TSP, PM10, PM2.5, PM 1.0	Continuously (ten (10) minute sampling)	Environment Agency
Dust	2 weekly passive DustScan sampling	Environment Agency
BTEX	2 weekly passive sampling (TWA)	Environment Agency
Top 10 VOC	2 weekly passive sampling (TWA)	Environment Agency
Nitrogen dioxide (NO ₂)	Continuously & 2 weekly passive sampling (TWA)	Environment Agency
Nitric Oxide (NO)	Continuously & 2 weekly passive sampling (TWA)	Environment Agency
Hydrogen Sulphide (H₂S)	2 weekly passively (TWA)	NYCC – Planning Condition 25
Ozone (O ₃)	Continuously & 2 weekly (TWA)	

Table 5.1: Air Quality Monitoring Substance Table

The Ambient Air Quality Monitoring Plan is designed to address both the Environment Agency's permit (reference: Decision Document EPR/DB3002HE) and North Yorkshire County Council planning permission conditions (reference: Decision Notice C3/15/00971/CPO). The plan includes the monitoring of the parameters listed in Table 1 together with the proposed frequency of monitoring.

Page 7

5.1.1 Baseline

A number of air quality samples have already been taken at the KMA wellsite prior to KM8 hydraulic fracturing stimulation operation taking place. Initial baseline data was undertaken between February and April 2015 to inform Third Energy of Baseline conditions and provide a benchmark for future results collected during the hydraulic fracture stimulation operation to ascertain if Third Energy's operations have any significant effect on air quality.

In addition to baseline sampling conducted in 2015, the British Geological Survey (BGS) has undertaken air emissions monitoring at the KMA wellsite from January 2016 which is still currently being undertaken at the KMA wellsite to date. The results of the BGS data has been made publicly available and will be used together with the initial sampling undertaken in 2015 to establish a strongly representative baseline. For clarity the BGS air quality monitoring will continue to be undertaken KM8 hydraulic fracture stimulation operation.

Further baseline monitoring has also been proposed two (2) weeks prior to the KM8 hydraulic fracture stimulation operation to ascertain a more recent. Two weeks is considered suitable due to the previous baseline data having already been established. This baseline data will again be used to inform and establish the overall baseline conditions at the wellsite.

For clarity Sulphur Hexafluoride will no longer be monitored at the KMA wellsite, due to the levels being insignificant. The Environment Agency are satisfied with this approach as laid out within the Environmental Permit EPR/DB3002HE decision document.

5.1.2 Active Site Monitoring

Ambient air monitoring will be undertaken throughout the duration of site operations with particular attention given to spot monitoring during key site operations including well stimulation. Ambient air monitoring will then continue and for four weeks after the site operations have ceased and the hydraulic fracturing plant and machinery has been removed from the site.

GGS will attend the site at two weekly intervals for the duration of the ambient air monitoring plan to collect time averaged samples for laboratory analysis and to maintain the continuous monitoring equipment.

For Clarity the KMA wellsite will not involve the incineration of natural gas or any other substance and no flare unit or incinerator will be present on the KMA wellsite.

5.1.3 Methodology

A GGS engineer will attend the KMA wellsite prior to the workover operations taking place. A total of four (4) tripod stands shall be placed around the KMA wellsite. The location for each stand can be found within the KMA Air Quality Monitoring Plan provided as Appendix 1 of this Environmental Monitoring Plan. The locations of each stand have been decided based on the prevailing wind, the elevation of the site, and the sources of emission. Each stand will incorporate a plastic container which will house the required diffusion tubes for each parameter. GGS will locate DustScan passive samplers at all four monitoring locations.

Methane

GGS will continuously monitor methane at the Monitoring Locations 1A and 1B using a transportable tuneable diode laser (TDL 500) linked to a telemetry enabled Gas Sentinel data logger to provide continuous (10-minute moving average sampling) of ambient air methane concentrations. Where the moving average value exceeds a threshold of 5 ppmv, the sampling logging rate will be increased to 1hz. The limit of detection (LoD) for the TDL 500 is 1 ppmv with a detection range of 0-10,000 ppmv.

Ten (10) minute duration, spot monitoring, using a hand held TDL 500 will be carried out every two weeks at the four locations. In addition, further ten-minute duration spot monitoring will be carried out during key operations, including well stimulation operations. These locations will be variable and will be chosen on the day by the wind speed and direction to ensure that maximum concentrations of any gas plume is recorded.

In addition, as part of the operator's safe method of working, all surface pipework will be checked for leaks prior to and during operations using an intrinsically safe TDL 500.

Carbon Dioxide

GGS will continuously monitor carbon dioxide at Monitoring Locations 1A & 1B using a transportable Gas Sentinel, a multi-gas monitoring device with data logger to provide continuous (ten (10) minute sampling) of ambient air carbon dioxide concentrations. The CO_2 sensor has a resolution of 10 ppm and an accuracy $\pm 10\%$ of the reading. In addition, spot monitoring, using a hand held GFM 100 series, will be carried out by GGS every two weeks at all four locations. The limit of detection of the GFM 100 series for carbon dioxide is 100 ppm.

Carbon Monoxide

GGS will continuously monitor carbon monoxide at Monitoring Locations 1A & 1B using a transportable Gas Sentinel, a multi-gas monitoring device with data logger to provide continuous (ten (10) minute sampling) of ambient air carbon monoxide concentrations. The CO sensor has a limit of detection and resolution of 1 ppm and an accuracy $\pm 10\%$ of the reading. In addition, spot monitoring, using a hand held GFM 400 series, will be carried out by GGS every two weeks at all four monitoring locations. The limit of detection of the GFM 400 series for carbon monoxide is 100 ppm.

Oxygen

GGS will continuously monitor oxygen at Monitoring Locations 1A & 1B using a transportable Gas Sentinel, a multi-gas monitoring device with data logger to provide continuous (ten (10) minute sampling) of ambient air oxygen concentrations. The O2 sensor has a limit of detection and resolution of 0.1%v/v and an accuracy $\pm 10\%$ of the reading. In addition, spot monitoring, using a hand held GFM 400 series, will be carried out by GGS every two weeks at all four locations. The limit of detection of the GFM 400 series for oxygen is 0.5%.

Total Solid Particulates - PM10, PM2.5, PM1.0 & Dust

GGS will continuously monitor particulates at Monitoring Locations 1A & 1B using a transportable Turnkey Osiris with measurements taken every ten (10) minutes. This instrument has been issued with the Environment Agency's MCERTS certification and has a resolution to $0.01 \, \mu g \, m^3$ and a measurement range of 0 to $6,000 \, \mu g \, m^3$.

In addition, GGS will locate DustScan passive samplers at all four monitoring locations. The DS100-D combines the DS100 sticky pad directional dust gauge with the DD100 DustDisc settlement gauge. The directional gauge samples fugitive dust in flux from 360° around the sampling head to determine the direction/s from which dust has arisen. The passive settlement gauge samples dust depositing out of the air. The collected dust is measured in terms of AAC and EAC % (established annoyance/nuisance criteria) as an average for the monitoring period. If subsequently required, the collected dust can be characterised in respect of its mass, particle size and chemistry.

BTEX

GGS will passively sample BTEX using Tenax sorbent tubes located at the four monitoring stations. These tubes will be collected every two weeks and taken to a UKAS accredited laboratory for analysis by thermal desorption and analysis by GC/FID or GC/MS to give a time weighted average. The limit of detection for this technique is variable and depends on the compounds that are present.

Top 10 VOCs

GGS will passively sample for the Top 10 VOCs using Tenax sorbent tubes located at the four monitoring stations. These tubes will be collected every two weeks and taken to a UKAS accredited laboratory for thermal desorption and analysis by GC/FID or GC/MS to give a time weighted average. The limit of detection for this technique is variable and depends on the compounds that are present. For clarity Top 10 VOCs by definition means the 10 VOCs which have the highest concentration within the samples.

Nitrogen Dioxide

GGS will continuously monitor nitrogen dioxide at the monitoring stations Locations 1A & 1B using a semi-permanent AQMesh with measurements taken every ten (10) minutes to provide trends through time. This instrument has a limit of detection of <10 ppb for nitrogen dioxide and a monitoring range of 0-4,000 ppb.

Passive sampling for nitrogen dioxide will also be undertaken using diffusion tubes at all four locations. These will be exposed at the monitoring station and replaced approximately every 2 weeks before being taken to a UKAS accredited laboratory for analysis to give a time weighted average. The limit of detection for this technique is variable but will be circa $0.7 \,\mu\text{g/m}^3$.

Nitric Oxide

GGS will continuously monitor nitric oxide at the monitoring station Locations 1A & 1B using a semipermanent AQMesh with measurements taken ten (10) minutes. This instrument has a limit of detection of <5 ppb for nitric oxide and a monitoring range of 0-4,000 ppb.

Passive sampling for nitric oxide will also be undertaken using diffusion tubes. These will be exposed at all four monitoring stations and replaced approximately every 2 weeks before being taken to a UKAS accredited laboratory for analysis to give a time weighted average. The limit of detection for this technique is variable but will be circa $2.2 \, \mu g/m^3$.

Hydrogen Sulphide

GGS will monitor hydrogen sulphide by installing passive absorbent tubes at all four monitoring stations. These tubes will be collected every two weeks and taken to a UKAS accredited laboratory for

analysis by UV/Visible Spectrophotometry to give a time weighted average. The limit of detection for this technique is circa $0.2 \, \mu gm^{-3}$.

Ozone

GGS will continuously monitor ozone at the monitoring stations Locations 1A & 1B using a semipermanent AQMesh with measurements taken ten (10) minutes. This instrument has a limit of detection of <5 ppb for ozone and a monitoring range of 0-1,8000 ppb.

Passive sampling for ozone will also be undertaken using diffusion tubes. These will be exposed at all four monitoring stations and replaced approximately every 2 weeks before being submitted to a UKAS accredited laboratory for analysis to give a time weighted average. The limit of detection for this technique is variable but will be circa $1.0 \, \mu g/m^3$.

5.1.4 Reporting

Once the baseline monitoring has been carried out, the results of the continuous monitoring, spot monitoring and laboratory analyses will be reported to the Environment Agency and North Yorkshire County Planning Authority within 28 days from date of the last samples being collected from site.

During the on-site operations, regular bi-weekly reports, containing the results of the continuous monitoring, spot monitoring and available laboratory analyses will be submitted to the Environment Agency and North Yorkshire County Planning Authority. The last monitoring results will be submitted within 28 days from date of the last samples being collected.

In addition, with specific reference to methane concentrations, if threshold concentrations, as determined from baseline monitoring carried out prior to well stimulation operations and as agreed with the Environment Agency, are exceeded then the source of the exceedance will be identified and the Environment Agency will be informed within 24 hours of the occurrence.

All monitoring equipment referenced in the submitted reports will be accompanied by valid calibration certificates supplied by the equipment supplier, together with records of GGS calibration testing carried out in line with the company's internal quality assurance procedures.

5.2 Groundwater Quality Monitoring

Due to the way Third Energy constructs its wellsites and subsequent well, the risk to groundwater from both surface operations and well operations are not significant as identified within the Environmental Risk Assessment, submitted as part of the permit application. Although fluids will remain within the formation the likelihood of them coming into contact with groundwater is minimal due to the formation being tight. Third Energy has appointed Envireau Water to undertake groundwater monitoring to ensure that groundwater quality does not deteriorate both during and after the operations.

5.2.1 Baseline

A baseline groundwater quality for the KMA wellsite has been established in advance of the KM8 hydraulic fracturing operation commencing. Baseline monitoring has been undertaken at nine (9) offsite locations. The nine (9) locations comprised of six (6) established groundwater boreholes in addition to three (3) surface water features. Five (5) purpose built onsite groundwater monitoring boreholes have also been monitored to provide baseline conditions. For Clarity Sugar Hill Drain has two (2) samples taken for both upstream and downstream analysis.

Third Energy has collected an additional three months of baseline water quality data from a range of surface water and groundwater features at and close to the KMA Wellsite. Monitoring has been carried out in accordance with the requirements of the permit and the deviation that was agreed with the Environment Agency.

5.2.2 Active Site Monitoring

During the KM8 hydraulic fracture stimulation operation a scheme of groundwater monitoring shall be implemented. This will be undertaken at the same monitoring locations as those used to establish the baseline.

Monitoring shall continue until it has been deemed sufficient by Enviroau Water and in agreement with the Environment Agency.

5.2.3 Methodology

Water samples have been collected from the various surface water and groundwater features with reference to relevant parts of BS ISO 5667 (Water Quality Sampling). The sampling techniques are described in a separate sampling protocol that has been prepared by Envireau Water and adopted as a Third Energy operational technique which has also be been included within Appendix 2 of this Emissions Monitoring Plan.

Surface Water Sampling

Surface water samples are collected using a telescopic sampling pole. The beaker at the head of the sampling pole is detached and cleaned using sanitising wipes or fluids. The beaker is then rinsed with distilled water and reattached to the pole.

The sample pole is extended to the required length and used to retrieve a water sample and where possible, samples are collected away from the bank. In the case of rivers/streams, samples are

collected where water can be observed to flow; ideally midstream. Water samples are not collected when there is insufficient depth of water to submerge the beaker.

Sufficient sample is obtained to fill the required sample containers. A sample of water is collected and used for field chemistry analysis using an In-Situ Smartroll multi parameter device, and field measurements recorded. Field measurements include:

- Date / Time;
- Weather Conditions;
- General Observations;
- Water Levels;
- Water Appearance;
- Water Chemistry Parameters including;
 - Water Temperature;
 - pH;
 - o Electrical Conductivity; and
 - Redox Potential;

Offsite Groundwater Sampling

The construction of the offsite boreholes is variable. The following sampling methods are therefore employed:

Where boreholes contain pumps or are artesian, water samples are collected using existing pumping equipment and sample taps within the distribution network. Sample taps are cleaned using sanitising wipes or fluids (where practicably possible) and water purged for at least five minutes before water samples are collected.

Where boreholes do not contain pumps, water samples are collected using disposable single valve bailers lowered into the borehole on Kevlar rope or (in the case of some very shallow supplies) a telescopic sampling pole.

A sample of water is used for field chemistry analysis using an In-Situ Smartroll multi parameter device, and field measurements, consistent with those for surface water sampling, are recorded. Excess water is discharged to discharged to surface.

Onsite Groundwater Sampling

A number of methods are used to obtain groundwater samples. The KMA wellsite monitoring boreholes have had low volume pneumatic bladder pumps are installed. The pumps are suspended from specially designed well plugs that form a seal at the top of the borehole casing and incorporate a gas sampling valve that connects to portable gas detection equipment.

The well plug is removed from the borehole, allowing access to an airline and water discharge line connected to the bladder pump inside the borehole. Groundwater levels are measured using a hand held dip meter and recorded, together with the date and time the dip measurement is taken. The probe of the dip tape is cleaned prior to dipping each borehole, using sanitising wipes or fluids.

The compressor is connected to the airline of the bladder pump. A dedicated water discharge line is used at surface to avoid cross-contamination when sampling. Water collecting in the bucket is emptied into the drainage system at the wellsite. A calibrated Smartroll multi parameter device is then installed and connected to an Android device to measure and record field chemistry data.

The compressor is switched on and water is then purged from the borehole at a rate less than ~1 litre/minute. The pressure settings on the compressor can be adjusted to achieve the required flow rate. Water chemistry is monitored and recorded through Vu-situ software, which includes a 'stability test' to determine the stability of the water passing through the through cell. Once all the parameters stabilise, purging continues for a minimum of three logging intervals before water samples are collected. This generally takes in the region of 30 - 45 minutes per borehole. Water sample containers are then filled.

5.2.4 Analysis and Reporting

The details on each sample label are checked to ensure they have the correct details including Sample ID, location, date and time.

Samples are packaged in a cool box with appropriate protection to prevent damage and then couriered to the laboratory within 24hours of sample collection. A chain of custody is completed and included within the consignment.

Sample analysis results are reviewed for consistency and compared to blank and duplicate samples. Anomalies are checked with the laboratory to determine if re-analysis of samples is required. Sample analysis results are tabulated, graphed and are reported as per the requirement of the environmental permit.

5.3 Noise Monitoring

Third Energy has appointed Castle Group to undertaken noise monitoring at local receptors as identified within the Noise Management and Monitoring Plan. This will be undertaken throughout several stages of the proposed development.

5.3.1 Baseline

A baseline noise assessment has been undertaken to determine the background noise levels at the nearest sensitive receptors to the KMA wellsite. From the baseline assessment, a quantitative prediction of noise levels at the nearest sensitive receptors is made for each phase of the operation, which is presented in the form of a Noise Impact Assessment, submitted in support of the planning application. The results of the Noise Impact Assessment show that once mitigation measures have been applied the residual impact of noise will be neutral.

A scheme of noise monitoring will be undertaken during the KM8 hydraulic fracturing stimulation operation to monitor compliance, both with the Noise Impact Assessment and any conditions imposed on the operation through planning condition. Results of the noise monitoring during the operation will be made available for inspection by the Environment Agency at its request.

5.3.2 Active Onsite Monitoring

No onsite monitoring will take place at the KMA wellsite.

Offsite noise monitoring will take place throughout various phases of the hydraulic fracture stimulation operation, the monitoring is described below and a Noise Management and Monitoring Plan can be found as Appendix 3 of this Emissions Monitoring Plan.

5.3.3 Methodology

Noise monitoring will take place as a precautionary approach and will be undertaken at two (2) locations, they are:

- Kirby O Carr farm located south of the wellsite: and
- 5 Shire Grove 820m north east of the wellsite

Kirby O Carr is approximately 210m south of the wellsite and the measurement position is in the front garden of the bungalow, and does not benefit from screening by the temporary noise barrier, as it is opposite the gap within the barrier where access the wellsite exists.

Shire Grove is approximately 820m northeast from the wellsite and represents a large number of properties within the Kirby Misperton village. It is in a position where complaints have been received in the past. The locations of each monitoring location can be found within Appendix 3 of this Emissions Monitoring Plan.

Monitoring will be carried out simultaneously using unattended logging equipment at the locations described above. The logging equipment is capable of remote checking and downloading of data (subject to mobile phone signal). This will monitor LA10,1hr, LA90,1hr and LAeq,1hr continuously day, evening and night, for the initial period of each phase until the levels are shown to be stable. A wind monitoring station will be located at Kirby O Carr to establish wind direction so this can be compared with noise data.

A second noise monitor and microphone will record a 10s sample sound file every 30-60 minutes at both locations. Where levels are high, then the noise specialist will visit site and these sound recording samples (very large data files) will be downloaded by removing data storage cards from meters and transferring to a portable pc for analysis and listening.

During this visit, the noise specialist will undertake a brief survey of noise of equipment on the site and report these values along with comments to the Site Manager.

5.3.4 Duration and Frequency

Development Phase	Time When Monitored
Pre-stimulation Workover	Unmanned monitoring day and night
HF and Well Testing	Unmanned monitoring day and night
Normal Production	Attend measurement on site and extrapolation in noise model, day only
Restoration	Unmanned monitoring day only

5.3.5 Reporting

Formal reports will be issued on completion of each of the three phases during which noise is planned to be monitored. These will give all the results from the noise monitors, including post processing to extract the levels during the day, evening and night, discounting data where the wind velocities are in excess of 5m/s and also if appropriate considering results grouped by wind direction. In addition, a short sample of 10s large sized sound files will be available for listening.

Reporting the results of inspections, reviews and monitoring is a key element in the NMP, and provides Stakeholders or the EA with information against which to determine compliance with permit terms and conditions.

5.3.6 Changes to the Noise Monitoring Plan

If any change is required as a result of:

- Inability to reach or install equipment at the permitted location; or
- Any technical reason outside the control of Third Energy,

then Third Energy will submit a revision of the noise monitoring plan to the relevant regulatory bodies for approval.

5.4 Seismic Monitoring

Operators who intend to carry our hydraulic fracture stimulation operations are required to submit for approval a Hydraulic Fracture Plan (HFP) to the Oil & Gas Authority (OGA) and the Environment Agency (EA).

The Oil & Gas Authority will approve the HFP if it is deemed acceptable following consultation with both the Health and Safety Executive (HSE) and the Environment Agency (EA).

Table S1.3 of Environmental Permit EPR/DB3002HE places a requirement on Third Energy to submit a written Hydraulic Fracture Plan and obtain written approval by the EA.

Both OGA and EA must approve the HFP before hydraulic fracturing can take place.

Full details of seismic monitoring has been provided within the HFP which when approved by the EA will form a part of this emissions monitoring plan.

6 ADDITIONAL MONITORING

6.1 Gas Detection

All personnel present within the KMA wellsite will be required to wear a personal gas monitor for the purpose of detecting H2S. The gas monitors shall be provided by either a third party contractor or by Third Energy. Personal gas monitors shall be recalibrated daily and maintained in accordance with manufacturer's instructions.

In addition to personal gas monitors several Tetra 3 gas detection monitors shall be onsite which will monitor;

- Methane
- Hydrogen Sulphide
- Oxygen
- Carbon Monoxide

Area gas detection units shall be used on the KMA wellsite for monitoring purposes. All gas monitoring devices can be used to identify any leakages within the site layout.

6.2 Soil Analysis

As part of the wellsite construction a geotechnical evaluation was undertaken which included a chemical analysis of the underlying soils at the site, the report is held by Third Energy and will be used as a reference upon the restoration of the site to restore the land to its former condition. Site restoration however is not included within the permit application and would be subject to a separate application.

7 MANAGEMENT OF MONITORING

Person(s) with the responsibility of ensuring all monitoring is undertaken and requirements are met shall be appointed by Third Energy. The appointed person(s) will be selected based on the responsibility required for the scope of monitoring works and the competency of the person(s).

Although the appointed person(s) will not be undertaking the monitoring themselves, they will be responsible for the management and supervision of all service contractors who have been selected by Third Energy to undertaken environmental monitoring.

The approved contractor shall liaise with the Third Energy appointed person(s) to gain access and egress from the site, discuss potential issues or concerns in relation to environmental monitoring, and the production and delivery of reports for each sample collected together with a conclusion of the results.

*** Page Left Blank Intentionally ***

APPENDIX 1 – AIR QUALITY MONITORING PLAN

Page 21

*** Page Left Blank Intentionally ***

GGS

Greenheys

Manchester Science Park, Pencroft Way,

Manchester, M15 6JJ Telephone: 0161 232 7465 Email: info@ggs-uk.com Web: www.ggs-uk.com

Ambient Air Quality Monitoring Plan, Kirby Misperton A Wellsite, KM8 Production Well.

Prepared for:

Third Energy UK Gas Ltd.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 1 of 25

Document Control Page

Client	Third Energy UK Gas Ltd. Knapton Generating Station, East Knapton, Malton, North Yorkshire, YO17 8JF Ambient Air Quality Monitoring Plan, Kirby Misperton A Wellsite, KM8 Production Well. GGS1197 Ambient Air Quality Monitoring Plan Fifth Issue – Second Revision	
Document Title		
Report Ref		
Project Revision		
Revision Detail	Revised monitoring plan for four monitoring locations and details of additional monitoring.	
Issue Status	Final	

	Name		Position	Signature	Date
Prepared By:	Joao Dyer	BSc (Hons) MSc FGS	Senior Geo- Environmental Consultant	fryn	19/9//17
Technical Review By:	John Naylor	BSc Hons FGS MIES CEnv	Technical Director		19/9/17
Checked and Approved By:	Simon Talbot	BSc MSc FGS CEng MIMMM	Managing Director	Absolpt	19/9/17

GGS is the trading name of Ground-Gas Solutions Limited

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 2 of 25

CONTENTS

1	Introduction4			
2	An	nbient Air Quality Monitoring	6	
	2.1	Baseline Monitoring	6	
	2.2	Monitoring Stations During and After Well Operations	7	
3	Sit	e Monitoring Programme	9	
	3.1	Additional Monitoring	9	
4	Me	thodology	11	
	4.1	Methane (CH ₄)		
	4.2	Carbon Dioxide (CO ₂)		
	4.3	Carbon Monoxide (CO)	12	
	4.4	Oxygen (O2)	12	
	4.5	Particulates	13	
	4.6	BTEX	14	
	4.7	Top 10 VOCs	14	
	4.8	Nitrogen Dioxide (NO ₂)	14	
	4.9	Nitric Oxide (NO)	15	
	4.10	Ozone (O ₃)	15	
	4.11	Hydrogen Sulphide (H ₂ S)	16	
	4.12	Weather Station	16	
5	Qu	ality Control & Calibration	17	
6	Re	porting	18	
Δ		dix – Technical Specifications		

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 3 of 25

1 Introduction

Third Energy has appointed GGS to conduct ambient air quality monitoring at the KMA wellsite before, during and after the hydraulic fracturing stimulation operations. Air emissions generated within the KMA wellsite will be restricted to routine onsite operations such as exhaust systems from vehicles, generators and lighting towers and any associated equipment involved with hydraulic fracture stimulation. In addition, the ambient air quality monitoring will identify any abnormalities due to fugitive emissions.

Ambient air quality monitoring undertaken before hydraulic fracturing stimulation operations commence will establish a baseline condition at the KMA wellsite. This will allow Third Energy to benchmark future results collected during the hydraulic fracturing stimulation operations, to determine whether Third Energy's operations have any significant effect on air quality.

Parameters	Monitoring Frequency	Required By
Methane (CH ₄)	Continuously (10 minute sampling), & periodic spot monitoring	Environment Agency / NYCC
Carbon Dioxide (CO ₂)	Continuously (10 minute sampling), & periodic spot monitoring	Environment Agency
Carbon Monoxide (CO)	Continuously (10 minute sampling), & periodic spot monitoring	NYCC – Planning Condition 25
Oxygen (O ₂)	Continuously (10 minute sampling), & periodic spot monitoring	NYCC – Planning Condition 25
TSP, PM10, PM2.5, PM 1.0	Continuously (10 minute sampling)	Environment Agency
Dust	2 weekly passive DustScan sampling	Environment Agency
BTEX	2 weekly passive sampling (TWA)	Environment Agency
Top 10 VOC	2 weekly passive sampling (TWA)	Environment Agency
Nitrogen dioxide (NO ₂)	Continuously & 2 weekly passive sampling (TWA)	Environment Agency
Nitric Oxide (NO)	Continuously & 2 weekly passive sampling (TWA)	Environment Agency
Hydrogen Sulphide (H ₂ S)	2 weekly passively (TWA)	NYCC – Planning Condition 25
Ozone (O ₃)	Continuously & 2 weekly (TWA)	

Table 1. Required Ambient Air Quality Parameters.

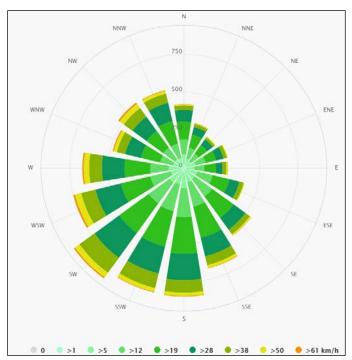
For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 4 of 25

The Ambient Air Quality Monitoring Plan is designed to address both the Environment Agency's permit (reference: Decision Document EPR/DB3002HE) and North Yorkshire County Council planning permission conditions (reference: Decision Notice C3/15/00971/CPO). The plan includes the monitoring of the parameters listed in Table 1 together with the proposed frequency of monitoring.

For: Third Energy UK Gas Ltd.


Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 5 of 25

2 Ambient Air Quality Monitoring

The nearest Met Office weather station to the site is at Fylingdales, approximately 25 kms to the North East of the site. The windrose of average hours per year wind blows from the indicated direction at Fylingdales, based on the last thirty years, is shown in Figure 1.

Figure 1: Windrose of average annual wind direction for Fylingdales Met Office Weather Station.

This shows that the prevailing wind at the site is from the South West. Therefore, the main ambient air quality monitoring station will be established immediately down wind of the KM8 Production Well, i.e. to the North East of the well (Locations 1A & 1B) as indicated in Figure 2.

2.1 **Baseline Monitoring**

Initial baseline sampling was undertaken in 2015 to inform the permit application and it is considered that this data is still suitable for use when establishing baseline conditions. In addition, significant baseline data has been, and is still currently, being undertaken at the KMA wellsite by the British Geological Survey, which again will feed into Third Energy's acquisition of baseline data.

GGS will carry out further two weeks of baseline air quality monitoring at the KMA wellsite to inform the overall baseline condition with data acquired immediately prior to activities taking place at the KMA wellsite, namely the management of extractive waste as presented within Table S1.1 as activity A1 of the environmental permit. For clarity, the management of extractive waste does not commence until the extraction process of the mining waste begins. i.e. the bringing of waste streams to surface.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 6 of 25

To summarise, 4 sets of data will be used to establish the overall air quality baseline level at the KMA wellsite, this includes:

- Initial data obtained using spot sampling and diffusion tubes from Feb/March 2015;
- Additional data using spot sampling and diffusion tubes collected 2 weeks prior to the commencement of mining waste activities (Locations 1A, 2, 3 and 4);
- · Continuous data obtained from BGS; and
- Additional continuous data acquired by GGS, following the erection of the noise barriers and safe working platform (Location 1B only).

Prior to the erection of noise barriers, the spot sampling and diffusion tubes will be positioned at Location 1A on top of the existing soil mound. In addition, GGS will establish three other monitoring stations around the site in order to give a wide coverage to capture the baseline conditions for non-prevailing wind directions. Location 2 will be established in the North West corner of the wellsite, a more remote 'upwind' monitoring station will be established outside the South West corner of the KMA wellsite, 20m south along the access track (Location 3) and Location 4 will be established in the South West corner of the wellsite.

Time averaged passive monitoring and/or spot monitoring will be undertaken for all of the required parameters at these locations.

The 'upwind' monitoring station located outside the South West corner of the wellsite will give the make up of any gas and particles coming onto the wellsite from the prevailing wind direction. This will then be deducted from other samples and monitoring results to give a true picture of the emissions and particulates generated from the well stimulation works being carried out on the site.

Following the erection of the noise barriers the monitoring equipment will be moved from Location 1A and relocated to Location 1B on the safe working platform next to the noise barriers. The continuous monitoring equipment will also be installed at Location 1B. All continuous monitoring undertaken prior to the commencement of the mining waste activity shall be classified as baseline.

2.2 Monitoring Stations During and After Well Operations

A noise attenuation barrier will be constructed around the well site in preparation for the planned well stimulation operations. This barrier has the potential to shield the monitoring station at Location 1A from any potential emissions from the wellsite. Therefore, it is proposed that this monitoring station is temporarily re-located onto a platform built on the noise barrier at Location 1B for the duration of the well operations.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 7 of 25

At the end of the well stimulation operations following the removal of the noise barrier the monitoring station will be moved to Location 1A.

During the well stimulation operations, additional, ten minute duration spot monitoring for methane will be carried out (see Section 4.1). The additional spot monitoring locations will be variable and will be chosen on the day by the wind speed and direction. A minimum distance from the methane emission sources will be 5m on a still/calm day, with a maximum of 20 meters on a windy day. The location will also be dependent on any ATEX zones that are established at the KMA wellsite and will be subject to appropriate safe working procedures.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 8 of 25

3 Site Monitoring Programme

GGS will carry out a further two weeks of baseline ambient air quality out before commencement of the mining waste activities.

Ambient air monitoring will then be undertaken throughout the duration of site operations with particular attention given to spot monitoring during key site operations including well stimulation. Ambient air monitoring will then continue for four weeks after the site operations have ceased and the hydraulic fracturing plant and machinery has been removed from the site.

GGS will attend the site at two weekly intervals for the duration of the ambient air monitoring plan to collect time averaged samples for laboratory analysis and to maintain the continuous monitoring equipment.

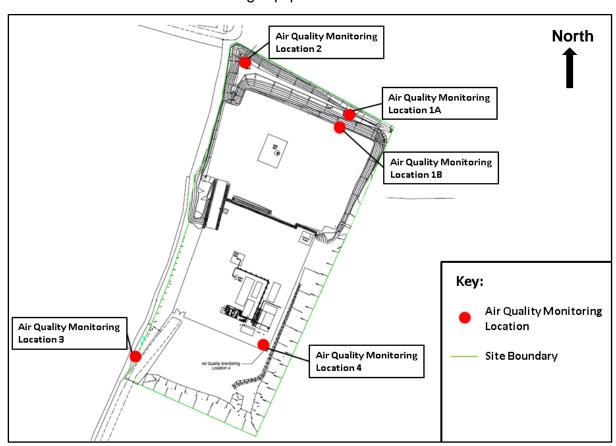


Figure 2. Location of Ambient Air Quality Monitoring Stations.

3.1 Additional Monitoring

The site process equipment is monitored continuously via the fibre optically linked SCADA system which enables the Control Room at the Knapton Generating Station to monitor pressures, temperatures and flows in real time and react should there be any evidence of a change. Site visits are carried out on a daily basis, which includes visual inspections, gas detection checks and 'leaks and seeps' surveys. The Company also operates a comprehensive PPM system which allocates scheduled

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 9 of 25

maintenance from inspection to overhaul on all of the Company's assets and equipment.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 10 of 25

4 Methodology

The ambient air quality monitoring stations will house an array of monitoring devices for the range of parameters to be monitored. These devices and the methods of monitoring are discussed in the following sections:

4.1 Methane (CH₄)

Methane is naturally occurring in the environment and arises from organic rich soils and ruminant cattle. It is also the principle constituent of the target gas to be produced from the geological formations that are proposed to be hydraulically fractured. Methane is a greenhouse gas and fugitive emissions of methane could potentially arise during the proposed operations. Therefore, the permit requires that this gas is included in the Ambient Air Quality Monitoring Plan.

Continuous monitoring of methane has been carried out at the site by the BGS since January 2016. This has identified the current background methane concentrations at the site to vary between 1.9 and 4.7 ppm.

GGS will continuously monitor methane at the Monitoring Locations 1A and 1B using a transportable tuneable diode laser (TDL 500) linked to a telemetry enabled Gas Sentinel data logger to provide continuous (10 minute moving average sampling) of ambient air methane concentrations. Where the moving average value exceeds a threshold of 5 ppmv, the sampling logging rate will be increased to 1hz. The limit of detection (LoD) for the TDL 500 is 1 ppm with a detection range of 0-10,000 ppm. The full technical specifications of the TDL 500 and the Gas Sentinel are provided in the Appendix.

Ten minute duration, spot monitoring, using a hand held TDL 500, will be carried out every two weeks at the four locations. In addition, further ten minute duration spot monitoring will be carried out during key operations, including well stimulation operations. These locations will be variable and will be chosen on the day by the wind speed and direction to ensure that maximum concentrations of any gas plume is recorded.

In addition, as part of the operator's safe method of working, all surface pipework will be checked for leaks prior to and during operations using an intrinsically safe TDL 500.

4.2 Carbon Dioxide (CO₂)

Carbon dioxide is a natural constituent of the atmosphere and is produced from both volcanic activity and animal respiration. It is also produced by the combustion of petroleum based fuels and the Environment Agency requires it to be monitored.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 11 of 25

Continuous monitoring of carbon dioxide has been carried out at the site by the BGS since January 2016. This has identified the current background concentration of carbon dioxide varies between 364 and 601ppm.

GGS will continuously monitor carbon dioxide at Monitoring Locations 1A & 1B using a transportable Gas Sentinel, a multi-gas monitoring device with data logger to provide continuous (10 minute sampling) of ambient air carbon dioxide concentrations. The CO_2 sensor has a resolution of 10 ppm and a tolerance $\pm 10\%$ of the reading. The full technical specification of the Gas Sentinel is provided in the Appendix.

In addition, spot monitoring, using a hand held GFM 100 series, will be carried out by GGS every two weeks at all four locations. The limit of detection of the GFM 100 series for carbon dioxide is 100 ppm. A full specification for the GFM 100 series is provided in the Appendix.

4.3 Carbon Monoxide (CO)

Carbon Monoxide is a constituent of the exhaust gases from diesel engines and North Yorkshire County Council require it to be monitored under Planning Condition 25.

The BGS is not currently measuring background concentrations of carbon monoxide at the site.

GGS will continuously monitor carbon monoxide at Monitoring Locations 1A & 1B using a transportable Gas Sentinel, a multi-gas monitoring device with data logger to provide continuous (10 minute sampling) of ambient air carbon monoxide concentrations. The CO sensor has a limit of detection and resolution of 1 ppm and an accuracy ±10% of the reading. The full technical specification of the Gas Sentinel is provided in the Appendix.

In addition, spot monitoring, using a hand held GFM 400 series, will be carried out by GGS every two weeks at all four monitoring locations. The limit of detection of the GFM 400 series for carbon monoxide is 100 ppm. A full specification for the GFM 400 series is provided in the Appendix.

4.4 Oxygen (02)

Oxygen, at a concentration of 21%, is the second most common gas in the atmosphere and is essential for respiration in animals. It is also used in the combustion of diesel fuels and is required by North Yorkshire County Council to be monitored at the site under Planning Condition 25.

The BGS is not currently measuring background concentrations of oxygen at the site.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 12 of 25

GGS will continuously monitor oxygen at Monitoring Locations 1A & 1B using a transportable Gas Sentinel, a multi-gas monitoring device with data logger to provide continuous (10 minute sampling) of ambient air oxygen concentrations. The O_2 sensor has a limit of detection and resolution of 0.1%v/v and an accuracy $\pm 10\%$ of the reading. The full technical specification of the Gas Sentinel is provided in the Appendix.

In addition, spot monitoring, using a hand held GFM 400 series, will be carried out by GGS every two weeks at all four locations. The limit of detection of the GFM 400 series for oxygen is 0.5%.

4.5 Particulates

Airborne particulate matter is made up of a collection of materials of various sizes that range from a few nanometres in diameter to around 100 microns (100 μ m). It consists of a wide range of material from both natural and anthropogenic sources and includes sea salt, soil dust and the products of combustion. Measurements of the concentration of particulates in air are made by recording the mass of particulate matter in one cubic metre of air, using the units micrograms per cubic metre (μ g m⁻³) and these are recorded as Total Solid Particulates (TSP), and at particle sizes of less than 10, 2.5 and 1.0 microns (PM10, PM 2.5 & PM 1.0 respectively).

Particulates are required by the Environment Agency to be monitored at the site under their permit.

Continuous monitoring of particulates has been carried out at the site by the BGS since January 2016. This has identified the current background concentration of particulates to vary from zero to 135 μ g m⁻³ for PM10, to 132 μ g m⁻³ for PM2.5 and to 121 μ g m⁻³ for PM1.0.

GGS will continuously monitor particulates at Monitoring Locations 1A & 1B using a transportable Turnkey Osiris with measurements taken every 10 minutes. This instrument has been issued with the Environment Agency's MCERTS certification and has a resolution to 0.01 μ g m-3 and a measurement range of 0 to 6,000 μ g m-3. The full technical specification of the equipment is provided in the Appendix.

In addition, GGS will locate DustScan passive samplers at all four monitoring locations. The DS100-D combines the DS100 sticky pad directional dust gauge with the DD100 DustDisc settlement gauge. The directional gauge samples fugitive dust in flux from 360° around the sampling head to determine the direction/s from which dust has arisen. The passive settlement gauge samples dust depositing out of the air. The collected dust is measured in terms of AAC and EAC % (established annoyance/nuisance criteria) as an average for the monitoring period. If subsequently required, the collected dust can be characterised in respect of its mass, particle size and chemistry.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 13 of 25

4.6 BTEX

BTEX refers to the chemicals benzene, toluene, ethylbenzene and xylene. These compounds occur naturally in petroleum deposits and are also present in vehicle exhaust fumes and cigarette smoke. BTEX are required by the Environment Agency to be monitored at the site under their permit.

The BGS is not currently measuring background concentrations of BTEX at the site.

GGS will passively sample BTEX using Tenax sorbent tubes located at the four monitoring stations. These tubes will be collected every two weeks and taken to a UKAS accredited laboratory for analysis by thermal desorption and analysis by GC/FID or GC/MS to give a time weighted average. The limit of detection for this technique is variable and depends on the compounds that are present.

4.7 Top 10 VOCs

Volatile organic compounds (VOCs) are substances with low boiling points that evaporate from solids or liquids. They occur both naturally and as products used in industrial processes. There are very many different VOC's but one of the most common is formaldehyde which is found in building products and furniture. VOCs are also produced by diesel combustion. As such the top 10 VOC compounds are required by the Environment Agency to be monitored at the site under their permit.

The BGS is not currently measuring background concentrations of VOCs at the site.

GGS will passively sample for the Top 10 VOCs using Tenax sorbent tubes located at the four monitoring stations. These tubes will be collected every two weeks and taken to a UKAS accredited laboratory for thermal desorption and analysis by GC/FID or GC/MS to give a time weighted average. The limit of detection for this technique is variable and depends on the compounds that are present.

4.8 Nitrogen Dioxide (NO₂)

Trace concentrations of nitrogen dioxide occur naturally in the atmosphere from volcanic sources and lightening strikes. It is also a product of combustion and is present in vehicle exhaust fumes and cigarette smoke. Nitrogen dioxide is required by the Environment Agency to be monitored at the site under their permit.

Continuous monitoring of nitrogen dioxide has been carried out at the site by the BGS since January 2016. This has identified the current background concentration of nitrogen dioxide to vary from near zero to 267 ppb.

GGS will continuously monitor nitrogen dioxide at the monitoring stations Locations 1A & 1B using a semi-permanent AQMesh with measurements taken every 10 minutes to provide trends through time. This instrument has a limit of detection of <10 ppb for nitrogen dioxide and a monitoring range of 0-4,000 ppb. The full technical specification of this device is given in the Appendix.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 14 of 25

Passive sampling for nitrogen dioxide will also be undertaken using diffusion tubes at all four locations. These will be exposed at the monitoring station and replaced approximately every 2 weeks before being taken to a UKAS accredited laboratory for analysis to give a time weighted average. The limit of detection for this technique is variable but will be circa 0.7 µg/m³.

4.9 Nitric Oxide (NO)

Trace concentrations of nitric oxide occur naturally from lightening strikes. It is also a product of combustion and is present in vehicle exhaust fumes. Nitrogen dioxide is required by the Environment Agency to be monitored at the site under their permit.

Continuous monitoring of nitric oxide has been carried out at the site by the BGS since January 2016. This has identified the current background concentration of nitric oxide to vary from near zero to 63 ppb.

GGS will continuously monitor nitric oxide at the monitoring station Locations 1A & 1B using a semi-permanent AQMesh with measurements taken every 10 minutes. This instrument has a limit of detection of <5 ppb for nitric oxide and a monitoring range of 0-4,000 ppb.

Passive sampling for nitric oxide will also be undertaken using diffusion tubes. These will be exposed at all four monitoring stations and replaced approximately every 2 weeks before being taken to a UKAS accredited laboratory for analysis to give a time weighted average. The limit of detection for this technique is variable but will be circa $2.2 \, \mu g/m^3$

$4.10 \, Ozone \, (O_3)$

Ozone occurs naturally in the upper atmosphere and is formed by the action of ultraviolet light and lightening discharges on oxygen. Near ground level it is formed by chemical reactions between the oxides of nitrogen and VOCs in the presence of sunlight. Ozone is a powerful oxidising agent and is an indicator of poor air quality. As such it will also be monitored at the site.

Continuous monitoring of ozone has been carried out at the site by the BGS since January 2016. This has identified the current background concentration of ozone to vary from near zero to 65 ppb.

GGS will continuously monitor ozone at the monitoring stations Locations 1A & 1B using a semi-permanent AQMesh with measurements taken every 10 minutes. This instrument has a limit of detection of <5 ppb for ozone and a monitoring range of 0-1,8000 ppb. The full technical specification of this device is given in the Appendix.

Passive sampling for ozone will also be undertaken using diffusion tubes. These will be exposed at all four monitoring stations and replaced approximately every 2 weeks before being submitted to a UKAS accredited laboratory for analysis to give a time weighted average. The limit of detection for this technique is variable but will be circa $1.0 \, \mu g/m^3$.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 15 of 25

4.11 Hydrogen Sulphide (H₂S)

Hydrogen sulphide is a naturally occurring compound found in peaty deposits, volcanic areas and petroleum deposits. At Kirby Misperton hydrogen sulphide is present in the target formation. As such, North Yorkshire County Council require it to be monitored under Planning Condition 25.

The BGS is not currently measuring background concentrations of hydrogen sulphide at the site.

GGS will monitor hydrogen sulphide by installing passive absorbent tubes at all four monitoring stations. These tubes will be collected every two weeks and taken to a UKAS accredited laboratory for analysis by UV/Visible Spectrophotometry to give a time weighted average. The limit of detection for this technique is circa 0.2 µgm⁻³.

4.12 Weather Station

In addition to the required parameters, a weather station will be installed at the Ambient Air Quality Monitoring Station Location 1A & 1B to continuously record temperature, atmospheric pressure, wind speed and direction.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 16 of 25

5 Quality Control & Calibration

All monitoring equipment operated by GGS is maintained in accordance with the manufacturer's guidelines. Annual services and calibrations are undertaken when required and routine visual inspections of the equipment are undertaken prior to and during site visits by GGS staff.

GGS operates an Integrated Management System (IMS) that is accredited by QMS International plc as complying with the following international standards:

- BS EN ISO 9001:2008 (Quality Management System);
- ISO 14001:2004 (Environmental Management System), and;
- OHSAS 18001:2007 (Occupational Health and Safety Management System).

All of GGS' monitoring and sampling are carried out to procedures that are subject to independent annual audit.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 17 of 25

6 Reporting

Once the baseline monitoring has been carried out, the results of the continuous monitoring, spot monitoring and laboratory analyses will be reported to the Environment Agency and North Yorkshire County Planning Authority within 28 days from the date of the last samples being collected from site and laboratory results received.

During the on-site operations, regular bi-weekly reports, containing the results of the continuous monitoring, spot monitoring and available laboratory analyses will be submitted to the Environment Agency and North Yorkshire County Planning Authority. The last monitoring results will be submitted within 28 days from date of the last samples being collected.

In addition, with specific reference to methane concentrations, if threshold concentrations, as determined from baseline monitoring carried out prior to well stimulation operations and as agreed with the Environment Agency, are exceeded then the source of the exceedance will be identified and the Environment Agency will be informed within 24 hours of the occurrence.

All monitoring equipment referenced in the submitted reports will be accompanied by valid calibration certificates supplied by the equipment supplier, together with records of GGS calibration testing carried out in line with the company's internal quality assurance procedures.

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 18 of 25

Appendix - Technical Specifications

A) TDL 500

Technical specifications

Battery Life - 8 hours at 20°C with all functions on (backlighting, pump on speed 2) - 6 hours at temperatures

below 0°C with all functions on (backlight

Battery Charger 100 to 240 VAC/ 50-60 Hz battery charger for ATEX battery pack

Charge Time Approximately 14 hours from complete discharge

Response Time, T90 CH4 - 4.5 seconds T10 standards: 2 seconds With suction rod T90: 6 seconds With suction rod T10: <

3.5 seconds

Gases Measured CH4 by laser spectroscopy

Range CH4 - 0-10,000 ppm and 0 ppm to 100% gas volume

Typical Accuracy CH4 detection threshold - 1 ppm

Gas Connection Quick connect inlet coupling with locking mechanism: suction rod on right side Quick connect gas

outlet coupling

Case Seal IP54

ATEX II 2G Ex ib IIB T4

CE 94/9/CE directive dated March 23rd 1994

European Standards Conditions for the ATEX 1ppm to 100% gas volume version

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 19 of 25

B) Gas Sentinel

Gas Sentinel®

Transportable, telemetry enabled, continuous multi-gas analyser

Features

- · Continuous gas and flow monitoring
- Certified*: ATEX, IECEx, MCERTS
- 2 way telemetry, mobile, Wi-Fi, Ethernet and external device connectivity
- Up to 8 user configurable and interchangeable sensors including: CH₄, CO₂, O₂,TVOC, H₂S and CO
 - Measures barometric & borehole pressure, relative humidity and temperature
 - Compact transportable design
 - User defined alerts
 - Long battery life

Benefits

- Low maintenance
- Low cost of operation
- Versatile remote site monitoring
- Up to 3 months deployment on single charge
- · Extended monitoring available via solar charging
- User configurable data collection
- Access data anywhere using standard or bespoke dashboards with Unity[®] Platform
- · Automated reporting functions
- Add third party instruments to telemetry or dashboard

The Gas Sentinel® is a transportable, continuous, multi-gas analyser; certified for hazardous areas with 2-way telemetry capability. It is easy to use for both short term and long term monitoring of landfill, contaminated land and onshore petroleum sites. Versatile remote data acquisition through an intuitive dashboard provides automated reporting for cost effective regulatory compliance.

CGD Technology Limited Greenheys, MSP, Manchester, M15 633 Email: info@cgdt.co.uk Tel: +44 (0)161 232 7465

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 20 of 25

POWER SUPPLY			
Battery type	Lithium-Ion		
Battery life	8hrs to 6 months de Approximately 500 c		ing configuration and conditions.
Battery charging	12v DC 1.5A supply		
Charge rate	1Ah		
GAS SENSORS			
	Gas Type	Range	Typical resolution and accurac
	CH ₄	0-100%	0.1% v/v or ± 10% of reading whichever is the greatest
	CH ₄ (High Resolution)	0-5%	0.01% v/v or ± 10% of reading whichever is the greatest
	CO ₂	0-100%	0.1% v/v or ± 10% of reading whichever is the greatest
Gas Sensor Ranges	CO ₂ (High Resolution)	0-5000 ppm	20ppm or ± 10% of reading whichever is the greatest
	02	0-25%	0.1% v/v or ± 10% of reading whichever is the greatest
	со	0-1000 ppm	1ppm ±6ppm or ± 10% of reading whichever is the greatest
	H ₂ S	0-100 ppm	1ppm ±4ppm or ± 10% of reading whichever is the greatest
	TVOC	0-4000 ppm	1ppm ±5ppm or ± 10% of reading whichever is the greatest
Typical accuracies	All typical accuracies	quoted are after	calibration
Other gases	If you have additional information.	If you have additional gases of interest, please contact us for further information.	
ENVIRONMENTAL SENSORS			
	Sensor Type	Range	Typical resolution and accurac
	Gas Flow	0-100 Ltr/hr	0.1ltr/hr ± 10% of reading whichever is the greatest
Environmental Sensor Ranges	Temperature	-5°C to +50°C	0.1°C ±0.5°C of reading
	Humidity	0-100%RH	1%RH ±1.8%RH
	Pressure	800-1200mb	±1mbar
Typical accuracies	All typical accuracies	quoted are after	calibration
COMMUNICATIONS			
			de la la companya de
Gas Sentinel®			adio link to a Telemetry Hub
Telemetry Hub		Allows connection of multiple Gas Sentinel® Instruments to a single Cellular SIM or Ethernet connection	
Typical accuracies	All typical accuracies	quoted are after	calibration
Important notes: The information in this document is correct at the time of generation. We reserve the right to change part or all of the information. *results pending			

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 21 of 25

C) Turnkey Osiris

Feature	Description	TOPAS	OSIRIS	DUSTMATE
Standard inlet	TSP (1mm stainless mesh)	✓	✓	✓
Heated inlet	Heating to 60°C	✓	✓	•
Detector	Turnkey laser nephelometer	V	√	·
Environmental mode	TSP, PM10, PM2.5, PM1.0	✓	✓	✓
Workplace mode	Inhalable, thoracic, respirable	~	✓	*
Measurement range	0 to 6000 micrograms per cubic metre	√	√	·
Detection limit	0.01 micrograms per cubic metre	4	√	*
Indicator range	0 to 60mg/m² without particle sizing	~	√	·
Particle size range	0.5 to 20 micron diameter	✓	✓	✓
Particle counting mode	Three size channels in particle per cc	✓	√	✓
Flow rate	600cc per minute	✓	✓	✓
Reference filter	25mm diameter GFA circle	✓	✓	✓
Operating temperature	-5°C to +50°C	✓	✓	✓
Security	Password protection	✓	✓	✓
Alarm	Siren, text to cellular phone, visual beacon and email	✓	✓	×
Display	Two line alphanumeric with backlight	✓	✓	✓
Data storage	Internal with separate battery backup	128k byte	128k byte	32k byte
Averaging period	1 second to 4 hours	✓	✓	✓
Battery	Sealed lead acid, rechargeable	n/a	Internal 6v 2.8 AH	Belt pack 6v 1.2 AH
Sampling current drain	Including heated inlet and backlight	1.2A	1.2A	200mA (without heated inlet)
External power pack	80 to 260v AC input, weatherpoof	•	•	×
Meteorological inputs	Wind speed and direction, rainfall, temperature and humidity	✓	✓	×
Other logging inputs	Two 0 to 5 volt analogue inputs	✓	✓	×
RS232 I/O	9600 baud via PC-link	✓	✓	✓
Telemetry I/O	1200 baud opto isolated	✓	✓	×
Analogue output	0 to 4 volt analogue of TSP or PM10 channel, 12 bit resolution	•	•	*
Wall or lamppost box	Lockable steel	✓	✓	×
Case protection	To IP66 (excluding inlet and exhaust)	~	*	Carry case
Dimensions	External dimensions in mm	400 x 300	260 x 160 x 150	160 x 100 x 100
Weight	Instrument and enclosure approximate weight in kg	12kg	11.8kg	1.2kg
Power options	Solar, wind, mains and battery	✓	✓	Mains and battery only

1-2 Dalby Court, Gadbrook Business Centre, Northwich, Cheshire. CW9 7TN

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 22 of 25

D) AQMESH

AQMesh Technical specification

Parameters measured	nmeters measured NO, NO ₂ , O ₃ , CO, SO ₂ , pod temperature, atmospheric pressure, relative humidity, average noise,				
	peak noise, particle coun	peak noise, particle count, PM1 ^{#0} PM 2.5 ^{#0} , PM 10 ^{#0}			
Measurement range	Parameter Units of measurement Range				
	NO	ppb or μg/m ³	0 to 4,000 ppb		
	NO ₂	ppb or μg/m³	0 to 4,000 ppb		
	NOx	ppb or μg/m³	0 to 8,000 ppb		
	Og	ppb or µg/m³	0 to 1,800 ppb		
	CO	ppb or µg/m³	0 to 6,000 ppb		
	502	ppb or µg/m³	0 to 10,000 ppb		
	Pod temperature	°C or °F	20 to 100 °C or 4 to 212 °F		
	Pressure	mb	500 to 1500 mb		
	Humidity	%	0 to 100 %RH		
	Noise#5	dB	35 to 100 dB SPL		
	Particle count	Particles/cm ³	0.3 - 30 µm		
	PM 1	μg/m ²	0.5 = 30 μm 0 = 200 μg/ m ³		
	PM 2.5		0 – 500 µg/ m ³		
	PM 10	μg/m³ μg/m³			
			0 – 1,000 µg/ m³		
erformance	Parameter NO	#1Limit of detection < 5 ppb	#2Accuracy (in standard test conditions		
	NO ₂	< 10 ppb	±5 ppb ±5 ppb		
	00	< 5 ppb	1.5 ppb		
	O ₃	< 5 ppb	1.5 ppb		
	SO2	< 10 ppb	± 5 ppb		
	Pod temperature	0.1 °C	± 2 °C		
	Pressure	1mb	± 5mb		
	Humidity	1%RH	± 5 %RH		
	Noise	20 Hz to 20 kHz	+/ 1dB		
ensor life	2 years				
ower options	External 12V DC power o	ption Solar j	power pack		
	Mains power option	Recha	rgeable NiMH battery and charger option		
	Lithium metal batteries#8	. Up to 2 years operation (depend			
Communications			ons – data access contract required		
Physical		rethane moulded or ABS, protect	· · · · · · · · · · · · · · · · · · ·		
riiysicai		• •			
		xW220xH250mm (not inc. antenn	a 180mm)		
	Weight 2 – 2.				
invironmental	1 0	to +40 °C #4Humidity range: 15 t			
Mounting		sories available – supplied with ba	sic bracket and standoffs, other options		
	available.				
Measurement period	Variable, from 1 minute	to 1 hour			
Server software	Web browser based, pro	cessing of raw data to give readin	ng, database storage on secure server, data		
	access – tables, graphs,	data download, multi-user access,	password controlled, optional API data acces		

Product designs and specifications are subject to change without prior notice. The user is responsible for determining the suitability of the product.

**Based on standardisation of particle shape and density. **I From sensor manufacturer's specification. **2 Accuracy is what the sensors are capable of producing given stable temperature and humidity. This data was derived from independent lab tests. Standard test conditions are 20 °C and 80% RH and in the absence of interfering gases. **3 Subject to carrier restrictions on dangerous goods. **4 Electrochemical sensors and particle sensors carry a 12-month warranty. **5 Peak noise is the highest recorded value over the gas reporting interval while average noise is calculated using all noise samples over the same period.

info@aqmesh.com

www.aqmesh.com

AQMesh technical specification V4

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 19/09/2017 Page 23 of 25

E) GFM 400 Series

Feature	Method / Type	Range	Resolution
Methane	Infrared	0 - 100%v/v	0.1%
Lower Detection Limit (LEL)	Infrared	0 - 100%v/v	0.1%
Carbon Dioxide	Infrared	0 - 100%v/v	0.1%
Oxygen	Electrochemical	0 - 25%v/v	0.1%
Hydrogen Sulphide	Electrochemical	0 - 5000ppm	1ppm
Carbon Monoxide#	Electrochemical	0 - 2000ppm	1ppm
Atmospheric Pressure	Absolute Pressure Sensor	800 - 1200mb	1mb
Differential Pressure	Thermal Dissipation	±1250Pa	0.1Pa
Temperature	Bi-metal	-10°C to +100°C	1°C
Flow	Thermal Dissipation	-60 – 100 l/hr	0.1l/hr

GFM 400 series specification

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 18/07/2017

[#]The GFM435 carbon monoxide range is 0 - 5000ppm

F) GFM 100 Series

		GFM100	<u>GFM110</u>	GFM130	GFM150 IAQ
Common features		Single channel only	One I/R and up to 2 gas channels	1 to 7 gas capability	One I/R, 2 extra expansions. Temp & humidity inc.
dioxide infra red reading range		ONE (1) of the below	ONE I/R and UP TO TWO (2) of the below	UP TO SEVEN (7) of	
0 – 10000 ppm		·	>	*	~
0 - 10%		✓	>	√	k
0 - 60%		✓	✓	✓	k
0 - 100%		✓	✓	✓	k
Expansions available					
Oxygen	0-25%	_	~	_	· ·
CO	0-25% 0-50 ppm	· ·	· ·		
H2S	0-200 ppm	✓	V	√	k
H2S	0-1500 ppm	V	V	V	k
SO2	0-20 ppm	✓	V	√	k
NO	0-250 ppm	✓	✓	√	k
NO2	0-20 ppm	✓	✓	√	k
CL1	0-10 ppm	✓	√	√	k
HCN	0-100 ppm	✓	✓	✓	k
NH3	0-50 ppm	·	✓	~	×
Photo ionisation cell	0-2000 ppm isobutylene	·	k	~	*
Data storage and download software		×	>	*	*
ATEX certified option		×	k	*	×

EXAMPLES
GFM100 0-10000ppm CO2:
GFM110 0-60% CO2 + 0-25% O2 + Data storage:
GFM110 0-100% CO2 + 0-25% O2 + 0-50ppm CO:
NOTES
GFM100 and GFM110 range available November 2006
GFM130 available January 2007
GFM150 available April 2007

GGS GFM130 Equipped with 0-10,000ppmv CO2 (1ppm resolution and ~100ppm accuracy)

For: Third Energy UK Gas Ltd.

Ref No.: GGS1197 Ambient Air Quality Monitoring Plan

Date: 18/07/2017

APPENDIX 2 – GROUNDWATER MONITOING PLAN

Page 23

*** Page Left Blank Intentionally ***

BASELINE WATER QUALITY DATA

KIRBY MISPERTON A WELLSITE, NORTH YORKSHIRE

For

Third Energy UK Gas Limited Knapton Generating Station East Knapton Malton North Yorkshire YO17 8JF

Ву

Envireau Water Aske Stables

Aske Tel: 01748 889 268

Richmond E mail: info@envireauwater.co.uk
North Yorkshire Web: www.envireauwater.co.uk

DL10 5HG

Ref: P:\Third Energy KMA (1996)\40 - Reporting\Baseline Data - Reissue r6\KMA Report rev6.docx September 2017

TABLE OF CONTENTS

1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Permit Conditions	1
	1.3	Purpose of this Report	2
2	SCH	EME OF MONITORING	2
	2.1	Overview	2
		2.1.1 Initial Scheme of Monitoring	2
		2.1.2 Monitoring boreholes at the KMA Wellsite	2
		2.1.3 Environmental permit	3
	2.2	Monitoring Locations	3
	2.3	Monitoring Frequency	3
		2.3.1 Offsite Water Features	3
		2.3.2 Monitoring boreholes at the KMA Wellsite	3
	2.4	Sampling Methods	3
	2.5	Analytical Parameters	3
	2.6	Analysis Methods	4
	2.7	BGS Baseline Survey	4
3	BAS	ELINE DATA	5
	3.1	Availability	5
	3.2	Results	5
	3.3	Trends	5
		3.3.1 Summary of Surface Water Data	5
		3.3.2 Summary of Groundwater Data	6
		3.3.3 Piper Diagram	7
		3.3.4 Hydrocarbons including Methane	8
		3.3.5 Micro-constituents	8
	3.4	Comparison of Third Energy Baseline Data with BGS Baseline Data	8
4	SUN	ЛМАRY	9
5	DEE	EDENICES	10

FIGURES

Figure 1	Monitoring Points
Figure 2	Concentrations of selected analytical parameters in surface waters
Figure 3a	Concentrations of selected analytical parameters in groundwater's within superficial deposits
Figure 3b	Concentrations of selected analytical parameters in groundwater's within Kimmeridge Clay
Figure 3c	Concentrations of selected analytical parameters in groundwater's within Corallian Group
Figure 4	Piper Diagram - Monitoring Rounds 1 to 21
Figure 5	Geological Horizons Targeted by Monitoring Points
Figure 6	Comparison of Major Ion Data collected by Envireau Water and BGS
Figure 7	Comparison of Methane Data from Superficial Deposits collected by Envireau Water and BGS

TABLES

Table 1 Laboratory Submission Details

APPENDICES

Appendix A Monitoring Locations
Appendix B Analytical Parameters
Appendix C Analysis Methods
Appendix D Sampling Dates
Appendix E Analysis Results

Appendix F Laboratory Test Certificates

© Envireau Ltd. 2017

Envireau Ltd. Registered in England & Wales No. 6647619. Registered office: Cedars Farm Barn, Market Street, Draycott, Derbyshire, DE72 3NB, UK.

Any report provided by Envireau Ltd. is for the client's use and may be reproduced by the client for internal use. The report must not be issued to third parties without the express written consent of Envireau Ltd. If the report is released to any third party, Envireau Ltd will not accept responsibility or liability of any nature to that third party to whom the report (or part thereof) is released. Moreover, Envireau Ltd will accept no liability for damage or loss as a result of any report being made known to, or relied upon by, a third party, unless expressly agreed with Envireau Ltd in writing.

Revision	Details	Completed by	Date	Checked by	Date
REV01	1 st Draft	PH	05/10/2016	JD	06/10/2016
REV02	2 ND Draft	PH	07/10/2016	JD	07/10/2016
REV03	Final Draft	PH	21/10/2016	JD	24/10/2016
REV04	Final	PH/DB	03/11/2016	JD	04/11/2016
REV05	Re-issue following EA discussion	JS	13/07/2017	PH	14/07/2017
REV06	Re-issue following EA discussion	JS	05/09/2017	PH	08/09/2017

BASELINE WATER QUALITY DATA

KIRBY MISPERTON A WELLSITE, NORTH YORKSHIRE

1 INTRODUCTION

1.1 Background

Third Energy UK Gas Limited (Third Energy) is proposing to hydraulically fracture an existing hydrocarbon production well (KM8) at Kirby Misperton A Wellsite, North Yorkshire ("the KMA wellsite").

The KM8 well was constructed in 2013 to a depth of 3099m true vertical depth (TVD) below ground level. The KM8 well is a vertical well and targets the Carboniferous Bowland Shale Formation, at depths of between c. 2000 and 3100 m TVD. The proposal is to hydraulically fracture the well at five intervals between approximately 2,123m and 3,044m TVD to enhance the production of natural gas (methane) from the target strata.

The location of the KMA Wellsite is shown on Figure 1.

1.2 Permit Conditions

A mining waste and groundwater activity permit (Ref. EPR/DB3002HE) was issued by the Environment Agency for the hydraulic fracturing operation in April 2016 [Ref. 1]. The permit includes five pre-operational measures (PO1 – PO5). PO3 states:

At least 4 weeks prior to commencement of permitted activities the operator shall submit to the Environment Agency for approval an updated Emissions Monitoring Plan (EMP) which will include, but is not limited to:

- Complete details of the baseline air quality study undertaken prior to activities commencing; and details of any changes made to the ambient air monitoring programme proposed,
- Complete details of the baseline surface water and groundwater study undertaken prior to activities commencing; and details of any changes made to the surface water and groundwater monitoring programme proposed. Baseline monitoring shall include as a minimum the parameters listed in table S3.5; and the locations, depth, construction method of the monitoring boreholes,
- The plan should also address the requisite surveillance requirements to monitor groundwater both pre-operation and over the lifetime of the activities authorised by this permit,
- Complete details of the surface water management procedures, and related process monitoring,

and shall obtain the Environment Agency's written approval to the updated EMP.

1.3 Purpose of this Report

This report provides the details of the surface water and groundwater monitoring carried out by Third Energy to date and presents all the data collected since surface water and groundwater monitoring began in January 2015. The report also makes reference to independent water quality monitoring that is also being carried out by the British Geological Survey (BGS) in the Vale of Pickering.

2 SCHEME OF MONITORING

2.1 Overview

2.1.1 Initial Scheme of Monitoring

An initial scheme of surface water and groundwater monitoring was developed for the KMA Wellsite in January 2015.

The scheme was developed with advice from the Environment Agency to allow baseline data to be collected prior to the construction of groundwater monitoring boreholes at the KMA Wellsite, which (at that time) were subject to a planning application process and the issuing of the mining waste and groundwater activity permit ("the environmental permit") [Ref. 1].

The scheme was developed on the basis of a comprehensive water features survey to identify suitable surface water and groundwater features within approximately 2km of the KMA Wellsite, which were subsequently monitored on a monthly basis. The 2km survey radius was based on an assessment of the fracture propagation from the borehole [Ref. 2]

The development of the initial scheme of monitoring, including data obtained from the first three sampling rounds, is summarised in a report prepared by Enviroum Water [Ref. 3], which was submitted to the Environment Agency as a supporting document to the environmental permit application.

As described in Ref. 2, all the groundwater features identified for monitoring are associated with either the Superficial (Quaternary) Deposits and/or the underlying Kimmeridge Clay Formation, down to a maximum depth of ~60m below ground level (bgl). The water features surveys identified no features, which could be incorporated into a monitoring network, that were associated with the Corallian limestone aquifer that is present beneath the Kimmeridge Clay Formation. A more detailed description of geology is presented in Ref. 3.

2.1.2 Monitoring boreholes at the KMA Wellsite

Planning permission for the construction of five (5) groundwater monitoring boreholes at the KMA Wellsite was granted in September 2015. The boreholes were constructed in November 2015, as follows:

- Three (3) boreholes ("the shallow boreholes" BHA C) targeting the superficial deposits / weathered zone of the Kimmeridge Clay Formation.
- One (1) borehole ("the intermediate borehole" BHD) targeting the un-weathered Kimmeridge Clay Formation/Ampthill Clay Formation (Ancholme Group).
- One (1) borehole ("the deep borehole" BHE) targeting the top ~30m of the Corallian Group

The full, as-built construction details of the KMA Wellsite monitoring boreholes are summarised in a report prepared by Envireau Water [Ref. 4]. The monitoring boreholes have been equipped with dedicated permanent low velocity bladder pumps for water sampling and have been sampled since January 2016.

2.1.3 Environmental permit

The environmental permit [Ref. 1] was issued for the hydraulic fracturing operation in April 2016 and requires monitoring of the five groundwater monitoring boreholes at the KMA Wellsite and nine offsite monitoring locations.

2.2 **Monitoring Locations**

The locations of the groundwater monitoring boreholes at the KMA Wellsite (BHA – BHE) and the offsite surface water and groundwater monitoring points are shown on Figure 1.

Summary details of the monitoring locations, including the depth and construction method of the monitoring boreholes are provided in Tables A1 – A3 in Appendix A.

2.3 **Monitoring Frequency**

2.3.1 Offsite Water Features

Water sampling has been carried out on a monthly basis at offsite monitoring locations.

2.3.2 Monitoring boreholes at the KMA Wellsite

The monitoring boreholes at the KMA Wellsite (BHA – BHE) have been sampled on a monthly basis since they were constructed, and incorporated into the scheme of monitoring in January 2016.

2.4 Sampling Methods

Water samples have been collected from the various surface water and groundwater features with reference to relevant parts of BS ISO 5667 (Water Quality Sampling). The sampling techniques are described in a separate sampling protocol that has been prepared by Envireau Water [Ref. 5]. During each sampling round, quality assurance samples, comprising at least one blank (distilled water) and one duplicate sample, were collected and submitted to the laboratory.

2.5 Analytical Parameters

Prior to the issue of the environmental permit, water samples were analysed in the field and/or laboratory for the following parameters:

- pH, electrical conductivity (EC), major ions, alkalinity, dissolved metals
- Total dissolved hydrocarbons
- Dissolved methane (groundwater features only)

The environmental permit requires water samples to be analysed for a more extensive range of organic and inorganic substances, including stable isotope (13C) analysis. The required suite of analysis is reproduced in Appendix B and represent the full suite of analysis required by the Environment Agency.

Rev: 8/9/2017 12:38 PM

2.6 Analysis Methods

Samples have been submitted to two UKAS accredited laboratories during the baseline water sampling undertaken to date; ESG Environmental Chemistry and Jones Environmental Laboratory. Samples were submitted to University of Durham for stable isotope analysis only. Laboratory submission details are provided in Table 1.

Table 1 Laboratory Submission Details

Sampling Rounds	Sampling Dates	Laboratory Submission Details
1 to 14	11 February 2015 to 17 February 2016	ESG Environmental Chemistry, Bretby Business Park, Ashby Road, Burton-on-Trent, Staffordshire, DE15 0YZ
15 to 21	22 March 2016 to 15 September 2016	Jones Environmental Laboratory, Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA
15 to 18	22 March 2016 to 16 June 2016	Department of Earth Sciences, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE

Summary details of the analysis methods used at ESG Environmental Chemistry and Jones Environmental Laboratory are provided in Appendix C. The change from the ESG to the Jones laboratory was based on the requirements to analyse a more extensive suite of organic parameter, as required by the permit. The method used by University of Durham for stable isotope (¹³C) analysis was based on Roberts and Shiller [Ref. 6].

Field data (pH, temperature, dissolved oxygen, redox potential, electrical conductivity) were also collected at each sample location during each sampling round using an In-Situ smarTroll multiparameter handheld system.

During each sampling round, at least one blank (distilled water) and one duplicate sample was included in the laboratory analysis, as a check against the laboratory methods and in accordance with good practice.

2.7 BGS Baseline Survey

The British Geological Survey (BGS) are carrying out an independent programme of baseline water quality monitoring in the Vale of Pickering. The BGS monitoring network comprises 10 surface water and 24 groundwater features; most of which are located within approximately 10 km of the KMA Wellsite. The BGS has also installed a set of new groundwater monitoring boreholes close to the KMA Wellsite. These include boreholes constructed to target groundwater within the Superficial Deposits and the Corallian Limestone.

The BGS are collecting water samples on a monthly basis and carrying out field and/or laboratory analysis for the following parameters (where possible):

- temperature, pH, conductivity, redox potential
- major ions and trace elements
- dissolved gases (oxygen, carbon dioxide, methane, nitrogen, radon)
- organic compounds
- stable isotopes of water and inorganic carbon

Ref: P:\Third Energy KMA (1996)\40 - Reporting\Baseline Data - Reissue r6\KMA Report rev6.docx Rev: 8/9/2017 12:38 PM

- groundwater 'age' indicators (chlorofluorocarbons)
- other naturally occurring radioactive materials (e.g. radium)

Details of the BGS baseline programme and links to data and key publications are available through the BGS website (http://www.bgs.ac.uk/research/groundwater/shaleGas/monitoring/waterQualityYorkshire.html).

3 **BASELINE DATA**

Availability 3.1

Third Energy have carried out twenty-one (21) baseline water sampling rounds on an approximate monthly basis between 11 February 2015 and 15 September 2016. A table summarising the dates of the water sampling rounds and the samples taken at each monitoring location is provided in Appendix D.

The KMA Monitoring Boreholes (BHA to BHE) were added to the scheme of monitoring following the completion of drilling and installation of dedicated low velocity pumping equipment. The boreholes were first sampled in March 2016 and have been included in seven (7) consecutive monthly sampling rounds to date.

An additional surface water monitoring location was added at Sugar Hill Drain (S4), which is upstream of the KMA Wellsite and monitoring point S1, also on Sugar Hill Drain. The Sugar Hill Drain runs along the western boundary of the KMA wellsite. Sampling commenced at monitoring point S4 in October 2015. Over the course of the monitoring period there have been occasions where there has been insufficient water at the surface water monitoring points to take water samples. The dates and locations of these are provided in the table in Appendix D.

3.2 Results

The results from the twenty-one (21) baseline water sampling rounds have been tabulated and are provided in the data CD in Appendix E. The full laboratory test certificates are presented in Appendix F.

3.3 **Trends**

Selected chemical indicators have been plotted graphically to illustrate the trends in water chemistry across the monitoring period. The indicators include major ions and other minor constituents and have been chosen to align with the BGS baseline data that is currently available in a graphical format through the BGS website. It should be noted that the charts present selected indicator analytes and not the full suite of analytes, simply to make presentation of a manageable size for a summary report. The full list of analytes and their values are presented in the Appendix E & F.

Surface water data are presented on Figure 2 and groundwater data are presented on Figures 3a, 3b and 3c. Data have also been presented as a Piper diagram and the resulting chart is presented on Figure 4. The Piper diagram is a common presentation, used to plot the relative proportions (in milliequivalents per litre) of the major cations and anions (Na⁺, Ca⁺⁺, Mg⁺⁺, K⁺, Cl⁻, SO₄⁼ and HCO₃⁻) in a water sample. The water sample depths are illustrated on the generalised vertical section on Figure 5.

3.3.1 Summary of Surface Water Data

The major ion chemistry of the surface water samples has remained consistent during the monitoring period, as shown on Figure 2.

Rev: 8/9/2017 12:38 PM

In general, Ackland Beck (S3) has the highest concentrations of calcium, sodium, sulphate and chloride; Costa Beck (S2) has the lowest concentrations; and the concentrations observed at Sugar Hill Drain (S1 and S4) sit between those from Ackland Beck and Costa Beck. Nitrate concentrations range up to about 30 mg/l (as NO₃⁻).

The surface waters tend to have rather variable pH and alkalinity. The field pH typically falls in the range 7 - 8.7, with laboratory alkalinities typically in the range 3 - 5 meq/l. It is likely that the variability reflects responses to rainfall and surface run-off. Ackland Beck (S3) exhibits slightly higher pH and alkalinity than the other streams, with pH typically in excess of 7.8 and laboratory alkalinity in the range 4.4-6.3 meq/l.

The results for iron ('dissolved' iron, using laboratory parlance) show that concentrations are fairly consistent from $100 \text{ to } 200 \,\mu\text{g/l}$ for all monitoring points between February 2015 and January 2016. There is a peak in concentration at around $1000 \,\mu\text{g/l}$ at Sugar Hill Drain upstream and downstream (S1 and S4) in February 2016. The peak in iron is observed at both upstream and downstream monitoring points and is therefore not attributed to activities at the KMA Wellsite.

The full set of results from Sugar Hill Drain upstream and downstream of the KMA wellsite (S1 and S4) presented in Appendix E & F are very similar, which is expected given their close proximity. It also demonstrates that there is no observable impact on the Sugar Hill Drain from activities at the KMA Wellsite during the monitoring period.

From March 2016, there is a small but observable increase in the iron concentrations reported at the majority of the monitoring points, which is attributed to the change in the laboratory requirements for on-site filtering. Since March 2016, water samples have been filtered and acidified in the field to ensure consistency of measurements.

3.3.2 Summary of Groundwater Data

The major ion chemistry of the ground water samples has remained consistent across the monitoring period. Again there is a modest apparent change in iron concentrations from March 2016, probably ascribable to differing laboratory filtration protocols. Selected indicator analytes are shown on Figures 3a, 3b and 3c.

Superficial Deposits / Weathered Kimmeridge Clay

The major ion data indicate that the boreholes targeting the superficial deposits can be divided into three main groups: the KMA Wellsite boreholes (BHA, BHB and BHC), the borehole at The Villa (G3) and the remaining offsite boreholes (G2 and G4 to G6). The main differences in water chemistry are that, in general:

- The KMA Wellsite boreholes have higher concentrations of calcium, chloride, sulphate and iron, and lower concentrations of sodium and oxygen.
- The borehole at The Villa (G3) has higher concentrations of sodium and methane, somewhat elevated chloride and lower concentrations of calcium and iron.
- The remaining offsite boreholes have a very similar composition with lower concentrations of calcium, chloride and sulphate.

The boreholes in superficial deposits / weathered Kimmeridge Clay typically exhibit laboratory alkalinities in the range 7 to 10 meq/l (i.e. higher than surface waters), although borehole G3 at The Villa exhibits typical alkalinities of 12 to 13 meq/l. Boreholes G2 to G6 typically yield groundwaters with field pH in the range 7 to 8 (occasionally exceeding 8). The on-site boreholes BHA to BHC yield water with lower field pH, in the range 6.6 to 7.3.

Rev: 8/9/2017 12:38 PM

Kimmeridge Clay

The major ion data shows that the water from the borehole at Elm Tree Farm (G1) is more mineralised than the water from the intermediate borehole at the KMA Wellsite (BHD). In general, the water at Elm Tree Farm has the higher concentrations of the key chemical indicators, the most notable difference being the concentration of sulphate, which is at least three (3) times greater at Elm Tree Farm than at BHD at the KMA wellsite.

As regards pH, the water from G1 exhibits a typical range of around 7.2 to 8 (field pH) and a laboratory total alkalinity of 12 to 15 meq/l. BHD exhibits a typical field pH range of 7.7 to 8.1 and a laboratory total alkalinity of around 12 meg/l.

Corallian Group

The Corallian Group borehole (BHE) at the KMA Wellsite has a relatively stable concentration across the monitoring period. The main differences between the water composition from the Corallian Group and the other monitoring points is that the concentrations of chloride and methane are much higher, being over six (6) times greater than the highest concentrations from the other monitoring points. The water has a high (alkaline) field pH of 9.5 to 11 and a typical total alkalinity of 10 to 11 meq/l. It is noteworthy that the water is very poor in calcium and magnesium (< 1 mg/l of each): this is most likely due to the high pH having caused these elements to precipitate out as carbonate minerals.

The very low sulphate and oxygen concentrations in the groundwater at BHE suggest highly reducing conditions. The very high methane concentrations confirm the very reducing nature of the water. There is thus a large contrast between the moderately brackish, highly reducing, sulphate-poor Corallian water and the sulphate rich, fresher, generally more oxidising waters of the superficial deposits.

3.3.3 Piper Diagram

The Piper diagram on Figure 4 illustrates the major ion composition of the water samples and indicates that the water from the monitoring points can be split into four main groups:

- The surface water monitoring points (S1 to S4) and the KMA Wellsite superficial deposits boreholes (BHA to BHC) have a very similar composition and can be described as calcium-bicarbonate type, which is indicative of reasonably fresh water from shallow systems. The boreholes have a slightly higher sulphate concentration than the surface water monitoring points, which is expected to originate from oxidation of sulphide minerals or dissolution of secondary sulphate minerals in the clay horizons encountered in the boreholes.
- The offsite superficial deposits/weathered Kimmeridge Clay boreholes (G2 to G6) and the Kimmeridge Clay borehole at the KMA Wellsite (BHD) have a sodium-bicarbonate type composition. The difference in composition indicates that the boreholes are targeting different (deeper) water bearing strata in comparison to the superficial deposits. This difference in composition suggests that the boreholes are drawing on deeper, more hydrochemically mature water, in comparison with the onsite superficial deposits boreholes. The chemical signature may reflect cation exchange processes or other preferential sodium accumulation processes.
- Groundwater from the Kimmeridge Clay borehole at Elm Tree Farm (G1) has a higher sulphate concentration than the offsite superficial boreholes and can be described as having a sodium-sulphate type

Ref: P:\Third Energy KMA (1996)\40 - Reporting\Baseline Data - Reissue r6\KMA Report rev6.docx Rev: 8/9/2017 12:38 PM

composition. The source of the sulphide is likely to be either oxidation of sulphide minerals in the clay, or dissolution of secondary sulphate minerals. Overall, the water from the borehole is more mineralised.

Groundwater from the Corallian Group borehole (BHE) has a higher chloride concentration than the other monitoring points and can be described as having a sodium-chloride type composition. The water has a relatively high mineralisation and salinity, which is indicative of the deep and confined nature of the Corallian limestone at this location. The low sulphate and oxygen concentrations, coupled with the elevated dissolved methane content, suggest that the water is highly reducing in nature.

3.3.4 Hydrocarbons including Methane

A key aspect of the baseline water quality programme is the analysis of dissolved hydrocarbons, including methane. Results from the water sampling carried out by Third Energy are presented in Appendix E & F by carbon banding. Dissolved methane has been analysed in all groundwater samples and isotopic methane analysis has been carried out on four sets of samples between March 2016 and June 2016 to investigate methane provenance.

Dissolved methane concentrations in the groundwater samples from boreholes targeting the superficial deposits and Kimmeridge Clay range between 1 μg/l to 3 mg/l. It would appear that the higher concentrations are from the deeper boreholes. Methane concentrations in the Corallian borehole at the KMA Wellsite (BHE) are in the region of 60 mg/l. The highest values should be treated with some caution as they are outside the calibration limits of the analytical equipment; however, concentrations are clearly higher in the confined Corallian than in any of the other monitoring boreholes.

Concentrations of dissolved ethene, ethane, propane and butane were generally below the laboratories' limits of analytical detection, with the exception of the Corallian borehole (BHE), where ethane concentrations of around 8-10 μg/l were recorded.

The results of the methane isotope analysis (Appendix E) exhibit a significant degree of variation. Although alternative explanations are plausible, the majority of methane isotopic signatures suggest that the methane has a thermogenic provenance, i.e. derived from the breakdown ("cracking") of organic matter (kerogens) at high temperature and pressure, probably at depth. It should be noted, however, that some of the methane isotopic signatures from BHE are isotopically "light" and may be ascribable to a biogenic origin.

Aside from light hydrocarbons (methane to butane; C1-C4) discussed above, the results show that low concentrations of heavier dissolved hydrocarbons (often referred to as petroleum hydrocarbons TPH) have been observed in some of samples from the surface water and groundwater monitoring points during the period of monitoring. However, since March 2016 and the change in laboratory, there have been no detections of the heavier petroleum-range dissolved hydrocarbons at any of the monitoring locations.

3.3.5 Micro-constituents

Appendix F also provides data on a number of micro-constituents. The reported values are consistent between sampling rounds and monitoring locations. Low concentrations of sodium persulphate and anionic surfactants have been detected during some sampling rounds in the KMA Wellsite monitoring boreholes but have not been analysed at offsite locations.

3.4 Comparison of Third Energy Baseline Data with BGS Baseline Data

Ref: P:\Third Energy KMA (1996)\40 - Reporting\Baseline Data - Reissue r6\KMA Report rev6.docx

Rev: 8/9/2017 12:38 PM

The data collected across the monitoring period has been compared against the data collected by the BGS as part of their Baseline Survey within the Vale of Pickering.

The major ion data for the surface water features and the superficial deposits/Kimmeridge Clay monitoring locations have been plotted as boxplots on Figure 6 for all of the KMA monitoring rounds, together with the BGS baseline data from July 2016. The boxplots illustrate the range of parameter concentrations, with the "box" showing the central 50% of the data, with a blue line at the median value. The whiskers show the upper and lower 25% of the data range.

The boxplots illustrate the range of parameter concentrations. Figure 6 demonstrates that the results obtained from the KMA monitoring rounds for the surface waters and the superficial deposits correspond with the BGS data.

Methane data for the superficial deposits/Kimmeridge Clay monitoring locations has been plotted as charts on Figure 7 for all of the KMA monitoring rounds and compared against available BGS baseline data. Again, there is a good correlation between the data collected by Third Energy and the BGS.

The BGS data currently available for the Corallian Group in the Vale of Pickering is primarily from the unconfined Corallian on the margins of the Vale of Pickering. At this stage, it is not therefore possible to compare these data to the results from the Corallian borehole at the KMA Wellsite.

4 SUMMARY

Third Energy has collected over 18 months of baseline water quality data from a range of surface water and groundwater features at and close to the KMA Wellsite. There is a good correspondence between the Third Energy data and the data that are being collected by the BGS as part of their own baseline water quality monitoring programme.

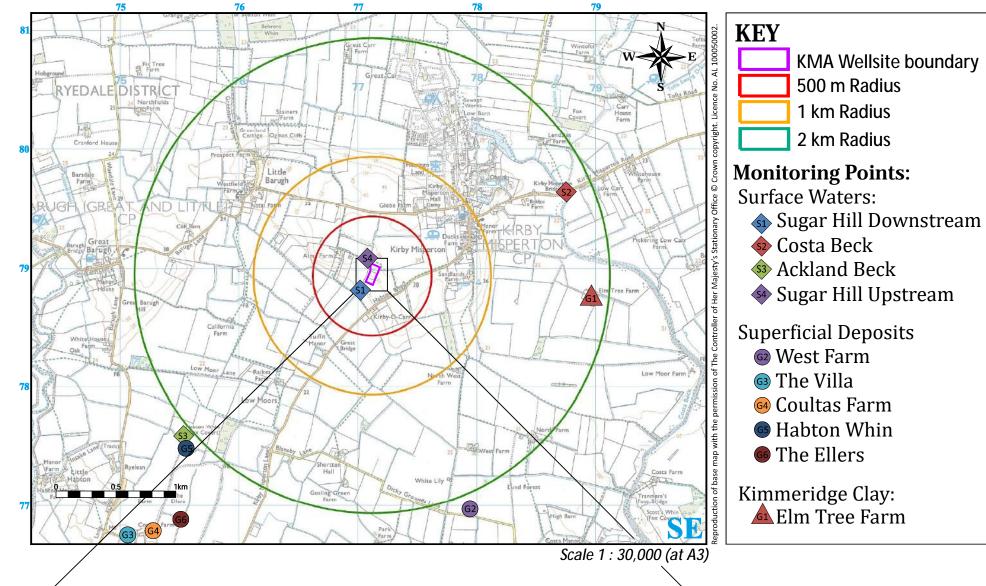
The baseline data shows clear chemical signatures for waters from different provenances; and monitoring points can be grouped together on this basis.

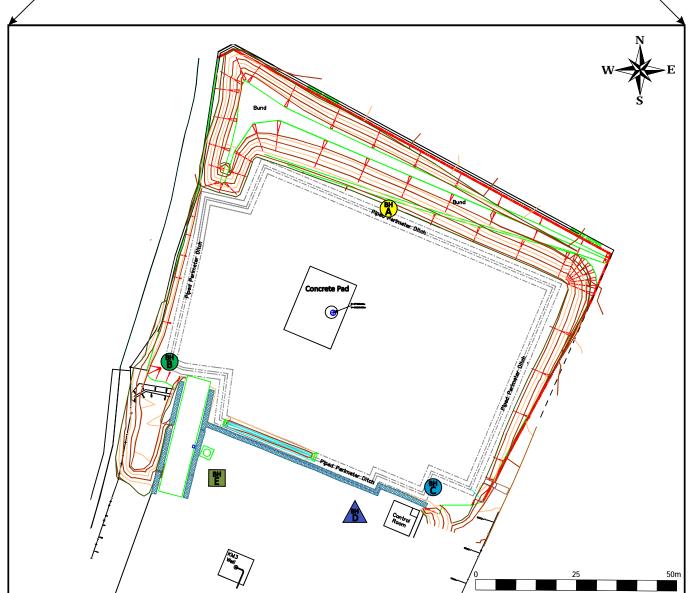
There have been some detections of trace dissolved components (e.g. sodium persulphate and anionic surfactants) in groundwater from the monitoring boreholes at the KMA wellsite. Further sampling and analysis will be required to ascertain if these components are also present at off-site monitoring locations.

There is a large range of dissolved methane concentrations across the monitoring points. Although the methane isotopic results are not unequivocal, they predominantly suggest a thermogenic origin. The highest concentration of dissolved methane (around 60 mg/l) is found in the Corallian borehole (BHE), along with typically c. 8-10 μ g/l dissolved ethane.

Low concentrations of heavier dissolved hydrocarbons have been observed in some of the samples from the surface water and groundwater monitoring points during the period of monitoring but there have been no detections since March 2016.

Envireau Water 08/09/2017


5 REFERENCES


- Ref.1 Kirby Misperton A Wellsite, Permit number EPR/DB3002HE. Environment Agency, 11/04/16.
- Ref.2 KM8 Fracture Propagation. Technical Note prepared by Envireau Water, November 2015.
- Ref.3 Baseline Water Quality, KM8 Well, Kirby Misperton A Wellsite, North Yorkshire. Prepared by Envireau Water for Third Energy UK Gas Ltd, May 2015.
- Ref.4 As Built Construction Report, KM8 Well, Kirby Misperton A Wellsite, North Yorkshire. Prepared by Envireau Water for Third Energy UK Gas Ltd, July 2016. Reissued September 2017.
- Ref.5 Groundwater and Surface Water Sampling Protocol. Prepared by Envireau Water for Third Energy UK Gas Ltd, October 2016.
- Ref.6 Roberts H. M. and Shiller A.M., 2015. Determination of dissolved methane in natural waters using headspace analysis with cavity ring-down spectroscopy. Analytica Chimica Acta, 856:68-73.

Rev: 8/9/2017 12:38 PM

Ref: P:\Third Energy KMA (1996)\40 - Reporting\Baseline Data - Reissue r6\KMA Report rev6.docx Pag

FIGURES

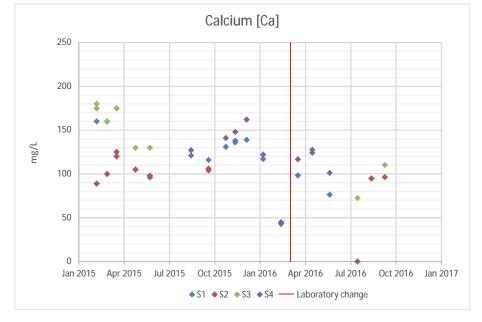
KMA Wellsite

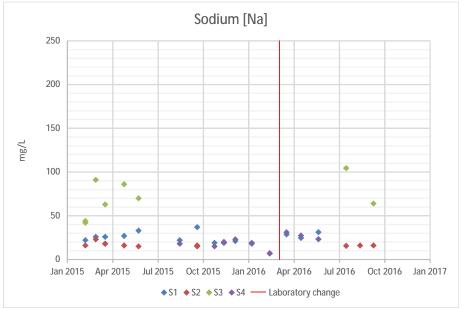
Monitoring Points:

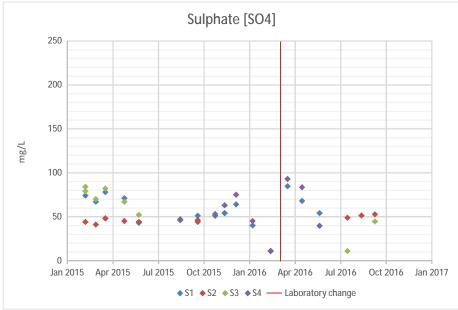
Superficial Deposits:

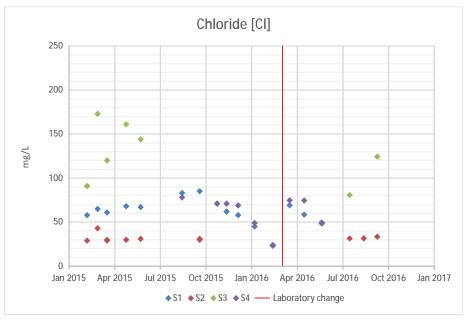
- Borehole A
- Borehole B
- Borehole C

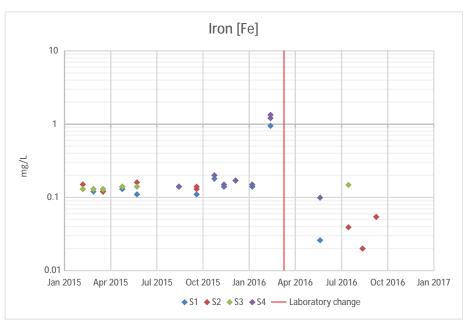
Kimmeridge Clay:
Borehole D

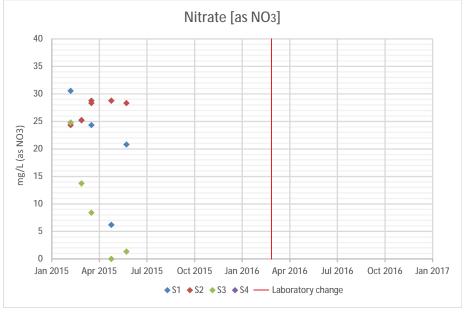

Corallian Group:

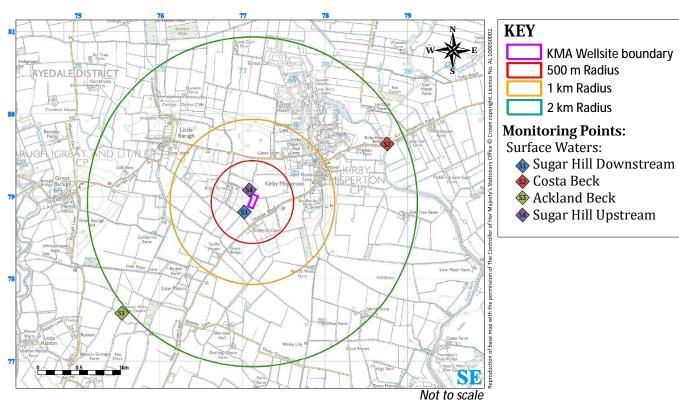

Borehole E

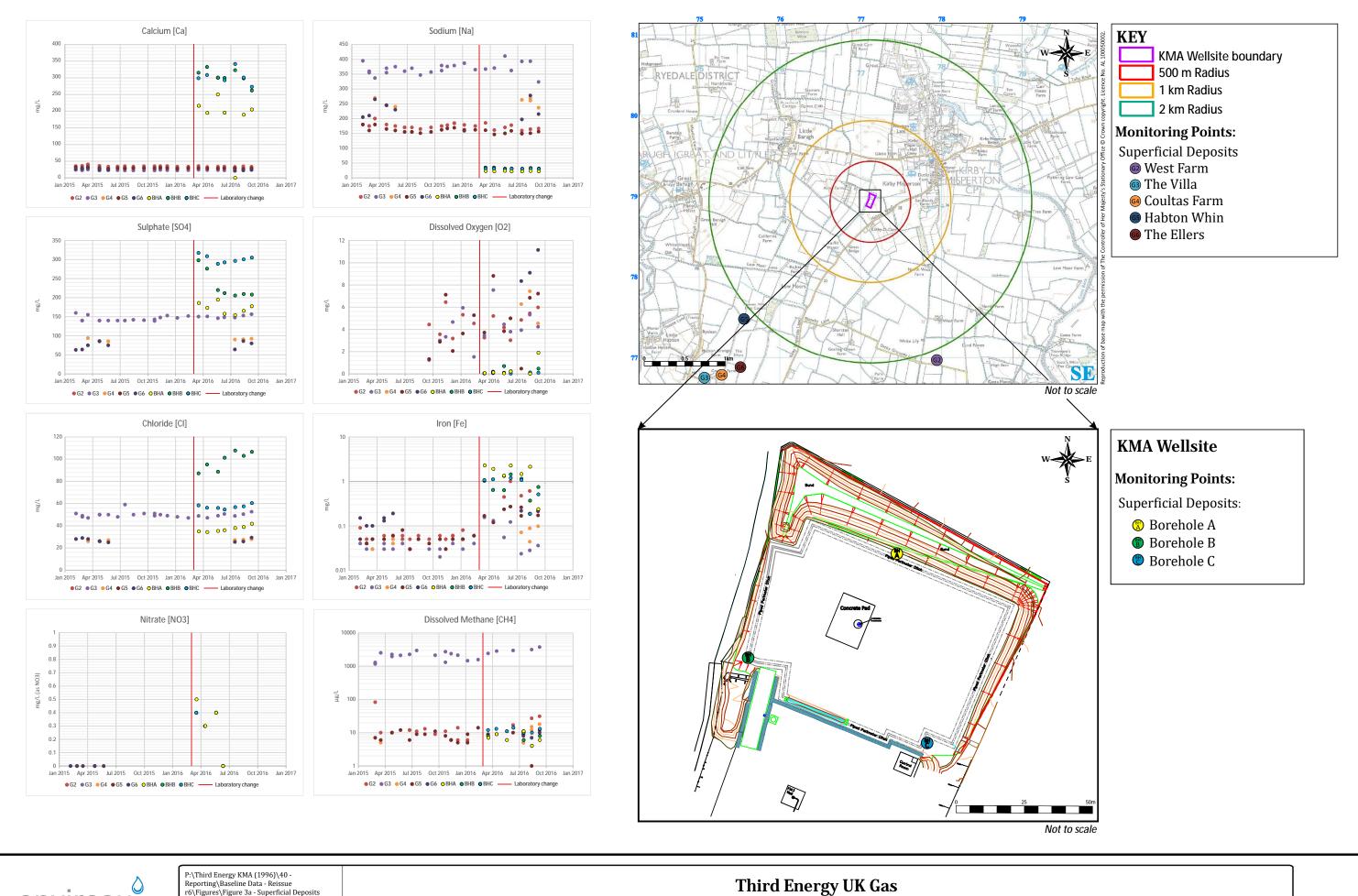

Scale 1 : 1,000 (at




P:\Third Energy KMA (1996)\40 - Reporting\Baseline Data - Reissue 6\Figures\Figure 1 - Monitoring Locations ate: 05/09/2017	Third Energy UK Gas
Figure 1	Monitoring Points







P:\Third Energy KMA (1996)\40 - Reporting\Baseline Data - Reissue r6\Figures\Figure 2 - Surface Water Data r3 Date: 05/09/2017	Third Energy UK Gas
Figure 2	Concentrations of selected analytical parameters in surface waters

Reporting\Baseline Data - Reissue r6\Figures\Figure 3a - Superficial Deposits Date: 05/09/2017

Figure 3a Concentrations of selected analytical parameters in groundwaters within superficial deposits

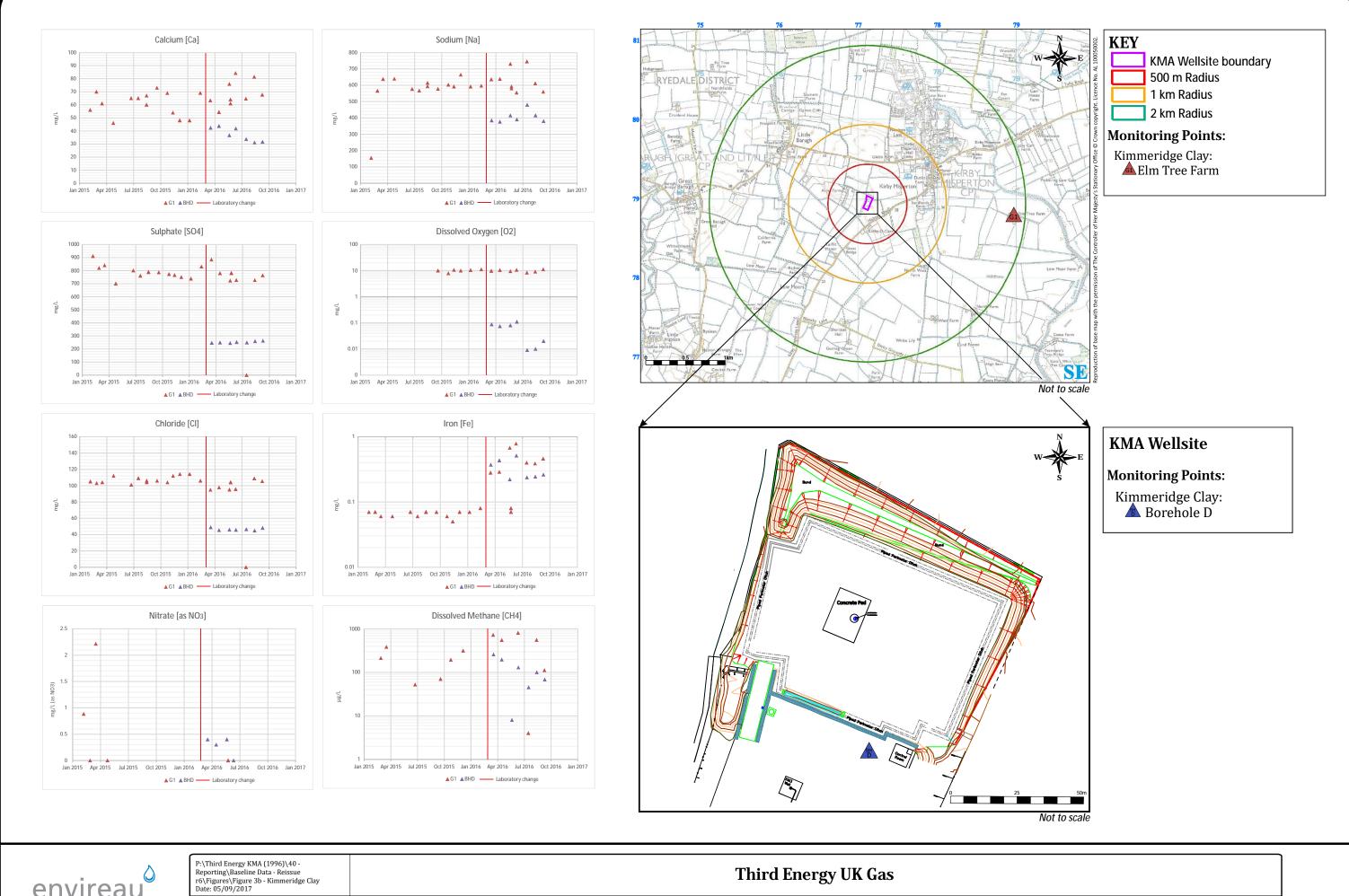
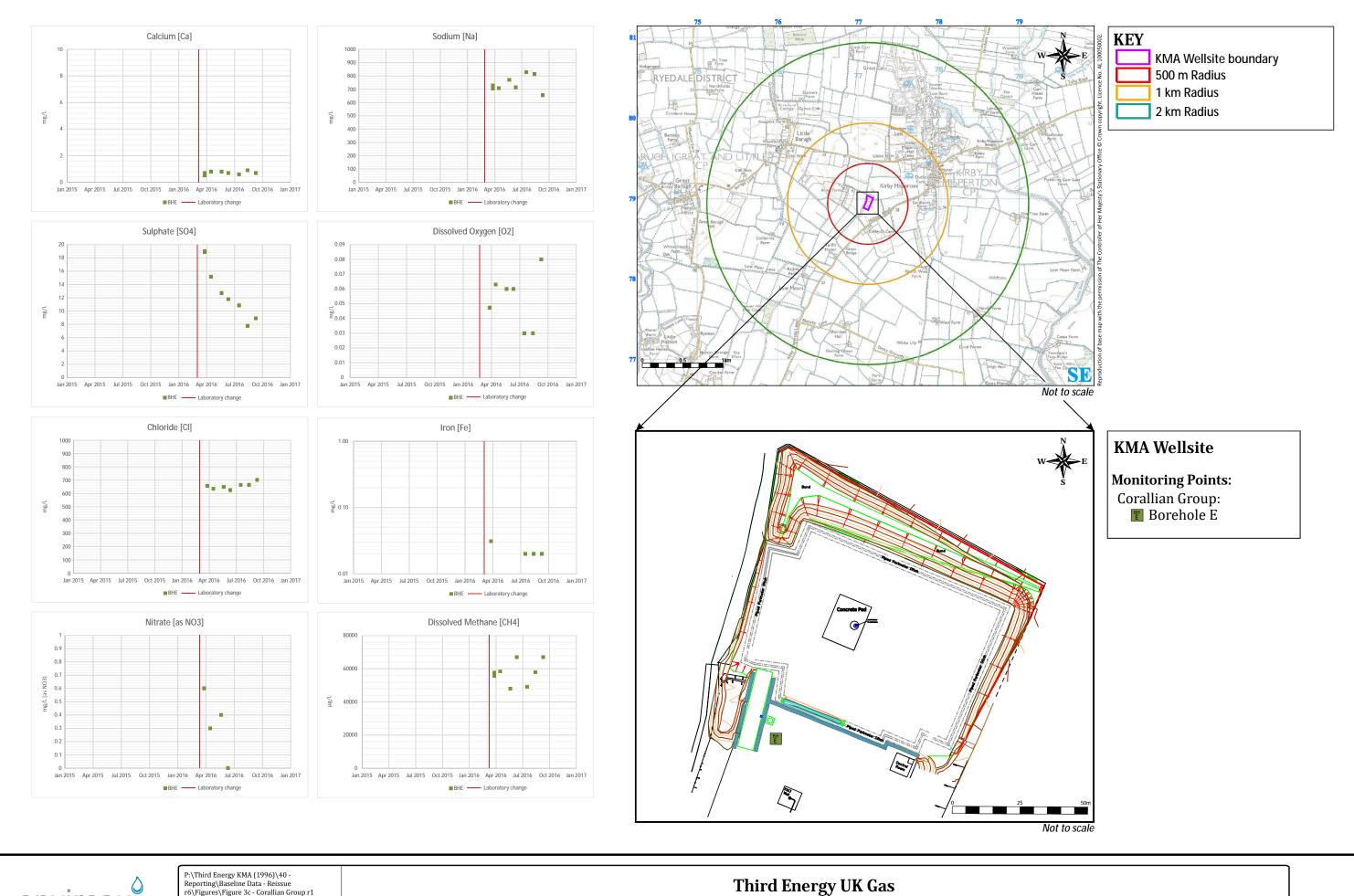
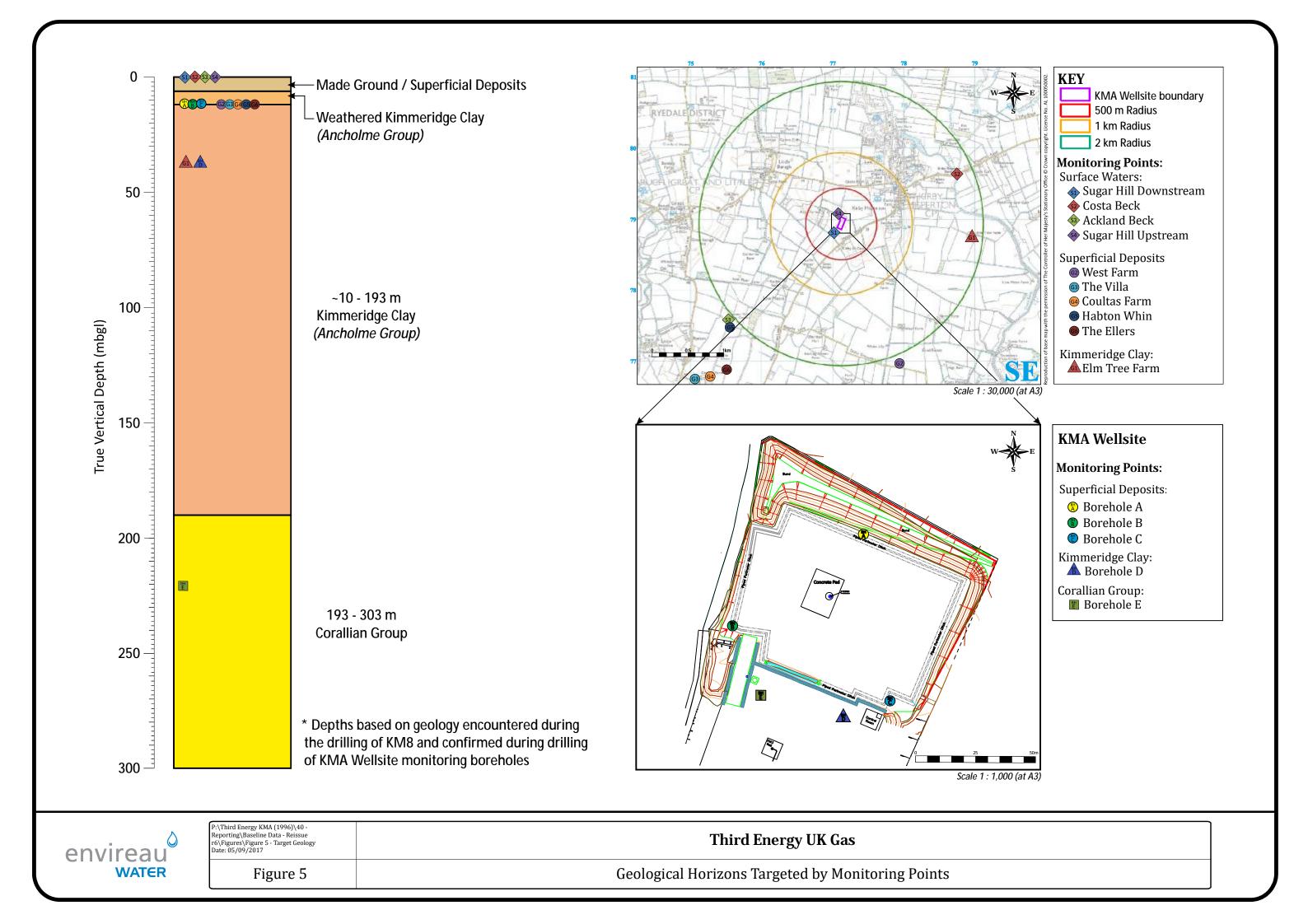



Figure 3b

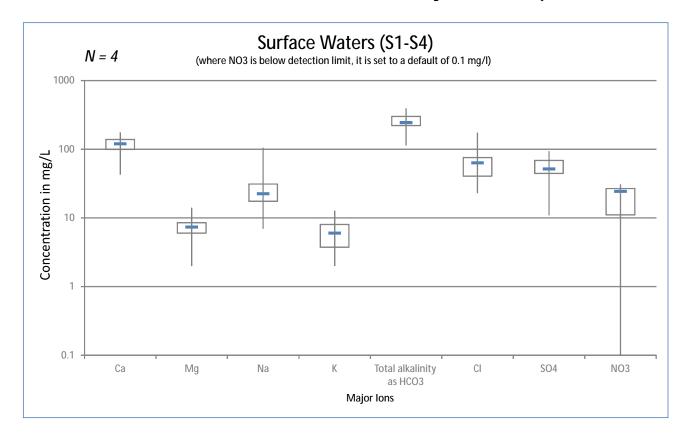
Concentrations of selected analytical parameters in groundwaters within Kimmeridge Clay

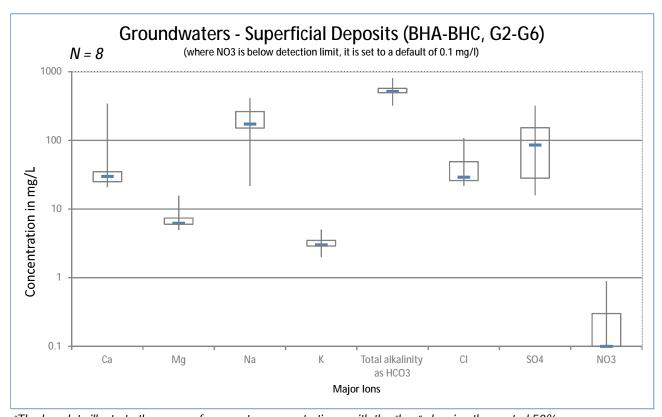
P:\Third Energy KMA (1996)\40 -Reporting\Baseline Data - Reissue r6\Figures\Figure 3c - Corallian Group r1 Date: 05/09/2017

Figure 3c

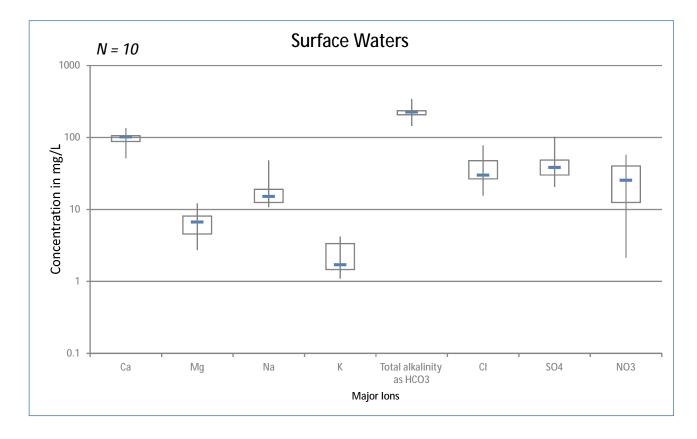

Concentrations of selected analytical parameters in groundwaters within Corallian Group

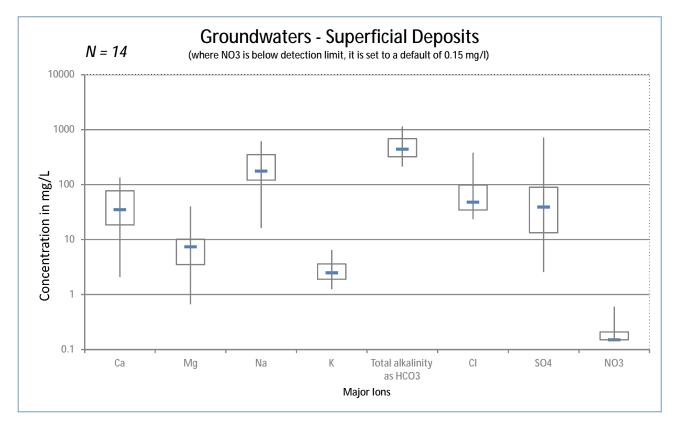
KEY Sugar Hill Drain Downstream (S1) Costa Beck (S2) Ackland Beck (S3) Sugar Hill Drain Upstream (S4) Elm Tree Farm (G1) 0 West Farm (G2) The Villa (G3) Coultas Farm (G4) Habton Whin (G5) The Ellers (G6) Borehole A (BHA) Borehole B (BHB) 100 Borehole C (BHC) Borehole D (BHD) Borehole E (BHE) 0 100/\0 0/\100 100 100 100 100 Ca²⁺ Cl**CATIONS ANIONS**


The Piper diagram is a common presentation, used to plot the relative proportions (in milliequivalents per litre) of the major cations and anions (Na^+ , Ca^{++} , Mg^{++} , K^+ , Cl^- , $SO_4^=$ and HCO_3^-) in a water sample



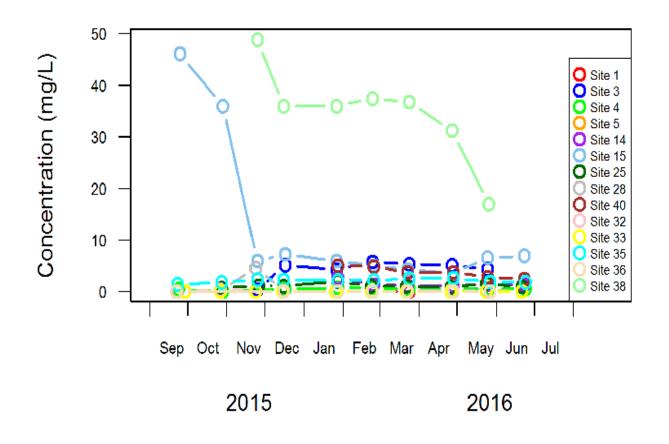
P:\Third Energy RMA (1996)\40 - Reporting\Baseline Data - Reissue r6\Figures\Figure 4 - Piper Plot Rnd. 1 -21 r1 Date: 05/09/2017	Third Energy UK Gas	
Figure 4	Piper Diagram - Monitoring Rounds 1 to 21	


Envireau Water Data from February 2015 - September 2016



"The boxplots illustrate the range of parameter concentrations, with the "box" showing the central 50% of the data, with a blue line at the median value. The whiskers show the upper and lower 25% of the data range."

BGS Data from September 2015


P:\Third Energy KMA (1996)\40 - Reporting\Baseline Data - Reissue r6\Figures\Figure 6 - Comparison of Major Ions with BGS Data r2 Date: 05/09/2017	Third Energy UK Gas
Figure 6	Comparison of Major Ion Data collected by Envireau Water and BGS

Envireau Water Data from February 2015 - September 2016

Methane [CH4] 10.00 1.00 0.10 Jan 2015 Apr 2015 Jul 2015 Oct 2015 Jan 2016 Apr 2016 Jul 2016 Oct 2016 Jan 2017 G2 G3 G4 G5 G6 BHA BHB BHC

BGS Data from September 2015 - June 2016

Methane (CH4)

P:\Third Energy KMA (1996)\40 - Reporting\Baseline Data-Reissue r6\Figures\Figure 7 - Comparison of Methane with BGS Data r2 Date: 05/09/2017	Third Energy UK Gas
Figure 7	Comparison of Methane Data from Superficial Deposits collected by Envireau Water and BGS

APPENDIX A

Monitoring Locations

Table A1 Surface Water Monitoring Locations

Name	Monitoring Point	National Grid Reference	Ground Elevation (mAOD)	Description
Sugar Hill Drain Downstream	S1	SE 76995 78777	23	Stream, part of a large field drainage system. Located on low permeability Glacial Till, Lacustrine deposits and the Kimmeridge Clay (Ancholme Group). Drains towards Ackland Beck and Costa Beck. Monitoring point located to the south of the KMA Wellsite.
Costa Beck	S2	SE 78730 79637	22	Medium sized river flowing in a south-easterly direction.
Ackland Beck	\$3	SE 75701 77456	22	Small sized river flowing in a south-easterly direction.
Sugar Hill Drain Upstream	S4	SE 77106 79054	29	Stream, part of a large field drainage system. Located on low permeability Glacial Till, Lacustrine deposits and the Kimmeridge Clay (Ancholme Group). Drains towards Ackland Beck and Costa Beck. Monitoring point located to the north of the KMA Wellsite.

Table A2 **Offsite Groundwater Monitoring Locations**

	Monitoring	National Grid	Ground		Construction Details	
Name	Monitoring Point	Reference	Elevation (mAOD)	Target Formation ¹	Borehole Depth (mbgl)¹	Screened Interval (mbgl)
Elm Tree Farm	G1	SE 78957 78755	22	Kimmeridge Clay (un- weathered)	36.6	18 – 36
West Farm ²	G2	SE 78015 77462	22	Superficial Deposits/ Kimmeridge Clay (weathered)	24.4	Unknown
The Villa	G3	SE 75099 76592	25	Kimmeridge Clay (weathered/ un-weathered)/ Corallian Group	~50³	Unknown ³
Coultas Farm	G4	SE 75209 76743	25	Kimmeridge Clay (weathered/ un-weathered)/ Corallian Group	~50³	Unknown ³
Habton Whin	G5	SE 75705 77454	22	Superficial Deposits/ Kimmeridge Clay (weathered)	4.65	Unknown
The Ellers	G6	SE 75491 76868	23	Superficial Deposits/ Kimmeridge Clay (weathered)	21.34	Unknown

- Notes: 1. Based on Envireau Water's interpretation of available borehole construction, geological and other data.
 - 2. The sample point at West Farm is 500m north of the borehole.
 - 3. No construction data available. Anecdotal information suggests the boreholes are in the region of 50m deep and target the Kimmeridge Clay (Ancholme Group).
 - 4. Borehole is no longer observable. Information from landowner suggests it is located beneath the pond at The Ellers and is uncapped (feeds the pond). mbgl: metres below ground level

mAOD: metres above Ordnance Datum

Table A3 Onsite Groundwater Monitoring Locations

	Monitoring	National Grid	Ground		Construction Details	
Name	Point	Reference	Elevation (mAOD)	Target Formation ¹	Borehole Depth (mbgl)	Screened Interval (mbgl)
Borehole A	ВНА	SE 77153 79025	32	Superficial Deposits/ Kimmeridge Clay (weathered)	11.5	8.0 to 11.0
Borehole B	внв	SE 77099 78989	32	Superficial Deposits/ Kimmeridge Clay (weathered)	11.5	8.0 to 11.0
Borehole C	внс	SE 77162 78964	32	Superficial Deposits/ Kimmeridge Clay (weathered)	11.5	8.0 to 11.0
Borehole D	BHD	SE 77132 78963	29	Kimmeridge Clay (un- weathered)	38.0	25.0 to 37.0
Borehole E	вне	SE 77110 78969	29	Corallian Group	222.0	Open hole from 192.6 to 222.0

Notes: 1. Based on Envireau Water's interpretation of available borehole construction, geological and other data.

mbgl: metres below ground level mAOD: metres above Ordnance Datum

APPENDIX B

Analytical Parameters

Parameters listed for analysis in the 'Permit for mining waste and groundwater activities' issued by the Environment Agency, April 2016:

- Methane
- Acrylamide
- Alkalinity as CaCO3
- Ammoniacal Nitrogen as N
- Arsenic
- Aluminium
- Antimony
- Barium
- Beryllium
- BOD (settled)
- Boron
- Bromide
- δ13C-CH₄
- δ13C-CO₂
- Cadmium
- Calcium
- Carbon Dioxide
- Chloride
- Chromium (total)
- Cobalt
- COD (Settled)
- Copper
- Dissolved Butane
- Dissolved Propane
- Dissolved Ethane
- Dissolved Methane
- Fluoride
- Iron (total)
- Lead
- Lithium
- Magnesium
- Manganese
- Mercury
- Nickel
- Nitrate as NO3
- Nitrite as NO2
- Oxygen Reduction Potential
- pH
- Potassium

- Salinity
- Selenium
- Silver
- Sodium
- Strontium
- TPH (including Benzene, DRO (nC10 ro nC24), GRO (nC5 ro nC10), m/p Xylenes, o Xylene, MTBE, Toluene, Xylene, Ethylbenzene)
- Total Dissolved Solids
- Total Suspended Solids
- Vanadium
- 7inc
- Fracture fluid additives:

Acetic acid:

Aluminium sulphate;

Aluminium sulphate octadecahydrate;

Citric acid triethyl ester; Hemicellulase enzyme;

Maltodextrin:

Potassium chloride:

Sodium bicarbonate;

Sodium carboxymethyl cellulose; Sodium

chloride;

Sodium gluconate;

Sodium lauryl sulphate;

Sodium persulphate;

Sorbitan monododecanoate;

poly (oxy1,2-ethanediyl); Sulphuric acid

Other chemical inventory:

Triacine;

Glycine;

Formaldehylde;

Ammonium Bisulphate;

Ethylene glycol;

Hydrochloric acid;

Sodium hydroxide;

2-ethylhexyl zinc ditiophosphate

APPENDIX C

Analysis Methods

Ref: P:\Third Energy KMA (1996)\40 - Reporting\Baseline Data - Reissue r6\KMA Report rev6.docx Rev: 08/09/2017 12:38 PM Environmental Scientifics Group (ESG) Ltd.

Analysis Methods

Matrix	MethodID	Analysis	Method Description
		Basis	·
Water	Calc_HD	As Received	Calculation based on Dissolved metals analysis by ICPOES
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection
Water	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons (GRO) by Headspace FID
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPMSWT	As Received	Determination of Total Metals in water samples using nitric acid digestion and ICPMS quantitation
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ICPWATVART	As Received	Determination of Total Metals in water samples using nitric acid digestion and ICPOES quantitation
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SubCon*	*	Contact Laboratory for details of the methodology used by the sub- contractor.
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by GCFID
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM17		Titration with Sodium Hydroxide to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Jones Environmental Laboratory (JEL)

Analysis Methods

JE Job No: 16/10466

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМО	Not available	РМО	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Gravimetric determination of Total Dissolved Solids/Total Solids based on BS 1377-3:1990 and BSEN 15126	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	РМО	No preparation is required.	Yes			
TM27	Modified US EPA method 9056. Determination of water soluble anions using Dionex (lon-Chromatography).	PM0	No preparation is required.				
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.	Yes			

JE Job No: 16/10466

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				
ТМ36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
ТМ37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

JE Job No: 16/10466

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM59	As received solid samples are extracted with water in a 1:1 water to solid ratio using end over end.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				

APPENDIX D

Sampling Dates

Ref: P:\Third Energy KMA (1996)\40 - Reporting\Baseline Data - Reissue r6\KMA Report rev6.docx Rev: 08/09/2017 12:38 PM

Table D **Water Sampling Round Dates**

	Sampling Round / Date																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Monitoring Point	11/02/ 2015	04/03 /2015	23/03 /2015	30/04 /2015	29/05 /2015	29/06 /2015	23/07 /2015	20/08 /2015	24/09 /2015	29/10 /2015	17/11 /2015	10/12 /2015	12/01 /2016	17/02 /2016	22/03/2016 & 31/03/2016	19 - 20/04/2016	25/05 /2016	15 – 16/06/2016	20 – 21/07/2016	17 – 18/08/2016	14 – 15/09/ 2016
Sugar Hill Drain Downstream (S1)	0	Х	Х	Х	Х	В	В	В	Х	Х	xx	Х	Х	х	Х	Х	XX	В	В	В	В
Costa Beck (S2)	Х	Х	XX	Х	Х	Α	Α	Α	XX	Α	Α	Α	Α	Α	Α	Α	Α	Α	X	X	Х
Ackland Beck (S3)	XX	Х	Х	Х	Х	Α	Α	Α	В	Α	Α	Α	Α	Α	А	Α	Α	Α	Х	В	X
Sugar Hill Drain Upstream (S4) [#]	0	0	0	0	0	В	В	В	В	X	Х	Х	Х	XX	×	X	Х	В	В	В	В
Elm Tree Farm (G1)	Х	Х	Х	Х	XX	Х	Х	XX	Х	Х	Х	Х	Х	Х	Х	XX	Х	Х	Х	Х	X
West Farm (G2)	Х	Х	Х	Х	Х	XX	Х	Х	Х	Х	Х	XX	Х	Х	Х	Х	Х	Х	Х	Х	XX
The Villa (G3)	Х	XX	X	XX	Х	X	Х	Х	Х	XX	Х	Х	X	Х	X	X	Х	XX	X	X	X
Coultas Farm (G4)	0	0	X	Х	XX	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	X	XX	X
Habton Whin (G5)	X	Х	Х	X	Х	X	XX	Х	Х	Х	Х	Х	XX	Х	Х	Х	Х	Х	XX	Х	X
The Ellers (G6)	X	Х	Х	XX	Х	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Х	X	X
Borehole A (BHA)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х	X
Borehole B (BHB)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х	X
Borehole C (BHC)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х	Х
Borehole D (BHD)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х	Х
Borehole E (BHE)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	XX	Х	Х	Х	Х	Х	X

Notes: X. Monitoring location sampled and analysed

XX. Sample duplicated at monitoring location
O. Monitoring location not available or accessible
A. Monitoring location removed following initial review of data
B. Insufficient water to sample at monitoring location
#. Not a monitoring point within the environmental permit

APPENDIX E

Analysis Results

Ref: P:\Third Energy KMA (1996)\40 - Reporting\Baseline Data - Reissue r6\KMA Report rev6.docx Rev: 08/09/2017 12:38 PM

APPENDIX F

Laboratory Test Certificates

Water Analysis Test Certificate

Round 1

Our Ref: EXR/193870 (Ver. 1)

Your Ref:

February 25, 2015

Mr A Rose Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Environmental Chemistry

FSC

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Mr A Rose

Dear Mr Rose

Sample Analysis - KM8

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

L Bosworth

Project Co-ordinator 01283 554362

counth

TEST REPORT

Report No. EXR/193870 (Ver. 1)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: KM8

The 10 samples described in this report were registered for analysis by ESG on 12-Feb-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 25-Feb-2015

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Analytical and Deviating Sample Overview (Pages 4 to 5)
Table of Method Descriptions (Page 6)
Table of Report Notes (Page 7)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

ns Managing Director Multi-Sector Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 25-Feb-2015

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
		hod Codes :	WSLM3	WSLM2	WSLM12		Calc_HD	KONENS	ISEF			RICPWATVAR				ICPWATVAR	ICPWATVART	ICPWATVAR
	Method Repor	ting Limits :		100		2	7	1	0.1	3	1	1	1	1	0.01	0.01	0.01	0.01
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Total Acidity as CaCO3 w	Total Hardness as CaCO3	Chloride as Cl w	Fluoride as F a	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Dissolved) a	Potassium as K (Dissolved) a	Manganese as Mn (Total) a	Manganese as MN (Dissolved) a	Iron as Fe (Total) a	Iron as Fe (Dissolved) a
1568348	ETF/1	11-Feb-15	8.2	3100	665	Nil	267	105	1.1	910	56	31	155	7	<0.01	0.02	1.25	0.07
1568349	WF/1	11-Feb-15	8.4	931	446	Nil	120	29	0.3	33	35	8	180	3	0.32	0.36	0.90	0.09
1568350	CB/1	11-Feb-15	8.0	528	154	Nil	251	29	0.1	44	89	7	16	2	0.02	0.01	0.45	0.15
1568351	D/1	11-Feb-15	8.2	803	240	Nil	432	58	0.3	74	160	8	22	5	<0.01	<0.01	0.22	0.13
1568352	TV/1	11-Feb-15	8.5	1600	643	Nil	85	51	0.7	160	24	6	395	4	0.04	0.03	0.14	0.04
1568353	TE/1	11-Feb-15	8.4	974	411	Nil	90	28	0.3	63	26	6	205	3	0.18	<0.01	0.43	0.15
1568354	AB/1	11-Feb-15	7.8	942	293	Nil	486	91	0.3	79	175	12	42	4	0.02	0.03	0.23	0.13
1568355	AB/A	11-Feb-15	7.8	948	287	Nil	503	91	0.3	84	180	13	44	4	0.03	0.03	0.19	0.13
1568356	HW/1	11-Feb-15	8.3	839	392	Nil	105	23	0.5	20	32	6	180	3	0.27	0.31	0.15	0.05
1568357	B/1	11-Feb-15	7.9	<100	1	Nil	<7	1	0.2	<3	<1	<1	<1	<1	<0.01	<0.01	0.02	<0.01
	FSG 🧟		Client N		Envirea Mr A Ros	au Water						Sam	ple Ana	llysis				
Bi Bi	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Contact		IVII A ROS	<u>C</u>	KM8					Date Prin Report N Table Nu	lumber			Feb-2015 KR/193870		

		Units :	mg/l	mg/l	mg/l	mg/l	mg/l								
		hod Codes :	KONENS	KONENS	KONENS	WSLM27	FTIRSWPER								
	Method Repor	ting Limits :	0.01	0.01	0.2	5	0.3								
LAB ID Number EX	Client Sample Description	Sample Date	Ammoniacal Nitrogen as N	Nitrite as N	Nitrate as N	Total Dissolved Solids w	TPH FTIRPER. o								
1568348	ETF/1	11-Feb-15	2.3	<0.01	<0.2	2036	<0.3								
1568349	WF/1	11-Feb-15	0.7	<0.01	<0.2	525	<0.3								
1568350	CB/1	11-Feb-15	0.07	<0.01	5.5	313	<0.3								
1568351	D/1	11-Feb-15	0.01	<0.01	6.9	552	<0.3								
1568352	TV/1	11-Feb-15	1.2	<0.01	<0.2	949	<0.3								
1568353	TE/1	11-Feb-15	0.07	<0.01	<0.2	553	<0.3								
1568354	AB/1	11-Feb-15	0.01	<0.01	5.6	625	<0.3								
1568355	AB/A	11-Feb-15	0.01	<0.01	5.6	653	<0.3								
1568356	HW/1	11-Feb-15	0.7	<0.01	<0.2	465	0.5								
1568357	B/1	11-Feb-15	<0.01	<0.01	<0.2	<5	<0.3								
							1								
	ESG &	au Water	1				Samı	ple Ana	alysis						
	retby Business Park, Ashby Road		Contact		Mr A Ros				I	Date Prin				-Feb-2015	
В	urton-on-Trent, Staffordshire, DE15 0YZ						KM8			Report N			E	XR/193870	
1	Tel +44 (0) 1283 554400						LZIVIO			Table Nu	mber			1	
F	Fax +44 (0) 1283 554422							 							

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W193870

Customer Site

Report No

Envireau Water KM8

Consignment No W83889 Date Logged 12-Feb-2015 W193870

Report Due 25-Feb-2015

-									IC 2J-		-0.0										
			MethodID	Cak_HD	CUSTSERV	FTIRSWPER	ICPWATVAR							ICPWATVART		ISEF	KONENS				WSLM12
ID Number	Description	Matrix Type	Sampled	Total Hardness as CaCO3 (CALC)	Report B	TPH FTIRPER.	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Manganese as Mn (Total) VAR	Iron as Fe (Total) VAR	Fluoride as F	Chloride as Cl (Kone)	Ammoniacal Nitrogen (Kone)	Nitrite as N (Kone)	Nitrate as N (Kone calc)	Total Alkalinity as CaCO3
EX/1568348	ETF/1	Unclassified	11/02/15																		
EX/1568349	WF/1	Unclassified	11/02/15																		
EX/1568350	CB/1	Unclassified	11/02/15																		
EX/1568351	D/1	Unclassified	11/02/15																		
EX/1568352	TV/1	Unclassified	11/02/15																		
EX/1568353	TE/1	Unclassified	11/02/15																		
EX/1568354	AB/1	Unclassified	11/02/15																		
EX/1568355	AB/A	Unclassified	11/02/15																		
EX/1568356	HW/1	Unclassified	11/02/15																		
EX/1568357	B/1	Unclassified	11/02/15																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
 - The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- D E F Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W193870

Customer Site

Report No

Envireau Water KM8

W193870

Consignment No W83889 Date Logged 12-Feb-2015

Report Due 25-Feb-2015

							Keb
			MethodID	WSLM17	WSLM2	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Total Acidity as CaCO3	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
	1	1					
EX/1568348	ETF/1	Unclassified	11/02/15				
EX/1568349	WF/1	Unclassified	11/02/15				
EX/1568350	CB/1	Unclassified	11/02/15				
EX/1568351	D/1	Unclassified	11/02/15				
EX/1568352	TV/1	Unclassified	11/02/15				
EX/1568353	TE/1	Unclassified	11/02/15				
EX/1568354	AB/1	Unclassified	11/02/15				
EX/1568355	AB/A	Unclassified	11/02/15				
EX/1568356	HW/1	Unclassified	11/02/15				
EX/1568357	B/1	Unclassified	11/02/15				

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
 - The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- D E F The sampling date was not supplied so holding time may be compromised - applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: W/EXR/193870

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	·
Water	Calc_HD	As Received	Calculation based on Dissolved metals analysis by ICPOES
Water	FTIRSWPER	As Received	Determination of Tetrachloroethylene Extractable Hydrocarbons by
			Fourier Transform Infrared spectroscopy (FTIR)
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES
Water	ICPWATVART	As Received	Determination of Total Metals in water samples using nitric acid
			digestion and ICPOES quantitation
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective
			Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM17	As Received	Titration with Sodium Hydroxide to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical
			conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 7 of 7 EXR/193870 Ver. 1

Sample Descriptions

Client : Envireau Water

 Site :
 KM8

 Report Number :
 W19_3870

Lab ID Number	Client ID	Description
EX/1568348	ETF/1	Unclassified
EX/1568349	WF/1	Unclassified
EX/1568350	CB/1	Unclassified
EX/1568351	D/1	Unclassified
EX/1568351	TV/1	Unclassified
EX/1568353	TE/1	Unclassified
EX/1568354	AB/1	Unclassified
EX/1568355	AB/A	Unclassified
EX/1568356	HW/1	Unclassified
EX/1568357	B/1	Unclassified
L/V 1300337	B/ 1	UnitedStilled
	-	
	-	
	1	

Appendix A Page 1 of 1 25/02/2015EXR/193870 Ver. 1

Water Analysis Test Certificate

Round 2

Our Ref: EXR/195182 (Ver. 2)

Your Ref:

March 19, 2015

Ms P Jenkinson Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Environmental Chemistry

ESG Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Ms P Jenkinson

Dear Ms Jenkinson

Sample Analysis - Dissolved Gasses in Waters

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

D Brassington
Project Co-ordinator
01283 554493

J. grassing lon

TEST REPORT

Report No. EXR/195182 (Ver. 2)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: Dissolved Gasses in Waters

The 12 samples described in this report were registered for analysis by ESG on 05-Mar-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 19-Mar-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 4)
Table of TPH Texas banding (0.01) (Page 5)
GC-FID Chromatograms (Pages 6 to 17)
Analytical and Deviating Sample Overview (Pages 18 to 20)
Table of Additional Report Notes (Page 21)
Table of Method Descriptions (Page 22)
Table of Report Notes (Page 23)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Managing Director
Multi-Sector Services

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 19-Mar-2015

		Units :	pH units WSLM3	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	Method Codes : Method Reporting Limits :			WSLM2 100	WSLM12	WSLM17	Calc_HD	KONENS 1	ISEF 0.1	3	ICPWATVAR 1	T ICPWATVAR	1	ICPWATVAR 1	1	1	ICPWATVART 1	1
		(AS Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Total Acidity as CaCO3 w	Total Hardness as CaCO3	Chloride as Cl w	Fluoride as F a	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Total) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Total) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Total) a	Sodium as Na (Dissolved) a	Potassium as K (Total) a	Potassium as K (Dissolved) a
1574568	CB/2	04-Mar-15 09:45	7.8	608	183	28	279	43	0.1	41	82	100	6	7	18	23	2	2
1574569	WF/2	04-Mar-15 10:15	7.6	917	430	Nil	119	29	0.2	28	35	36	7	7	170	175	3	4
1574570	ETF/2	04-Mar-15 11:10	7.7	3040	647	Nil	311	103	1.0	820	61	70	30	33	497	566	7	8
1574571	D/2	04-Mar-15 12:10	8.1	839	267	Nil	428	65	0.3	67	160	160	8	7	25	26	5	6
1574572	MA1/2A	04-Mar-15 12:45	7.4	636	205	Nil	337	32	0.1	51	96	120	7	9	9	12	1	2
1574573	MA1/2B	04-Mar-15 12:45	7.4	634	202	Nil	337	32	0.2	50	99	120	7	9	10	12	1	2
1574574	B/2	04-Mar-15 13:05	7.8	<100	5	8	<7	1	<0.1	<3	<1	<1	<1	<1	<1	<1	<1	<1
1574575	TV/2A	04-Mar-15 13:30	7.7	1570	609	Nil	82	48	0.6	140	22	23	6	6	345	355	4	4
1574576	TV/2B	04-Mar-15 13:30	7.6	1580	624	Nil	82	49	0.6	140	22	23	6	6	355	360	4	4
1574577	TE/2	04-Mar-15 14:00	7.9	1010	441	Nil	92	29	0.3	64	29	27	6	6	205	210	4	3
1574578	AB/2	04-Mar-15 14:30	7.9	1240	290	Nil	445	173	0.2	70	115	160	9	11	66	91	5	7
1574579	HW/2	04-Mar-15 14:30	7.6	820	407	Nil	96	23	0.3	17	24	30	4	5	120	160	2	3
	FSG &	3	Client N		Envirea Ms P Jer	au Water							Sam	ple Ana	alysis			
E	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400		Comact				Gasse	s in V	Vate	rs		Date Prin	lumber			-Mar-2015 XR/195182 1		
	Fax +44 (0) 1283 554422																	

Where individual results are flagged see report notes for status.

Page 2 of 23

EXR/195182 Ver. 2

	Method Re	Method Codes : porting Limits :	mg/l ICPWATVART 0.01		ICPWATVART	mg/l	mg/l KONENS	mg/l	140115110	mg/l	mg/l	mg/l		mg/l	mg/l	µg/l	μg/l	µg/l
		porting Limits :	0.01					KONENS	KONENS	TPHFID	TPHFID	WSLM27		ICPWATVAR		DISGAS1	DISGAS1	DISGAS1
	UK	Method Reporting Limits : UKAS Accredited :		0.01	0.01	0.01	0.01	0.01	0.2	0.01	0.01	5	0.01	0.01	0.1	Na	Na	No
		AS Accredited :	Yes	Yes Mar	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No A	No	No	No	No
LAB ID Number EX/	Client Sample Description	Sample Date	Manganese as Mn (Total) a	Manganese as MN (Dissolved) a	Iron as Fe (Total) a	Iron as Fe (Dissolved) a	Ammoniacal Nitrogen as N	Nitrite as N	Nitrate as N	Carbon Banding	ТРН GC	Total Dissolved Solids w	Aluminium as Al (Total) a	Aluminium as Al (Dissolved) a	GRO C5->C8	^Dissolved Butane	^Dissolved Methane	^Dissolved Propane
1574568	CB/2	04-Mar-15 09:45	<0.01	<0.01	0.45	0.13	0.06	0.03	5.7	Req	0.01	368	0.21	0.03	<0.1			ļ
1574569	WF/2	04-Mar-15 10:15	0.34	0.34	0.97	0.05	0.6	<0.01	<0.2	Req	<0.01	520	0.05	<0.01	<0.1	<15	83	<11
1574570	ETF/2	04-Mar-15 11:10	0.03	<0.01	3.58	0.07	2.3	<0.01	<0.2	Req	<0.01	2048	0.72	0.01	<0.1	<15	213	<11
1574571	D/2	04-Mar-15 12:10	<0.01	<0.01	0.26	0.12	<0.01	<0.01	5.7	Req	<0.01	569	0.13	0.02	<0.1			ļ
1574572	MA1/2A	04-Mar-15 12:45	<0.01	<0.01	0.12	0.11	<0.01	<0.01	6.2	Req	<0.01	399	0.05	0.02	<0.1	<15	<4	<11
1574573	MA1/2B	04-Mar-15 12:45	<0.01	<0.01	0.40	0.10	<0.01	<0.01	6.4	Req	<0.01	393	0.15	0.02	<0.1	<15	<4	<11
1574574	B/2	04-Mar-15 13:05	<0.01	<0.01	0.04	<0.01	<0.01	<0.01	<0.2	Req	<0.01	14	0.05	<0.01	<0.1			
1574575	TV/2A	04-Mar-15 13:30	0.04	0.03	0.22	0.03	1.1	<0.01	<0.2	Req	<0.01	945	0.04	<0.01	<0.1	<15	1295	<11
1574576	TV/2B	04-Mar-15 13:30	0.03	0.03	0.19	0.04	1.1	<0.01	<0.2	Req	<0.01	952	0.03	<0.01	<0.1	<15	1170	<11
1574577	TE/2	04-Mar-15 14:00	0.61	0.01	1.96	0.10	0.04	<0.01	<0.2	Req	0.02	599	0.41	<0.01	<0.1			
1574578	AB/2	04-Mar-15 14:30	0.02	0.02	0.19	0.13	<0.01	<0.01	3.1	Req	0.01	743	0.10	0.02	<0.1	45	7	
1574579	HW/2	04-Mar-15 14:30	0.23	0.28	0.24	0.04	0.6	<0.01	<0.2	Req	0.2	474	0.04	<0.01	<0.1	<15	1	<11
	SC. 6	3	Client N			ıu Water							Sam	ple Ana	alysis			
Burto	by Business Park, Ashby Road on-on-Trent, Staffordshire, DE15 0YZ	S .	Contact		Ms P Jeni		Gasse	s in V	V ater:	<u> </u>		Date Prin	lumber			Mar-2015 (R/195182		
	x +44 (0) 1283 554422											I able M	aitibei			1		

Where individual results are flagged see report notes for status.

Page 3 of 23

EXR/195182 Ver. 2

		Units :	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l					
Method Codes : Method Reporting Limits :			DISGAS1	DISGAS1						VOCHSAW					
	Method R	eporting Limits : (AS Accredited :	No	No	1 Yes	1 Yes	1 Yes	2 Yes	1 Yes	1 Yes					
F	O.	tas accredited.	NO		163	163	163	163	163	163					
LAB ID Number EX/	Client Sample Description	Sample Date	^Dissolved Ethane	^Dissolved Ethene	Benzene	Toluene	Ethyl Benzene	Xylenes	m/p Xylenes	o Xylene					
1574568	CB/2	04-Mar-15 09:45													
1574569	WF/2	04-Mar-15 10:15	<8	<7											
1574570	ETF/2	04-Mar-15 11:10	<8	<7											
1574571	D/2	04-Mar-15 12:10													
1574572	MA1/2A	04-Mar-15 12:45	<8	<7											
1574573	MA1/2B	04-Mar-15 12:45	<8	<7											
1574574	B/2	04-Mar-15 13:05													
1574575	TV/2A	04-Mar-15 13:30	<8	<7											
1574576	TV/2B	04-Mar-15 13:30	<8	<7											
1574577	TE/2	04-Mar-15 14:00													
1574578	AB/2	04-Mar-15 14:30													
1574579	HW/2	04-Mar-15 14:30	<8	<7	<1	<1	<1	<2	<1	<1					
	ESC A		Client Name Envireau Water									Sampl	le Analysis		
		Contact		Ms P Jen	kinson										
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ										Date Pri		19-Mar-20		
					Disso	lved (Gasse	s in V	Nater	S	Report Number		EXR/195		
Tel +44 (0) 1283 554400							_455(·	, , ator	_	Table No	umber	1		
	Fax +44 (0) 1283 554422														

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

Customer and Site Details: Envireau Water: Dissolved Gasses in Waters

Job Number: W19_5182 QC Batch Number: 150179

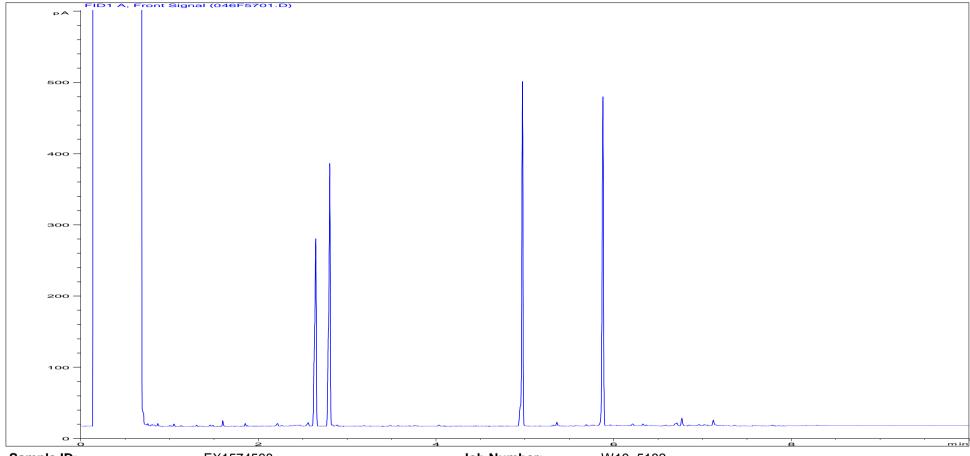
Directory: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\057F6801.D

Method: Bottle

05-Mar-15 Date Extracted: 16-Mar-15

Date Booked in:

Matrix:


Date Analysed: 17-Mar-15, 06:06:45

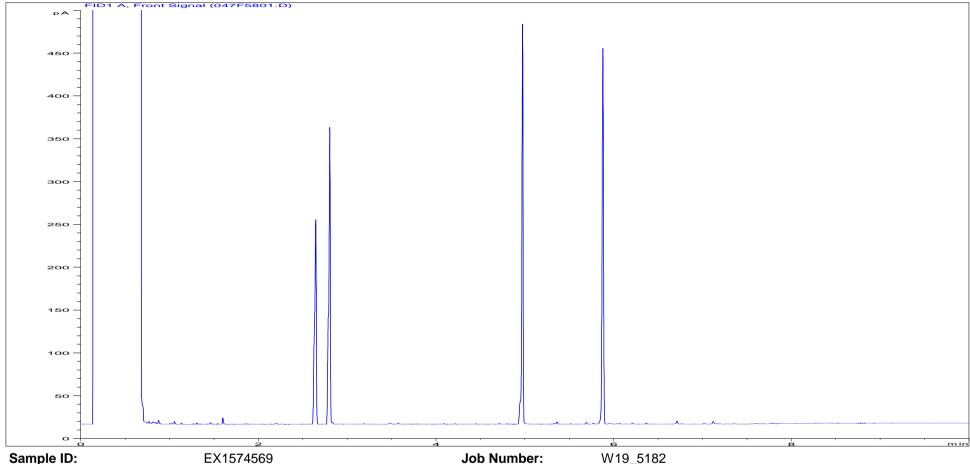
Water

* Sample data with an asterisk are not UKAS accredited.

		Concentration, (mg/l)											
Sample ID	Client ID	>C8 - C10*	>C10 - C12	>C12 - C16	>C16 - C21	>C21 - C35							
EX1574568	CB/2	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1574569	WF/2	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1574570	ETF/2	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1574571	D/2	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1574572	MA1/2A	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1574573	MA1/2B	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1574574	B/2	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1574575	TV/2A	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1574576	TV/2B	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1574577	TE/2	<0.01	<0.01	<0.01	<0.01	0.015							
EX1574578	AB/2	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1574579	HW/2	<0.01	<0.01	<0.01	0.046	0.136							

Petroleum Hydrocarbons (C8 to C40) by GC/FID

Sample ID: EX1574568 Job Number: W19 5182 Multiplier: 0.005 Client: Envireau Water Dilution: Site:


Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M **Client Sample Ref:** CB/2

Acquisition Date/Time: 17-Mar-15, 02:50:44

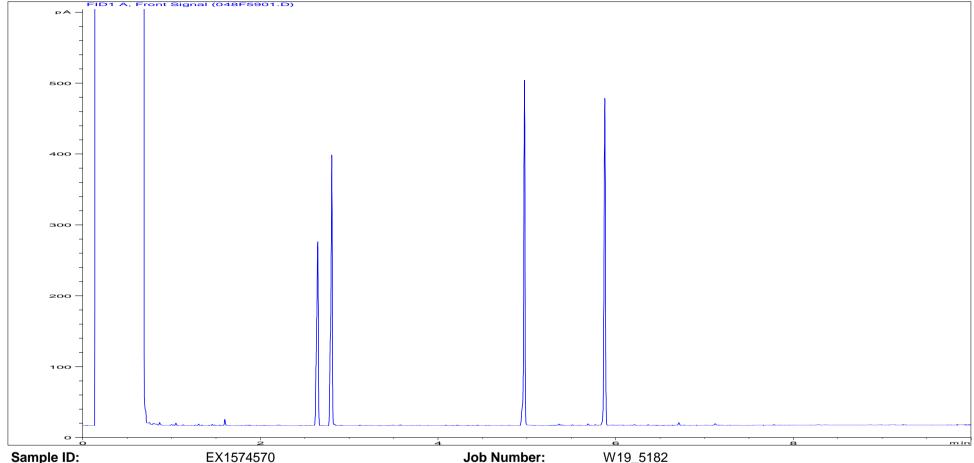
Datafile: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\046F5701.D

Page 6 of 23 EXR/195182 Ver. 2

Sample ID: EX1574569
Multiplier: 0.005
Dilution: 1

Ition: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: WF/2


Acquisition Date/Time: 17-Mar-15, 03:08:32

Datafile: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\047F5801.D

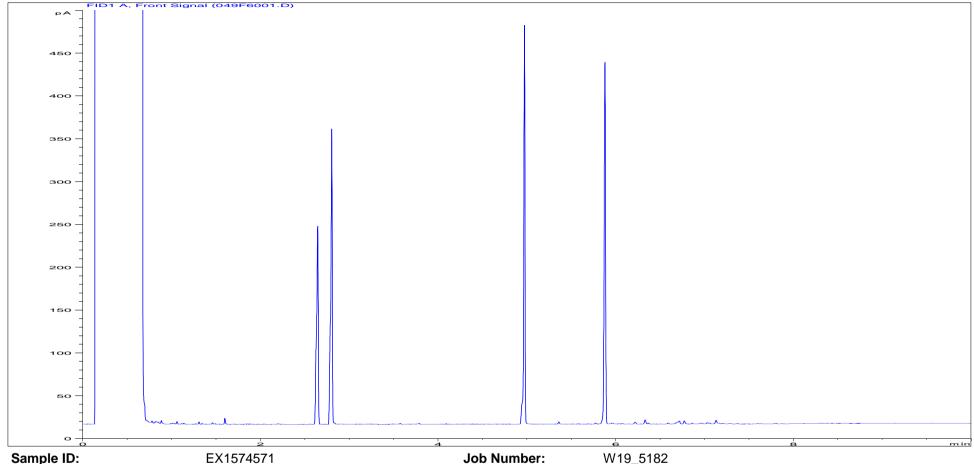
Client:

Envireau Water

Page 7 of 23 EXR/195182 Ver. 2

Sample ID: EX1574570 Job Number: Multiplier: 0.005 Client:

Dilution: 1 **Site:** Dissolved Gasses in Waters


Acquisition Method: TPH_RUNF.M Client Sample Ref: ETF/2

Acquisition Date/Time: 17-Mar-15, 03:26:27

Datafile: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\048F5901.D

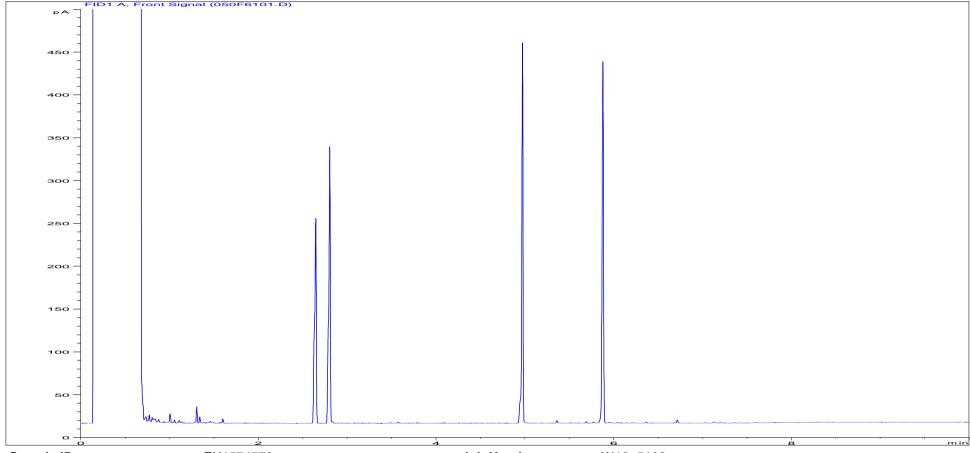
Envireau Water

Page 8 of 23 EXR/195182 Ver. 2

Sample ID: EX1574571
Multiplier: 0.005
Dilution: 1

Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method:TPH_RUNF.MClient Sample Ref:D/2


Acquisition Date/Time: 17-Mar-15, 03:44:29

Datafile: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\049F6001.D

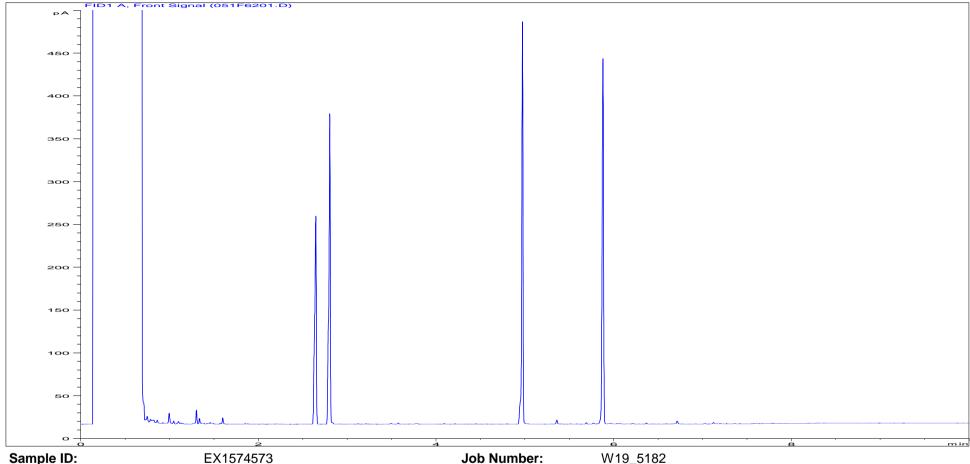
Client:

Envireau Water

Page 9 of 23 EXR/195182 Ver. 2

 Sample ID:
 EX1574572
 Job Number:
 W19_5182

 Multiplier:
 0.005
 Client:
 Envireau Water


Dilution:1Site:Dissolved Gasses in Waters

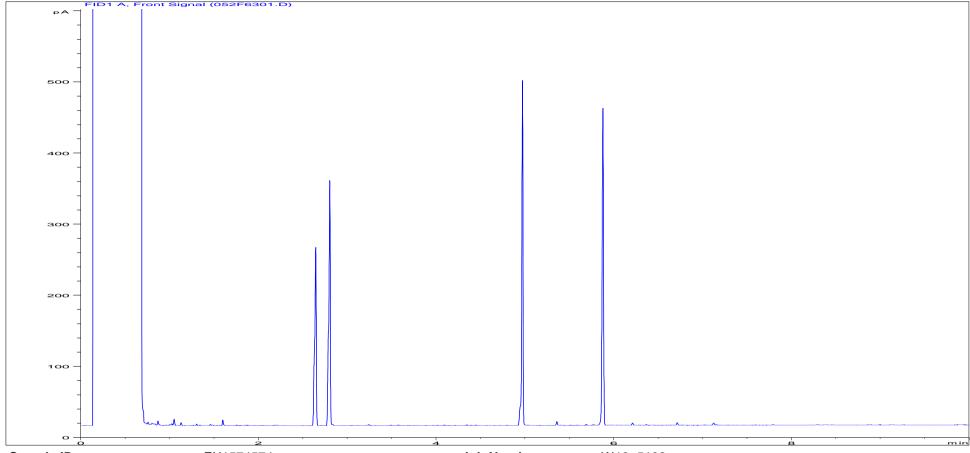
Acquisition Method: TPH_RUNF.M Client Sample Ref: MA1/2A

Acquisition Date/Time: 17-Mar-15, 04:02:17

Datafile: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\050F6101.D

Page 10 of 23 EXR/195182 Ver. 2

Sample ID: EX1574573
Multiplier: 0.005
Dilution: 1


Client: Envireau Water
Site: Dissolved Gasses in Waters

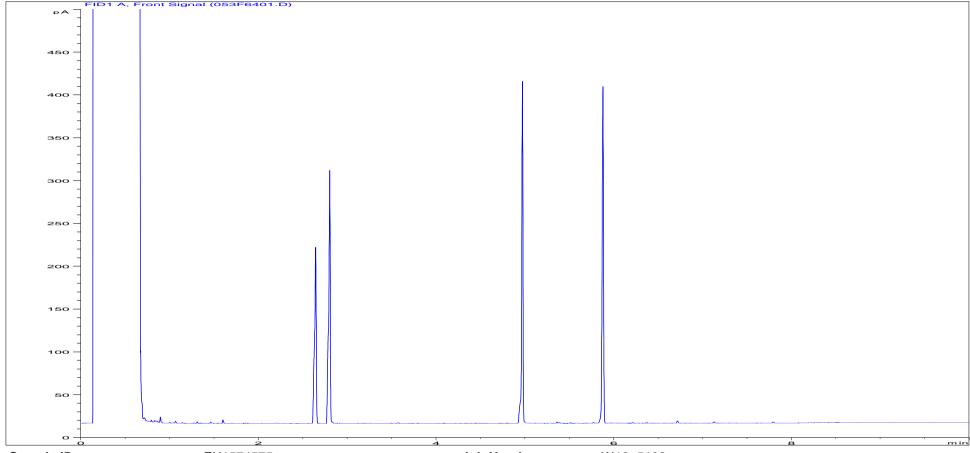
Acquisition Method: TPH_RUNF.M Client Sample Ref: MA1/2B

Acquisition Date/Time: 17-Mar-15, 04:20:03

Datafile: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\051F6201.D

Page 11 of 23 EXR/195182 Ver. 2

Sample ID:EX1574574Job Number:W19_5182Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

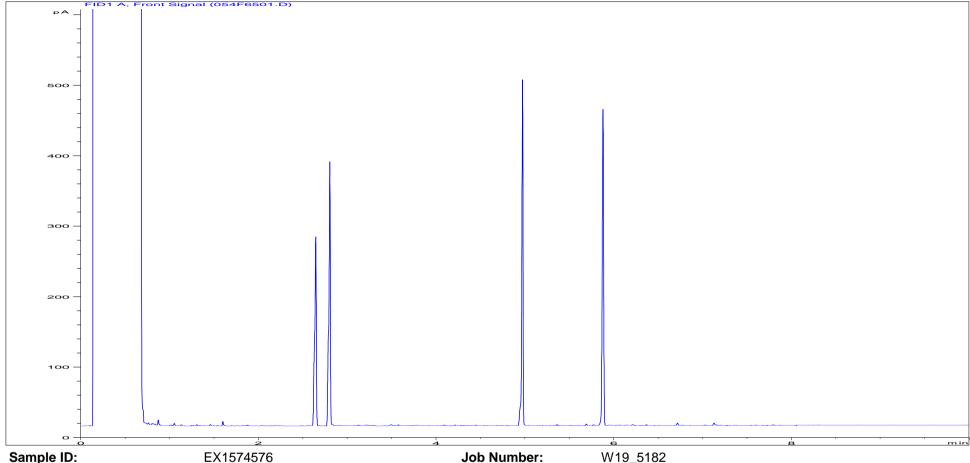
Acquisition Method: TPH_RUNF.M Client Sample Ref: B/2

Acquisition Date/Time: 17-Mar-15, 04:37:54

Datafile: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\052F6301.D

Page 12 of 23 EXR/195182 Ver. 2

Sample ID:EX1574575Job Number:W19_5182Multiplier:0.005Client:Envireau Water


Dilution:1Site:Dissolved Gasses in Waters

Acquisition Method:TPH_RUNF.MClient Sample Ref:TV/2A

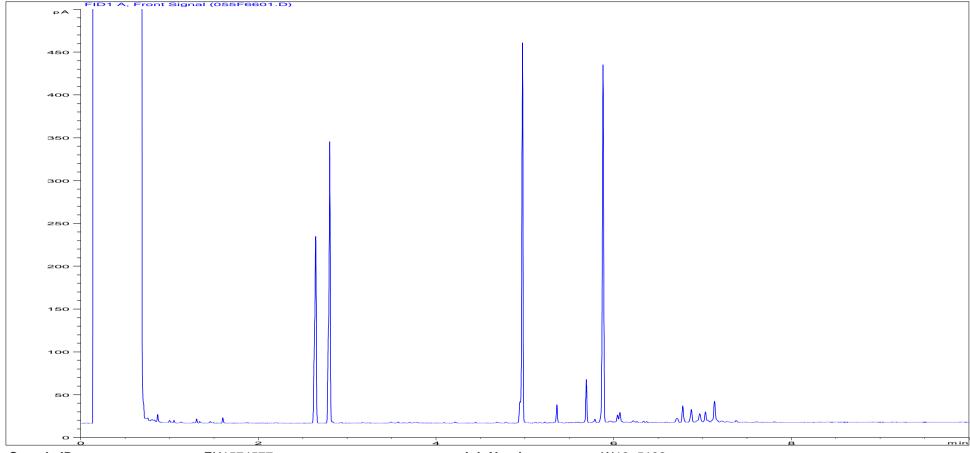
Acquisition Date/Time: 17-Mar-15, 04:55:39

Datafile: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\053F6401.D

Page 13 of 23 EXR/195182 Ver. 2

Sample ID:EX1574576Job Number:Multiplier:0.005Client:

Dilution:1Site:Dissolved Gasses in Waters


Acquisition Method: TPH_RUNF.M Client Sample Ref: TV/2B

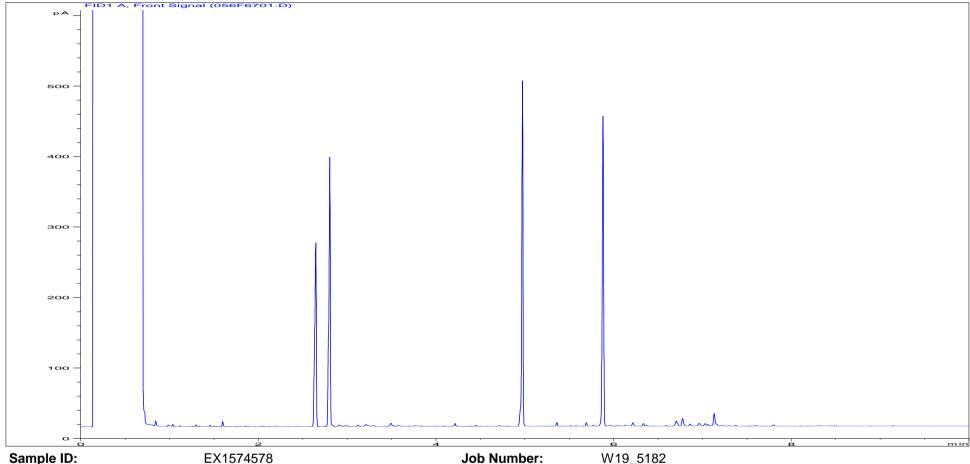
Acquisition Date/Time: 17-Mar-15, 05:13:24

Datafile: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\054F6501.D

Envireau Water

Page 14 of 23 EXR/195182 Ver. 2

Sample ID:EX1574577Job Number:W19_5182Multiplier:0.005Client:Envireau Water


Dilution:1Site:Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: TE/2

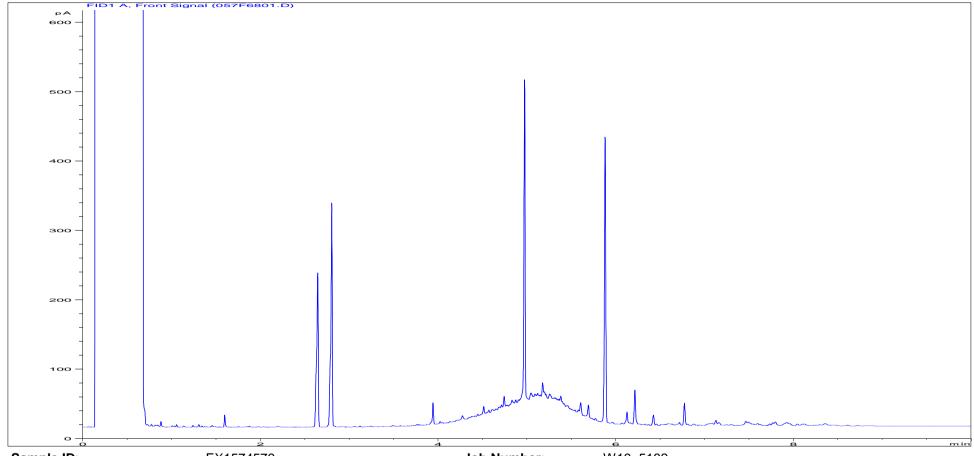
Acquisition Date/Time: 17-Mar-15, 05:31:09

Datafile: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\055F6601.D

Page 15 of 23 EXR/195182 Ver. 2

Sample ID:EX1574578Job Number:Multiplier:0.005Client:

Dilution:1Site:Dissolved Gasses in Waters


Acquisition Method: TPH_RUNF.M Client Sample Ref: AB/2

Acquisition Date/Time: 17-Mar-15, 05:49:00

Datafile: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\056F6701.D

Envireau Water

Page 16 of 23 EXR/195182 Ver. 2

Sample ID:EX1574579Job Number:W19_5182Multiplier:0.005Client:Envireau Water

Dilution: 1 **Site:** Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: HW/2

Acquisition Date/Time: 17-Mar-15, 06:06:45

Datafile: D:\TES\DATA\Y2015\031615TPH_GC17\031615 2015-03-16 09-32-00\057F6801.D

Page 17 of 23 EXR/195182 Ver. 2

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W195182

Customer Site Report No Envireau Water

Dissolved Gasses in Waters

W195182

Consignment No W84957 Date Logged 05-Mar-2015

Report Due 18-Mar-2015

							Nepc	JIL DU	e 18-l	iviai-2	.013										
			MethodID	Calc_HD	CUSTSERV	DISGAS1					GROHSA	ICPWATVAR								ICPWATVART	
ID Number	Description	Matrix Type	Sampled	Total Hardness as CaCO3 (CALC)	Report B	^Dissolved Butane	^Dissolved Methane	^Dissolved Propane	^Dissolved Ethane	^Dissolved Ethene	GRO C5->C8	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as Al (Dissolved) VAR	Calcium as Ca (Total) VAR	Magnesium as Mg (Total) VAR
				✓								✓	✓	✓	✓	✓	✓	✓		✓	✓
EX/1574568	CB/2	Surface Water	04/03/15																		
EX/1574569	WF/2	Groundwater	04/03/15																		
EX/1574570	ETF/2	Groundwater	04/03/15																		
EX/1574571	D/2	Surface Water	04/03/15																		
EX/1574572	MA1/2A	Groundwater	04/03/15																		
EX/1574573	MA1/2B	Groundwater	04/03/15																		
EX/1574574	B/2	Groundwater	04/03/15																		
EX/1574575	TV/2A	Groundwater	04/03/15																		
EX/1574576	TV/2B	Groundwater	04/03/15																		
EX/1574577	TE/2	Surface Water	04/03/15																		
EX/1574578	AB/2	Surface Water	04/03/15																		
EX/1574579	HW/2	Groundwater	04/03/15																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
 - Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W195182

Customer Site Report No. Envireau Water

Dissolved Gasses in Waters

W195182

Consignment No W84957 Date Logged 05-Mar-2015

Report No	W195162						Repo	ort Du	ie 18-	Mar-2	2015										
			MethodID	ICPWATVART					ISEF	KONENS				TPHFID		VOCHSAW					
ID Number	Description	Matrix Type	Sampled	Sodium as Na (Total) VAR	Potassium as K (Total) VAR	Manganese as Mn (Total) VAR	Iron as Fe (Total) VAR	Aluminium as Al (Total) VAR	Fluoride as F	Chloride as Cl (Kone)	Ammoniacal Nitrogen (Kone)	Nitrite as N (Kone)	Nitrate as N (Kone calc)	TPH Carbon Banding	ТРН СС	BTEX Analysis HSA GC-MS	Benzene (μg/l)	Toluene (μg/l)	Ethyl Benzene (μg/l)	Xylenes (μg/l)	m/p Xylenes (μg/l)
		T		✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
EX/1574568	CB/2	Surface Water	04/03/15																	<u> </u>	Ь
EX/1574569	WF/2	Groundwater	04/03/15																	<u> </u>	Ļ
EX/1574570	ETF/2	Groundwater	04/03/15																	<u> </u>	Ь
EX/1574571	D/2	Surface Water	04/03/15																	<u> </u>	Ь
EX/1574572	MA1/2A	Groundwater	04/03/15																	<u> </u>	<u> </u>
EX/1574573	MA1/2B	Groundwater	04/03/15																	<u> </u>	<u> </u>
EX/1574574	B/2	Groundwater	04/03/15																	<u> </u>	<u> </u>
EX/1574575	TV/2A	Groundwater	04/03/15																	Ь	↓
EX/1574576	TV/2B	Groundwater	04/03/15																	Ь	↓
EX/1574577	TE/2	Surface Water	04/03/15																	<u> </u>	<u> </u>
EX/1574578	AB/2	Surface Water	04/03/15																	<u> </u>	<u> </u>
EX/1574579	HW/2	Groundwater	04/03/15																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

- Analysis dependant upon trigger result Note: due date may be affected if triggered
- No analysis scheduled
- Analysis Subcontracted Note: due date may vary

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W195182

Customer Site **Envireau Water**

Dissolved Gasses in Waters

Report No W195182

Consignment No W84957 Date Logged 05-Mar-2015

Report Due 18-Mar-2015

							керс	rt Du	e 18-
			MethodID	VOCHSAW	WSLM12	WSLM17	WSLM2	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	o Xylene (μg/l)	Total Alkalinity as CaCO3	Total Acidity as CaCO3	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
				✓	✓	✓	✓		✓
EX/1574568	CB/2	Surface Water	04/03/15						
EX/1574569	WF/2	Groundwater	04/03/15						
EX/1574570	ETF/2	Groundwater	04/03/15						
EX/1574571	D/2	Surface Water	04/03/15						
EX/1574572	MA1/2A	Groundwater	04/03/15						
EX/1574573	MA1/2B	Groundwater	04/03/15						
EX/1574574	B/2	Groundwater	04/03/15						
EX/1574575	TV/2A	Groundwater	04/03/15						
EX/1574576	TV/2B	Groundwater	04/03/15						
EX/1574577	TE/2	Surface Water	04/03/15						
EX/1574578	AB/2	Surface Water	04/03/15						
EX/1574579	HW/2	Groundwater	04/03/15						

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
 - Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

- Analysis dependant upon trigger result Note: due date may be affected if triggered
- No analysis scheduled
- Analysis Subcontracted Note: due date may vary

Report Number: W/EXR/195182

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
TPHFID	EX1574568-79	The Primary process control result associated with this Test has not wholly met the requirements of the Laboratory Quality Management System (QMS). The Laboratory believes that the validity of the data has not been affected but in line with our QMS policy we have removed accreditation from >nC8-10 and >nC8-14. These circumstances should be taken into consideration when utilising the data.

Report Number: W/EXR/195182

Method Descriptions

Matrix	MethodID	Analysis	Method Description							
		Basis	·							
Water	Calc_HD	As Received	Calculation based on Dissolved metals analysis by ICPOES							
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection							
Water	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons (GRO) by Headspace FID							
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES							
Water	ICPWATVART	As Received	Determination of Total Metals in water samples using nitric acid digestion and ICPOES quantitation							
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)							
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis							
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by GCFID							
Water	VOCHSAW	As Received	Determination of Volatile Organics Compounds by Headspace GCMS							
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH							
Water	WSLM17	As Received	Titration with Sodium Hydroxide to required pH							
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.							
Water	WSLM27	As Received	Gravimetric Determination							
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe							

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.

 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite

TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 23 of 23 EXR/195182 Ver. 2

Sample Descriptions

Client : Envireau Water

Site: Dissolved Gasses in Waters

Report Number: W19_5182

Lab ID Number	Client ID	Description
	CB/2	Surface Water
EX/1574568	CB/2	Surface water
EX/1574569	WF/2	Groundwater
EX/1574570	ETF/2	Groundwater
EX/1574571	D/2	Surface Water
EX/1574572	MA1/2A	Groundwater
EX/1574573	MA1/2B	Groundwater
EX/1574574	B/2	Groundwater
EX/1574575	TV/2A	Groundwater
EX/1574576	TV/2B	Groundwater
EX/1574577	TE/2	Surface Water
EX/1574578	AB/2	Surface Water
EX/1574579	HW/2	Groundwater

Appendix A Page 1 of 1 19/03/2015EXR/195182 Ver. 2

Water Analysis Test Certificate

Round 3

Our Ref: EXR/196429 (Ver. 1)

Your Ref:

April 9, 2015

Ms P Jenkinson Envireau Water Cedars Farm Barn Market Street Draycott

Environmental Chemistry

FSC

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Ms P Jenkinson

Dear Ms Jenkinson

Derbyshire DE72 3NB

Sample Analysis - Dissolved Gasses in Waters

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

D Simpson

Project Co-ordinator

DailSjin

01283 554458

TEST REPORT

Report No. EXR/196429 (Ver. 1)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: Dissolved Gasses in Waters

The 13 samples described in this report were registered for analysis by ESG on 25-Mar-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 09-Apr-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 4)
Table of TPH Texas banding (0.01) (Page 5)
GC-FID Chromatograms (Pages 6 to 18)
Analytical and Deviating Sample Overview (Pages 19 to 20)
Table of Method Descriptions (Page 21)
Table of Report Notes (Page 22)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:

Declan Burns Managing Director

Multi-Sector Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 09-Apr-2015

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
		Method Codes :	WSLM3	WSLM2	WSLM12	WSLM17	Calc_HD	KONENS	ISEF		ICPWATVAR*	TICPWATVAR	ICPWATVART	ICPWATVAR	ICPWATVART	ICPWATVAR	ICPWATVART	ICPWATVAR
		porting Limits :		100		2	7	1	0.1	3	1	1	1	1	1	1	1	1
	UK	AS Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes d	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LAB ID Number EX	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Total Acidity as CaCO3 w	Total Hardness as CaCO3	Chloride as Cl w	Fluoride as F a	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Total) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Total) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Total) a	Sodium as Na (Dissolved) a	Potassium as K (Total) a	Potassium as K (Dissolved) a
1580157	WF/3A	23-Mar-15 10:15	7.5	922	434	Nil	133	28	0.2	30	38	40	8	8	190	200	4	4
1580158	WF/3B	23-Mar-15 10:30	7.8	916	444	Nil	133	28	0.2	30	32	40	7	8	160	200	3	4
1580159	B/3	23-Mar-15 10:45	7.7	<100	2	Nil	<7	<1	<0.1	<3	<1	<1	<1	<1	<1	<1	<1	<1
1580160	CB/3A	23-Mar-15 11:20	7.8	601	196	Nil	349	30	0.1	48	97	125	7	9	15	18	2	3
1580161	CB/3B	23-Mar-15 11:35	7.8	599	190	Nil	337	29	0.1	48	92	120	7	9	14	18	2	2
1580162	ETF/3	23-Mar-15 11:55	7.8	3050	682	Nil	280	104	1.1	840	52	61	26	31	948	638	7	8
1580163	D/3	23-Mar-15 12:15	8.1	817	242	Nil	474	61	0.3	78	140	175	8	9	21	26	4	5
1580164	MA1/3	23-Mar-15 12:55	7.4	638	205	Nil	366	31	<0.1	57	94	130	7	10	10	13	1	2
1580165	TV/3	23-Mar-15 13:20	7.7	1580	621	Nil	87	47	0.6	155	22	25	6	6	370	337	4	5
1580166	TE/3	23-Mar-15 13:45	7.9	1060	460	Nil	104	28	0.3	75	24	30	5	7	210	265	3	4
1580167	AB/3	23-Mar-15 14:30	7.9	1070	291	Nil	495	120	0.3	82	150	175	12	14	54	63	5	7
1580168	HW/3	23-Mar-15 14:45	7.5	820	407	Nil	107	22	0.3	18	29	33	5	6	160	180	3	3
1580169	CF/3	23-Mar-15 15:45	7.7	1140	485	Nil	109	26	0.3	94	27	32	6	7	220	270	3	4
	FSG &	3	Client N	ame		u Water	l						Samı	ole Ana	lysis			
			Contact		Ms P Jen	KINSON						Deta Deta	4.0.4			Ann 0045		
	Bretby Business Park, Ashby Road											Date Prin				-Apr-2015		
	Burton-on-Trent, Staffordshire, DE15 0YZ			ı	Disso	lved (Gasse	s in V	Vater	'S		Report N			E	KR/196429		
	Tel +44 (0) 1283 554400			•				J V		_		Table Nu	mber			1		
	Fax +44 (0) 1283 554422																	

		Units :	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	μg/l	μg/l	μg/l
	ı	Method Codes :			ICPWATVART			KONENS	KONENS	GROHSA	TPHFID	TPHFID	WSLM27				DISGAS1	DISGAS1
		porting Limits :	0.01	0.01	0.01	0.01	0.01	0.01	0.2	0.1	0.01	0.01	5	0.01	0.01	15	6	6
	UK	AS Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	No
LAB ID Number EX	Client Sample Description	Sample Date	Manganese as Mn (Total) a	Manganese as MN (Dissolved) a	Iron as Fe (Total) a	Iron as Fe (Dissolved) a	Ammoniacal Nitrogen as N	Nitrite as N	Nitrate as N	GRO-HSA o	Carbon Banding	трн вс	Total Dissolved Solids w	Aluminium as Al (Total) a	Aluminium as Al (Dissolved) a	^Dissolved Butane	^Dissolved Methane	^Dissolved Propane
1580157	WF/3A	23-Mar-15 10:15	0.36	0.36	0.24	0.05	0.7	<0.01	<0.2	<0.1	Req	<0.01	520	0.02	<0.01	<22	<0.6	<16
1580158	WF/3B	23-Mar-15 10:30	0.30	0.37	0.31	0.05	0.7	<0.01	<0.2	<0.1	Req	<0.01	520	0.02	<0.01	<22	10	<17
1580159	B/3	23-Mar-15 10:45	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.2	<0.1	Req	<0.01	9	0.01	<0.01	<14	<4	<11
1580160	CB/3A	23-Mar-15 11:20	0.02	<0.01	0.42	0.12	0.05	0.02	6.4	<0.1	Req	0.01	350	0.15	0.02			
1580161	CB/3B	23-Mar-15 11:35	0.01	<0.01	0.27	0.12	0.05	0.02	6.5	<0.1	Req	0.01	360	0.08	0.02			
1580162	ETF/3	23-Mar-15 11:55	0.03	<0.01	1.00	0.06	2.2	<0.01	0.5	<0.1	Req	<0.01	2030	0.35	<0.01	<17	383	<13
1580163	D/3	23-Mar-15 12:15	<0.01	<0.01	0.16	0.13	0.02	<0.01	5.5	<0.1	Req	<0.01	560	0.08	0.01			
1580164	MA1/3	23-Mar-15 12:55	<0.01	<0.01	0.11	0.11	<0.01	<0.01	6.3	<0.1	Req	<0.01	390	0.03	0.01	<14	<4	<11
1580165	TV/3	23-Mar-15 13:20	0.04	0.02	0.15	0.03	1.2	<0.01	<0.2	<0.1	Req	<0.01	960	0.02	<0.01	<16	2516	<12
1580166	TE/3	23-Mar-15 13:45	0.04	0.02	0.26	0.10	0.11	<0.01	<0.2	<0.1	Req	0.01	600	0.06	<0.01			
1580167	AB/3	23-Mar-15 14:30	0.04	0.03	0.47	0.13	0.4	<0.01	1.9	<0.1	Req	0.04	630	0.42	0.01			
1580168	HW/3	23-Mar-15 14:45	0.28	0.31	0.52	0.05	0.6	<0.01	<0.2	<0.1	Req	<0.01	430	0.06	<0.01	<22	6	<17
1580169	CF/3	23-Mar-15 15:45	0.22	0.25	0.17	0.03	0.7	<0.01	<0.2	<0.1	Req	<0.01	670	0.02	<0.01	<14	5	<11
	Bretby Business Park, Ashby Road	3	Client N Contact		Envirea Ms P Jen	au Water						Date Pri		ple Ana		Apr-2015		
	Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422			I	Disso	lved (Gasse	s in V	Vaters	S		Report N			EX	R/196429 1		

		Units :	ug/l	ua/l									
	1	Method Codes :	μg/l DISGAS1	μg/l DISGAS1									
		porting Limits :	12	11									
	UK	AS Accredited :	No	No									
LAB ID Number EX/	Client Sample Description	Sample Date	^Dissolved Ethane	^Dissolved Ethene									
1580157	WF/3A	23-Mar-15 10:15	<11	<10									
1580158	WF/3B	23-Mar-15 10:30	<12	<11									
1580159	B/3	23-Mar-15 10:45	<7	<7									
1580160	CB/3A	23-Mar-15 11:20											
1580161	CB/3B	23-Mar-15 11:35											
1580162	ETF/3	23-Mar-15 11:55	<9	<8									
1580163	D/3	23-Mar-15 12:15											
1580164	MA1/3	23-Mar-15 12:55	<7	<7									
1580165	TV/3	23-Mar-15 13:20	12	<8									
1580166	TE/3	23-Mar-15 13:45											
1580167	AB/3	23-Mar-15 14:30											
1580168	HW/3	23-Mar-15 14:45	<11	<11									
1580169	CF/3	23-Mar-15 15:45	<7	<7									
	ESG (Client Name Envireau Water							ole Ana	alysis		
			Contact	<u> </u>	Ms P Jenkinson				Date Printed 09-Apr-2015				
	Bretby Business Park, Ashby Road												
	Surton-on-Trent, Staffordshire, DE15 0YZ				Dissolved (Gasses in Water	S		Report Number EXR/196429 Table Number 1				
	Tel +44 (0) 1283 554400			-			_		Table Nu	ımber		1	
	Fax +44 (0) 1283 554422												

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

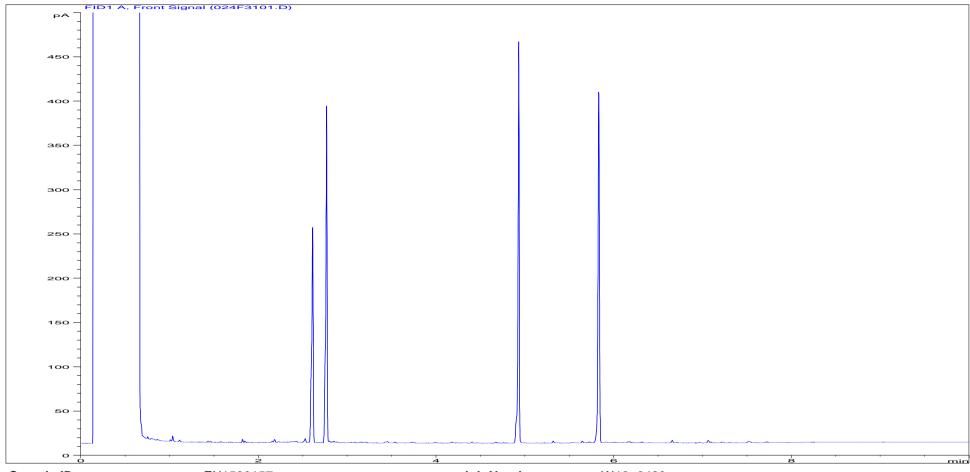
Customer and Site Details: Envireau Water: Dissolved Gasses in Waters

 Job Number:
 W19_6429

 QC Batch Number:
 1580222

Directory: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\036F4301.D

Method: Bottle


Matrix: Water

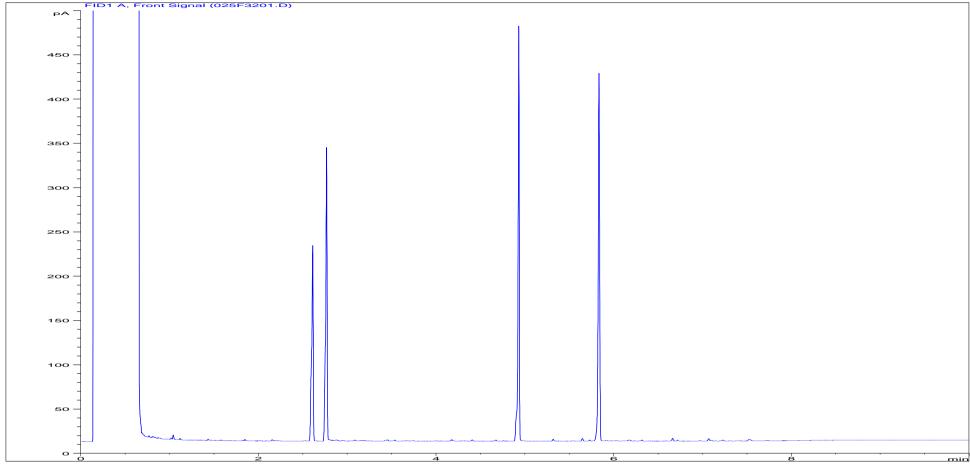
Date Booked in: 25-Mar-15
Date Extracted: 27-Mar-15

Date Analysed: 28-Mar-15, 02:04:00

* Sample data with an asterisk are not UKAS accredited.

			C	concentration, (mg	/I)	
Sample ID	Client ID	>C8 - C10	>C10 - C12	>C12 - C16	>C16 - C21	>C21 - C35
EX1580157	WF/3A	<0.01	<0.01	<0.01	<0.01	<0.01
EX1580158	WF/3B	<0.01	<0.01	<0.01	<0.01	<0.01
EX1580159	B/3	<0.01	<0.01	<0.01	<0.01	<0.01
EX1580160	CB/3A	<0.01	<0.01	<0.01	<0.01	0.01
EX1580161	CB/3B	<0.01	<0.01	<0.01	<0.01	<0.01
EX1580162	ETF/3	<0.01	<0.01	<0.01	<0.01	<0.01
EX1580163	D/3	<0.01	<0.01	<0.01	<0.01	<0.01
EX1580164	MA1/3	<0.01	<0.01	<0.01	<0.01	<0.01
EX1580165	TV/3	<0.01	<0.01	<0.01	<0.01	<0.01
EX1580166	TE/3	<0.01	<0.01	<0.01	<0.01	<0.01
EX1580167	AB/3	<0.01	<0.01	<0.01	<0.01	0.028
EX1580168	HW/3	<0.01	<0.01	<0.01	<0.01	<0.01
EX1580169	CF/3	<0.01	<0.01	<0.01	<0.01	<0.01

Sample ID:EX1580157Job Number:W19_6429Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: WF/3A

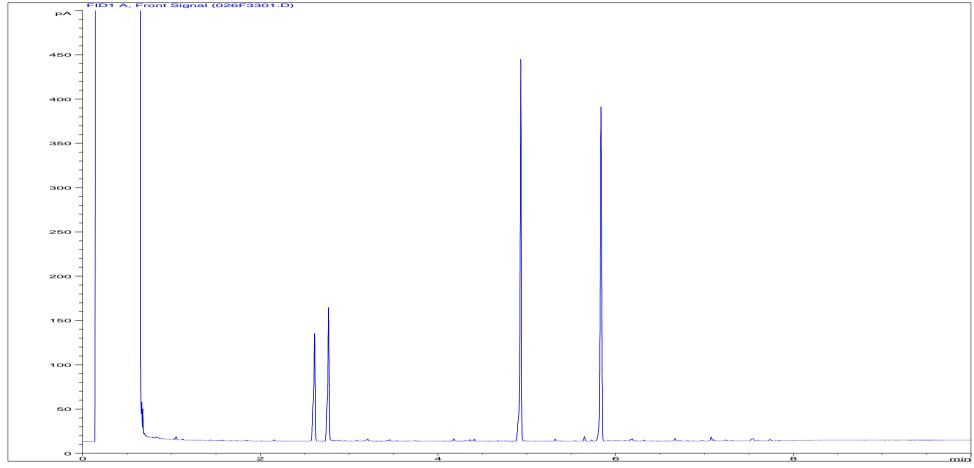
Acquisition Date/Time: 27-Mar-15, 22:27:08

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\024F3101.D

Page 6 of 22 EXR/196429 Ver. 1

 Sample ID:
 EX1580158
 Job Number:
 W19_6429

 Multiplier:
 0.005
 Client:
 Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

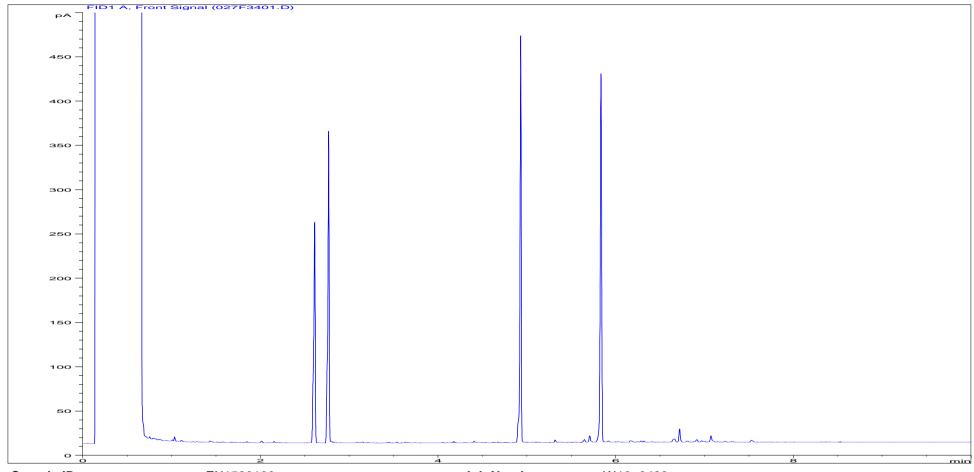
Acquisition Method: TPH_RUNF.M Client Sample Ref: WF/3B

Acquisition Date/Time: 27-Mar-15, 22:45:15

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\025F3201.D

Page 7 of 22 EXR/196429 Ver. 1

Sample ID:EX1580159Job Number:W19_6429Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: B/3

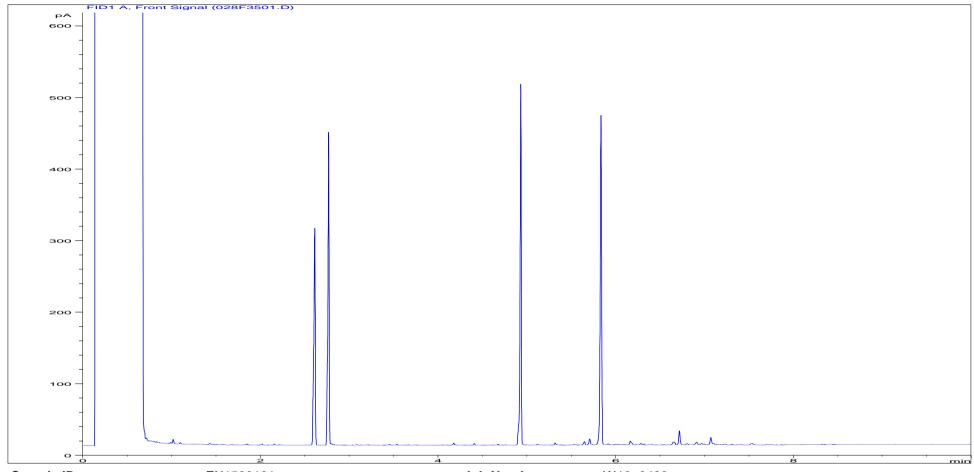
Acquisition Date/Time: 27-Mar-15, 23:03:21

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\026F3301.D

Page 8 of 22 EXR/196429 Ver. 1

 Sample ID:
 EX1580160
 Job Number:
 W19_6429

 Multiplier:
 0.005
 Client:
 Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

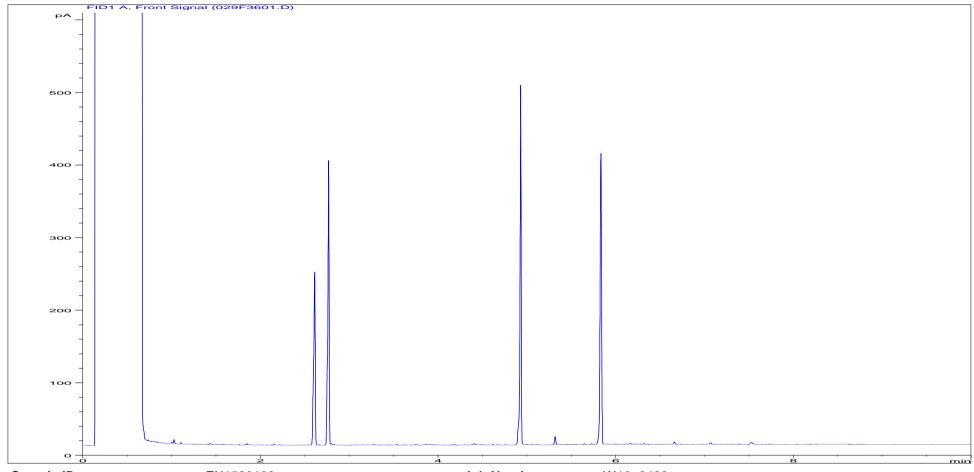
Acquisition Method: TPH_RUNF.M Client Sample Ref: CB/3A

Acquisition Date/Time: 27-Mar-15, 23:21:31

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\027F3401.D

Page 9 of 22 EXR/196429 Ver. 1

Sample ID:EX1580161Job Number:W19_6429Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: CB/3B

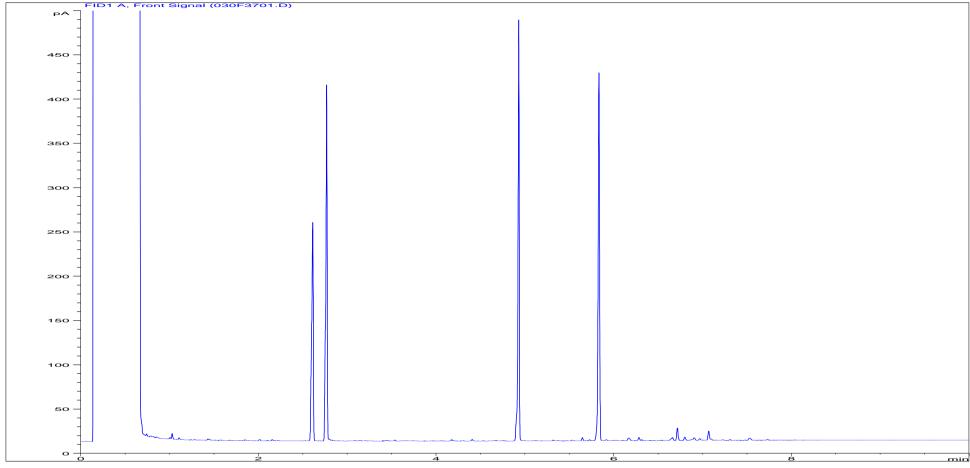
Acquisition Date/Time: 27-Mar-15, 23:39:34

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\028F3501.D

Page 10 of 22 EXR/196429 Ver. 1

 Sample ID:
 EX1580162
 Job Number:
 W19_6429

 Multiplier:
 0.005
 Client:
 Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

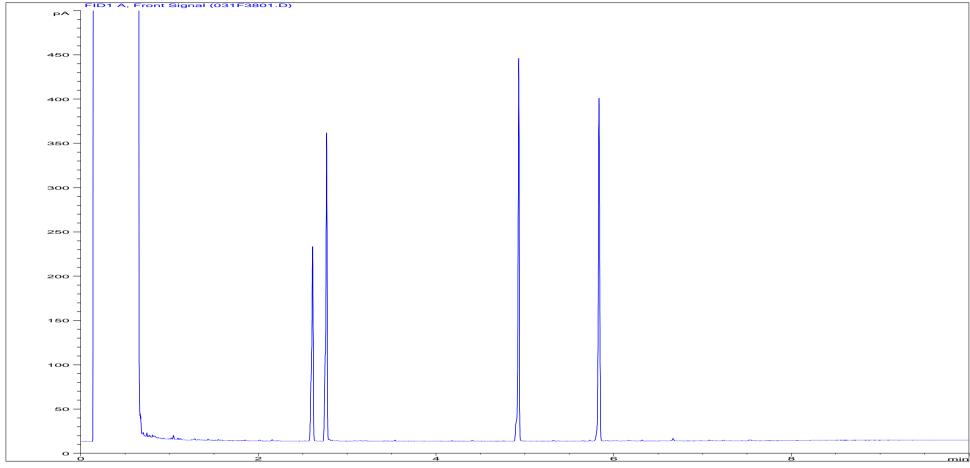
Acquisition Method: TPH_RUNF.M Client Sample Ref: ETF/3

Acquisition Date/Time: 27-Mar-15, 23:57:37

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\029F3601.D

Page 11 of 22 EXR/196429 Ver. 1

Sample ID:EX1580163Job Number:W19_6429Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

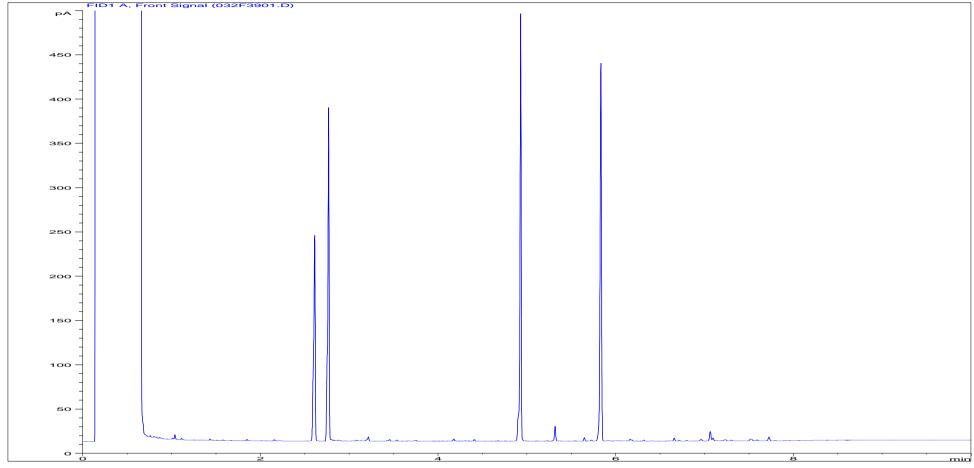
Acquisition Method: TPH_RUNF.M Client Sample Ref: D/3

Acquisition Date/Time: 28-Mar-15, 00:15:38

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\030F3701.D

Page 12 of 22 EXR/196429 Ver. 1

Sample ID:EX1580164Job Number:W19_6429Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

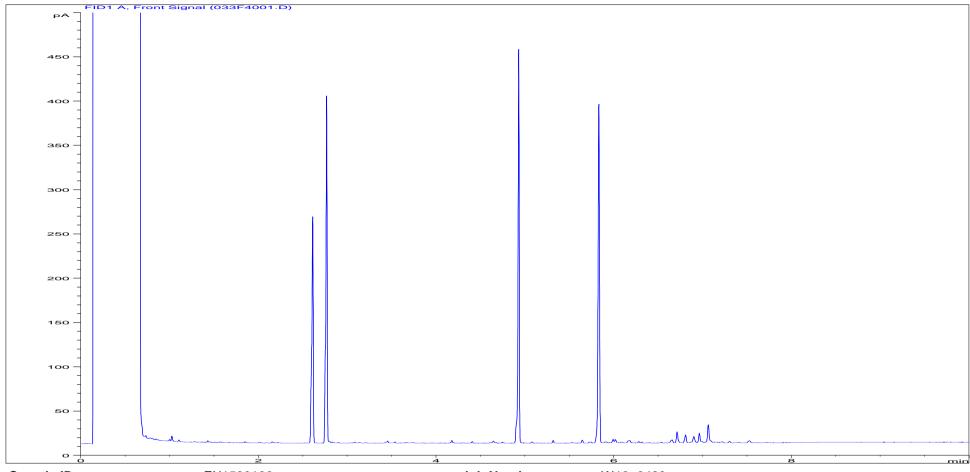
Acquisition Method:TPH_RUNF.MClient Sample Ref:MA1/3

Acquisition Date/Time: 28-Mar-15, 00:33:47

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\031F3801.D

Page 13 of 22 EXR/196429 Ver. 1

Sample ID:EX1580165Job Number:W19_6429Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

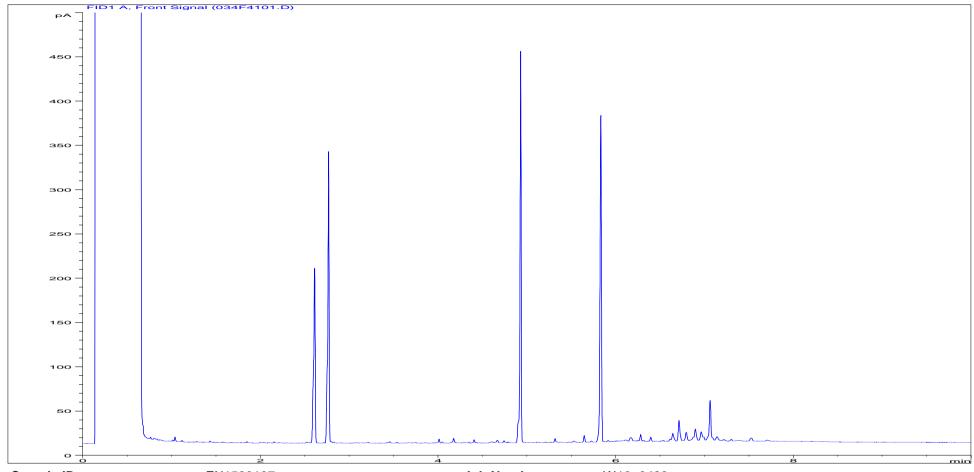
Acquisition Method: TPH_RUNF.M Client Sample Ref: TV/3

Acquisition Date/Time: 28-Mar-15, 00:51:51

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\032F3901.D

Page 14 of 22 EXR/196429 Ver. 1

Sample ID:EX1580166Job Number:W19_6429Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

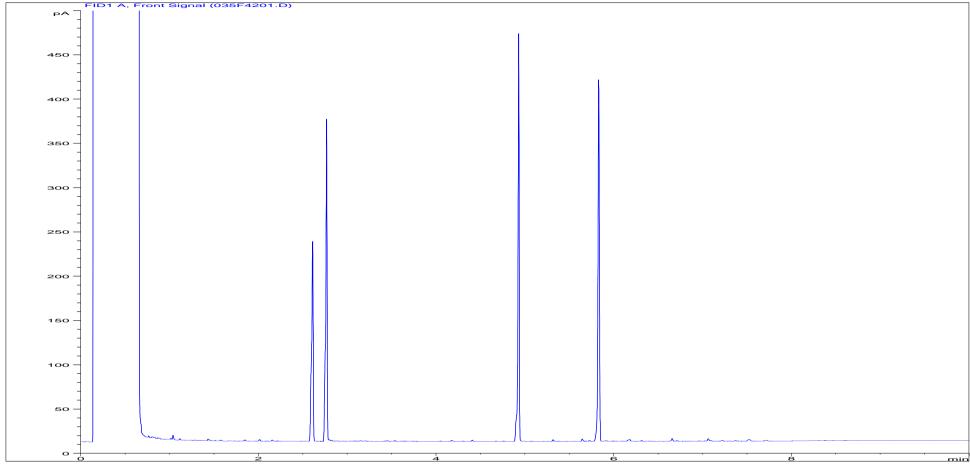
Acquisition Method: TPH_RUNF.M Client Sample Ref: TE/3

Acquisition Date/Time: 28-Mar-15, 01:09:53

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\033F4001.D

Page 15 of 22 EXR/196429 Ver. 1

Sample ID:EX1580167Job Number:W19_6429Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: AB/3

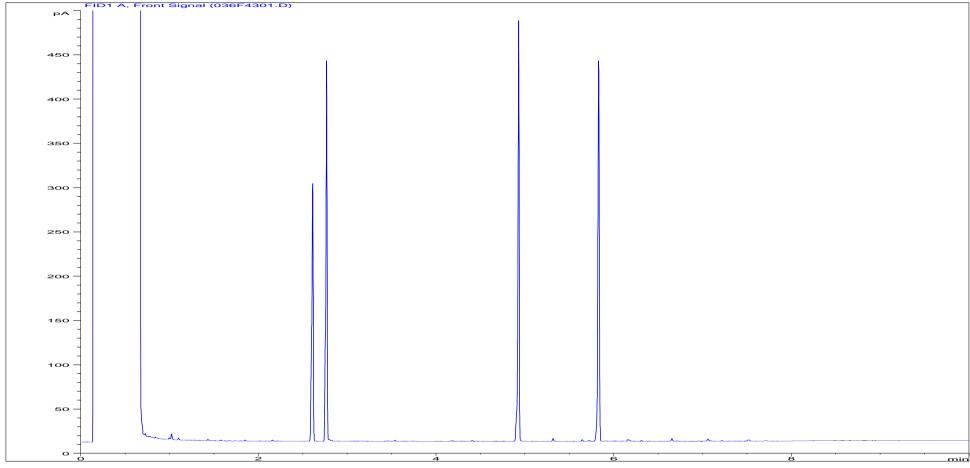
Acquisition Date/Time: 28-Mar-15, 01:27:54

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\034F4101.D

Page 16 of 22 EXR/196429 Ver. 1

 Sample ID:
 EX1580168
 Job Number:
 W19_6429

 Multiplier:
 0.005
 Client:
 Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method:TPH_RUNF.MClient Sample Ref:HW/3

Acquisition Date/Time: 28-Mar-15, 01:46:02

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\035F4201.D

Page 17 of 22 EXR/196429 Ver. 1

 Sample ID:
 EX1580169
 Job Number:
 W19_6429

 Multiplier:
 0.005
 Client:
 Envireau Water

Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: CF/3

Acquisition Date/Time: 28-Mar-15, 02:04:00

Datafile: D:\TES\DATA\Y2015\032715TPH_GC17\032715 2015-03-27 13-09-04\036F4301.D

Page 18 of 22 EXR/196429 Ver. 1

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W196429

Customer Site Report No **Envireau Water Dissolved Gasses in Waters**

W196429

Consignment No W85912 Date Logged 25-Mar-2015

Report Due 09-Apr-2015

								טונ טע		- ۱۹۰۰											
			MethodID	Calc_HD	CUSTSERV	DISGAS1					GROHSA	ICPWATVAR								ICPWATVART	
ID Number	Description	Matrix Type	Sampled	Total Hardness as CaCO3 (CALC)	Report B	^Dissolved Butane	^Dissolved Methane	^Dissolved Propane	^Dissolved Ethane	^Dissolved Ethene	GRO-HSA	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as Al (Dissolved) VAR	Calcium as Ca (Total) VAR	Magnesium as Mg (Total) VAR
				✓							✓	✓	✓	✓	✓	✓	✓	✓		✓	✓
EX/1580157	WF/3A	Groundwater	23/03/15																		
EX/1580158	WF/3B	Groundwater	23/03/15																		
EX/1580159	B/3	Groundwater	23/03/15																		
EX/1580160	CB/3A	Surface Water	23/03/15																		
EX/1580161	CB/3B	Surface Water	23/03/15																		
EX/1580162	ETF/3	Groundwater	23/03/15																		
EX/1580163	D/3	Surface Water	23/03/15																		
EX/1580164	MA1/3	Groundwater	23/03/15																		
EX/1580165	TV/3	Groundwater	23/03/15																		
EX/1580166	TE/3	Surface Water	23/03/15																		
EX/1580167	AB/3	Surface Water	23/03/15																		
EX/1580168	HW/3	Groundwater	23/03/15																		
EX/1580169	CF/3	Groundwater	23/03/15																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- D E F The sampling date was not supplied so holding time may be compromised - applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W196429

Customer Site

Report No

Envireau Water Dissolved Gasses in Waters

W196429

Consignment No W85912 Date Logged 25-Mar-2015

Report Due 09-Apr-2015

							rtope	<i>5</i> 11 D 0	00	Apr-2	.010									
			MethodID	ICPWATVART					ISEF	KONENS				TPHFID		WSLM12	21WTSM	2WTSM	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Sodium as Na (Total) VAR	Potassium as K (Total) VAR	Manganese as Mn (Total) VAR	Iron as Fe (Total) VAR	Aluminium as AI (Total) VAR	Fluoride as F	Chloride as CI (Kone)	Ammoniacal Nitrogen (Kone)	Nitrite as N (Kone)	Nitrate as N (Kone calc)	TPH Carbon Banding	19 НАТ	Total Alkalinity as CaCO3	Total Acidity as CaCO3	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
	1			✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓
EX/1580157	WF/3A	Groundwater	23/03/15																	
EX/1580158	WF/3B	Groundwater	23/03/15																	
EX/1580159	B/3	Groundwater	23/03/15																	
EX/1580160	CB/3A	Surface Water	23/03/15																	
EX/1580161	CB/3B	Surface Water	23/03/15																	
EX/1580162	ETF/3	Groundwater	23/03/15																	
EX/1580163	D/3	Surface Water	23/03/15																	
EX/1580164	MA1/3	Groundwater	23/03/15																	
EX/1580165	TV/3	Groundwater	23/03/15																	
EX/1580166	TE/3	Surface Water	23/03/15																	
EX/1580167	AB/3	Surface Water	23/03/15																	
EX/1580168	HW/3	Groundwater	23/03/15																	
EX/1580169	CF/3	Groundwater	23/03/15																	

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- D E F The sampling date was not supplied so holding time may be compromised - applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: W/EXR/196429

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Water	Calc_HD	As Received	Calculation based on Dissolved metals analysis by ICPOES
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection
Water	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons (GRO) by Headspace FID
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ICPWATVART	As Received	Determination of Total Metals in water samples using nitric acid digestion and ICPOES quantitation
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by GCFID
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM17	As Received	Titration with Sodium Hydroxide to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite

TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 22 of 22 EXR/196429 Ver. 1

Sample Descriptions

Client : Envireau Water

Site: Dissolved Gasses in Waters

Report Number: W19_6429

Lab ID Number	Client ID	Description
EX/1580157	WF/3A	Groundwater
EX/1580158 EX/1580159	WF/3B B/3	Groundwater Groundwater
EX/1580159 EX/1580160	CB/3A	Surface Water
EX/1580161	CB/3B	Surface Water
EX/1580162	ETF/3	Groundwater
EX/1580163	D/3	Surface Water
EX/1580164	MA1/3	Groundwater
EX/1580165	TV/3	Groundwater
EX/1580166 EX/1580167	TE/3 AB/3	Surface Water Surface Water
EX/1580168	HW/3	Groundwater
EX/1580169	CF/3	Groundwater

Appendix A Page 1 of 1 09/04/2015EXR/196429 Ver. 1

Water Analysis Test Certificate

Round 4

Our Ref: EXR/198642 (Ver. 1)

Your Ref:

May 15, 2015

Ms P Jenkinson Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Environmental Chemistry

FS(

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Ms P Jenkinson

Dear Ms Jenkinson

Sample Analysis - Dissolved Gasses in Waters

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

L Bosworth

Project Co-ordinator

counth

01283 554362

TEST REPORT

Report No. EXR/198642 (Ver. 1)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: Dissolved Gasses in Waters

The 14 samples described in this report were registered for analysis by ESG on 01-May-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 15-May-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 4)
Table of TPH Texas banding (0.01) (Page 5)
GC-FID Chromatograms (Pages 6 to 19)
Sub Contracted Analysis Results (Pages 20 to 23)
Analytical and Deviating Sample Overview (Pages 24 to 26)
Table of Additional Report Notes (Page 27)
Table of Method Descriptions (Page 28)
Table of Report Notes (Page 29)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG :

Declan Burns Managing Director

Multi-Sector Services

200

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 15-May-2015

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	Marth and F	Method Codes :	WSLM3	WSLM2	WSLM12	WSLM17	Calc_HD	KONENS	ISEF		ICPWATVART			ICPWATVAR	ICPWATVART	ICPWATVAR		
		Reporting Limits :	Yes	100 Yes	Yes	2 Yes	7 Yes	1 Yes	0.1 Yes	3 Yes	1 Yes	1 Yes	1 Yes	1 Yes	Yes	1 Yes	1 Yes	1 Yes
LAB ID Number EX	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Total Acidity as CaCO3 w	Total Hardness as CaCO3	Chloride as Cl w	Fluoride as F a	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Total) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Total) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Total) a	Sodium as Na (Dissolved) a	Potassium as K (Total) a	Potassium as K (Dissolved) a
1590063	WF/4	30-Apr-15 10:50	7.6	921	446	Nil	123	28	0.3	27	30	36	6	8	150	180	3	3
1590064	CB/4	30-Apr-15 09:30	7.8	604	199	Nil	295	30	0.2	45	98	105	7	8	15	16	2	2
1590065	ETF/4	30-Apr-15 10:15	7.8	3030	729	Nil	210	112	9.4	700	52	46	26	23	701	640	7	6
1590066	D/4	30-Apr-15 11:55	8.2	657	148	Nil	295	68	0.4	71	105	105	7	8	26	27	7	7
1590067	MA1/4	30-Apr-15 11:35	7.4	627	231	Nil	337	31	0.6	51	140	120	10	9	14	12	2	2
1590068	KGS/4	30-Apr-15 15:50	7.7	639	182	Nil	324	32	1.0	75	115	115	8	9	15	15	2	2
1590069	CF/4	30-Apr-15 13:45	7.6	1120	484	Nil	104	26	0.4	86	29	30	6	7	230	245	3	3
1590070	TV/4A	30-Apr-15 14:25	7.7	1580	635	Nil	80	50	2.3	140	23	22	6	6	360	355	5	4
1590071	TV/4B	30-Apr-15 14:25	7.6	1570	631	Nil	82	50	0.7	140	25	23	6	6	359	370	4	4
1590072	TE/4A	30-Apr-15 15:15	7.8	1110	479	Nil	87	26	0.4	86	23	25	6	6	225	245	3	3
1590073	TE/4B	30-Apr-15 15:15	7.8	1110	483	Nil	87	26	0.4	86	26	25	6	6	255	245	4	3
1590074	AB/4	30-Apr-15 15:50	8.0	1110	222	Nil	382	161	0.4	67	130	130	14	14	85	86	5	5
1590075	HW/4	30-Apr-15 16:00	7.6	811	407	Nil	100	22	0.3	16	31	30	6	6	165	165	3	3
1590076	B/4	30-Apr-15 09:45	7.8	<100	2	12	<7	<1	<0.1	<3	<1	<1	<1	<1	<1	<1	<1	<1
	ESG &	þ	Client N	ame	Envirea Ms P Jen	au Water							Sam	ple Ana	alysis			
E	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422			ſ	Disso	lved C	Sasse	s in V	Vater	s		Date Prii Report N Table Nu	lumber			May-2015 XR/198642 1		

		Units :	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	μg/l
		Method Codes :	ICPWATVART		ICPWATVART	ICPWATVAR		KONENS	KONENS	GROHSA	TPHFID	TPHFID	ICPMSWT	ICPMSW	WSLM27	ICPWATVART	ICPWATVAR	
		porting Limits : AS Accredited :	0.01 Yes	0.01 Yes	0.01 Yes	0.01 Yes	0.01 Yes	0.01 Yes	0.2 Yes	0.1 Yes	0.01 Yes	0.01 Yes	0.001 Yes	0.001 Yes	5 No	0.01 No	0.01 No	15 No
LAB ID Number EX	Client Sample Description	Sample Date	Manganese as Mn (Total) a	Manganese as MN (Dissolved) a	Iron as Fe (Total) a	Iron as Fe (Dissolved) a	Ammoniacal Nitrogen as N	Nitrite as N	Nitrate as N	GRO-HSA o	Carbon Banding	ТРН GC	Uranium as U (Total)	Uranium as U (Dissolved)	Total Dissolved Solids w	Aluminium as Al (Total) a	Aluminium as Al (Dissolved) a	^Dissolved Butane
1590063	WF/4	30-Apr-15 10:50	0.30	0.34	0.86	0.06	0.7	<0.01	<0.2	<0.1	Req	<0.01	0.001	0.001	530	0.06	<0.01	<22
1590064	CB/4	30-Apr-15 09:30	<0.01	<0.01	0.64	0.14	0.11	0.03	6.5	<0.1	Req	0.01	<0.001	<0.001	360	0.11	0.02	
1590065	ETF/4	30-Apr-15 10:15	0.02	0.02	0.65	0.06	2.0	<0.01	<0.2	<0.1	Req	<0.01	<0.001	<0.001	2010	0.37	<0.01	<22
1590066	D/4	30-Apr-15 11:55	<0.01	<0.01	0.50	0.13	0.02	<0.01	1.4	<0.1	Req	0.02	0.002	0.002	420	0.52	0.02	
1590067	MA1/4	30-Apr-15 11:35	<0.01	<0.01	0.15	0.12	<0.01	<0.01	6.3	<0.1	Req	<0.01	<0.001	<0.001	400	0.06	0.02	<14
1590068	KGS/4	30-Apr-15 15:50	<0.01	<0.01	0.14	0.12	<0.01	<0.01	5.7	<0.1	Req	<0.01	<0.001	<0.001	420	0.20	0.02	<16
1590069	CF/4	30-Apr-15 13:45	0.23	0.22	0.96	0.05	0.7	<0.01	<0.2	<0.1	Req	<0.01	0.001	0.001	680	0.05	<0.01	<17
1590070	TV/4A	30-Apr-15 14:25	0.05	0.03	0.16	0.03	1.1	<0.01	<0.2	<0.1	Req	<0.01	<0.001	<0.001	960	0.07	<0.01	<17
1590071	TV/4B	30-Apr-15 14:25	0.03	0.04	0.16	0.04	1.1	<0.01	<0.2	<0.1	Req	<0.01	<0.001	<0.001	970	0.03	<0.01	<14
1590072	TE/4A	30-Apr-15 15:15	0.11	0.02	0.36	0.15	0.05	<0.01	<0.2	<0.1	Req	0.03	0.001	0.001	660	0.05	<0.01	
1590073	TE/4B	30-Apr-15 15:15	0.06	0.04	0.34	0.13	0.07	<0.01	<0.2	<0.1	Req	0.03	0.002	0.001	680	0.04	<0.01	
1590074	AB/4	30-Apr-15 15:50	0.01	0.02	0.21	0.14	0.01	<0.01	<0.2	<0.1	Req	0.02	0.002	0.001	680	0.11	0.02	
1590075	HW/4	30-Apr-15 16:00	0.30	0.27	2.04	0.05	0.6	<0.01	<0.2	<0.1	Req	<0.01	0.001	0.001	480	0.04	<0.01	<16
1590076	B/4	30-Apr-15 09:45	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.2	<0.1	Req	<0.01	<0.001	<0.001	<5	0.02	<0.01	
	SG @		Client N	ame	Envirea Ms P Jen	au Water							Sam	ole Ana	ılysis			
Bu To	etby Business Park, Ashby Road rton-on-Trent, Staffordshire, DE15 0YZ el +44 (0) 1283 554400 ax +44 (0) 1283 554422			ſ	Disso	lved (Gasse	s in V	Vater	S		Date Prii Report N Table Nu	lumber			May-2015 XR/198642 1		

		Units :	μg/l	μg/l	μg/l	μg/l	mg/l	mg/l							
		Method Codes :	DISGAS1	DISGAS1	DISGAS1	DISGAS1	Sub024	Sub024							
		porting Limits : AS Accredited :	6 No	6 No	12 No	11 No	No	No							
LAB															
LAB ID Number EX	Client Sample Description	Sample Date	^Dissolved Methane	^Dissolved Propane	^Dissolved Ethane	^Dissolved Ethene	^Thorium as Th232 (Dissolved) a	^Thorium as Th232 (Total) a							
1590063	WF/4	30-Apr-15 10:50	10	<17	<11	<11	<0.003	<0.003							
1590064	CB/4	30-Apr-15 09:30					0.009	0.009							
1590065	ETF/4	30-Apr-15 10:15	<6	<17	<12	<11	0.01	0.02							
1590066	D/4	30-Apr-15 11:55					0.035	0.078							
1590067	MA1/4	30-Apr-15 11:35	<4	<11	<7	<7	0.004	0.005							
1590068	KGS/4	30-Apr-15 15:50	<4	<12	<8	<8	<0.003	0.004							
1590069	CF/4	30-Apr-15 13:45	<5	<13	<9	<8	<0.003	<0.003							
1590070	TV/4A	30-Apr-15 14:25	1957	<13	<9	<8	<0.003	0.005							
1590071	TV/4B	30-Apr-15 14:25	2252	<11	<7	<7	0.004	0.004							
1590072	TE/4A	30-Apr-15 15:15					0.004	0.009							
1590073	TE/4B	30-Apr-15 15:15					0.005	0.005							
1590074	AB/4	30-Apr-15 15:50					0.004	0.004							
1590075	HW/4	30-Apr-15 16:00	10	<12	<8	<8	<0.003	<0.003							
1590076	B/4	30-Apr-15 09:45					<0.003	<0.003							
	ESG Client Name Contact					au Water	<u> </u>				Sam	ple Ana	alysis		
	etby Business Park, Ashby Road irton-on-Trent, Staffordshire, DE15 0YZ							o in \	Vaters	Date Pr	nted Number			May-2015 XR/198642	
т	Tel +44 (0) 1283 554400			L	J1550	ivea (J asse	s in v	vaters	Table N				1	
F	ax +44 (0) 1283 554422														
	• •		<u> </u>									I			

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

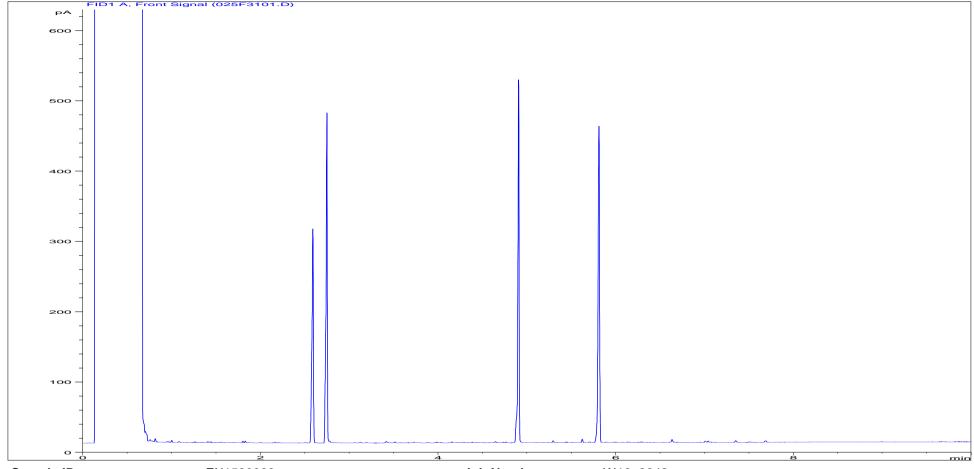
Customer and Site Details: Envireau Water: Dissolved Gasses in Waters

 Job Number:
 W19_8642

 QC Batch Number:
 150334

Directory: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\038F4401.D

Method: Bottle


Matrix: Water
Date Booked in: 01-May-1

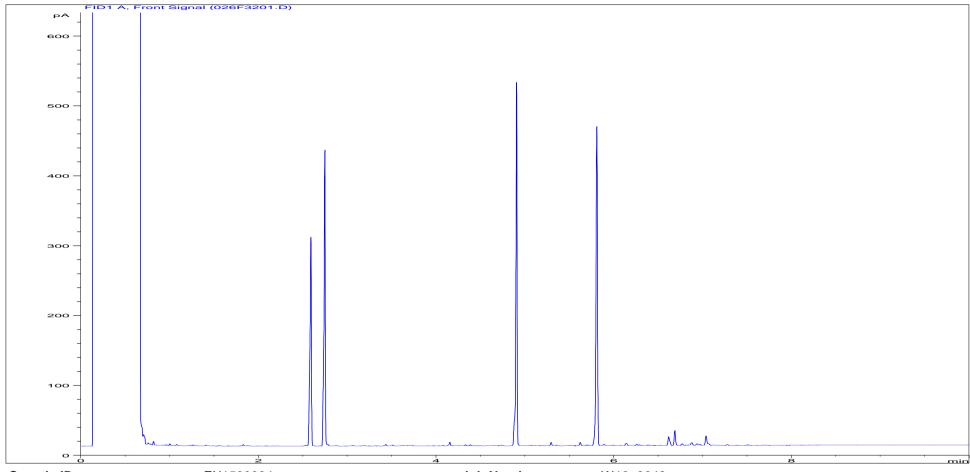
Date Booked in: 01-May-15
Date Extracted: 12-May-15

Date Analysed: 13-May-15, 05:49:39

* Sample data with an asterisk are not UKAS accredited.

			C	concentration, (mg	/l)	
Sample ID	Client ID	>C8 - C10	>C10 - C12	>C12 - C16	>C16 - C21*	>C21 - C35
EX1590063	WF/4	<0.01	<0.01	<0.01	<0.01	<0.01
EX1590064	CB/4	<0.01	<0.01	<0.01	<0.01	<0.01
EX1590065	ETF/4	<0.01	<0.01	<0.01	<0.01	<0.01
EX1590066	D/4	<0.01	<0.01	<0.01	<0.01	0.021
EX1590067	MA1/4	<0.01	<0.01	<0.01	<0.01	<0.01
EX1590068	KGS/4	<0.01	<0.01	<0.01	<0.01	<0.01
EX1590069	CF/4	<0.01	<0.01	<0.01	<0.01	<0.01
EX1590070	TV/4A	<0.01	<0.01	<0.01	<0.01	<0.01
EX1590071	TV/4B	<0.01	<0.01	<0.01	<0.01	<0.01
EX1590072	TE/4A	<0.01	<0.01	<0.01	<0.01	0.018
EX1590073	TE/4B	<0.01	<0.01	<0.01	<0.01	0.019
EX1590074	AB/4	<0.01	<0.01	<0.01	<0.01	0.014
EX1590075	HW/4	<0.01	<0.01	<0.01	<0.01	<0.01
EX1590076	B/4	<0.01	<0.01	<0.01	<0.01	<0.01

Sample ID:EX1590063Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

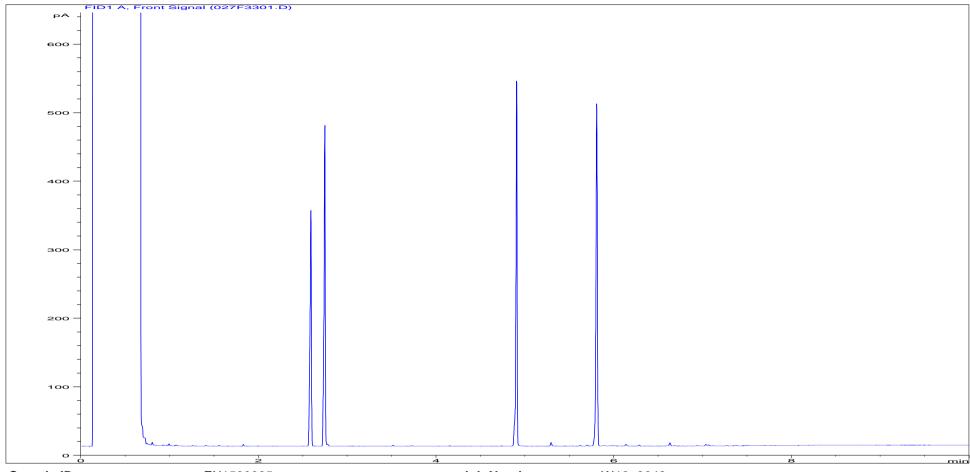
Acquisition Method: TPH_RUNF.M Client Sample Ref: WF/4

Acquisition Date/Time: 13-May-15, 01:43:20

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\025F3101.D

Page 6 of 29 EXR/198642 Ver. 1

Sample ID:EX1590064Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

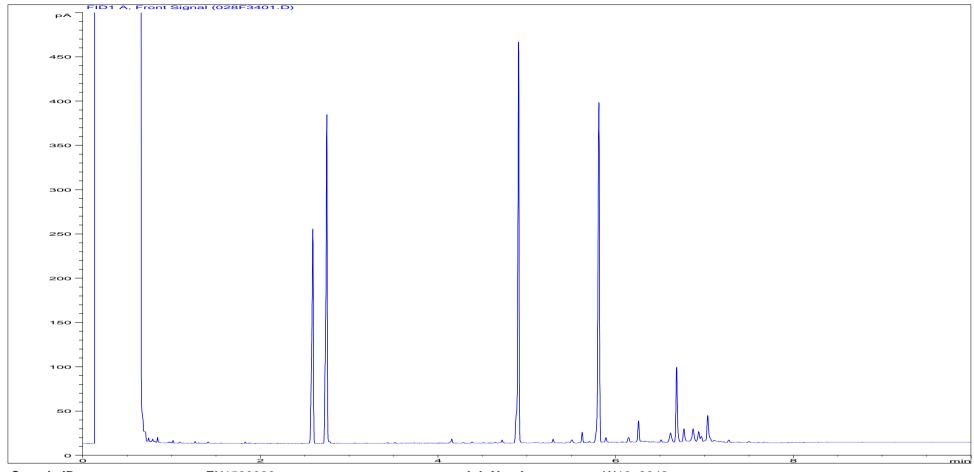
Acquisition Method: TPH_RUNF.M Client Sample Ref: CB/4

Acquisition Date/Time: 13-May-15, 02:02:08

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\026F3201.D

Page 7 of 29 EXR/198642 Ver. 1

Sample ID:EX1590065Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

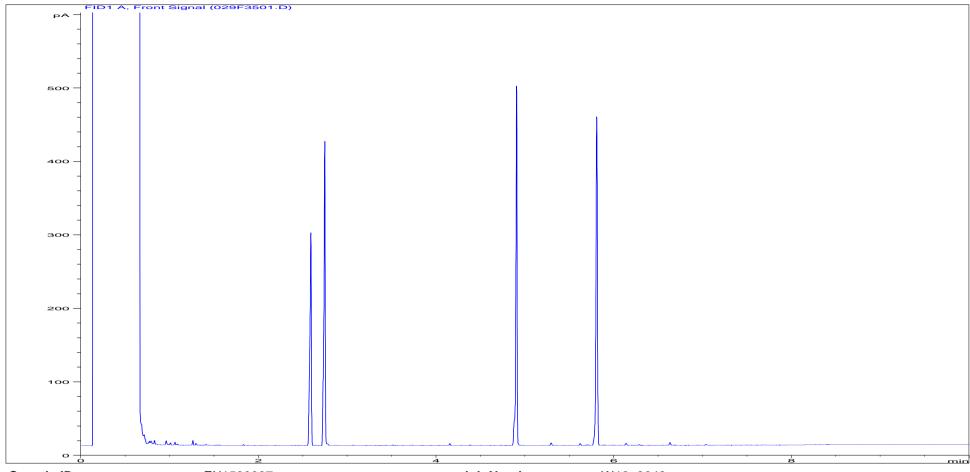
Acquisition Method: TPH_RUNF.M Client Sample Ref: ETF/4

Acquisition Date/Time: 13-May-15, 02:21:02

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\027F3301.D

Page 8 of 29 EXR/198642 Ver. 1

Sample ID:EX1590066Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

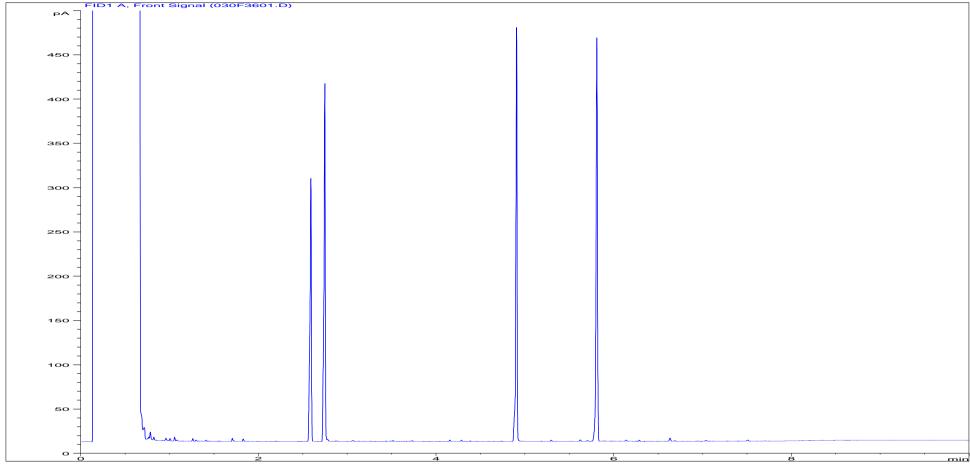
Acquisition Method: TPH_RUNF.M Client Sample Ref: D/4

Acquisition Date/Time: 13-May-15, 02:39:53

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\028F3401.D

Page 9 of 29 EXR/198642 Ver. 1

Sample ID:EX1590067Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

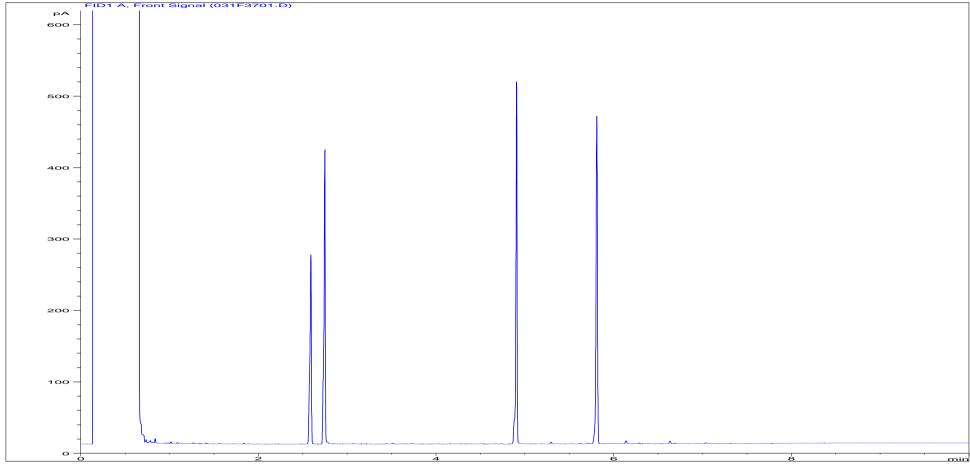
Acquisition Method: TPH_RUNF.M Client Sample Ref: MA1/4

Acquisition Date/Time: 13-May-15, 02:58:47

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\029F3501.D

Page 10 of 29 EXR/198642 Ver. 1

Sample ID:EX1590068Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

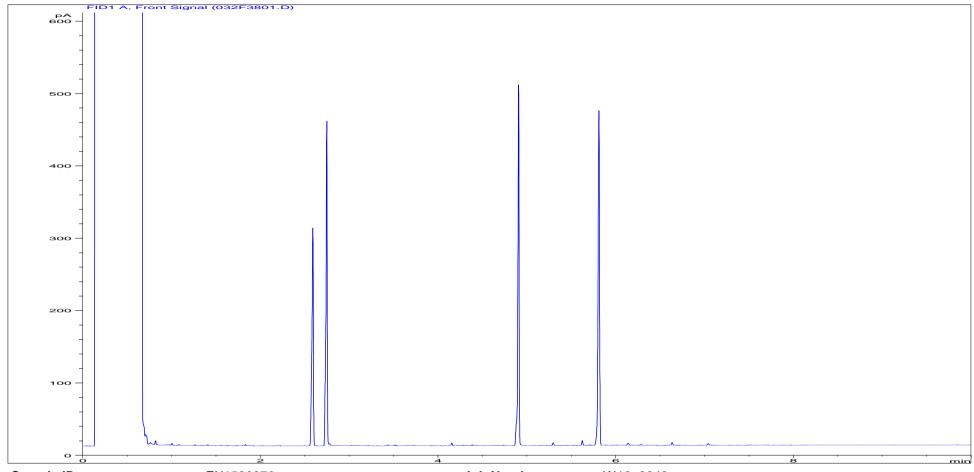
Acquisition Method: TPH_RUNF.M Client Sample Ref: KGS/4

Acquisition Date/Time: 13-May-15, 03:17:40

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\030F3601.D

Page 11 of 29 EXR/198642 Ver. 1

Sample ID:EX1590069Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

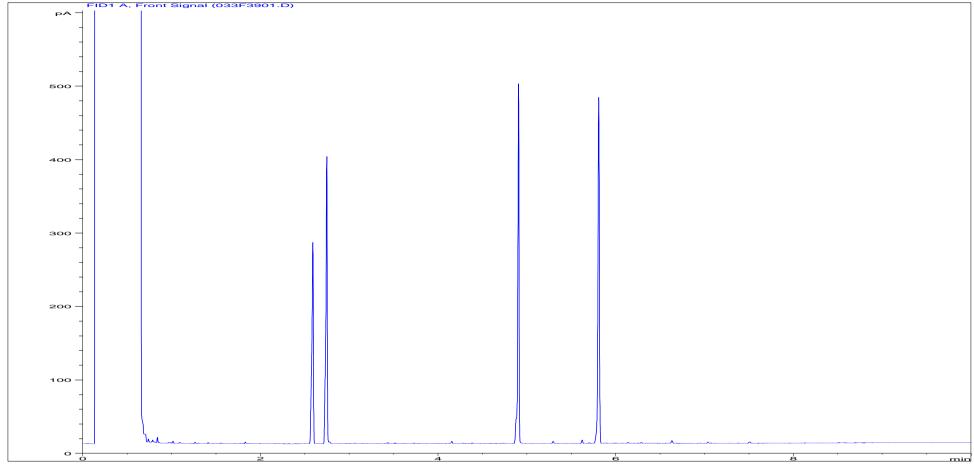
Acquisition Method: TPH_RUNF.M Client Sample Ref: CF/4

Acquisition Date/Time: 13-May-15, 03:36:35

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\031F3701.D

Page 12 of 29 EXR/198642 Ver. 1

Sample ID:EX1590070Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

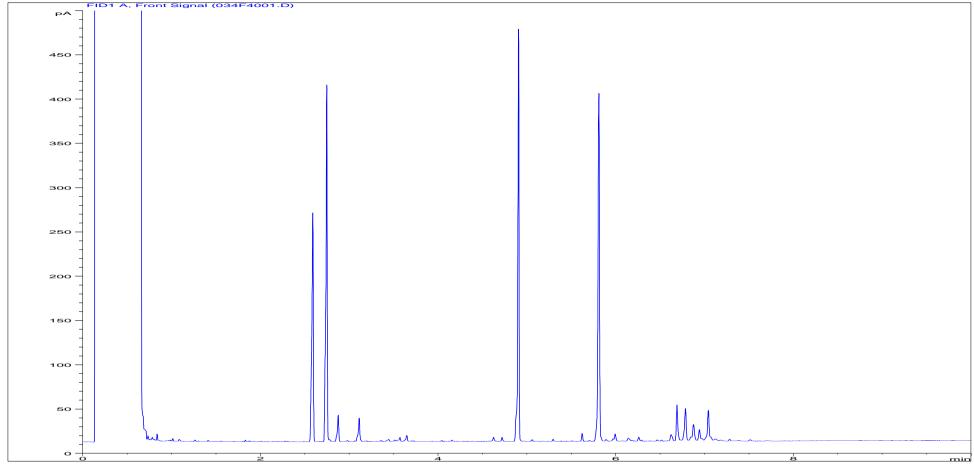
Acquisition Method: TPH_RUNF.M Client Sample Ref: TV/4A

Acquisition Date/Time: 13-May-15, 03:55:44

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\032F3801.D

Page 13 of 29 EXR/198642 Ver. 1

Sample ID:EX1590071Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

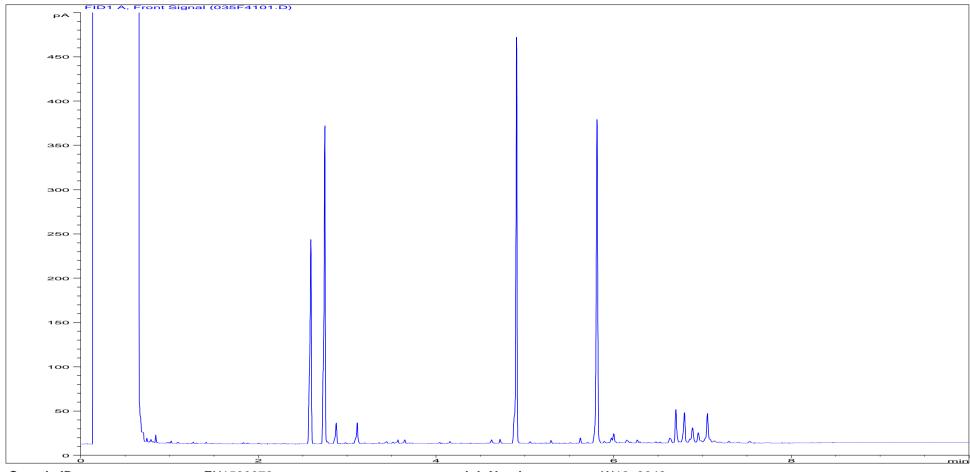
Acquisition Method: TPH_RUNF.M Client Sample Ref: TV/4B

Acquisition Date/Time: 13-May-15, 04:14:44

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\033F3901.D

Page 14 of 29 EXR/198642 Ver. 1

Sample ID:EX1590072Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

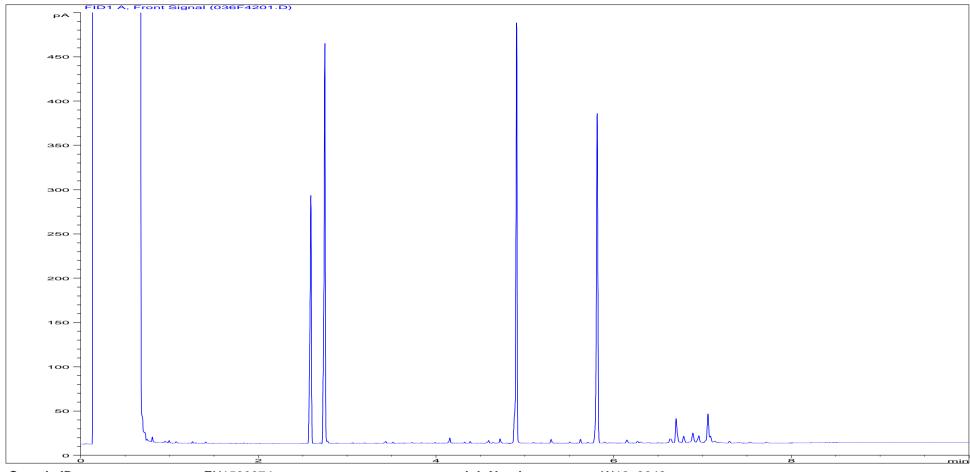
Acquisition Method: TPH_RUNF.M Client Sample Ref: TE/4A

Acquisition Date/Time: 13-May-15, 04:33:28

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\034F4001.D

Page 15 of 29 EXR/198642 Ver. 1

Sample ID:EX1590073Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

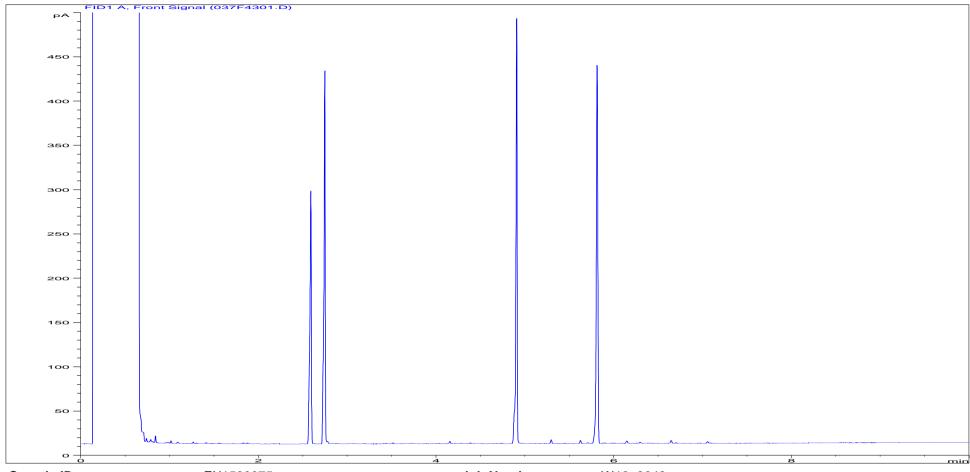
Acquisition Method: TPH_RUNF.M Client Sample Ref: TE/4B

Acquisition Date/Time: 13-May-15, 04:52:29

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\035F4101.D

Page 16 of 29 EXR/198642 Ver. 1

Sample ID:EX1590074Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

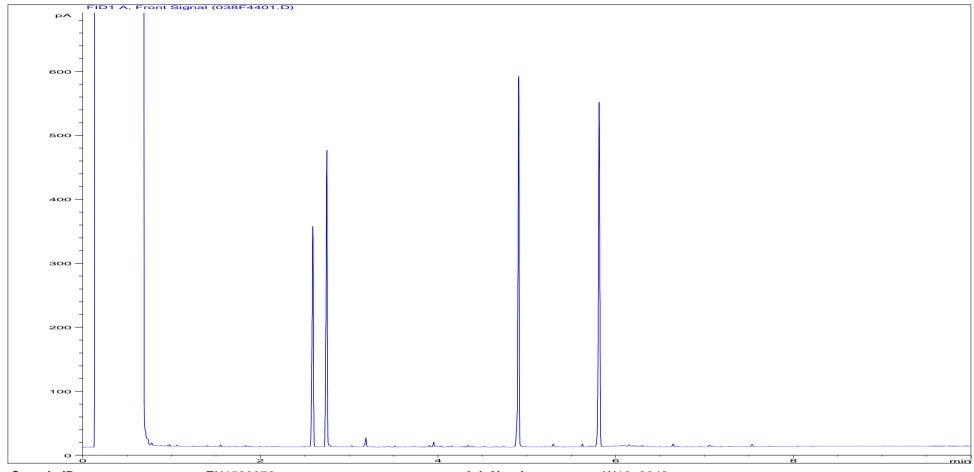
Acquisition Method: TPH_RUNF.M Client Sample Ref: AB/4

Acquisition Date/Time: 13-May-15, 05:11:41

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\036F4201.D

Page 17 of 29 EXR/198642 Ver. 1

Sample ID:EX1590075Job Number:W19_8642Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: HW/4

Acquisition Date/Time: 13-May-15, 05:30:42

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\037F4301.D

Page 18 of 29 EXR/198642 Ver. 1

Sample ID:EX1590076Job Number:W19_8642Multiplier:0.005Client:Envireau Water

Dilution: 1 **Site:** Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: B/4

Acquisition Date/Time: 13-May-15, 05:49:39

Datafile: D:\TES\DATA\Y2015\051215TPH_GC17\051215 2015-05-12 16-08-18\038F4401.D

Page 19 of 29 EXR/198642 Ver. 1

GAS ANALYSIS

Customer: ESG - (BEC BRE), Environmental Chemistry

Date Received: 05 May 2015 Date Sampled: Report N° GA00847

Date Analysed: 07 May 2015 Site: Envireau Water

SAMPLE REFERENCE			Analysis % V/V		
KELEKENGE	Dissolved Methane (CH ₄)†	Dissolved Propane (C ₃ H ₈)†	Dissolved Ethane (C₂H ₆)†	Disolved Butane (C ₄ H ₁₀)†	Dissolved Ethylene (C₂H₄)†
Method of Analysis	9	9	9	9	9
1590063	0.0008	<0.0005	<0.0005	<0.0005	<0.0005
1590065	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
1590067	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
1590068	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
1590069	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
1590070	0.2100	<0.0005	<0.0005	<0.0005	<0.0005
1590071	0.2800	<0.0005	<0.0005	<0.0005	<0.0005
1590075	0.0011	<0.0005	<0.0005	<0.0005	<0.0005

Method of 9 Disolved Gas Analysis:-

t S redited

Customer Analytical Requirements

CH₄, C₃H₈, C₂H₆, C₄H₁₀, C₂H₄

Phil Shead

Comment Box

Report number W/EXR/198642

Authorised by:

Analyst: Dan Bignell Issue Date: 11 May 2015

ESG accepts no responsibility for the collection of any of the samples referred to in this report.

Phil Shead, Operations Manager Direct Dial: 01 283 554461

Analysis of Water Samples for Total and Soluble Thorium by ICP-MS

Customer: ESG Bretby

Environmental Chemistry

Etwall Building

Bretby Business Park

Ashby Road Burton Upon Trent

DE15 0YZ

Testing Facility: Specialist Chemistry

ESG

Etwall Building Bretby Business Park

Ashby Road Burton Upon Trent

DE15 0YZ

Laboratory Reference: ASC/18755

Purchase Order Number: W198642

Samples Received: 05 May 2015

Authored by: Clare Brotherhood

Approved by:

Date: 13 May 2015

Approver's name: Becky Batham

Job Title: Laboratory Manager

Test Report Date: 13 May 2015

Introduction

Fourteen samples of water were received for the singlet measurement of total and soluble thorium by ICP-MS

The samples were received in a satisfactory state under ambient conditions.

The samples were logged into our system upon receipt and then stored in a secure sample store, at room temperature, prior to analysis.

Experimental

The samples were analysed following method:

 ASC/SOP/101, issue 4 - Operation and Maintenance of Inductively Coupled Plasma Mass Spectrometers (ICP-MS)

The samples were acidified with trace analysis grade concentrated nitric acid for total Th and analysed by ICP-MS. The samples were also diluted as necessary and ran by ICP-MS for soluble Th.

Measurements of Th concentration were performed by ICP-MS (Agilent 7700x), which was calibrated using the method of standard addition. Scandium, indium and bismuth were added as internal standards to monitor and correct for instrumental drift.

As a quality control measure, QC standards at 10, 20 and 40 µgL⁻¹ were prepared, using alternative source stock solutions from those used to prepare the calibration standard, and measured with the samples. The results obtained for these are shown under the heading 'QC Standard' in the table attached.

Results

The results for the samples are detailed in the following table attached.

The results for the samples are expressed as µgL⁻¹.

The LOD is the limit of detection and is defined as three times the standard deviation obtained from the measurement of a series of at six instrument blanks. Measurement uncertainty for those results significantly above the LOD is estimated to be \pm 20% and results are reported to two significant figures. Results within an order of magnitude of the LOD have a higher uncertainty and are reported to one significant figure.

Analysis of Water Samples for Total and Soluble Thorium by ICP-MS

Table 1

Customer Reference	Laboratory Reference	Total Th	Soluble Th
	LOD	0.0	003
W1590063 (WF/4)	ASC/18755.001	<0.003	<0.003
W1590064 (CB/4)	ASC/18755.002	0.009	0.009
W1590065 (ETF/4)	ASC/18755.003	0.02	0.01
W1590066 (D/4)	ASC/18755.004	0.078	0.035
W1590067 (MA1/4)	ASC/18755.005	0.005	0.004
W1590068 (KGS/4)	ASC/18755.006	0.004	<0.003
W1590069 (CF/4)	ASC/18755.007	<0.003	<0.003
W1590070 (TV/4A)	ASC/18755.008	0.005	<0.003
W1590071 (TV/4B)	ASC/18755.009	0.004	0.004
W1590072 (TE/4A)	ASC/18755.010	0.009	0.004
W1590073 (TE/4B)	ASC/18755.011	0.005	0.005
W1590074 (AB/4)	ASC/18755.012	0.004	0.004
W1590075 (HW/4)	ASC/18755.013	<0.003	<0.003
W1590076 (B/4)	ASC/18755.014	<0.003	<0.003
QC Standard	10μgL ⁻¹	9	.0
QC Standard	20μg ^{L-1}	2	0
QC Standard	40μgL ⁻¹	4	.0

Results are expressed as μgL⁻¹ in the sample as received.
 Results over an order of magnitude above the LOD are estimated to have an uncertainty of ± 20 %. Results within one order of magnitude of the LOD have higher uncertainty and are reported to one significant figure.
 The QC Standards are expected to be 10, 20 or 40μgL⁻¹ ± 20 %.

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W198642

Customer Site Report No **Envireau Water Dissolved Gasses in Waters**

W198642

Consignment No W87567 Date Logged 01-May-2015

Report Due 15-May-2015

1							rtopt	טת טע	0 10	11149 2	_010										
			MethodID	Calc_HD	CUSTSERV	DISGAS1					GROHSA	ICPMSW	ICPMSWT	ICPWATVAR							
ID Number	Description	Matrix Type	Sampled	Total Hardness as CaCO3 (CALC)	Report B	^Dissolved Butane	^Dissolved Methane	^Dissolved Propane	^Dissolved Ethane	^Dissolved Ethene	GRO-HSA	Uranium as U MS (Dissolved)	Uranium as U MS (Total)	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as Al (Dissolved) VAR
				✓							✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
EX/1590063	WF/4	Groundwater	30/04/15								Е										
EX/1590064	CB/4	Surface Water	30/04/15								Е										
EX/1590065	ETF/4	Groundwater	30/04/15								Е										
EX/1590066	D/4	Surface Water	30/04/15								Е										
EX/1590067	MA1/4	Groundwater	30/04/15								Е										
EX/1590068	KGS/4	Groundwater	30/04/15								Е										
EX/1590069	CF/4	Groundwater	30/04/15								Е										
EX/1590070	TV/4A	Groundwater	30/04/15								Е										
EX/1590071	TV/4B	Groundwater	30/04/15								Е										
EX/1590072	TE/4A	Surface Water	30/04/15								Е										
EX/1590073	TE/4B	Surface Water	30/04/15								Е										
EX/1590074	AB/4	Surface Water	30/04/15								Е										
EX/1590075	HW/4	Groundwater	30/04/15								Е										
EX/1590076	B/4	Groundwater	30/04/15								Е										

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- D E F The sampling date was not supplied so holding time may be compromised - applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W198642

Customer Site

Report No

Envireau Water Dissolved Gasses in Waters

W198642

Consignment No W87567 Date Logged 01-May-2015

Report Due 15-May-2015

1							Nep	טונ טנ	10 10-	way-2	2010										
			MethodID	ICPWATVART							ISEF	KONENS				Sub024		TPHFID		WSLM12	WSLM17
ID Number	Description	Matrix Type	Sampled	Calcium as Ca (Total) VAR	Magnesium as Mg (Total) VAR	Sodium as Na (Total) VAR	Potassium as K (Total) VAR	Manganese as Mn (Total) VAR	Iron as Fe (Total) VAR	Aluminium as Al (Total) VAR	Fluoride as F	Chloride as Cl (Kone)	Ammoniacal Nitrogen (Kone)	Nitrite as N (Kone)	Nitrate as N (Kone calc)	^Thorium as Th232 (Dissolved)	^Thorium as Th232 (Total)	TPH Carbon Banding	TPH GC	Total Alkalinity as CaCO3	Total Acidity as CaCO3
				✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓			✓	✓	✓	✓
EX/1590063	WF/4	Groundwater	30/04/15																		
EX/1590064	CB/4	Surface Water	30/04/15																		
EX/1590065	ETF/4	Groundwater	30/04/15																		
EX/1590066	D/4	Surface Water	30/04/15																		
EX/1590067	MA1/4	Groundwater	30/04/15																		
EX/1590068	KGS/4	Groundwater	30/04/15																		
EX/1590069	CF/4	Groundwater	30/04/15																		
EX/1590070	TV/4A	Groundwater	30/04/15																		
EX/1590071	TV/4B	Groundwater	30/04/15																		
EX/1590072	TE/4A	Surface Water	30/04/15																		
EX/1590073	TE/4B	Surface Water	30/04/15																		
EX/1590074	AB/4	Surface Water	30/04/15																		
EX/1590075	HW/4	Groundwater	30/04/15																		
EX/1590076	B/4	Groundwater	30/04/15																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- D E F Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W198642

Customer Site

Report No

Envireau Water

Dissolved Gasses in Waters W198642

Consignment No W87567
Date Logged 01-May-2015

Report Due 15-May-2015

			MethodID	2WTSM	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
				✓		✓
EX/1590063	WF/4	Groundwater	30/04/15			
EX/1590064	CB/4	Surface Water	30/04/15			
EX/1590065	ETF/4	Groundwater	30/04/15			
EX/1590066	D/4	Surface Water	30/04/15			
EX/1590067	MA1/4	Groundwater	30/04/15			
EX/1590068	KGS/4	Groundwater	30/04/15			
EX/1590069	CF/4	Groundwater	30/04/15			
EX/1590070	TV/4A	Groundwater	30/04/15			
EX/1590071	TV/4B	Groundwater	30/04/15			
EX/1590072	TE/4A	Surface Water	30/04/15			
EX/1590073	TE/4B	Surface Water	30/04/15			
EX/1590074	AB/4	Surface Water	30/04/15			
EX/1590075	HW/4	Groundwater	30/04/15			
EX/1590076	B/4	Groundwater	30/04/15			

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
 - The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

- Analysis Required
- Analysis dependant upon trigger result Note: due date may be affected if triggered
- No analysis scheduled
- Analysis Subcontracted Note: due date may vary

Report Number: W/EXR/198642

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
TPHFID	EX1590063-75	The Primary process control result associated with this Test has not wholly met the requirements of the Laboratory Quality Management System (QMS). The Laboratory believes that the validity of the data has not been affected but in line with our QMS policy we have removed accreditation from <nc16-21 .="" be="" circumstances="" consideration="" data.<="" into="" should="" taken="" td="" the="" these="" utilising="" when=""></nc16-21>

Report Number: W/EXR/198642

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	Calc_HD	As Received	Calculation based on Dissolved metals analysis by ICPOES
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection
Water	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace FID
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPMSWT	As Received	Determination of Total Metals in water samples using nitric acid
			digestion and ICPMS quantitation
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES
Water	ICPWATVART	As Received	Determination of Total Metals in water samples using nitric acid
			digestion and ICPOES quantitation
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective
			Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by
			GCFID
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM17	As Received	Titration with Sodium Hydroxide to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical
			conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **P** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 29 of 29 EXR/198642 Ver. 1

Sample Descriptions

Client : Envireau Water

Site: Dissolved Gasses in Waters

Report Number: W19_8642

Lab ID Number	Client ID	Description
EX/1590063	WF/4	Groundwater
EX/1590063 EX/1590064	CB/4	Surface Water
EX/1590064 EX/1590065	ETF/4	Groundwater
EX/1590066	D/4	Surface Water
EX/1590067	MA1/4	Groundwater
EX/1590068	KGS/4	Groundwater
EX/1590069	CF/4	Groundwater
EX/1590070	TV/4A	Groundwater
EX/1590071	TV/4B	Groundwater
EX/1590072	TE/4A	Surface Water
EX/1590073	TE/4B	Surface Water
EX/1590074	AB/4	Surface Water
EX/1590075	HW/4	Groundwater
EX/1590076	B/4	Groundwater
	-	

Appendix A Page 1 of 1 15/05/2015EXR/198642 Ver. 1

Water Analysis Test Certificate

Round 5

Our Ref: EXR/200082 (Ver. 1) Your Ref:

June 12, 2015

Ms P Jenkinson Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Environmental Chemistry

ESC

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Ms P Jenkinson

Dear Ms Jenkinson

Sample Analysis - Dissolved Gasses in Waters

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

D Brassington
Project Co-ordinator
01283 554493

1. Brassing lon

TEST REPORT

Report No. EXR/200082 (Ver. 1)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: Dissolved Gasses in Waters

The 13 samples described in this report were registered for analysis by ESG on 30-May-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 12-Jun-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 4)
Table of TPH Texas banding (0.01) (Page 5)
GC-FID Chromatograms (Pages 6 to 18)
Sub Contracted Analysis Results (Pages 19 to 22)
Analytical and Deviating Sample Overview (Pages 23 to 25)
Table of Method Descriptions (Page 26)
Table of Report Notes (Page 27)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG :

Declan Burns

Managing Director Multi-Sector Services

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 12-Jun-2015

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	Mathad D	Method Codes :	WSLM3	WSLM2	WSLM12	WSLM17	Calc_HD	KONENS	ISEF	ICPWATVAR	ICPWATVART	ICPWATVAR				ICPWATVAR	ICPWATVART 1	ICPWATVAR
		eporting Limits : KAS Accredited :	Yes	100 Yes	Yes	2 Yes	7 Yes	1 Yes	0.1 Yes	3 Yes	Yes	1 Yes	1 Yes	1 Yes	1 Yes	1 Yes	Yes	1 Yes
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Total Acidity as CaCO3 w	Total Hardness as CaCO3	Chloride as Cl w	Fluoride as F a	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Total) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Total) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Total) a	Sodium as Na (Dissolved) a	Potassium as K (Total) a	Potassium as K (Dissolved) a
1597119	WF/5	29-May-15 10:00	7.7	930	448	Nil	114	29	0.2	28	35	34	7	7	175	175	3	3
1597120	CB/5	29-May-15 09:15	7.5	605	194	Nil	274	31	0.1	44	100	98	8	7	16	15	2	2
1597121	ETF/5A	29-May-15 10:35	8.3	3000	680	Nil	276	104	1.1	780	60	61	30	30	568	593	7	7
1597122	ETF/5B	29-May-15 10:35	7.7	2980	692	Nil	287	104	1.1	780	63	64	30	31	564	580	7	7
1597123	D/5	29-May-15 11:00	7.9	685	183	Nil	264	67	0.3	43	94	96	5	6	30	33	4	5
1597124	MA1/5	29-May-15 11:30	7.4	644	211	Nil	308	32	0.1	50	115	110	8	8	12	12	2	2
1597125	CF/5A	29-May-15 11:50	7.7	1140	491	Nil	97	27	0.3	85	29	29	7	6	240	240	3	3
1597126	CF/5B	29-May-15 11:50	7.7	1140	505	Nil	101	27	0.3	86	26	29	6	7	215	240	3	3
1597127	TV/5	29-May-15 12:20	7.8	1580	648	Nil	82	50	0.6	140	23	23	6	6	375	375	4	4
1597128	TE/5	29-May-15 12:50	7.5	1090	469	Nil	85	25	0.3	75	25	24	6	6	220	230	3	2
1597129	AB/5	29-May-15 13:20	8.0	1040	243	Nil	378	144	0.3	52	125	130	13	13	67	70	3	3
1597130	HW/5	29-May-15 13:30	8.0	825	410	Nil	91	23	0.3	17	28	28	5	5	150	160	3	3
1597131	B/5	29-May-15 09:30	7.6	<100	Nil	Nil	<7	1	<0.1	<3	<1	<1	<1	<1	<1	<1	<1	<1
	ESG &	>	Client Na	ame	Envirea Ms P Jen	u Water							Sam	ple Ana	ılysis			
E	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422	J		[Disso		Sasse	s in V	Vater	S		Date Prin Report N Table Nu	lumber			-Jun-2015 XR/200082 1		

Where individual results are flagged see report notes for status.

Page 2 of 27

EXR/200082 Ver. 1

		Units :	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	μg/l
		Method Codes :	ICPWATVART	ICPWATVAR		ICPWATVAR	KONENS	KONENS	KONENS	GROHSA	TPHFID	TPHFID	ICPMSWT	ICPMSW	WSLM27	ICPWATVART	ICPWATVAR	DISGAS1
		Reporting Limits :	0.01	0.01	0.01 Yes	0.01	0.01	0.01	0.2 Voc	0.1 Yes	0.01	0.01	0.001	0.001	5 No.	0.01 No	0.01 No	15 No.
		KAS Accredited :	Yes	Yes	res	Yes	Yes	Yes	Yes	res	Yes	Yes	Yes	Yes	No	INO	INO	No
LAB ID Number EX/	Client Sample Description	Sample Date	Manganese as Mn (Total) a	Manganese as MN (Dissolved) a	Iron as Fe (Total) a	Iron as Fe (Dissolved) a	Ammoniacal Nitrogen as N	Nitrite as N	Nitrate as N	GRO-HSA o	Carbon Banding	трн вс	Uranium as U (Total)	Uranium as U (Dissolved)	Total Dissolved Solids w	Aluminium as Al (Total) a	Aluminium as Al (Dissolved) a	^Dissolved Butane
1597119	WF/5	29-May-15 10:00	0.34	0.33	1.31	0.06	0.7	<0.01	<0.2	<0.1	Req	0.01	0.001	0.001	520	0.03	<0.01	<22
1597120	CB/5	29-May-15 09:15	<0.01	<0.01	0.47	0.16	0.13	0.05	6.4	<0.1	Req	0.02	<0.001	<0.001	330	0.19	0.02	
1597121	ETF/5A	29-May-15 10:35	0.01	0.01	1.16	0.07	2.3	<0.01	<0.2	<0.1	Req	0.01	<0.001	<0.001	2040	0.42	0.01	<22
1597122	ETF/5B	29-May-15 10:35	0.02	<0.01	1.78	0.08	2.3	<0.01	<0.2	<0.1	Req	0.01	<0.001	<0.001	2050	0.40	0.01	<22
1597123	D/5	29-May-15 11:00	<0.01	<0.01	0.32	0.11	0.01	<0.01	4.7	<0.1	Req	0.02	0.001	<0.001	420	0.23	0.02	
1597124	MA1/5	29-May-15 11:30	<0.01	<0.01	0.14	0.11	<0.01	<0.01	6.4	<0.1	Req	<0.01	<0.001	<0.001	390	0.03	0.02	<22
1597125	CF/5A	29-May-15 11:50	0.23	0.23	0.26	0.04	0.7	<0.01	<0.2	<0.1	Req	0.02	0.001	0.001	690	0.03	<0.01	<22
1597126	CF/5B	29-May-15 11:50	0.20	0.23	0.23	0.05	0.6	<0.01	<0.2	<0.1	Req	0.02	0.001	0.001	670	0.03	0.02	<22
1597127	TV/5	29-May-15 12:20	0.03	0.03	0.18	0.03	1.1	<0.01	<0.2	<0.1	Req	0.01	<0.001	<0.001	950	0.02	<0.01	<22
1597128	TE/5	29-May-15 12:50	0.07	0.07	0.31	0.19	0.3	<0.01	<0.2	<0.1	Req	0.04	<0.001	<0.001	650	0.02	<0.01	
1597129	AB/5	29-May-15 13:20	0.06	0.01	0.50	0.14	0.02	<0.01	0.3	<0.1	Req	0.02	0.001	0.001	610	0.30	0.02	
1597130	HW/5	29-May-15 13:30	0.27	0.27	0.45	0.06	0.6	<0.01	<0.2	<0.1	Req	0.04	0.001	0.001	470	0.06	<0.01	<22
1597131	B/5	29-May-15 09:30	<0.01	<0.01	0.05	<0.01	<0.01	<0.01	<0.2	<0.1	Req	0.01	<0.001	<0.001	84	0.03	<0.01	
	FSGE	b	Client N			u Water							Sam	ole Ana	llysis			
		3	Contact		Ms P Jen	KINSON						D-4: 5:			4.5	L CO45		
	Bretby Business Park, Ashby Road											Date Pri				-Jun-2015		
	Burton-on-Trent, Staffordshire, DE15 0YZ			Г	Disso	lved (asse	s in V	Vater	S		Report I			E	XR/200082		
	Tel +44 (0) 1283 554400			•			-4550	J V	- 4101	_		Table No	umber			1		
	Fax +44 (0) 1283 554422																	

		Units :	μg/l	μg/l	μg/l	μg/l	mg/l	mg/l						
		Method Codes : porting Limits :	DISGAS1 6	DISGAS1 6	DISGAS1 12	DISGAS1 11	Sub024	Sub024						
		AS Accredited :	No	No	No	No	No	No						
LAB ID Number EX/	Client Sample Description	Sample Date	^Dissolved Methane	^Dissolved Propane	^Dissolved Ethane	^Dissolved Ethene	^Thorium as Th232 (Dissolved) a	^Thorium as Th232 (Total) a						
1597119	WF/5	29-May-15 10:00	<6	<17	<12	<11	<0.0003	<0.0003						
1597120	CB/5	29-May-15 09:15					<0.0003	<0.0003						
1597121	ETF/5A	29-May-15 10:35	<6	<17	<12	<11	<0.0003	<0.0003						
1597122	ETF/5B	29-May-15 10:35	<6	<17	<12	<11	<0.0003	0.0005						
1597123	D/5	29-May-15 11:00					<0.0003	<0.0003						
1597124	MA1/5	29-May-15 11:30	<6	<17	<12	<11	<0.0003	<0.0003						
1597125	CF/5A	29-May-15 11:50	<6	<17	<12	<11	<0.0003	<0.0003						
1597126	CF/5B	29-May-15 11:50	<6	<17	<12	<11	<0.0003	<0.0003						
1597127	TV/5	29-May-15 12:20	2112	<17	<12	<11	<0.0003	<0.0003						
1597128	TE/5	29-May-15 12:50					<0.0003	<0.0003						
1597129	AB/5	29-May-15 13:20					<0.0003	<0.0003						
1597130	HW/5	29-May-15 13:30	12	<17	<12	<11	<0.0003	<0.0003						
1597131	B/5	29-May-15 09:30					<0.0003	<0.0003						
	ESG &	}	Client N		Envirea Ms P Jen	u Water kinson					Samı	ple Ana	alysis	
E	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422			[Disso	lved (Gasse	s in V	Vaters	Date Prii Report N Table Nu	lumber		12-Jun-2015 EXR/200082 1	

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

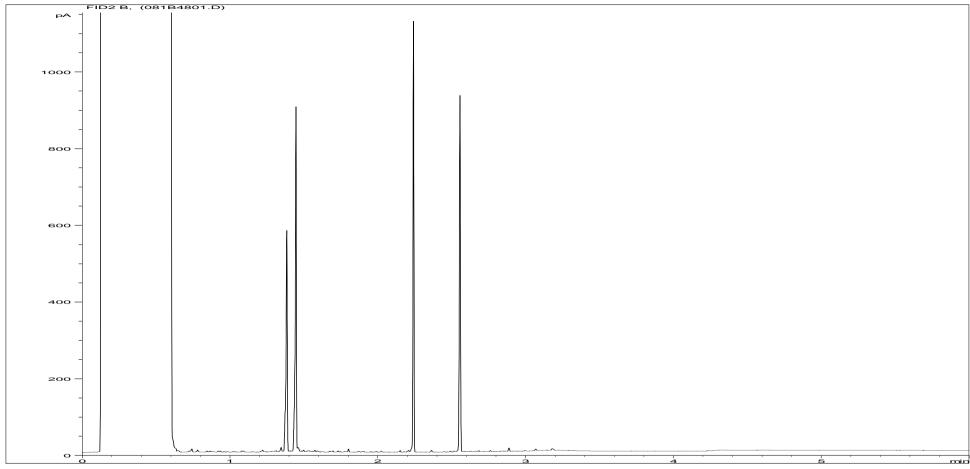
Customer and Site Details: Envireau Water: Dissolved Gasses in Waters

 Job Number:
 W20_0082

 QC Batch Number:
 150401

Directory: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\093B6001.D

Method: Bottle


Matrix: Water

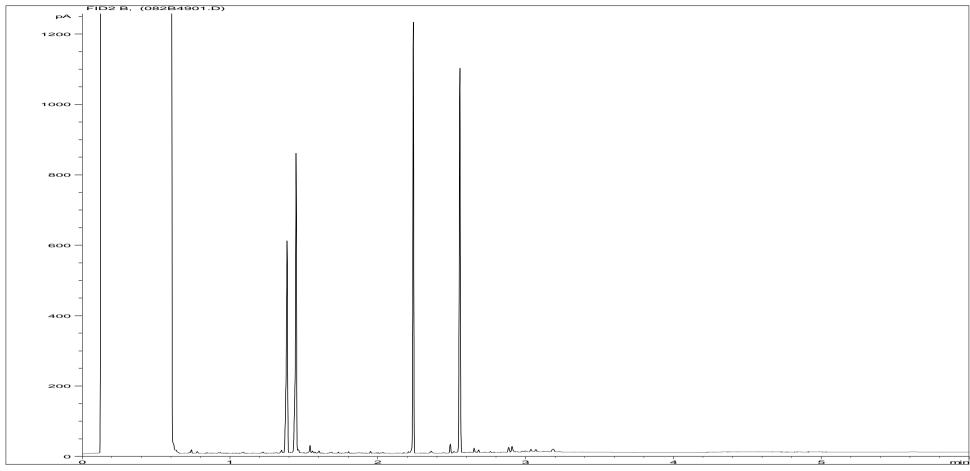
Date Booked in: 30-May-15
Date Extracted: 11-Jun-15

Date Analysed: 12-Jun-15, 01:35:35

* Sample data with an asterisk are not UKAS accredited.

			C	concentration, (mg	/I)	
Sample ID	Client ID	>C8 - C10	>C10 - C12	>C12 - C16	>C16 - C21	>C21 - C35
EX1597119	WF/5	<0.01	<0.01	<0.01	<0.01	<0.01
EX1597120	CB/5	<0.01	<0.01	<0.01	<0.01	<0.01
EX1597121	ETF/5A	<0.01	<0.01	<0.01	<0.01	<0.01
EX1597122	ETF/5B	<0.01	<0.01	<0.01	<0.01	<0.01
EX1597123	D/5	<0.01	<0.01	<0.01	<0.01	0.011
EX1597124	MA1/5	<0.01	<0.01	<0.01	<0.01	<0.01
EX1597125	CF/5A	<0.01	<0.01	<0.01	<0.01	<0.01
EX1597126	CF/5B	<0.01	<0.01	<0.01	<0.01	<0.01
EX1597127	TV/5	<0.01	<0.01	<0.01	<0.01	<0.01
EX1597128	TE/5	<0.01	<0.01	<0.01	<0.01	0.032
EX1597129	AB/5	<0.01	<0.01	<0.01	<0.01	0.014
EX1597130	HW/5	<0.01	<0.01	<0.01	<0.01	0.026
EX1597131	B/5	<0.01	<0.01	<0.01	<0.01	<0.01

Sample ID:EX1597119Job Number:W20_0082Multiplier:8Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

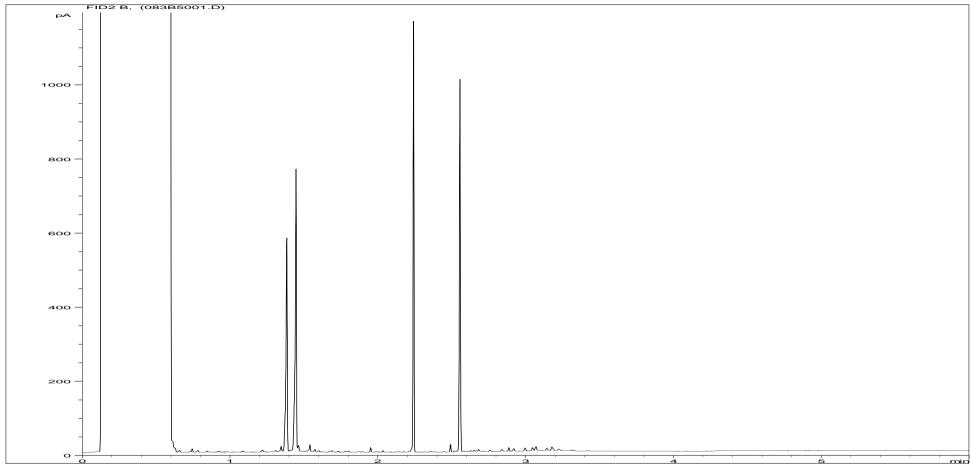
Acquisition Method: 5UL_RUNF.M Client Sample Ref: WF/5

Acquisition Date/Time: 11-Jun-15, 22:55:58

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\081B4801.D

Page 6 of 27 EXR/200082 Ver. 1

Sample ID:EX1597120Job Number:W20_0082Multiplier:8Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

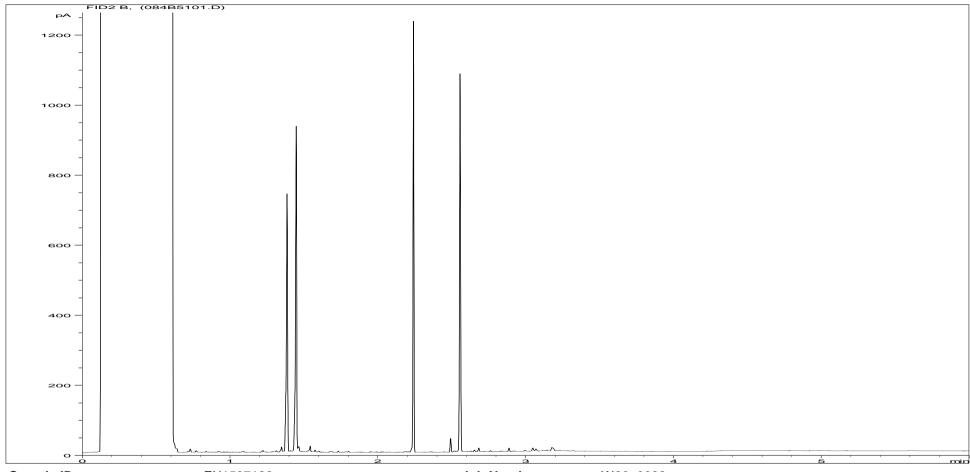
Acquisition Method: 5UL_RUNF.M Client Sample Ref: CB/5

Acquisition Date/Time: 11-Jun-15, 23:09:47

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\082B4901.D

Page 7 of 27 EXR/200082 Ver. 1

Sample ID:EX1597121Job Number:W20_0082Multiplier:8Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

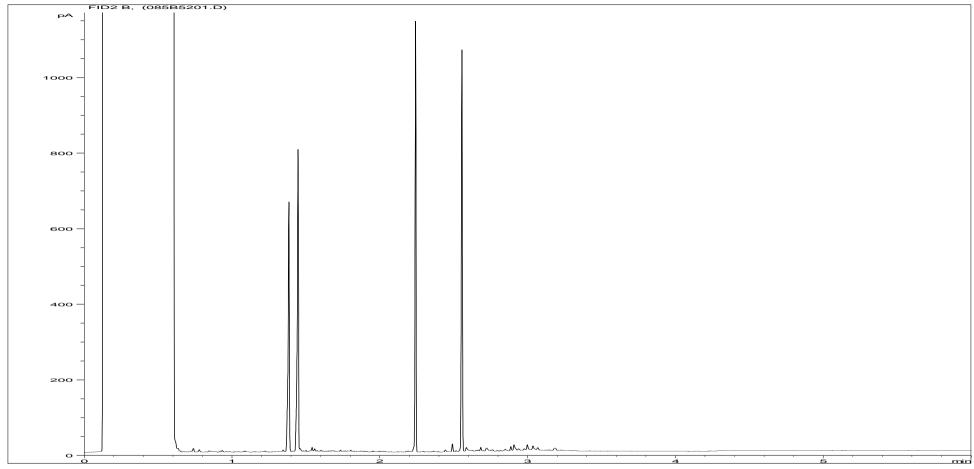
Acquisition Method: 5UL_RUNF.M Client Sample Ref: ETF/5A

Acquisition Date/Time: 11-Jun-15, 23:23:05

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\083B5001.D

Page 8 of 27 EXR/200082 Ver. 1

Sample ID:EX1597122Job Number:W20_0082Multiplier:8Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

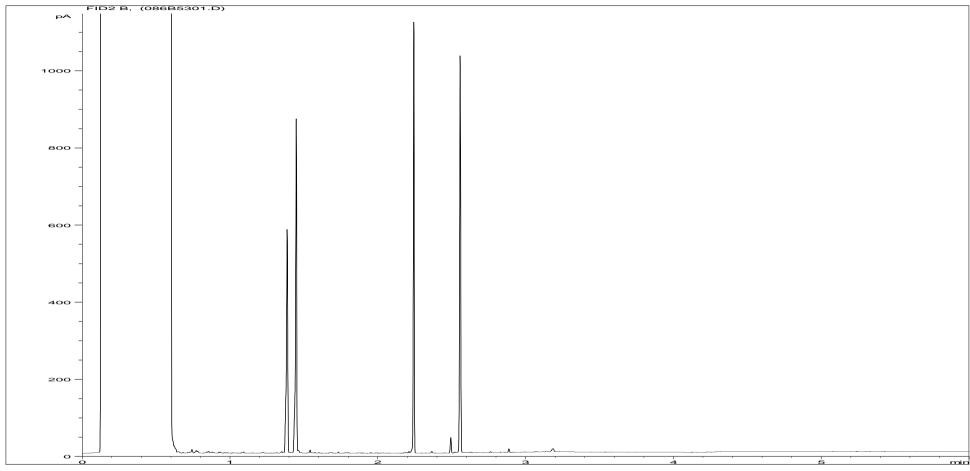
Acquisition Method: 5UL_RUNF.M Client Sample Ref: ETF/5B

Acquisition Date/Time: 11-Jun-15, 23:36:23

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\084B5101.D

Page 9 of 27 EXR/200082 Ver. 1

Sample ID:EX1597123Job Number:W20_0082Multiplier:8Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

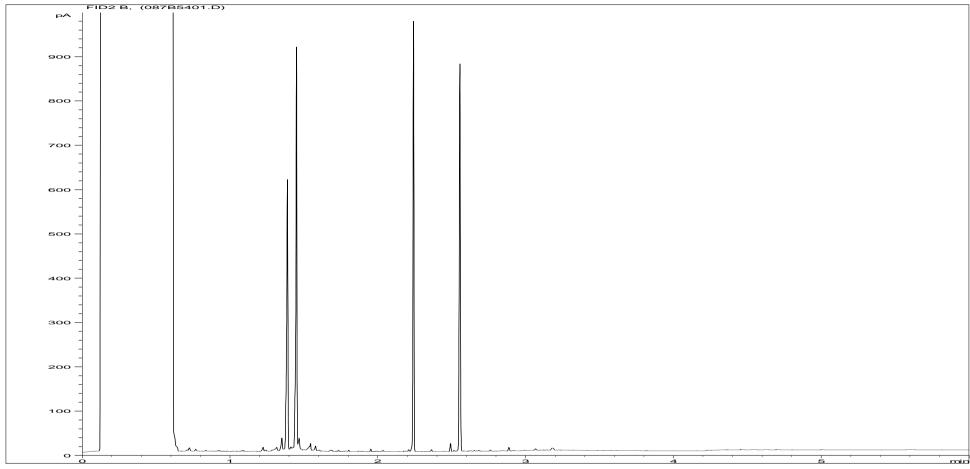
Acquisition Method: 5UL_RUNF.M Client Sample Ref: D/5

Acquisition Date/Time: 11-Jun-15, 23:49:42

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\085B5201.D

Page 10 of 27 EXR/200082 Ver. 1

Sample ID:EX1597124Job Number:W20_0082Multiplier:8Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

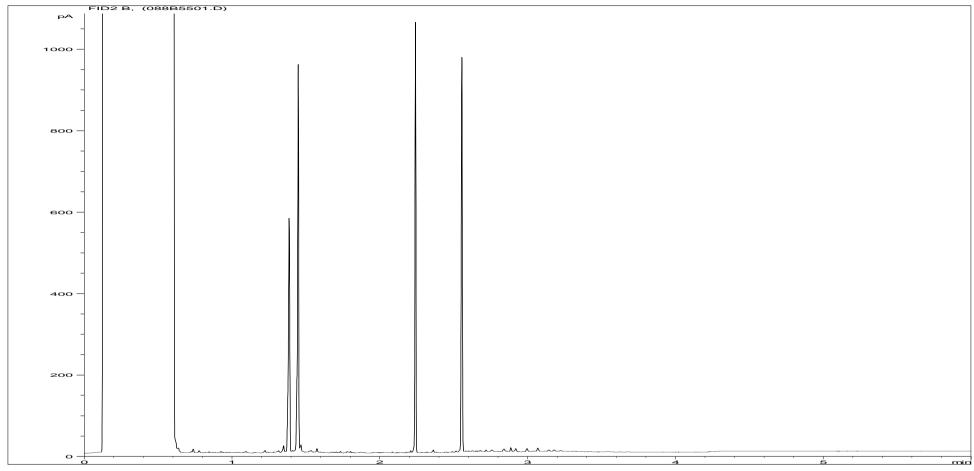
Acquisition Method: 5UL_RUNF.M Client Sample Ref: MA1/5

Acquisition Date/Time: 12-Jun-15, 00:03:01

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\086B5301.D

Page 11 of 27 EXR/200082 Ver. 1

Sample ID:EX1597125Job Number:W20_0082Multiplier:8Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

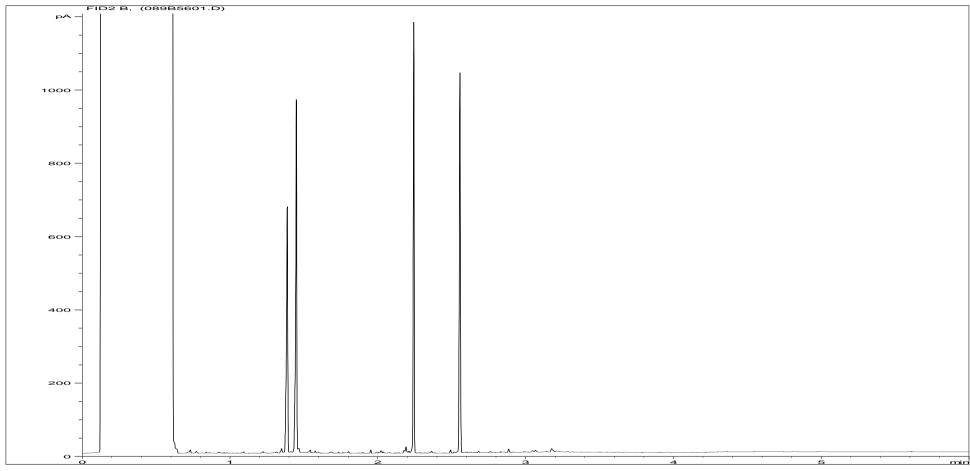
Acquisition Method: 5UL_RUNF.M Client Sample Ref: CF/5A

Acquisition Date/Time: 12-Jun-15, 00:16:33

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\087B5401.D

Page 12 of 27 EXR/200082 Ver. 1

Sample ID:EX1597126Job Number:W20_0082Multiplier:8Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

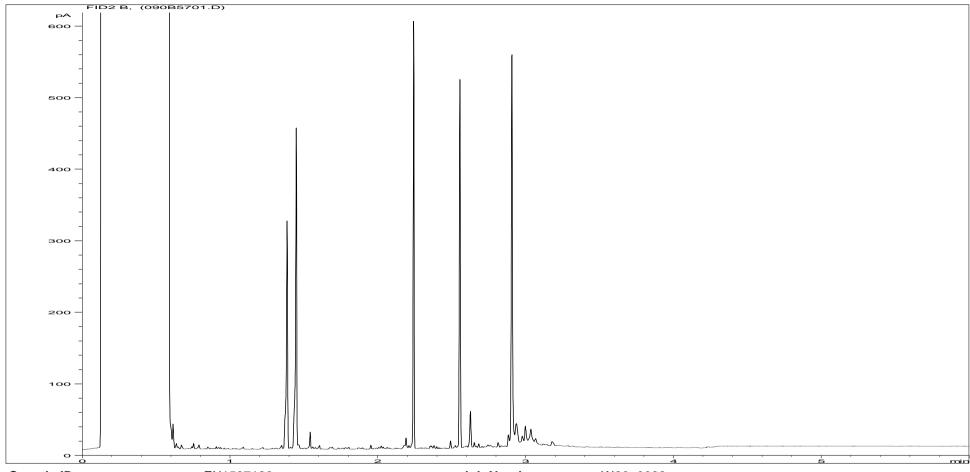
Acquisition Method: 5UL_RUNF.M Client Sample Ref: CF/5B

Acquisition Date/Time: 12-Jun-15, 00:29:47

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\088B5501.D

Page 13 of 27 EXR/200082 Ver. 1

Sample ID:EX1597127Job Number:W20_0082Multiplier:8Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

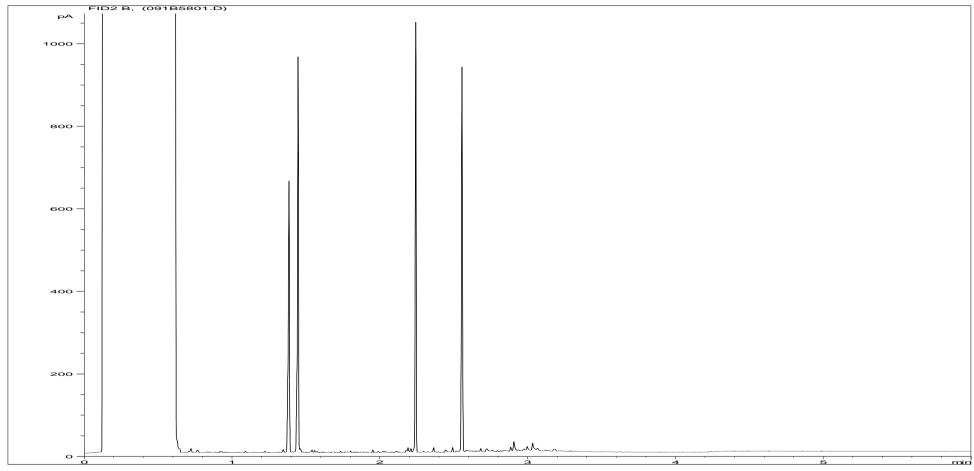
Acquisition Method: 5UL_RUNF.M Client Sample Ref: TV/5

Acquisition Date/Time: 12-Jun-15, 00:43:00

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\089B5601.D

Page 14 of 27 EXR/200082 Ver. 1

Sample ID:EX1597128Job Number:W20_0082Multiplier:8Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

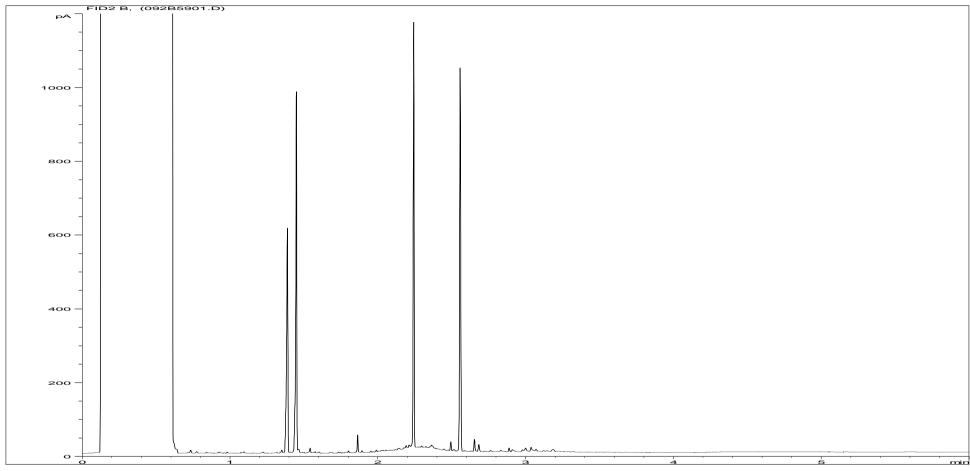
Acquisition Method: 5UL_RUNF.M Client Sample Ref: TE/5

Acquisition Date/Time: 12-Jun-15, 00:56:17

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\090B5701.D

Page 15 of 27 EXR/200082 Ver. 1

Sample ID:EX1597129Job Number:W20_0082Multiplier:8Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

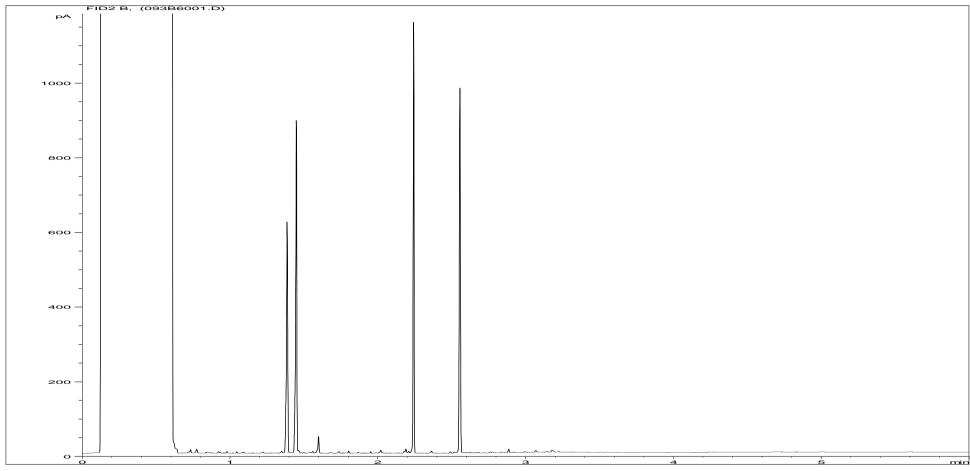
Acquisition Method: 5UL_RUNF.M Client Sample Ref: AB/5

Acquisition Date/Time: 12-Jun-15, 01:09:20

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\091B5801.D

Page 16 of 27 EXR/200082 Ver. 1

Sample ID:EX1597130Job Number:W20_0082Multiplier:8Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: 5UL_RUNF.M Client Sample Ref: HW/5

Acquisition Date/Time: 12-Jun-15, 01:22:30

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\092B5901.D

Page 17 of 27 EXR/200082 Ver. 1

Sample ID:EX1597131Job Number:W20_0082Multiplier:8Client:Envireau Water

Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: 5UL_RUNF.M Client Sample Ref: B/5

Acquisition Date/Time: 12-Jun-15, 01:35:35

Datafile: D:\TES\DATA\Y2015\061115TPH_GC4\061115 2015-06-11 10-53-19\093B6001.D

Page 18 of 27 EXR/200082 Ver. 1

GAS ANALYSIS

Customer: ESG - (BEC BRE), Environmental Chemistry

Date Received: 01 June 2015 Date Sampled: Report Nº GA00864

Date Analysed: 08 June 2015 Site: Envireau Water

SAMPLE REFERENCE			Analysis % V/V		
KEPERENGE	Dissolved Methane (CH ₄)†	Dissolved Propane (C ₃ H ₈)†	Dissolved Ethane (C ₂ H ₆)†	Disolved Butane (C ₄ H ₁₀)†	Dissolved Ethylene (C ₂ H ₄)†
Method of Analysis	9	9	9	9	9
EV/4507440					
EX/1597119	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
EX/1597121	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
EX/1597122	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
EX/1597124	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
EX/1597125	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
EX/1597126	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
EX/1597127	0.1738	0.0005	<0.0005	<0.0005	<0.0005
EX/1597130	0.0010	<0.0005	<0.0005	<0.0005	<0.0005

Method of 9 Disolved Gas Analysis:-

† Not UKAS Accredited

Customer Analytical Requirements

CH₄, C₃H₈, C₂H₆, C₄H₁₀, C₂H₄

Phil Shead

Comment Box
Report number W/EXR200082

Authorised by:

Analyst: Alan Smith Issue Date: 10 June 2015

ESG accepts no responsibility for the collection of any of the samples referred to in this report.

Phil Shead, Operations Manager Direct Dial: 01 283 554461

The Analysis of Ground/Surface Water Samples for Th232

Customer: Environmental Chemistry

ESG

Etwall Building
Bretby Business Park

Ashby Road Burton Upon Trent

DE15 0YZ

Testing Facility: Specialist Chemistry

ESG

Etwall Building

Bretby Business Park

Ashby Road Burton Upon Trent

DE15 0YZ

Laboratory Reference: ASC/19082

Purchase Order Number: W200082

Samples Received: 01 June 2015

Approved by: Mith

Date: 09 June 2015

Approver's name: Michelle Smith

Job Title: Senior Analyst

Report Issue Date: 09 June 2015

Introduction

Thirteen samples of ground/surface water were received for the measurement of dissolved Th232 and total Th232 by ICP-MS.

The samples were received in a satisfactory state under cold conditions.

The samples were logged into our system upon receipt and then stored in a secure sample store, at room temperature prior to analysis.

Experimental

The samples were analysed following method:

 ASC/SOP/101, issue 4 - Operation and Maintenance of Inductively Coupled Plasma Mass Spectrometers (ICP-MS)

Portions of the samples were prepared for analysis by acidification with trace analysis grade nitric acid for total Th232. The samples were analysed as received for dissolved Th232.

The samples were then further prepared for analysis, by diluting, one in duplicate, as necessary with trace analysis grade hydrochloric acid.

Measurements of Th232 concentration were performed by ICP-MS (Agilent 7700x), which was calibrated using the method of standard addition. Scandium, indium and bismuth were added as internal standards to monitor and correct for instrumental drift.

As a quality control measure, QC standards at 10, 20 and 40 µgL⁻¹ were prepared, using alternative source stock solutions from those used to prepare the calibration standard, and measured with the samples. The results obtained for these are shown under the heading 'QC Standard' in the table attached.

Results

The results for the samples are detailed in the following table attached.

The results for dissolved Th232 are expressed as mgL⁻¹ in the samples as received.

The results for total Th232 are expressed as mgL⁻¹ in the acidified samples.

The LOD is the limit of detection and is defined as three times the standard deviation obtained from the measurement of a series of at six instrument blanks. Measurement uncertainty for those results significantly above the LOD is estimated to be \pm 20% and results are reported to two significant figures. Results within an order of magnitude of the LOD have a higher uncertainty and are reported to one significant figure.

The Analysis of Ground/Surface Water Samples for Th232

Customer Reference	Laboratory Reference	Th232 Dissolved	Th232 Total
	LOD	0.0003	0.0003
W1597119	ASC/19082.001	<0.0003	<0.0003
W1597120	ASC/19082.002	<0.0003	<0.0003
W1597121	ASC/19082.003	<0.0003	<0.0003
W1597122	ASC/19082.004	<0.0003	0.0005
W1597123	ASC/19082.005	<0.0003	<0.0003
W1597124	ASC/19082.006	<0.0003	<0.0003
W1597125	ASC/19082.007	<0.0003	<0.0003
W1597126	ASC/19082.008	<0.0003	<0.0003
W1597127	ASC/19082.009	<0.0003	<0.0003
W1597128	ASC/19082.010	<0.0003	<0.0003
W1597129	ASC/19082.011	<0.0003	<0.0003
W1597130	ASC/19082.012	<0.0003	<0.0003
	ASC/19082.013	<0.0003	<0.0003
W1597131	ASC/19082.013D	<0.0003	<0.0003
QC Star	ndard 10µgL ⁻¹	8.5	8.5
QC Star	ndard 20µgL ⁻¹	21	21
QC Star	ndard 40µgL ⁻¹	39	39

The QC Standards are expected to be 10, 20 or $40\mu g L^{-1} \pm 20$ %.

The results for dissolved Th232 are expressed as mgL^{-1} in the samples as received. The results for total Th232 are expressed as mgL^{-1} in the acidified samples. Results over an order of magnitude above the LOD are estimated to have an uncertainty of \pm 20 %. Results within one order of magnitude of the LOD have higher uncertainty and are reported to one significant figure.

Suffix D denotes duplicate sample preparation and analysis.

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W200082

Customer Site Report No **Envireau Water Dissolved Gasses in Waters**

W200082

Consignment No W88768 Date Logged 30-May-2015

Report Due 12-Jun-2015

							rtopt	<i>5</i> 11 Du	0 12	Jun-∠	.010										
			MethodID	Calc_HD	CUSTSERV	DISGAS1					GROHSA	ICPMSW	ICPMSWT	ICPWATVAR							
ID Number	Description	Matrix Type	Sampled	Total Hardness as CaCO3 (CALC)	Report B	^Dissolved Butane	^Dissolved Methane	^Dissolved Propane	^Dissolved Ethane	^Dissolved Ethene	GRO-HSA	Uranium as U MS (Dissolved)	Uranium as U MS (Total)	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as Al (Dissolved) VAR
		•		✓							✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
EX/1597119	WF/5	Groundwater	29/05/15																		
EX/1597120	CB/5	Surface Water	29/05/15																		
EX/1597121	ETF/5A	Groundwater	29/05/15																		
EX/1597122	ETF/5B	Groundwater	29/05/15																		
EX/1597123	D/5	Surface Water	29/05/15																		
EX/1597124	MA1/5	Groundwater	29/05/15																		
EX/1597125	CF/5A	Groundwater	29/05/15																		
EX/1597126	CF/5B	Groundwater	29/05/15																		
EX/1597127	TV/5	Groundwater	29/05/15																		
EX/1597128	TE/5	Surface Water	29/05/15																		
EX/1597129	AB/5	Surface Water	29/05/15																		
EX/1597130	HW/5	Groundwater	29/05/15																		
EX/1597131	B/5	Groundwater	29/05/15																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- D E F Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W200082

Customer Site Report No **Envireau Water Dissolved Gasses in Waters**

W200082

Consignment No W88768 Date Logged 30-May-2015

Report Due 12-Jun-2015

		T		_				,,,,		Juli-2											
			MethodID	ICPWATVART							ISEF	KONENS				Sub024		TPHFID		WSLM12	WSLM17
ID Number	Description	Matrix Type	Sampled	Calcium as Ca (Total) VAR	Magnesium as Mg (Total) VAR	Sodium as Na (Total) VAR	Potassium as K (Total) VAR	Manganese as Mn (Total) VAR	Iron as Fe (Total) VAR	Aluminium as Al (Total) VAR	Fluoride as F	Chloride as Cl (Kone)	Ammoniacal Nitrogen (Kone)	Nitrite as N (Kone)	Nitrate as N (Kone calc)	^Thorium as Th232 (Dissolved)	^Thorium as Th232 (Total)	TPH Carbon Banding	ТРН GC	Total Alkalinity as CaCO3	Total Acidity as CaCO3
				✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓			✓	✓	✓	✓
EX/1597119	WF/5	Groundwater	29/05/15																		
EX/1597120	CB/5	Surface Water	29/05/15																		
EX/1597121	ETF/5A	Groundwater	29/05/15																		
EX/1597122	ETF/5B	Groundwater	29/05/15																		
EX/1597123	D/5	Surface Water	29/05/15																		
EX/1597124	MA1/5	Groundwater	29/05/15																		
EX/1597125	CF/5A	Groundwater	29/05/15																		
EX/1597126	CF/5B	Groundwater	29/05/15																		
EX/1597127	TV/5	Groundwater	29/05/15																		
EX/1597128	TE/5	Surface Water	29/05/15																		
EX/1597129	AB/5	Surface Water	29/05/15																		
EX/1597130	HW/5	Groundwater	29/05/15																		
EX/1597131	B/5	Groundwater	29/05/15																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- D E F The sampling date was not supplied so holding time may be compromised - applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W200082

Customer Site

Report No

Envireau Water
Dissolved Gasses in Waters

W200082

Consignment No W88768
Date Logged 30-May-2015

Report Due 12-Jun-2015

			MethodID	WSLM2	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
				✓		✓
EX/1597119	WF/5	Groundwater	29/05/15			
EX/1597120	CB/5	Surface Water	29/05/15			
EX/1597121	ETF/5A	Groundwater	29/05/15			
EX/1597122	ETF/5B	Groundwater	29/05/15			
EX/1597123	D/5	Surface Water	29/05/15			
EX/1597124	MA1/5	Groundwater	29/05/15			
EX/1597125	CF/5A	Groundwater	29/05/15			
EX/1597126	CF/5B	Groundwater	29/05/15			
EX/1597127	TV/5	Groundwater	29/05/15			
EX/1597128	TE/5	Surface Water	29/05/15			
EX/1597129	AB/5	Surface Water	29/05/15			
EX/1597130	HW/5	Groundwater	29/05/15			
EX/1597131	B/5	Groundwater	29/05/15			

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
 - The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
 - Sample processing did not commence within the appropriate handling time

Requested Analysis Key

- Analysis Required
- Analysis dependant upon trigger result Note: due date may be affected if triggered
- No analysis scheduled
- Analysis Subcontracted Note: due date may vary

Report Number: W/EXR/200082

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	Calc_HD	As Received	Calculation based on Dissolved metals analysis by ICPOES
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection
Water	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace FID
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPMSWT	As Received	Determination of Total Metals in water samples using nitric acid
			digestion and ICPMS quantitation
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES
Water	ICPWATVART	As Received	Determination of Total Metals in water samples using nitric acid
			digestion and ICPOES quantitation
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective
			Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by
			GCFID
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM17	As Received	Titration with Sodium Hydroxide to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical
			conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 27 of 27 EXR/200082 Ver. 1

Sample Descriptions

Client : Envireau Water

Site: Dissolved Gasses in Waters

Report Number: W20_0082

EX159/10	Lab ID Number	Client ID	Description
EX/1597120 CB/5 Surface Water EX/1597121 ETF/5A Groundwater EX/1597122 ETF/5B Groundwater EX/1597123 D/5 Surface Water EX/1597124 MA1/5 Groundwater EX/1597125 CF/5A Groundwater EX/1597126 CF/5B Groundwater EX/1597127 TV/5 Groundwater EX/1597128 TE/5 Surface Water EX/1597129 AB/5 Surface Water EX/1597130 HW/5 Groundwater	EX/1597119	WF/5	Groundwater
EX/1597121 ETF/5A Groundwater EX/1597122 ETF/5B Groundwater EX/1597123 D/5 Surface Water EX/1597124 MA1/5 Groundwater EX/1597125 CF/5A Groundwater EX/1597126 CF/5B Groundwater EX/1597127 TV/5 Groundwater EX/1597128 TE/5 Surface Water EX/1597129 AB/5 Surface Water EX/1597130 HW/5 Groundwater		CB/5	Surface Water
EX/1597122 ETF/5B Groundwater EX/1597123 D/5 Surface Water EX/1597124 MA1/5 Groundwater EX/1597125 CF/5A Groundwater EX/1597126 CF/5B Groundwater EX/1597127 TV/5 Groundwater EX/1597128 TE/5 Surface Water EX/1597129 AB/5 Surface Water EX/1597130 HW/5 Groundwater	FX/1597121	ETF/5A	Groundwater
EX/1597123 D/5 Surface Water EX/1597124 MA1/5 Groundwater EX/1597125 CF/5A Groundwater EX/1597126 CF/5B Groundwater EX/1597127 TV/5 Groundwater EX/1597128 TE/5 Surface Water EX/1597129 AB/5 Surface Water EX/1597130 HW/5 Groundwater	FX/1597122	ETF/5B	Groundwater
EX/1597124 MA1/5 Groundwater EX/1597125 CF/5A Groundwater EX/1597126 CF/5B Groundwater EX/1597127 TV/5 Groundwater EX/1597128 TE/5 Surface Water EX/1597129 AB/5 Surface Water EX/1597130 HW/5 Groundwater	EX/1597123	D/5	Surface Water
EX/1597125 CF/5A Groundwater EX/1597126 CF/5B Groundwater EX/1597127 TV/5 Groundwater EX/1597128 TE/5 Surface Water EX/1597129 AB/5 Surface Water EX/1597130 HW/5 Groundwater	EX/1597124	MΔ1/5	Groundwater
EX/1597126 CF/5B Groundwater EX/1597127 TV/5 Groundwater EX/1597128 TE/5 Surface Water EX/1597129 AB/5 Surface Water EX/1597130 HW/5 Groundwater	EX/1597125	CE/5A	Groundwater
EX/1597127 TV/5 Groundwater EX/1597128 TE/5 Surface Water EX/1597129 AB/5 Surface Water EX/1597130 HW/5 Groundwater	EX/1597126	CF/5B	
EX/1597128 TE/5 Surface Water EX/1597129 AB/5 Surface Water EX/1597130 HW/5 Groundwater	EX/1597127	TV/5	Groundwater
EX/1597129 AB/5 Surface Water EX/1597130 HW/5 Groundwater	EX/1597128	TE/5	Surface Water
EX/1597130 HW/5 Groundwater	EX/1597129	AB/5	Surface Water
	EX/1597130	HW/5	Groundwater
	EX/1597131	B/5	Groundwater
	L7(1007101	B/0	S. Continued
		+	
		+	
		+	

Appendix A Page 1 of 1 12/06/2015EXR/200082 Ver. 1

Water Analysis Test Certificate

Round 6

Our Ref: EXR/201779 (Ver. 1) Your Ref:

July 10, 2015

Ms P Jenkinson Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire

Environmental Chemistry

ESC

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Ms P Jenkinson

Dear Ms Jenkinson

DE72 3NB

Sample Analysis - Dissolved Gases in Waters

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

L Thompson
Project Co-ordinator
01283 554467

TEST REPORT

Report No. EXR/201779 (Ver. 1)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: Dissolved Gases in Waters

The 6 samples described in this report were registered for analysis by ESG on 30-Jun-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 10-Jul-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Table of TPH Texas banding (0.01) (Page 4)
GC-FID Chromatograms (Pages 5 to 10)
Analytical and Deviating Sample Overview (Pages 11 to 12)
Table of Method Descriptions (Page 13)
Table of Report Notes (Page 14)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Managing Director Multi-Sector Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 10-Jul-2015

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
		od Codes :	WSLM3	WSLM2	WSLM12	WSLM12	KONENS		ICPWATVAR	ICPWATVAR	ICPWATVAR	ICPWATVAR	ICPWATVAR	ICPWATVAR	TPHFID	TPHFID	WSLM27	ICPWATVAR
	Method Reportin	ng Limits :	Yes	100 Yes	Yes	Yes	1 Yes	3 Yes	1 Yes	1 Yes	1 Yes	1 Yes	0.01 Yes	0.01 Yes	0.01 Yes	0.01 Yes	5 No	0.01 No
	UKAS AC	creattea :	res	res	res	res	res	res	res	res	res	res	res	res	res	res	INO	INO
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Bicarbonate Alkalinity as CaCO3 w	Chloride as Cl w	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Dissolved) a	Potassium as K (Dissolved) a	Manganese as MN (Dissolved) a	Iron as Fe (Dissolved) a	Carbon Banding	ТРН GC	Total Dissolved Solids w	Aluminium as Al (Dissolved) a
1604716	WF/6A	29-Jun-15	7.6	917	448	372	28	29	34	7	170	3	0.31	0.06	Req	0.01	570	<0.01
1604717	WF/6B	29-Jun-15	7.5	931	475	351	28	29	34	7	170	3	0.32	0.05	Req	0.01	550	<0.01
1604718	ETF/6	29-Jun-15	7.8	3040	686	566	101	800	65	32	577	8	0.03	0.07	Req	0.01	2110	0.01
1604719	TV/6	29-Jun-15	7.6	1590	656	586	48	140	23	6	360	4	0.03	0.04	Req	0.01	1000	<0.01
1604720	HW/6	29-Jun-15	7.6							0.08	Req	0.23	510	0.03				
1604721	B/6	29-Jun-15	6.9	<100	5	5	<1	<3	<1	<1 <1 <1 <0.0				0.01	Req	0.01	7	<0.01
	ESG 🧟	Client Na		Envirea Ms P Jen	au Water							Sample Analysis						
E	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400				Disso	olved	Gase	s in W	/aters	;		Date Prii Report N Table Nu	lumber)-Jul-2015 XR/201779 1		
	Fax +44 (0) 1283 554422																	

Where individual results are flagged see report notes for status.

Page 2 of 14

EXR/201779 Ver. 1

		Units: µg/l												
	Method C	odes : D												
	Method Reporting Li UKAS Accre	imits :	No No											
LAB ID Number EX		Sample Date	^Dissolved Methane											
1604716	WF/6A 29-	-Jun-15	12											
1604717	WF/6B 29-	-Jun-15	12											
1604718	ETF/6 29-	-Jun-15	52											
1604719	TV/6 29-	-Jun-15	2262											
1604720	HW/6 29-	-Jun-15	6											
1604721	B/6 29-	-Jun-15												
	ESG 🔅		Client Na	ame	Envireau Water			Sample Analysis						
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400		Contact		Ms P Jen	olved Gases	s in W	/aters	.	Date Prii Report N Table Nu	lumber		10-Jul-2015 EXR/201779	
	Fax +44 (0) 1283 554422													

Where individual results are flagged see report notes for status.

Page 3 of 14

EXR/201779 Ver. 1

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

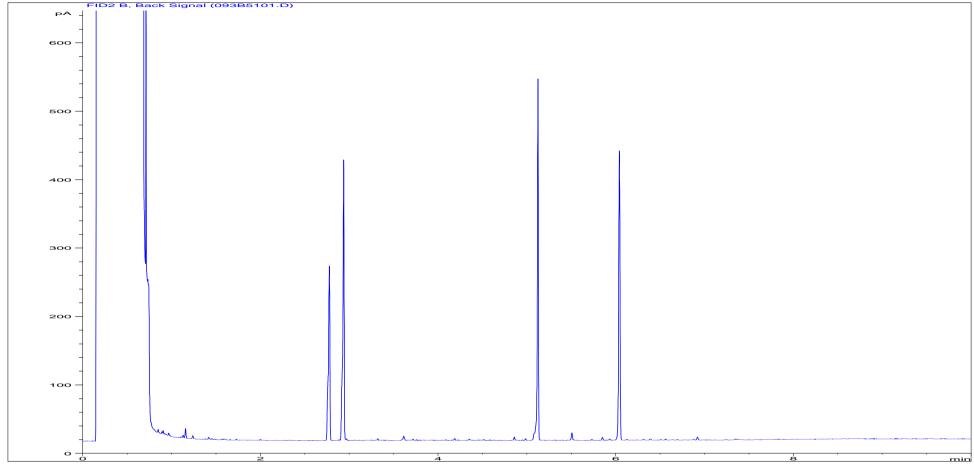
Customer and Site Details: Envireau Water: Dissolved Gasses in Waters

 Job Number:
 W20_1779

 QC Batch Number:
 150462

Directory: D:\TES\DATA\Y2015\070215TPH_GC17\070215 2015-07-02 15-14-54\003B6201.D

Method: Bottle


Matrix: Water

Date Booked in: 30-Jun-15
Date Extracted: 02-Jul-15

Date Analysed: 03-Jul-15, 10:57:00

* Sample data with an asterisk are not UKAS accredite	d.
---	----

		C									
Client ID	>C8 - C10	>C10 - C12	>C12 - C16	>C16 - C21	>C21 - C35						
WF/6A	<0.01	<0.01	<0.01	<0.01	<0.01						
WF/6B	<0.01	<0.01	<0.01	<0.01	<0.01						
ETF/6	<0.01	<0.01	<0.01	<0.01	<0.01						
TV/6	<0.01	<0.01	<0.01	<0.01	<0.01						
HW/6	<0.01	<0.01	<0.01	<0.01	0.227						
B/6	<0.01	<0.01	<0.01	<0.01	<0.01						
	WF/6A WF/6B ETF/6 TV/6 HW/6	WF/6A <0.01 WF/6B <0.01 ETF/6 <0.01 TV/6 <0.01 HW/6 <0.01	Client ID >C8 - C10 >C10 - C12 WF/6A <0.01	Client ID >C8 - C10 >C10 - C12 >C12 - C16 WF/6A <0.01	WF/6A <0.01 <0.01 <0.01 <0.01 WF/6B <0.01						

Sample ID:EX1604716Job Number:W20_1779Multiplier:0.005Client:Envireau Water

Dilution: 1 Site: Dissolved Gasses in Waters

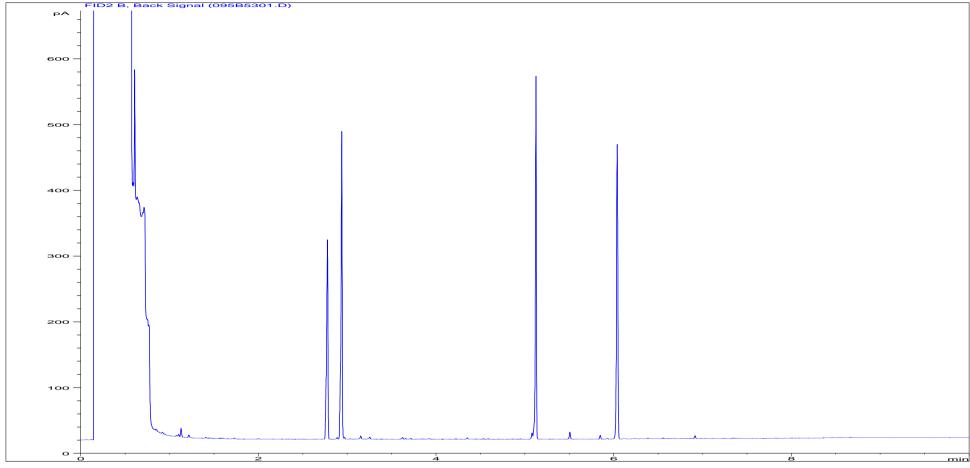
Acquisition Method: TPH_RUNF.M Client Sample Ref: WF/6A

Acquisition Date/Time: 04-Jul-15, 06:56:29

Datafile: D:\TES\DATA\Y2015\062915TPH_GC17\070315 2015-07-03 14-36-31\093B5101.D

Page 5 of 14 EXR/201779 Ver. 1

Sample ID:EX1604717Job Number:W20_1779Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

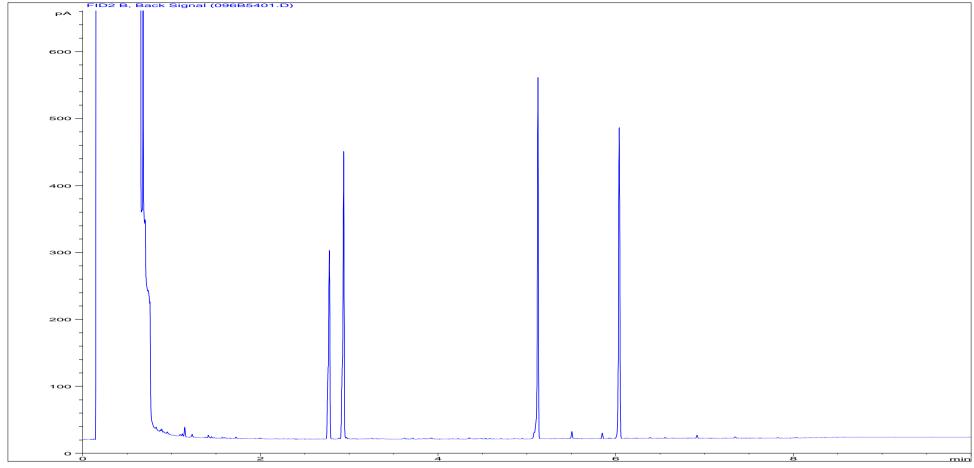
Acquisition Method: TPH_RUNF.M Client Sample Ref: WF/6B

Acquisition Date/Time: 04-Jul-15, 07:16:38

Datafile: D:\TES\DATA\Y2015\062915TPH_GC17\070315 2015-07-03 14-36-31\094B5201.D

Page 6 of 14 EXR/201779 Ver. 1

Sample ID:EX1604718Job Number:W20_1779Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

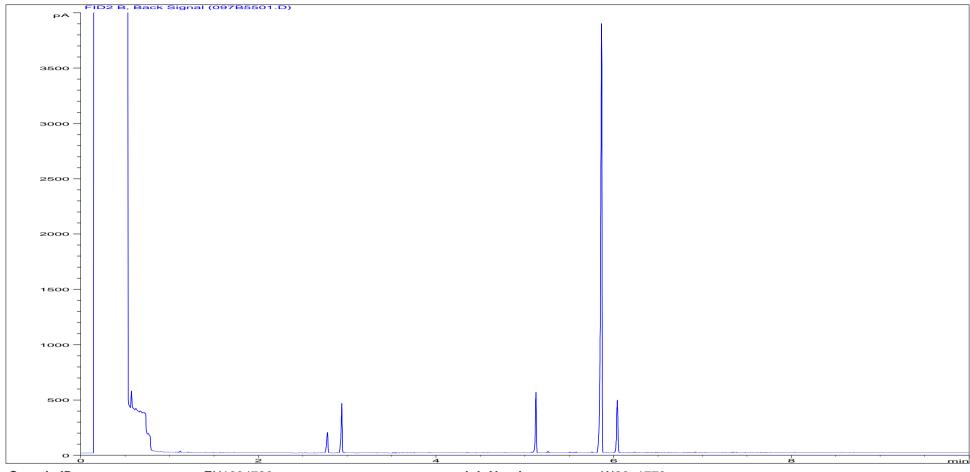
Acquisition Method: TPH_RUNF.M Client Sample Ref: ETF/6

Acquisition Date/Time: 04-Jul-15, 07:36:48

Datafile: D:\TES\DATA\Y2015\062915TPH_GC17\070315 2015-07-03 14-36-31\095B5301.D

Page 7 of 14 EXR/201779 Ver. 1

Sample ID:EX1604719Job Number:W20_1779Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

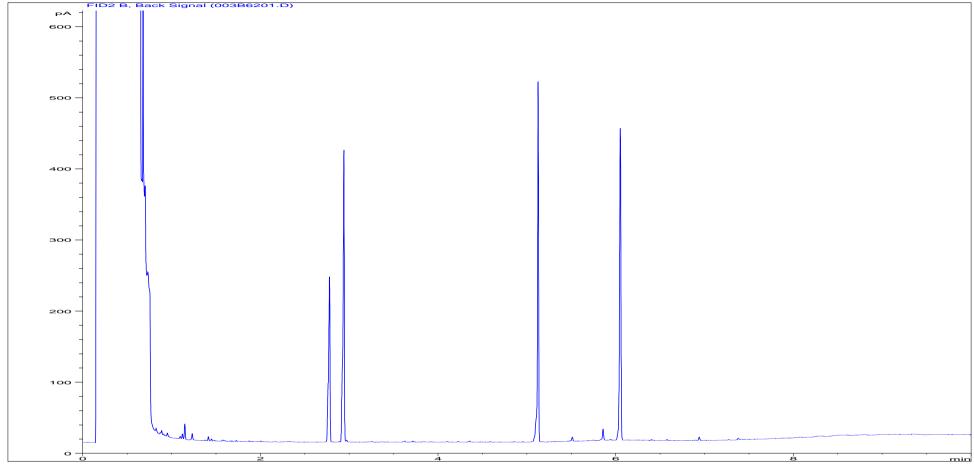
Acquisition Method: TPH_RUNF.M Client Sample Ref: TV/6

Acquisition Date/Time: 04-Jul-15, 07:57:00

Datafile: D:\TES\DATA\Y2015\062915TPH_GC17\070315 2015-07-03 14-36-31\096B5401.D

Page 8 of 14 EXR/201779 Ver. 1

Sample ID:EX1604720Job Number:W20_1779Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: HW/6

Acquisition Date/Time: 04-Jul-15, 08:17:14

Datafile: D:\TES\DATA\Y2015\062915TPH_GC17\070315 2015-07-03 14-36-31\097B5501.D

Page 9 of 14 EXR/201779 Ver. 1

Sample ID:EX1604721Job Number:W20_1779Multiplier:0.005Client:Envireau Water

Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: B/6

Acquisition Date/Time: 03-Jul-15, 10:57:00

Datafile: D:\TES\DATA\Y2015\070215TPH_GC17\070215 2015-07-02 15-14-54\003B6201.D

Page 10 of 14 EXR/201779 Ver. 1

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W201779

Customer Site **Report No** **Envireau Water**

Dissolved Gases in Waters

W201779

Consignment No W90162 Date Logged 30-Jun-2015

Report Due 13-Jul-2015

			MethodID	CUSTSERV	DISGAS1	ICPWATVAR					_			KONENS	TPHFID		WSLM12			WSLM2	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Report B	^Dissolved Methane	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as Al (Dissolved) VAR	Chloride as Cl (Kone)	TPH Carbon Banding	трн сс	P Alkalinity as CaCO3	Total Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
	1					✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓		✓
EX/1604716	WF/6A	Groundwater	29/06/15																			
EX/1604717	WF/6B	Groundwater	29/06/15																			
EX/1604718	ETF/6	Groundwater	29/06/15																			
EX/1604719	TV/6	Groundwater	29/06/15																			
EX/1604720	HW/6	Groundwater	29/06/15																			
EX/1604721	B/6	Surface Water	29/06/15																			

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- D E F The sampling date was not supplied so holding time may be compromised - applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W201779

Customer Site

Report No

Envireau Water

Dissolved Gases in Waters

W201779

Consignment No W90162 Date Logged 30-Jun-2015

Report Due 13-Jul-2015

			MethodID	WSLM3
ID Number	Description	Matrix Type	Sampled	pH units
				✓
EX/1604716	WF/6A	Groundwater	29/06/15	
EX/1604717	WF/6B	Groundwater	29/06/15	
EX/1604718	ETF/6	Groundwater	29/06/15	
EX/1604719	TV/6	Groundwater	29/06/15	
EX/1604720	HW/6	Groundwater	29/06/15	
EX/1604721	B/6	Surface Water	29/06/15	

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
 - The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- D E F Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: W/EXR/201779

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by
			GCFID
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical
			conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 14 of 14 EXR/201779 Ver. 1

Sample Descriptions

Client : Envireau Water

Site: Dissolved Gasses in Waters

Report Number: W20_1779

Lab ID Number	Client ID	Description
Lab ID Number	Client ID	Description
EX/1604716	WF/6A	Groundwater
EX/1604717	WF/6B	Groundwater
EX/1604718 EX/1604719	ETF/6 TV/6	Groundwater Groundwater
EX/1604719 EX/1604720	HW/6	Groundwater
EX/1604721	B/6	Surface Water
L/V1004721	B/O	Ounder Water
	1	1

Appendix A Page 1 of 1 10/07/2015EXR/201779 Ver. 1

Water Analysis Test Certificate

Round 7

Our Ref: EXR/203106 (Ver. 2)

Your Ref: 1788 August 5, 2015

Environmental Chemistry

ESC

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

Ms P Jenkinson Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

For the attention of Ms P Jenkinson

Dear Ms Jenkinson

Sample Analysis - Dissolved Gasses in Waters

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

J Colbourne
Project Co-ordinator
01283 554547

THOOLDOVINE

TEST REPORT

Report No. EXR/203106 (Ver. 2)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: Dissolved Gasses in Waters

The 6 samples described in this report were registered for analysis by ESG on 24-Jul-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 05-Aug-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Table of TPH Texas banding (0.01) (Page 4)
GC-FID Chromatograms (Pages 5 to 10)
Analytical and Deviating Sample Overview (Pages 11 to 12)
Table of Additional Report Notes (Page 13)
Table of Method Descriptions (Page 14)
Table of Report Notes (Page 15)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG :

Declan Burns

Managing Director Multi-Sector Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 05-Aug-2015

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	Method P	Method Codes : eporting Limits :	WSLM3	WSLM2 100	WSLM12	WSLM12	KONENS 1	ICPWATVAR 3	ICPWATVAR 1	ICPWATVAR 1	R ICPWATVAR	ICPWATVAR 1	0.01	0.01	TPHFID 0.01	TPHFID 0.01	WSLM27	ICPWATVAR 0.01
		KAS Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No
LAB ID Number EX	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Bicarbonate Alkalinity as CaCO3 w	Chloride as Cl w	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Dissolved) a	Potassium as K (Dissolved) a	Manganese as MN (Dissolved) a	Iron as Fe (Dissolved) a	Carbon Banding	ТРН GC	Total Dissolved Solids w	Aluminium as Al (Dissolved) a
1610807	WF/7	23-Jul-15 09:45	7.9	952	443	443	29	29	35	7	170	3	0.31	0.05	Req	<0.01	550	0.01
1610808	HW/7A	23-Jul-15 13:30	8.0	820	410	410	23	17	28	5	155	3	0.15	0.03	Req	<0.01	490	<0.01
1610809	ETF/7	23-Jul-15 12:10	8.0	3080	709	709	109	760	65	30	567	7	0.02	0.06	Req	<0.01	2000	0.01
1610810	TV/7	23-Jul-15 15:00	7.9	1640	648	648	59	140	22	6	370	4	0.03	0.03	Req	<0.01	1000	<0.01
1610811	HW/7B	23-Jul-15 13:30	7.8	851	405	405	22	17	29	5	155	3	0.19	0.03	Req	<0.01	500	<0.01
1610812	B/7	23-Jul-15 14:30	6.8	<100	2 2 <1 <3 <1 <1 <1							<1	<0.01	<0.01	Req	<0.01	<5	<0.01
'	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422	>	Client N Contact		Ms P Jen		Gasse	es in V	Vaters	S	Date Printed 05-Aug-2015 Report Number EXR/203106 Table Number 1							

Where individual results are flagged see report notes for status.

Page 2 of 15

EXR/203106 Ver. 2

		Units :	μg/l									
	,	Method Codes :	DISGAS1									
	Method Re	porting Limits :	6									
	UK	AS Accredited :	No									
LAB ID Number EX	Client Sample Description	Sample Date	^Dissolved Methane									
1610807	WF/7	23-Jul-15 09:45	11									
1610808	HW/7A	23-Jul-15 13:30	<6									
1610809	ETF/7	23-Jul-15 12:10	<4									
1610810	TV/7	23-Jul-15 15:00	2966									
1610811	HW/7B	23-Jul-15 13:30	9									
1610812	B/7	23-Jul-15 14:30										
	ESG &	5	Client Name	Envireau Water	l l	1		Sample Analysis				
			Contact	Ms P Jenkinson								
В	Bretby Business Park, Ashby Road			-			Date Pri	inted		05-Aug-2015		
В	Burton-on-Trent, Staffordshire, DE15 0YZ			Dissolved (laceae in V	Nators	Report	EXR/203106				
	Tel +44 (0) 1283 554400			DISSUIVEU (Jasses III V	valcis	Table N	Table Number 1				
	Fax +44 (0) 1283 554422											

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

* Sample data with an asterisk are not UKAS accredited.

Customer and Site Details: Envireau Water: Dissolved Gasses in Waters

 Job Number:
 W20_3106

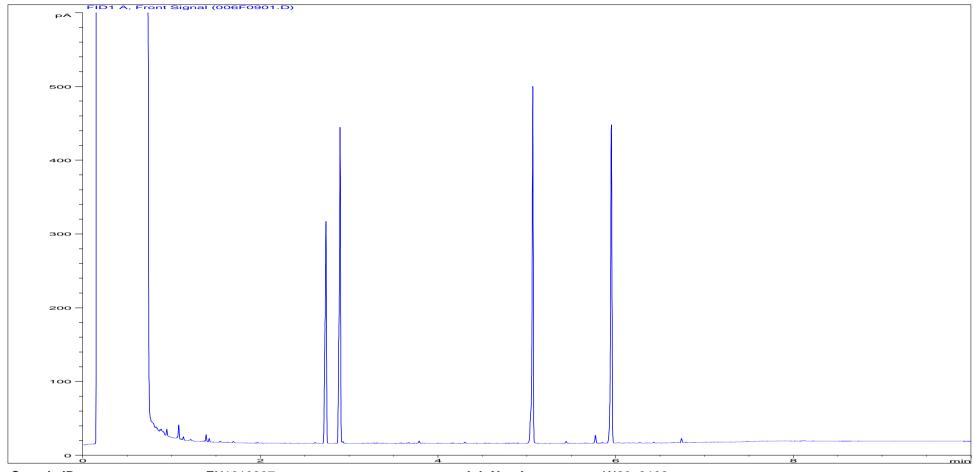
 QC Batch Number:
 150527

Directory: D:\TES\DATA\Y2015\080415TPH_GC15\080415 2015-08-04 16-56-35\011F1401.D

Method: Bottle

Matrix:

Date Booked in:


Date Extracted:

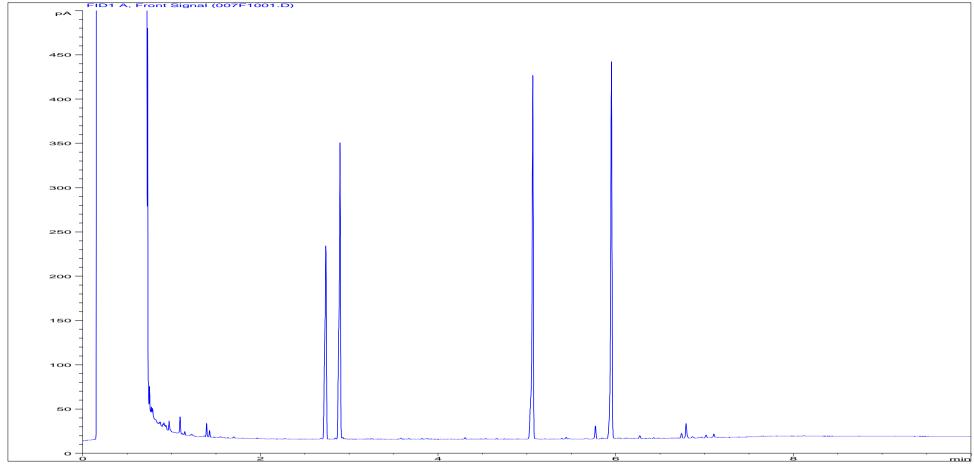
Water

24-Jul-15

04-Aug-15

		Sample data with a	ii asterisk are not ok	AS accredited.		
			C	Concentration, (mg	/I)	
Sample ID	Client ID	>C8 - C10	>C10 - C12	>C12 - C16	>C16 - C21	>C21 - C35
EX1610807	WF/7	<0.01	<0.01	<0.01*	<0.01	<0.01
EX1610808	HW/7A	<0.01	<0.01	<0.01*	<0.01	<0.01
EX1610809	ETF/7	<0.01	<0.01	<0.01*	<0.01	<0.01
EX1610810	TV/7	<0.01	<0.01	<0.01*	<0.01	<0.01
EX1610811	HW/7B	<0.01	<0.01	<0.01*	<0.01	<0.01
EX1610812	B/7	<0.01	<0.01	<0.01*	<0.01	<0.01
		•	•	•	•	•

Sample ID:EX1610807Job Number:W20_3106Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

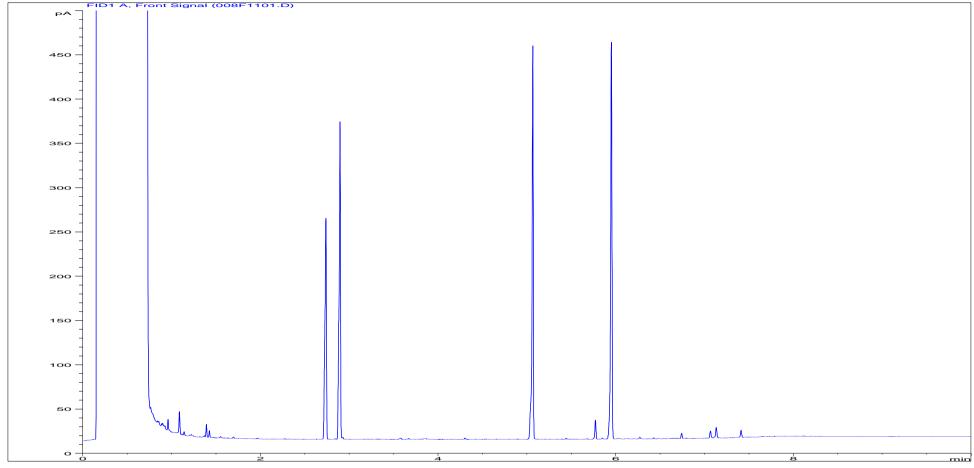
Acquisition Method: TPH_RUNF.M Client Sample Ref: WF/7

Acquisition Date/Time: 04-Aug-15, 19:14:11

Datafile: D:\TES\DATA\Y2015\080415TPH_GC15\080415 2015-08-04 16-56-35\006F0901.D

Page 5 of 15 EXR/203106 Ver. 2

Sample ID:EX1610808Job Number:W20_3106Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

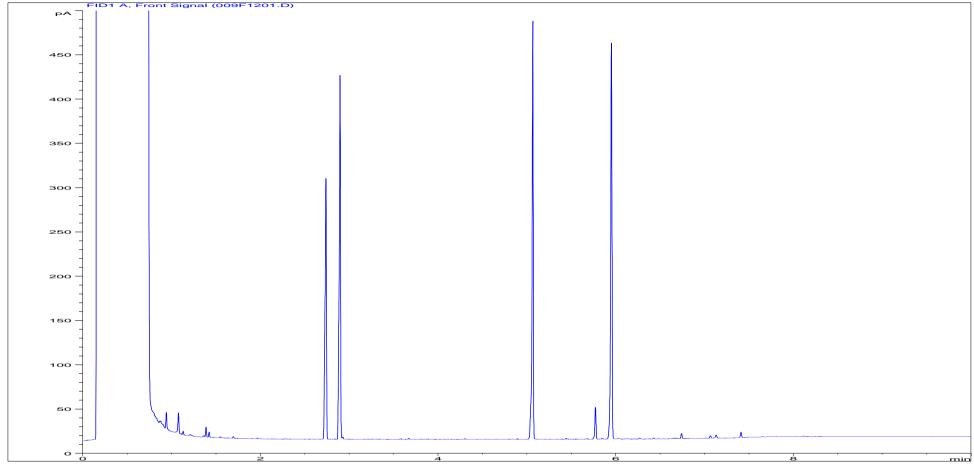
Acquisition Method: TPH_RUNF.M Client Sample Ref: HW/7A

Acquisition Date/Time: 04-Aug-15, 19:31:07

Datafile: D:\TES\DATA\Y2015\080415TPH_GC15\080415 2015-08-04 16-56-35\007F1001.D

Page 6 of 15 EXR/203106 Ver. 2

Sample ID:EX1610809Job Number:W20_3106Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

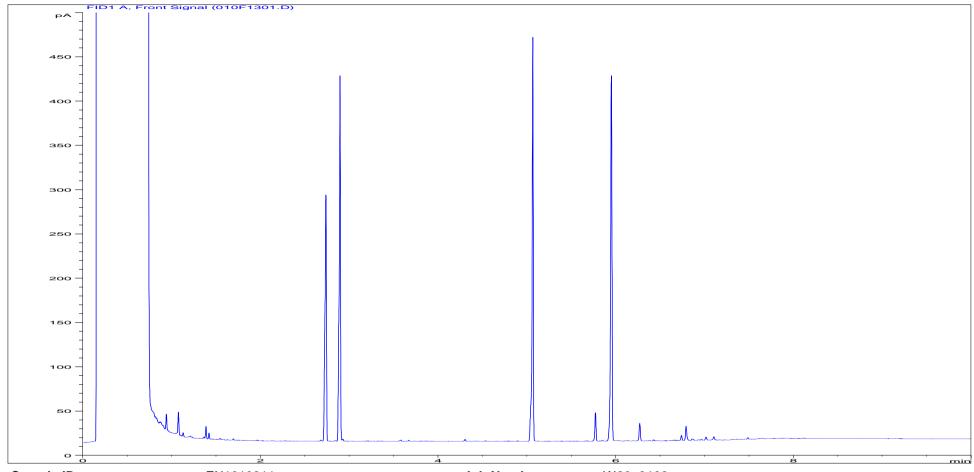
Acquisition Method: TPH_RUNF.M Client Sample Ref: ETF/7

Acquisition Date/Time: 04-Aug-15, 19:48:03

Datafile: D:\TES\DATA\Y2015\080415TPH_GC15\080415 2015-08-04 16-56-35\008F1101.D

Page 7 of 15 EXR/203106 Ver. 2

Sample ID:EX1610810Job Number:W20_3106Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

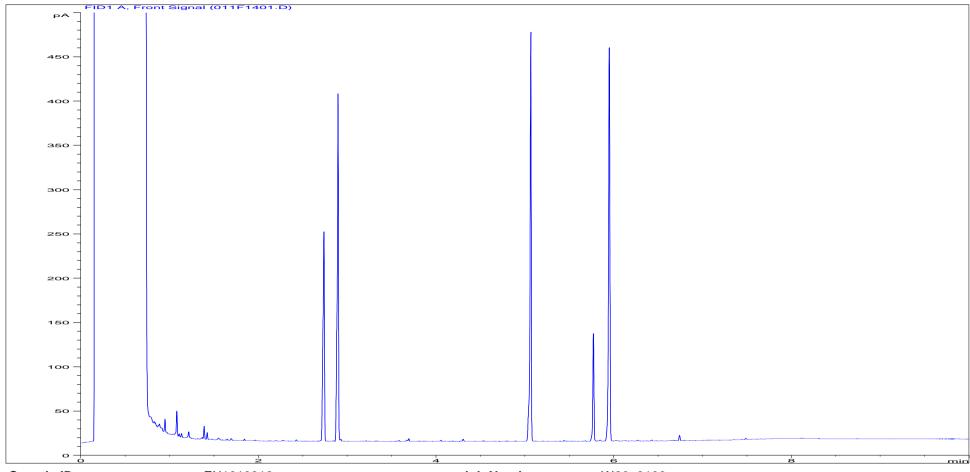
Acquisition Method: TPH_RUNF.M Client Sample Ref: TV/7

Acquisition Date/Time: 04-Aug-15, 20:04:58

Datafile: D:\TES\DATA\Y2015\080415TPH_GC15\080415 2015-08-04 16-56-35\009F1201.D

Page 8 of 15 EXR/203106 Ver. 2

Sample ID:EX1610811Job Number:W20_3106Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: HW/7B

Acquisition Date/Time: 04-Aug-15, 20:22:05

Datafile: D:\TES\DATA\Y2015\080415TPH_GC15\080415 2015-08-04 16-56-35\010F1301.D

Page 9 of 15 EXR/203106 Ver. 2

Sample ID:EX1610812Job Number:W20_3106Multiplier:0.005Client:Envireau Water

Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: B/7

Acquisition Date/Time: 04-Aug-15, 20:38:57

Datafile: D:\TES\DATA\Y2015\080415TPH_GC15\080415 2015-08-04 16-56-35\011F1401.D

Page 10 of 15 EXR/203106 Ver. 2

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W203106

Customer Site **Report No** **Envireau Water Dissolved Gasses in Waters**

W203106

Consignment No W91203 Date Logged 24-Jul-2015

Report Due 06-Aug-2015

ļ								,	ie 00-	,g -	-0.0											
			MethodID	CUSTSERV	DISGAS1	ICPWATVAR								KONENS	TPHFID		WSLM12			WSLM2	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Report B	^Dissolved Methane	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as Al (Dissolved) VAR	Chloride as Cl (Kone)	TPH Carbon Banding	ТРН GC	P Alkalinity as CaCO3	Total Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
						✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓		✓
EX/1610807	WF/7	Groundwater	23/07/15																			
EX/1610808	HW/7A	Groundwater	23/07/15																			
EX/1610809	ETF/7	Groundwater	23/07/15																			
EX/1610810	TV/7	Groundwater	23/07/15																			
EX/1610811	HW/7B	Groundwater	23/07/15																			
EX/1610812	B/7	Surface Water	23/07/15																			

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key The sample was received in an inappropriate container for this analysis

- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- D E F Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W203106

Customer Site

Report No

Envireau Water

Dissolved Gasses in Waters

W203106

Consignment No W91203 Date Logged 24-Jul-2015

Report Due 06-Aug-2015

			MethodID	WSLM3
ID Number	Description	Matrix Type	Sampled	pH units
	1			✓
EX/1610807	WF/7	Groundwater	23/07/15	
EX/1610808	HW/7A	Groundwater	23/07/15	
EX/1610809	ETF/7	Groundwater	23/07/15	
EX/1610810	TV/7	Groundwater	23/07/15	
EX/1610811	HW/7B	Groundwater	23/07/15	
EX/1610812	B/7	Surface Water	23/07/15	

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
 - The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- D E F Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: W/EXR/203106

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
TPHFID	EX1610807 EX1610808 EX1610809 EX1610810 EX1610812	

Report Number: W/EXR/203106

Method Descriptions

Matrix	MethodID	Analysis	Method Description						
		Basis							
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection						
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES						
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis						
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by GCFID						
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH						
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.						
Water	WSLM27	As Received	Gravimetric Determination						
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe						

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 15 of 15 EXR/203106 Ver. 2

Sample Descriptions

Client : Envireau Water

Site: Dissolved Gasses in Waters

Report Number: W20_3106

Control Cont	Lab ID Number	Client ID	Description
EX/1610808 HW/7A Groundwater EX/1610809 ETF/7 Groundwater EX/1610810 TV/7 Groundwater	Lab ID Number		Description
EX/1610809 ETF/7 Groundwater EX/1610810 TV/7 Groundwater	EX/1610807	WF/7	Groundwater
EX/1610810 TV/7 Groundwater	EX/1610808	HW//A	Groundwater
EXV1610812 B,7 Surface Water EXV1610812 B,7 Surface Water	EX/1610809	EIF//	Groundwater
EVITIONIZ BY Surface Waster Surface Waster	EX/1610810	I V//	Groundwater
	EX/1010011	D/7	Surface Water
	EN 1010012	D/I	Sullace Water
		-	
		-	
		+	
		1	

Appendix A Page 1 of 1 05/08/2015EXR/203106 Ver. 2

Water Analysis Test Certificate

Round 8

Our Ref: EXR/204697 (Ver. 2)

Your Ref:

September 15, 2015

ESG 🔗

Environmental Chemistry

ESG

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

Ms P Jenkinson Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

For the attention of Ms P Jenkinson

Dear Ms Jenkinson

Sample Analysis - Dissolved Gasses in Waters

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

L Thompson
Project Co-ordinator
01283 554467

TEST REPORT

Report No. EXR/204697 (Ver. 2)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: Dissolved Gasses in Waters

The 8 samples described in this report were registered for analysis by ESG on 22-Aug-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 15-Sep-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Table of TPH Texas banding (0.01) (Page 4)
GC-FID Chromatograms (Pages 5 to 12)
Subcontracted Analysis Reports (Page 13)
The accreditation status of subcontracted analysis is displayed on the appended subcontracted analysis reports.
Analytical and Deviating Sample Overview (Pages 14 to 15)
Table of Method Descriptions (Page 16)
Table of Report Notes (Page 17)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG :

Declan Burns Managing Director

Multi-Sector Services

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 15-Sep-2015

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Method Codes :			WSLM3	WSLM2	WSLM12	WSLM12	KONENS	ICPWATVAR		ICPWATVAR	ICPWATVAR	ICPWATVAR			TPHFID	TPHFID	WSLM27	ICPWATVAR
Method Reporting Limits : UKAS Accredited :		Yes	100 Yes	Yes	Yes	1 Yes	3 Yes	1 Yes	Yes	1 Yes	Yes	0.01 Yes	0.01 Yes	0.01 Yes	0.01 Yes	5 No	0.01 No	
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Bicarbonate Alkalinity as CaCO3 w	Chloride as Cl w	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Dissolved) a	Potassium as K (Dissolved) a	Manganese as MN (Dissolved) a	Iron as Fe (Dissolved) a	Carbon Banding	трн вс	Total Dissolved Solids w	Aluminium as Al (Dissolved) a
1618603	WF/8	20-Aug-15 14:00	7.7	946	443	443	29	28	34	7	165	3	0.32	0.06	Req	<0.01	610	<0.01
1618604	BH/8	20-Aug-15 17:30	7.3	839	405	405	23	16	29	5	151	3	0.28	0.05	Req	<0.01	480	<0.01
1618605	ETF/81	20-Aug-15 14:45	7.8	3060	677	677	104	790	67	32	594	7	0.02	0.07	Req	<0.01	2040	<0.01
1618606	D/8U	20-Aug-15 15:45	7.5	793	165	165	78	46	127	6	18	11	0.01	0.14	Req	0.01	680	0.02
1618607	D/8D	20-Aug-15 15:15	7.9	802	152	152	83	47	121	6	22	12	<0.01	0.14	Req	<0.01	660	0.02
1618608	TV/8	20-Aug-15 16:45	7.5	1610	652	652	50	142	22	6	347	4	0.04	0.05	Req	<0.01	970	<0.01
1618609	ETF/8B	20-Aug-15 14:45	7.9	3070	679	679	106	787	60	30	615	7	0.01	0.07	Req	<0.01	2060	<0.01
1618610			6.3	<100		<2		<3			<1		<0.01	<0.01	Req	<0.01		<0.01
Br	retby Business Park, Ashby Road urton-on-Trent, Staffordshire, DE15 0YZ		Client N Contact								Date Printed 15-Sep-2015 Report Number EXR/204697			-				
T			ופפוע	iveu (Ja556	S III V	valers	•		Table Number 1								

		Units :	μg/l												
		Method Codes :	DISGAS1												
	Method R	Reporting Limits : KAS Accredited :	6												
LAB ID Number EX/	Client Sample Description	Sample Date	^Dissolved Methane												
1618603	WF/8	20-Aug-15 14:00	13												
1618604	BH/8	20-Aug-15 17:30	9												
1618605	ETF/81	20-Aug-15 14:45	<4												
1618606	D/8U	20-Aug-15 15:45													
1618607	D/8D	20-Aug-15 15:15													
1618608	TV/8	20-Aug-15 16:45	<4												
1618609	ETF/8B	20-Aug-15 14:45	<4												
1618610	DW/8	20-Aug-15 17:00													
	ESG 😥		Client N Contact	Envirea Ms P Jen	au Water kinson						ple Ana				
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422			Disso	lved (Gasse	es in V	Vaters		Date Printed Report Number Table Number	Number EXR/204697				

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

Customer and Site Details: Envireau Water: Dissolved Gasses in Waters

Job Number: W20_4697
QC Batch Number: 150593

Directory: D:\TES\DATA\Y2013\02\090115TPH_GC3\063B1501.D

Method: Bottle

* Sample data with an asterisk are not UKAS accredited.

		Concentration, (mg/l)											
Sample ID	Client ID	>C8 - C10	>C10 - C12	>C12 - C16	>C16 - C21	>C21 - C35							
EX1618603	WF/8	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1618604	BH/8	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1618605	ETF/81	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1618606	D/8U	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1618607	D/8D	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1618608	TV/8	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1618609	ETF/8B	<0.01	<0.01	<0.01	<0.01	<0.01							
EX1618610	DW/8	<0.01	<0.01	<0.01	<0.01	<0.01							

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

Water

22-Aug-15

29-Aug-15

01-Sep-15

15-166414

Ree: 24/8/

W204697 Water -- ^Dissolved Methane g

Standard

Customer

Envireau Water

^Dissolved Methane g

Section:

Anal Type:

Method No:

UKAS Accredited

shoe

No

DISGAS1

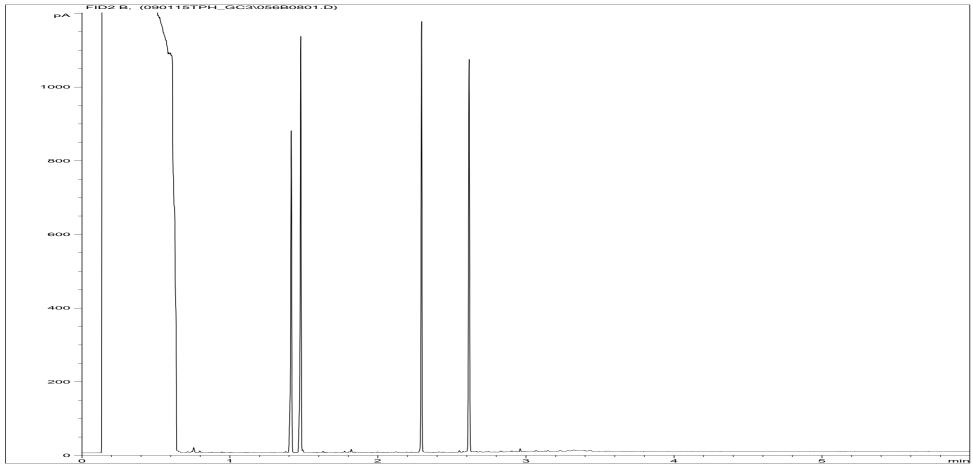
Dissolved Gasses in Waters

Report No:

W/EXR/204697

Page 1 of 1

Analysis Due:


26/08/15

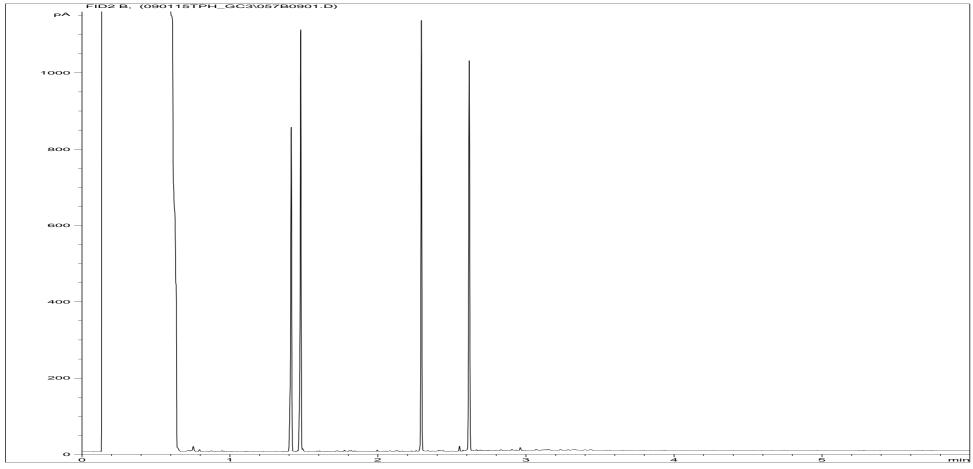
	1		11
ID Number	Analyte	Result	pg/1-1
EX/1618603 Groundwater	^Dissolved Methane g		13
EX/1618604 Groundwater	^Dissolved Methane g		9
EX/1618605 Groundwater	^Dissolved Methane g		<,4
EX/1618608 Groundwater	^Dissolved Methane g		0.B. 29/8
EX/1618609 Groundwater	^Dissolved Methane g ETF/8B		< 4
p.			
	,		

QC Batch		Wt/Vol		Prep'd By		Date	
Filename		Final Vol		Analysed By	D. Beyrell	Date	26/8/15
Filename		Units	μg/l	Authorised By		Date	
Booked in	22/08/15			Authorised By		Date	
Dilution :				LIMS Entry		Date	
Note:							

Denotes

Dilution:

Sample ID:EX1618603Job Number:W20_4697Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

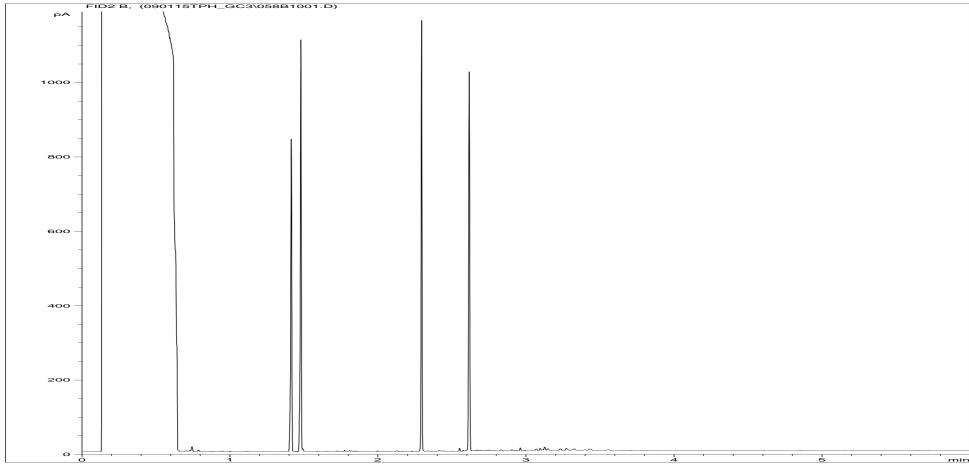
Acquisition Method: 5UL_RUNF.M Client Sample Ref: WF/8

Acquisition Date/Time: 01-Sep-15

Datafile: D:\TES\DATA\Y2013\02\090115TPH_GC3\056B0801.D

Page 5 of 17 EXR/204697 Ver. 2

Sample ID:EX1618604Job Number:W20_4697Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

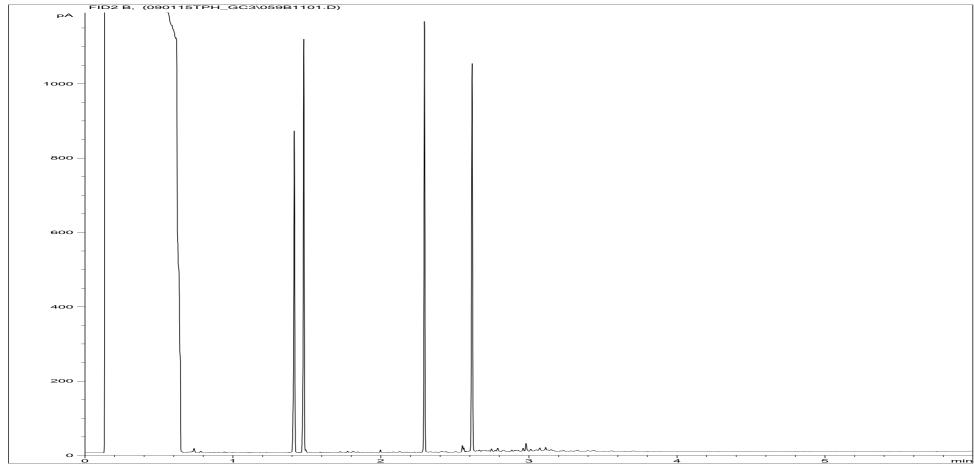
Acquisition Method: 5UL_RUNF.M Client Sample Ref: BH/8

Acquisition Date/Time: 01-Sep-15

Datafile: D:\TES\DATA\Y2013\02\090115TPH_GC3\057B0901.D

Page 6 of 17 EXR/204697 Ver. 2

Sample ID:EX1618605Job Number:W20_4697Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

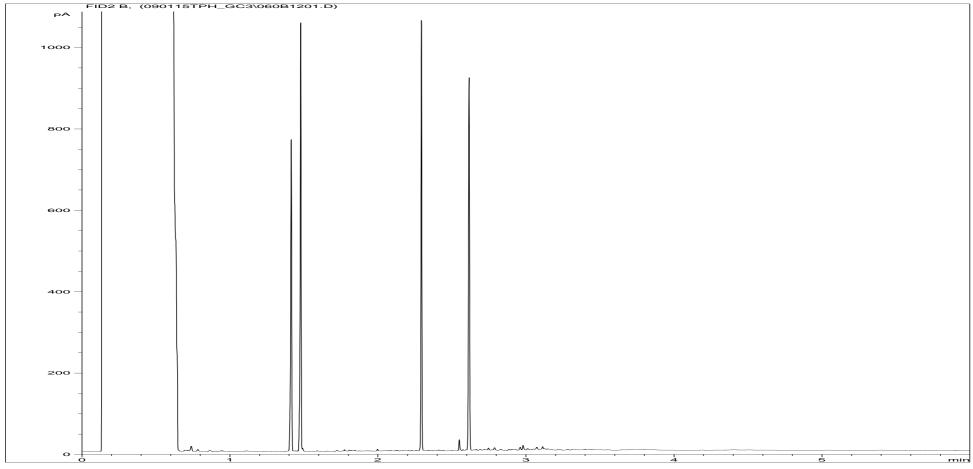
Acquisition Method: 5UL_RUNF.M Client Sample Ref: ETF/81

Acquisition Date/Time: 01-Sep-15

Datafile: D:\TES\DATA\Y2013\02\090115TPH_GC3\058B1001.D

Page 7 of 17 EXR/204697 Ver. 2

Sample ID:EX1618606Job Number:W20_4697Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

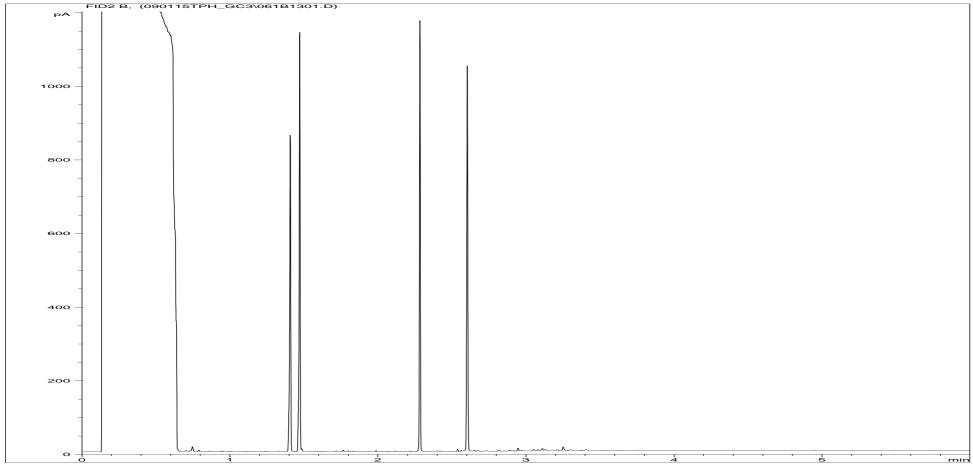
Acquisition Method: 5UL_RUNF.M Client Sample Ref: D/8U

Acquisition Date/Time: 01-Sep-15

Datafile: D:\TES\DATA\Y2013\02\090115TPH_GC3\059B1101.D

Page 8 of 17 EXR/204697 Ver. 2

Sample ID:EX1618607Job Number:W20_4697Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

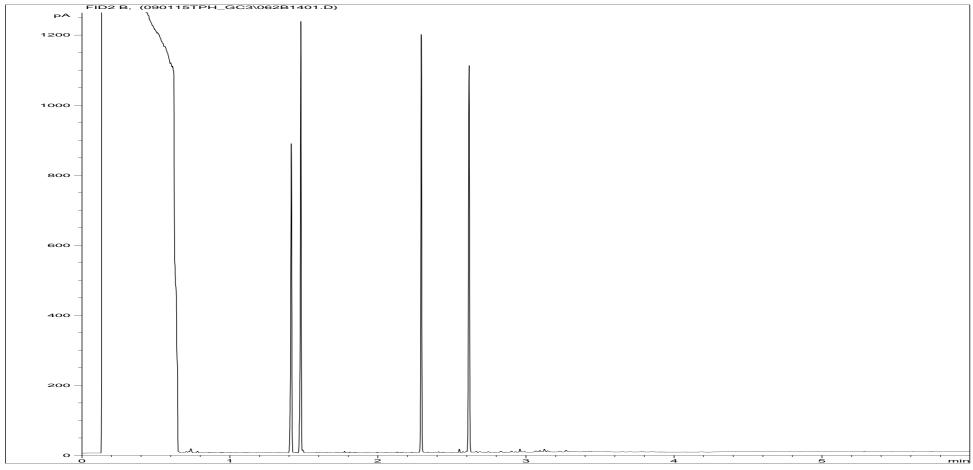
Acquisition Method: 5UL_RUNF.M Client Sample Ref: D/8D

Acquisition Date/Time: 01-Sep-15

Datafile: D:\TES\DATA\Y2013\02\090115TPH_GC3\060B1201.D

Page 9 of 17 EXR/204697 Ver. 2

Sample ID:EX1618608Job Number:W20_4697Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

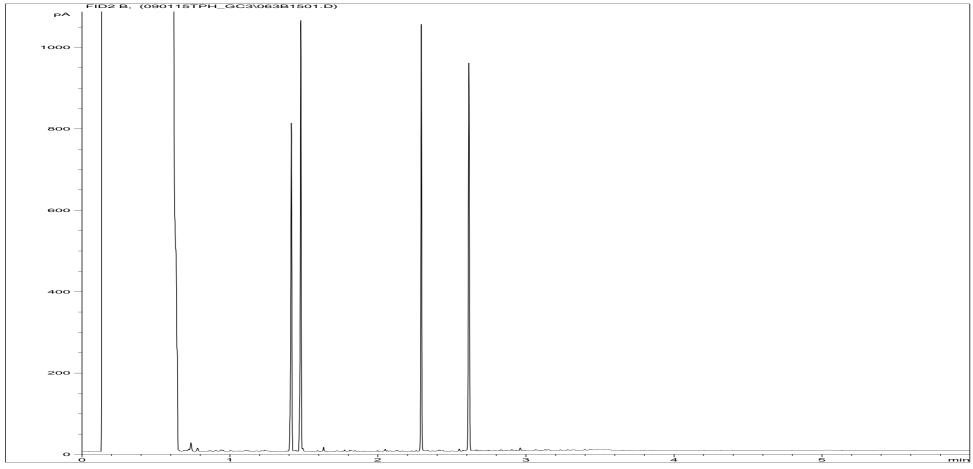
Acquisition Method: 5UL_RUNF.M Client Sample Ref: TV/8

Acquisition Date/Time: 01-Sep-15

Datafile: D:\TES\DATA\Y2013\02\090115TPH_GC3\061B1301.D

Page 10 of 17 EXR/204697 Ver. 2

Sample ID:EX1618609Job Number:W20_4697Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: 5UL_RUNF.M Client Sample Ref: ETF/8B

Acquisition Date/Time: 01-Sep-15

Datafile: D:\TES\DATA\Y2013\02\090115TPH_GC3\062B1401.D

Page 11 of 17 EXR/204697 Ver. 2

Sample ID:EX1618610Job Number:W20_4697Multiplier:0.005Client:Envireau Water

Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: 5UL_RUNF.M Client Sample Ref: DW/8

Acquisition Date/Time: 01-Sep-15

Datafile: D:\TES\DATA\Y2013\02\090115TPH_GC3\063B1501.D

Page 12 of 17 EXR/204697 Ver. 2

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W204697

Customer Envireau Water

Site Dissolved Gasses in Waters

Report No W204697

Consignment No W92461
Date Logged 22-Aug-2015

Report Due 07-Sep-2015

							· (Opt	JI (D (ie 07-	Oop .												
			MethodID	CUSTSERV	DISGAS1	ICPWATVAR								KONENS	TPHFID		WSLM12			WSLM2	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Report B	^Dissolved Methane	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as AI (Dissolved) VAR	Chloride as CI (Kone)	TPH Carbon Banding	TPH GC	P Alkalinity as CaCO3	Total Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
						✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓		✓
EX/1618603	WF/8	Groundwater	20/08/15											Е								
EX/1618604	BH/8	Groundwater	20/08/15											Е								
EX/1618605	ETF/81	Groundwater	20/08/15											Е								
EX/1618606	D/8U	Surface Water	20/08/15											Е								
EX/1618607	D/8D	Surface Water	20/08/15											Е								
EX/1618608	TV/8	Groundwater	20/08/15											Е								
EX/1618609	ETF/8B	Groundwater	20/08/15											Е								
EX/1618610	DW/8	Surface Water	20/08/15											Е								

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- B The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W204697

Customer Envireau Water

Site Dissolved Gasses in Waters

Report No W204697

Consignment No W92461
Date Logged 22-Aug-2015

Report Due 07-Sep-2015

			MethodID	WSLM3
ID Number	Description	Matrix Type	Sampled	pH units
				✓
EX/1618603	WF/8	Groundwater	20/08/15	
EX/1618604	BH/8	Groundwater	20/08/15	
EX/1618605	ETF/81	Groundwater	20/08/15	
EX/1618606	D/8U	Surface Water	20/08/15	
EX/1618607	D/8D	Surface Water	20/08/15	
EX/1618608	TV/8	Groundwater	20/08/15	
EX/1618609	ETF/8B	Groundwater	20/08/15	
EX/1618610	DW/8	Surface Water	20/08/15	

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating	Sample	Key
-----------	--------	-----

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: W/EXR/204697

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by GCFID
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

Þ Raised detection limit due to nature of the sample

- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 17 of 17 EXR/204697 Ver. 2

Sample Descriptions

Client : Envireau Water

Site: Dissolved Gasses in Waters

Report Number: W20_4697

Lab ID Number	Client ID	Description
EX/1618603	WF/8	Groundwater
EX/1618604	BH/8	Groundwater
EX/1618605 EX/1618606	ETF/81 D/8U	Groundwater
EX/1618606	D/8U	Surface Water
EX/1618607	D/8D	Surface Water
EX/1618608 EX/1618609	TV/8 ETF/8B	Groundwater Groundwater
EX/1618610	DW/8	Surface Water
274 1010010	24470	3

Appendix A Page 1 of 1 15/09/2015EXR/204697 Ver. 2

Water Analysis Test Certificate

Round 9

Our Ref: EXR/206614 (Ver. 1)

Your Ref:

October 2, 2015

Environmental Chemistry Bretby Business Park Ashby Road Burton-on-Trent Armelle Bonneton Staffordshire DE15 0YZ

> Telephone: 01283 554400 Facsimile: 01283 554422

Envireau Ltd Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire **DE72 3NB**

For the attention of Armelle Bonneton

Dear Armelle Bonneton

Sample Analysis - Dissolved Gasses in Waters

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

D Simpson

Project Co-ordinator 01283 554458

DailSjin

TEST REPORT

Report No. EXR/206614 (Ver. 1)

Envireau Ltd
Envireau Water
Cedars Farm Barn
Market Street
Draycott
Derbyshire
DE72 3NB

Site: Dissolved Gasses in Waters

The 9 samples described in this report were registered for analysis by ESG on 26-Sep-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 02-Oct-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Table of TPH Texas banding (0.01) (Page 4)
GC-FID Chromatograms (Pages 5 to 13)
Subcontracted Analysis Reports (Page 14)
The accreditation status of subcontracted analysis is displayed on the appended subcontracted analysis reports.
Analytical and Deviating Sample Overview (Pages 15 to 16)
Table of Method Descriptions (Page 17)
Table of Report Notes (Page 18)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Managing Director Multi-Sector Services Date of Issue: 02-Oct-2015

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
		Method Codes :	WSLM3	WSLM2	WSLM12	WSLM12	KONENS			ICPWATVAR		ICPWATVAR	ICPWATVAR		TPHFID	TPHFID	WSLM27	ICPWATVAR
		eporting Limits :	V	100	\/	V	1	3	1	1	1	1	0.01	0.01	0.01	0.01	5	0.01
	U	KAS Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Bicarbonate Alkalinity as CaCO3 w	Chloride as Cl w	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Dissolved) a	Potassium as K (Dissolved) a	Manganese as MN (Dissolved) a	Iron as Fe (Dissolved) a	Carbon Banding	ТРН GC	Total Dissolved Solids w	Aluminium as Al (Dissolved) a
1627243	WF/9	24-Sep-15 13:30	8.2	951	436	436	29	29	35	7	170	3	0.30	0.05	Req	0.01	543	<0.01
1627244	HW/9	24-Sep-15 14:00	8.2	824	409	409	22	17	29	5	155	3	0.28	0.04	Req	<0.01	469	<0.01
1627245	ETF/9	24-Sep-15 11:30	8.1	3030	677	677	106	786	73	34	578	7	0.02	0.07	Req	<0.01	2036	0.01
1627246	D/9D	24-Sep-15 12:00	8.1	777	187	187	85	51	116	5	37	5	<0.01	0.11	Req	0.06	535	0.02
1627247	TV/9	24-Sep-15 15:00	8.3	1640	652	652	51	141	22	6	357	4	0.03	0.03	Req	<0.01	965	<0.01
1627248	SHF/9	24-Sep-15 15:45	7.7	600	185	185	29	50	90	7	20	15	<0.01	0.10	Req	0.01	371	0.02
1627249	DW/9	24-Sep-15 15:15	7.1	<100	5	5	<1	<3	<1	<1	<1	<1	<0.01	<0.01	Req	0.01	<5	<0.01
1627250	CB/9	24-Sep-15 10:45	7.8	618	197	197	30	44	106	8	16	2	<0.01	0.13	Req	0.01	376	0.02
1627251	BC/9	24-Sep-15 10:50	7.9	601	197	197	31	46	104	8	15	2	<0.01	0.14	Req	0.08	383	0.02
	FSG	}	Client N	ame	Envirea	u Ltd						Sample Analysis						
	[2] (注	5	Contact		Armelle B	onneton												
E	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ			[Disso	lved (asse	es in V	Vaters	S		Date Prin	lumber			-Oct-2015 XR/206614		
	Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422											Table Number 1						

		Units :	ug/l					1	1			
	,	Method Codes :	μg/l DISGAS1									
	Method Re	porting Limits :	6									
	UK	AS Accredited :										
LAB ID Number EX	Client Sample Description	Sample Date	^Dissolved Methane									
1627243	WF/9	24-Sep-15 13:30	9									
1627244	HW/9	24-Sep-15 14:00	11									
1627245	ETF/9	24-Sep-15 11:30	70									
1627246	D/9D	24-Sep-15 12:00										
1627247	TV/9	24-Sep-15 15:00	2132									
1627248	SHF/9	24-Sep-15 15:45	6									
1627249	DW/9	24-Sep-15 15:15										
1627250	CB/9	24-Sep-15 10:45										
1627251	BC/9	24-Sep-15 10:50										
	ESG 🦃	5	Client Name	Envireau Ltd				Sam	ple Ana	alysis		
	ころし (学)		Contact	Armelle Bonneton								
E	Bretby Business Park, Ashby Road						Date Pr	inted		02-Oct-2015		
E	Burton-on-Trent, Staffordshire, DE15 0YZ			Dissolved (Paccac in V	Natoro	Report	Number				
	Tel +44 (0) 1283 554400			Pissoived (Jasses III V	valers	Table N	Table Number 1				
	Fax +44 (0) 1283 554422											
			l				I		I			

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

Customer and Site Details: Envireau Ltd : Dissolved Gasses in Waters

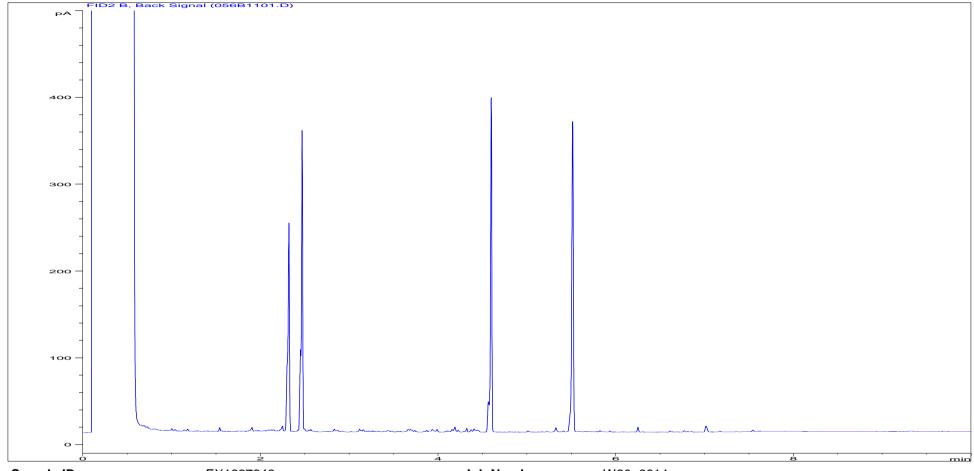
 Job Number:
 W20_6614

 QC Batch Number:
 150668

Directory: D:\TES\DATA\Y2015\100115TPH_GC15\100115 2015-10-01 16-58-11\064B1901.D

Method: Bottle

Matrix: Water


Date Booked in: 26-Sep-15

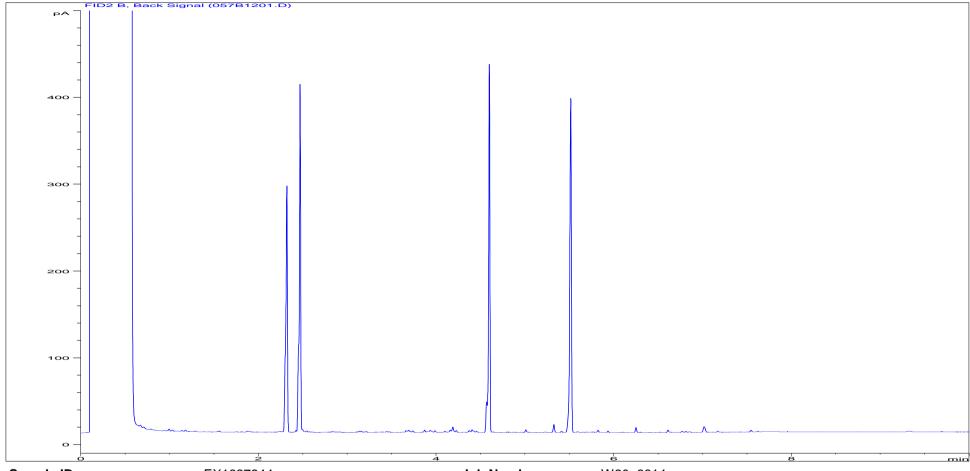
Date Extracted: 01-Oct-15

Date Analysed: 01-Oct-15, 22:07:44

* Sample data with an asterisk are not UKAS accredited.

			(Concentration, (mg	/I)	
Sample ID	Client ID	>C8 - C10	>C10 - C12	>C12 - C16	>C16 - C21	>C21 - C35
EX1627243	WF/9	<0.01	<0.01	<0.01	<0.01	<0.01
EX1627244	HW/9	<0.01	<0.01	<0.01	<0.01	<0.01
EX1627245	ETF/9	<0.01	<0.01	<0.01	<0.01	<0.01
EX1627246	D/9D	<0.01	<0.01	<0.01	<0.01	0.041
EX1627247	TV/9	<0.01	<0.01	<0.01	<0.01	<0.01
EX1627248	SHF/9	<0.01	<0.01	<0.01	<0.01	<0.01
EX1627249	DW/9	<0.01	<0.01	<0.01	<0.01	<0.01
EX1627250	CB/9	<0.01	<0.01	<0.01	<0.01	<0.01
EX1627251	BC/9	<0.01	<0.01	<0.01	0.017	0.051

Sample ID:EX1627243Job Number:W20_6614Multiplier:0.005Client:Envireau Ltd


Dilution: 1 Site: Dissolved Gasses in Waters

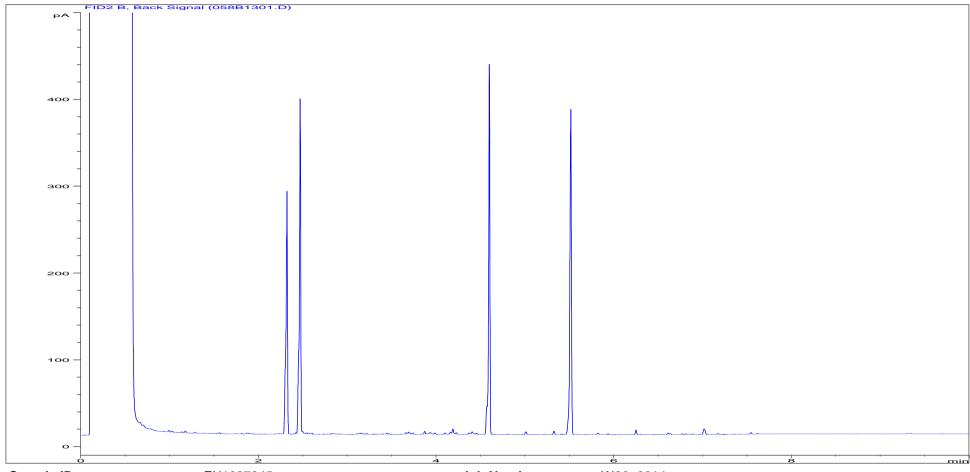
Acquisition Method: TPH_RUNF.M Client Sample Ref: WF/9

Acquisition Date/Time: 01-Oct-15, 19:52:56

Datafile: D:\TES\DATA\Y2015\100115TPH_GC15\100115 2015-10-01 16-58-11\056B1101.D

Page 5 of 18 EXR/206614 Ver. 1

Sample ID:EX1627244Job Number:W20_6614Multiplier:0.005Client:Envireau Ltd


Dilution: 1 Site: Dissolved Gasses in Waters

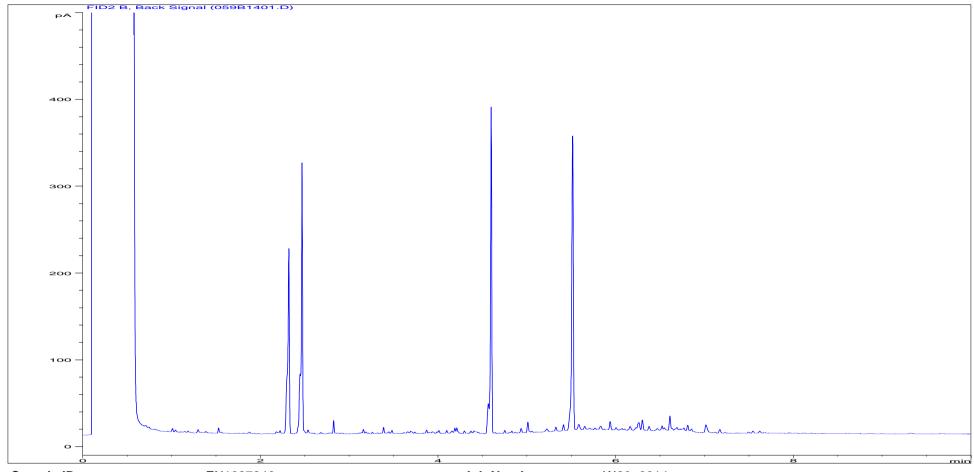
Acquisition Method: TPH_RUNF.M Client Sample Ref: HW/9

Acquisition Date/Time: 01-Oct-15, 20:09:47

Datafile: D:\TES\DATA\Y2015\100115TPH_GC15\100115 2015-10-01 16-58-11\057B1201.D

Page 6 of 18 EXR/206614 Ver. 1

Sample ID:EX1627245Job Number:W20_6614Multiplier:0.005Client:Envireau Ltd


Dilution: 1 Site: Dissolved Gasses in Waters

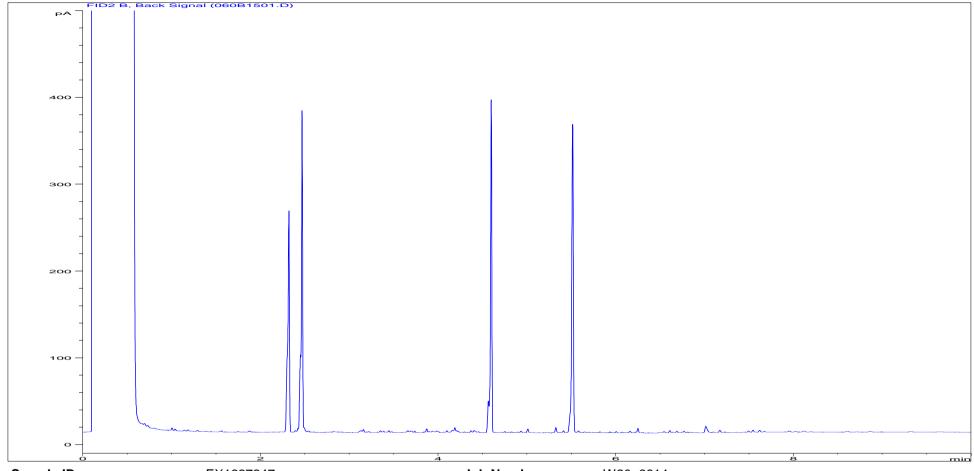
Acquisition Method: TPH_RUNF.M Client Sample Ref: ETF/9

Acquisition Date/Time: 01-Oct-15, 20:26:45

Datafile: D:\TES\DATA\Y2015\100115TPH_GC15\100115 2015-10-01 16-58-11\058B1301.D

Page 7 of 18 EXR/206614 Ver. 1

Sample ID:EX1627246Job Number:W20_6614Multiplier:0.005Client:Envireau Ltd


Dilution: 1 Site: Dissolved Gasses in Waters

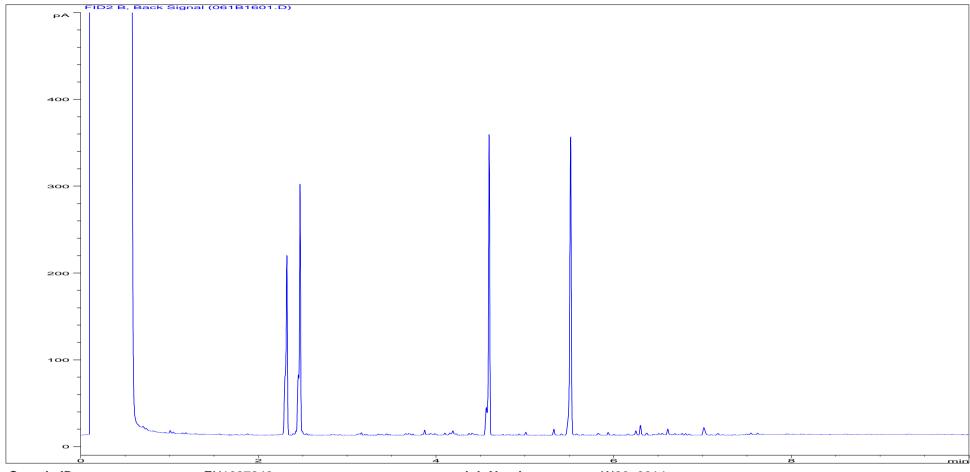
Acquisition Method: TPH_RUNF.M Client Sample Ref: D/9D

Acquisition Date/Time: 01-Oct-15, 20:43:29

Datafile: D:\TES\DATA\Y2015\100115TPH_GC15\100115 2015-10-01 16-58-11\059B1401.D

Page 8 of 18 EXR/206614 Ver. 1

Sample ID:EX1627247Job Number:W20_6614Multiplier:0.005Client:Envireau Ltd


Dilution: 1 Site: Dissolved Gasses in Waters

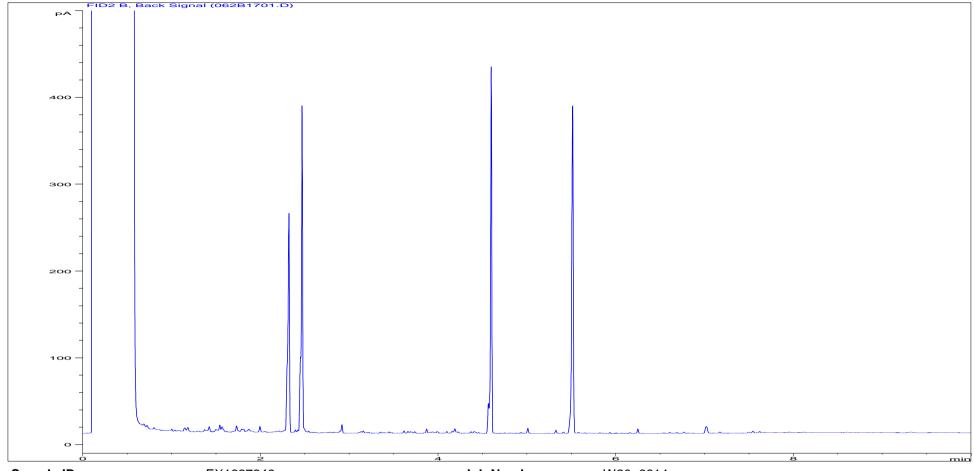
Acquisition Method: TPH_RUNF.M Client Sample Ref: TV/9

Acquisition Date/Time: 01-Oct-15, 21:00:24

Datafile: D:\TES\DATA\Y2015\100115TPH_GC15\100115 2015-10-01 16-58-11\060B1501.D

Page 9 of 18 EXR/206614 Ver. 1

Sample ID:EX1627248Job Number:W20_6614Multiplier:0.005Client:Envireau Ltd


Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: SHF/9

Acquisition Date/Time: 01-Oct-15, 21:17:10

Datafile: D:\TES\DATA\Y2015\100115TPH_GC15\100115 2015-10-01 16-58-11\061B1601.D

Page 10 of 18 EXR/206614 Ver. 1

Sample ID:EX1627249Job Number:W20_6614Multiplier:0.005Client:Envireau Ltd

Dilution: 1 Site: Dissolved Gasses in Waters

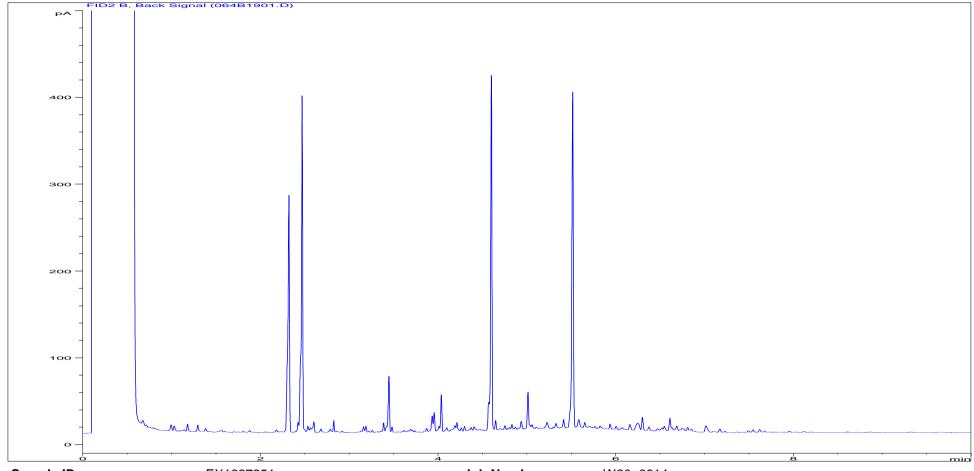
Acquisition Method: TPH_RUNF.M Client Sample Ref: DW/9

Acquisition Date/Time: 01-Oct-15, 21:33:59

Datafile: D:\TES\DATA\Y2015\100115TPH_GC15\100115 2015-10-01 16-58-11\062B1701.D

Page 11 of 18 EXR/206614 Ver. 1

Sample ID:EX1627250Job Number:W20_6614Multiplier:0.005Client:Envireau Ltd


Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: CB/9

Acquisition Date/Time: 01-Oct-15, 21:50:52

Datafile: D:\TES\DATA\Y2015\100115TPH_GC15\100115 2015-10-01 16-58-11\063B1801.D

Page 12 of 18 EXR/206614 Ver. 1

Sample ID:EX1627251Job Number:W20_6614Multiplier:0.005Client:Envireau Ltd

Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: BC/9

Acquisition Date/Time: 01-Oct-15, 22:07:44

Datafile: D:\TES\DATA\Y2015\100115TPH_GC15\100115 2015-10-01 16-58-11\064B1901.D

Page 13 of 18 EXR/206614 Ver. 1

GAS ANALYSIS

Customer: ESG - (BEC BRE), Environmental Chemistry

Report Nº GA00971 Date Received: 28 September 2015 Date Sampled:

Date Analysed: 28 September 2015 Site: Envireau Water

SAMPLE REFERENCE	Analysis % V/V
	Dissolved Methane (CH ₄)†
Method of Analysis	9

EX/1627243	0.0011
EX/1627244	0.0013
EX/1627245	0.0086
EX/1627247	0.2632
EX/1627248	0.0007

Method of 9 Disolved Gas Analysis:-

† Not UKAS Accredited

Customer Analytical Requirements Authorised by CH₄ Phil Shead Comment Box Dissolved Gases in Water - Report No. 206614

Authorised by:

Analyst: Daniel Bignell

Issue Date: 28 September 2015

ESG accepts no responsibility for the collection of any of the samples referred to in this report.

Phil Shead, Operations Manager Direct Dial: 01 283 554461

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W206614

Customer Site Report No Envireau Ltd Dissolved Gasses in Waters

W206614

Consignment No W93928
Date Logged 26-Sep-2015

Report Due 09-Oct-2015

-									le 09-	-												
			MethodID	CUSTSERV	DISGAS1	ICPWATVAR								KONENS	TPHFID		WSLM12			WSLM2	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Report B	^Dissolved Methane	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as Al (Dissolved) VAR	Chloride as Cl (Kone)	TPH Carbon Banding	ТРН GC	P Alkalinity as CaCO3	Total Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
						✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓		✓
EX/1627243	WF/9	Groundwater	24/09/15																			
EX/1627244	HW/9	Groundwater	24/09/15																			
EX/1627245	ETF/9	Groundwater	24/09/15																			
EX/1627246	D/9D	Groundwater	24/09/15																			
EX/1627247	TV/9	Groundwater	24/09/15																			
EX/1627248	SHF/9	Groundwater	24/09/15																			
EX/1627249	DW/9	Surface Water	24/09/15																			
EX/1627250	CB/9	Surface Water	24/09/15																			
EX/1627251	BC/9	Surface Water	24/09/15																			

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W206614

Customer Site

Report No

Envireau Ltd Dissolved Gasses in Waters

W206614

Consignment No W93928
Date Logged 26-Sep-2015

Report Due 09-Oct-2015

_				
			MethodID	WSLM3
ID Number	Description	Matrix Type	Sampled	pH units
	[=:-	T= .		✓
EX/1627243	WF/9	Groundwater	24/09/15	
EX/1627244	HW/9	Groundwater	24/09/15	
EX/1627245	ETF/9	Groundwater	24/09/15	
EX/1627246	D/9D	Groundwater	24/09/15	
EX/1627247	TV/9	Groundwater	24/09/15	
EX/1627248	SHF/9	Groundwater	24/09/15	
EX/1627249	DW/9	Surface Water	24/09/15	
EX/1627250	CB/9	Surface Water	24/09/15	
EX/1627251	BC/9	Surface Water	24/09/15	

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
 - The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

A salasia Damisa d

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: W/EXR/206614

Method Descriptions

Matrix	MethodID	Analysis	Method Description	
		Basis		
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection	
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using	
			ICPOES	
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis	
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by	
			GCFID	
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH	
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical	
			conductivity probe.	
Water	WSLM27	As Received	Gravimetric Determination	
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe	

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 18 of 18 EXR/206614 Ver. 1

Sample Descriptions

Client : Envireau Ltd

Site: Dissolved Gasses in Waters

Report Number: W20_6614

Lab ID Number	Client ID	Description
EX/1627243	WF/9	Groundwater
EX/1627244	HW/9	Groundwater
EX/1627245	ETF/9	Groundwater
EX/1627246	D/9D	Groundwater
EX/1627247	TV/9	Groundwater
EX/1627248	SHF/9	Groundwater
EX/1627249	DW/9	Surface Water
EX/1627250	CB/9	Surface Water
EX/1627251	BC/9	Surface Water
	+	

Appendix A Page 1 of 1 02/10/2015EXR/206614 Ver. 1

Water Analysis Test Certificate

Round 10

Our Ref: EXR/208498 (Ver. 2)

Your Ref:

December 10, 2015

Armelle Bonneton Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Environmental Chemistry

ESG

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Armelle Bonneton

Dear Armelle Bonneton

Sample Analysis - Dissolved Gasses in Waters

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

J Colbourne
Project Co-ordinator
01283 554547

THOUbourne

TEST REPORT

Report No. EXR/208498 (Ver. 2)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: Dissolved Gasses in Waters

The 9 samples described in this report were registered for analysis by ESG on 30-Oct-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 10-Dec-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

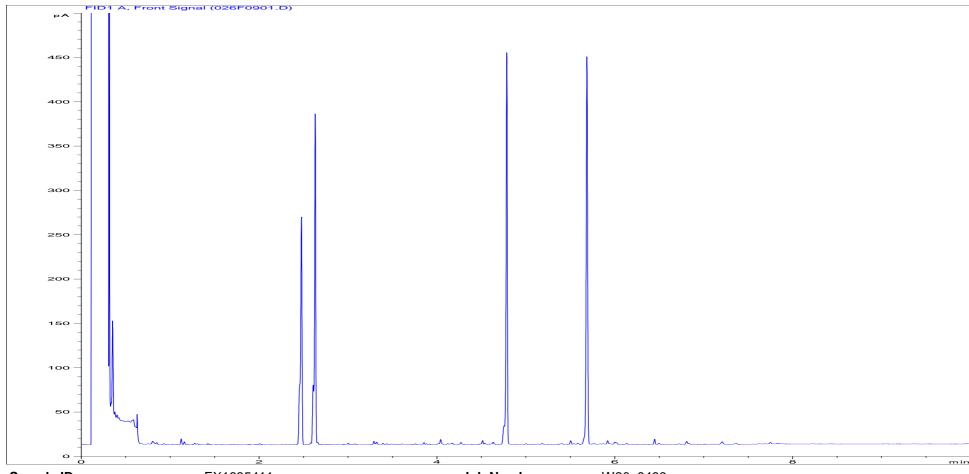
The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2) GC-FID Chromatograms (Pages 3 to 11) Analytical and Deviating Sample Overview (Page 12) Table of Method Descriptions (Page 13) Table of Report Notes (Page 14) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Managing Director Multi-Sector Services

Tests marked 'A' have been subcontracted to another laboratory.


Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

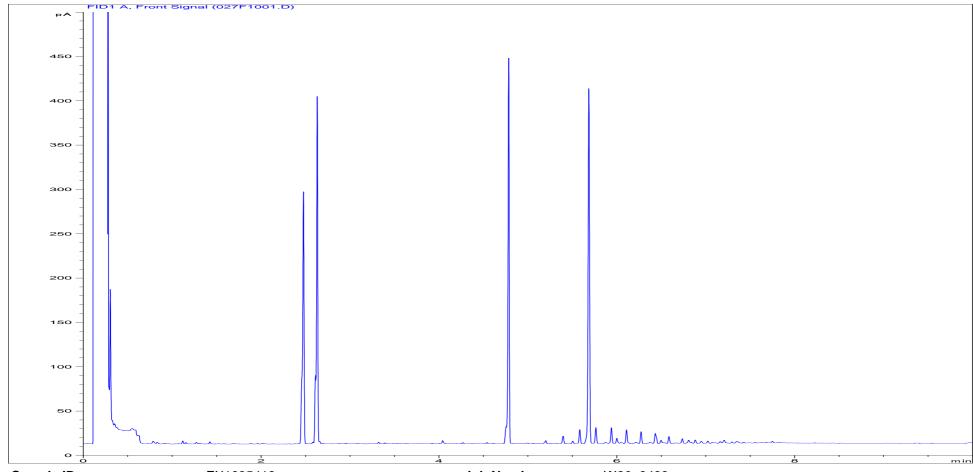
ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 10-Dec-2015

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l
	Method	Method Codes: Reporting Limits:	WSLM3	WSLM2 100	WSLM12	WSLM12	KONENS 1	ICPWATVAR 3	ICPWATVAR 1	ICPWATVAR 1	ICPWATVAR	ICPWATVAR 1	0.01	0.01	TPHFID 0.01	WSLM27	ICPWATVAR 0.01	DISGAS1 6
		UKAS Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	
LABID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Bicarbonate Alkalinity as CaCO3 w	Chloride as Cl w	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Dissolved) a	Potassium as K (Dissolved) a	Manganese as MN (Dissolved) a	Iron as Fe (Dissolved) a	трн өс	Total Dissolved Solids w	Aluminium as Al (Dissolved) a	^Dissolved Methane
1635411	WF/10	29-Oct-15 11:30	7.7	924	438	438	28	29	35	7	175	3	0.31	0.06	0.02	510	<0.01	11
1635412	HW/10	29-Oct-15 14:00	7.6	808	406	406	22	16	29	5	162	3	0.28	0.05	0.02	440	<0.01	8
1635413	ETF/10	29-Oct-15 10:10	7.8	3090	688	688	104	773	69	33	603	7	0.02	0.06	0.01	2040	0.01	194
1635414	D/10U	29-Oct-15 11:00	7.8	703	202	202	71	51	141	6	15	8	<0.01	0.20	0.04	580	0.02	
1635415	D/10D	29-Oct-15 10:40	7.8	751	193	193	71	53	131	6	19	8	<0.01	0.18	0.05	567	0.02	
1635416	TV/10	29-Oct-15 13:30	7.7	1600	646	646	49	143	24	6	379	4	0.03	0.03	0.02	950	<0.01	1310
1635417	SHF/10	29-Oct-15 12:30	7.6	599	207	207	26	49	94	8	18	14	<0.01	0.09	0.02	350	0.02	4
1635418	DW/10	29-Oct-15 13:00	6.2	<100	3	3	<1	<3	<1	<1	<1	<1	<0.01	<0.01	0.04	<5	<0.01	
1635419	VT/10	29-Oct-15 13:20	7.7 §	1580 §	650 §	650 §	51 §	139 §	22 §	6 §	362 §	4 §	0.03 §	0.02 §	0.01 §	950	<0.01	2727
	etby Business Park, Ashby Road		Client N Contact	ame	Envirea Armelle B	onneton						Date Pri		ple Ana		-Dec-2015		
т	rton-on-Trent, Staffordshire, DE15 0YZ el +44 (0) 1283 554400 ax +44 (0) 1283 554422				Disso	lved (Gasse	es in V	Vaters	S	Table Number EXR/208498 Table Number 1							

Page 2 of 14 Where individual results are flagged see report notes for status. EXR/208498 Ver. 2

Sample ID:EX1635411Job Number:W20_8498Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

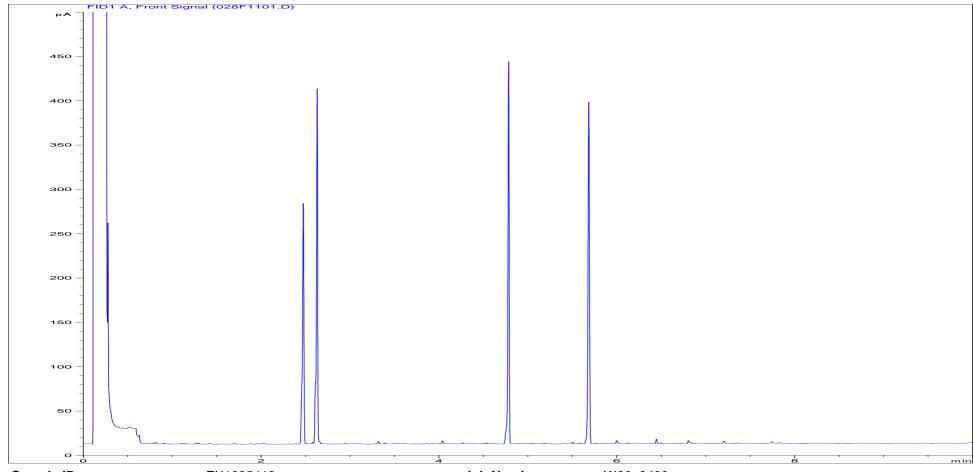
Acquisition Method: TPH_RUNF.M Client Sample Ref: WF/10

Acquisition Date/Time: 04-Nov-15, 20:33:06

Datafile: D:\TES\DATA\Y2015\110415TPH_GC15\110415A 2015-11-04 18-15-27\026F0901.D

Page 3 of 14 EXR/208498 Ver. 2

Sample ID:EX1635412Job Number:W20_8498Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

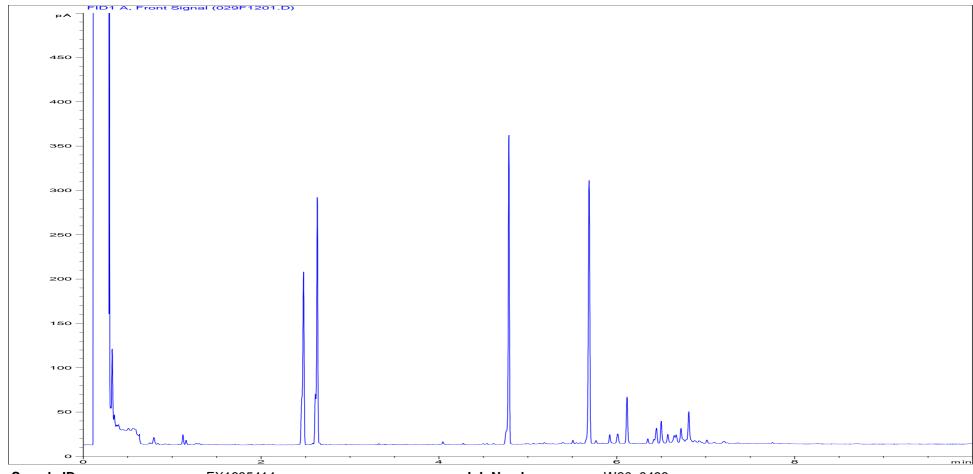
Acquisition Method: TPH_RUNF.M Client Sample Ref: HW/10

Acquisition Date/Time: 04-Nov-15, 20:51:54

Datafile: D:\TES\DATA\Y2015\110415TPH_GC15\110415A 2015-11-04 18-15-27\027F1001.D

Page 4 of 14 EXR/208498 Ver. 2

Sample ID:EX1635413Job Number:W20_8498Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

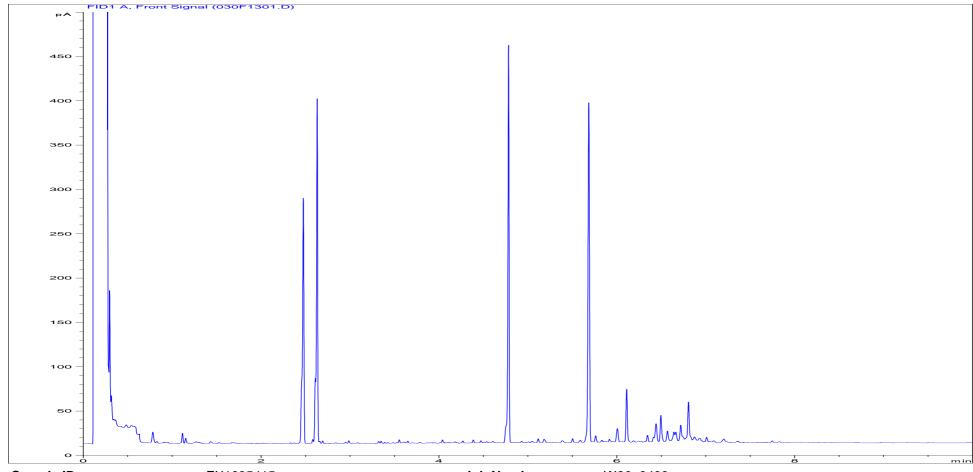
Acquisition Method: TPH_RUNF.M Client Sample Ref: ETF/10

Acquisition Date/Time: 04-Nov-15, 21:08:48

Datafile: D:\TES\DATA\Y2015\110415TPH_GC15\110415A 2015-11-04 18-15-27\028F1101.D

Page 5 of 14 EXR/208498 Ver. 2

Sample ID:EX1635414Job Number:W20_8498Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

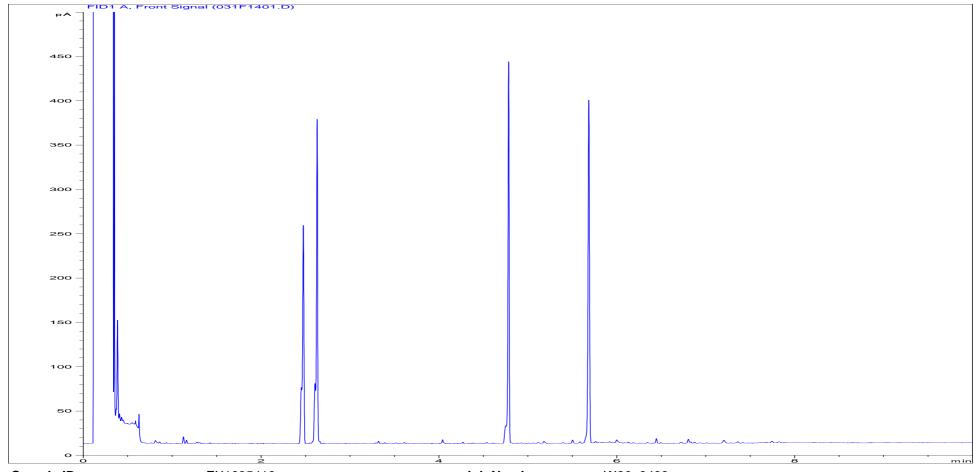
Acquisition Method: TPH_RUNF.M Client Sample Ref: D/10U

Acquisition Date/Time: 04-Nov-15, 21:25:42

Datafile: D:\TES\DATA\Y2015\110415TPH_GC15\110415A 2015-11-04 18-15-27\029F1201.D

Page 6 of 14 EXR/208498 Ver. 2

Sample ID:EX1635415Job Number:W20_8498Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

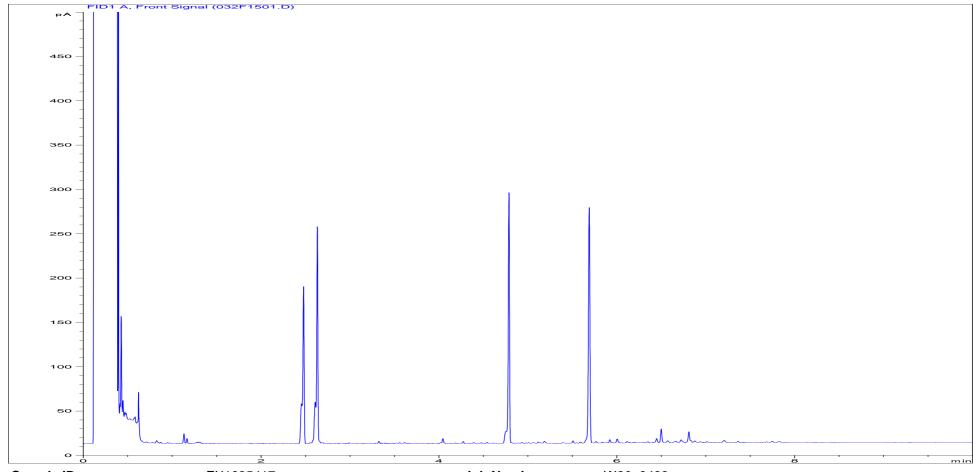
Acquisition Method: TPH_RUNF.M Client Sample Ref: D/10D

Acquisition Date/Time: 04-Nov-15, 21:42:47

Datafile: D:\TES\DATA\Y2015\110415TPH_GC15\110415A 2015-11-04 18-15-27\030F1301.D

Page 7 of 14 EXR/208498 Ver. 2

Sample ID:EX1635416Job Number:W20_8498Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

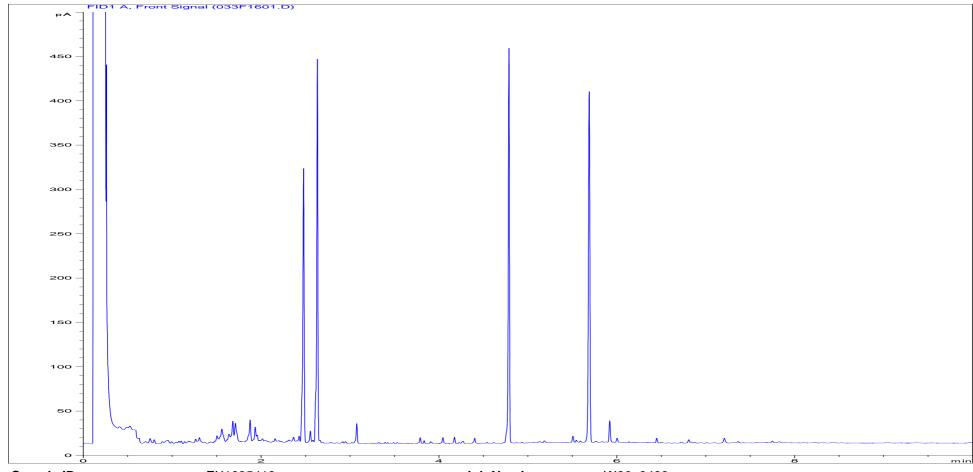
Acquisition Method: TPH_RUNF.M Client Sample Ref: TV/10

Acquisition Date/Time: 04-Nov-15, 21:59:44

Datafile: D:\TES\DATA\Y2015\110415TPH_GC15\110415A 2015-11-04 18-15-27\031F1401.D

Page 8 of 14 EXR/208498 Ver. 2

Sample ID:EX1635417Job Number:W20_8498Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

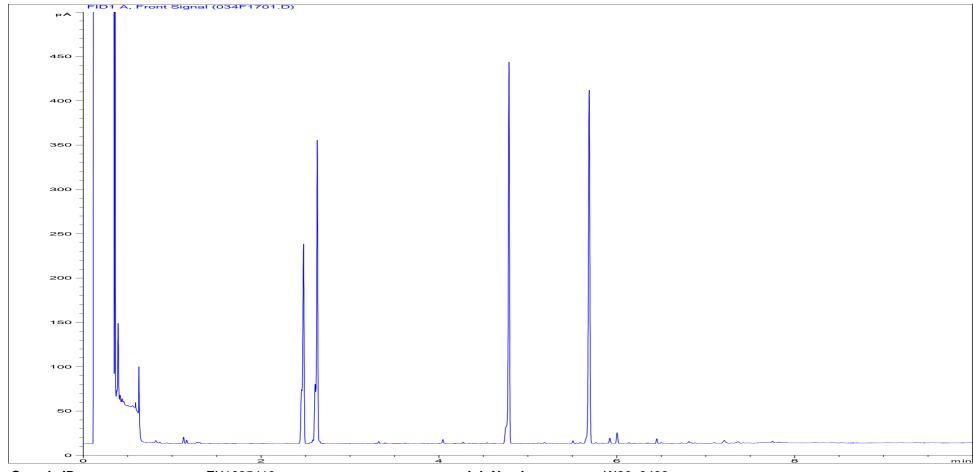
Acquisition Method: TPH_RUNF.M Client Sample Ref: SHF/10

Acquisition Date/Time: 04-Nov-15, 22:17:01

Datafile: D:\TES\DATA\Y2015\110415TPH_GC15\110415A 2015-11-04 18-15-27\032F1501.D

Page 9 of 14 EXR/208498 Ver. 2

Sample ID:EX1635418Job Number:W20_8498Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: DW/10

Acquisition Date/Time: 04-Nov-15, 22:33:47

Datafile: D:\TES\DATA\Y2015\110415TPH_GC15\110415A 2015-11-04 18-15-27\033F1601.D

Page 10 of 14 EXR/208498 Ver. 2

Sample ID:EX1635419Job Number:W20_8498Multiplier:0.005Client:Envireau Water

Dilution: 1 **Site:** Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: VT/10

Acquisition Date/Time: 04-Nov-15, 22:50:44

Datafile: D:\TES\DATA\Y2015\110415TPH_GC15\110415A 2015-11-04 18-15-27\034F1701.D

Page 11 of 14 EXR/208498 Ver. 2

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W208498

Customer Envireau Water

Site Dissolved Gasses in Waters

Report No W208498

Consignment No W95239
Date Logged 30-Oct-2015

Report Due 06-Nov-2015

			MethodID	CUSTSERV	DISGAS1	ICPWATVAR								KONENS	TPHFID	WSLM12			WSLM2	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Report A	^Dissolved Methane	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as Al (Dissolved) VAR	Chloride as Cl (Kone)	TPH GC	P Alkalinity as CaCO3	Total Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
		T-																			
		Groundwater	29/10/15																		
EX/1635412		Groundwater	29/10/15																		
EX/1635413	ETF/10	Groundwater	29/10/15																		
EX/1635414	D/10U	Surface Water	29/10/15																		
EX/1635415	D/10D	Surface Water	29/10/15																		
EX/1635416	TV/10	Groundwater	29/10/15																		
EX/1635417	SHF/10	Groundwater	29/10/15																		
EX/1635418	DW/10	Surface Water	29/10/15																		
EX/1635419	VT/10	Unclassified	29/10/15																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- B The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: W/EXR/208498

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by GCFID
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise.

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.

 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise.

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **P** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 14 of 14 EXR/208498 Ver. 2

Sample Descriptions

Client : Envireau Water

Site: Dissolved Gasses in Waters

Report Number: W20_8498

Lab ID Number	Client ID	Description
EX/1635411	WF/10	Groundwater
EX/1635411	HW/10	Groundwater
EX/1635412	HW/10	Groundwater
EX/1635413 EX/1635414	ETF/10	Groundwater Conference Western
EX/1635414	D/10U	Surface Water
EX/1635415	D/10D	Surface Water
EX/1635416	TV/10	Groundwater
EX/1635417	SHF/10	Groundwater
EX/1635418	DW/10	Surface Water
EX/1635419	VT/10	Unclassified
	<u> </u>	
	<u> </u>	

Appendix A Page 1 of 1 10/12/2015EXR/208498 Ver. 2

Water Analysis Test Certificate

Round 11

Our Ref: EXR/209637 (Ver. 1)

Your Ref:

November 27, 2015

Armelle Bonneton Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Environmental Chemistry

ESC

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Armelle Bonneton

Dear Armelle Bonneton

Sample Analysis - Dissolved Gasses in Waters

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

P Williams

Project Co-ordinator

01283 554647

TEST REPORT

Report No. EXR/209637 (Ver. 1)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: Dissolved Gasses in Waters

The 8 samples described in this report were registered for analysis by ESG on 19-Nov-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 27-Nov-2015

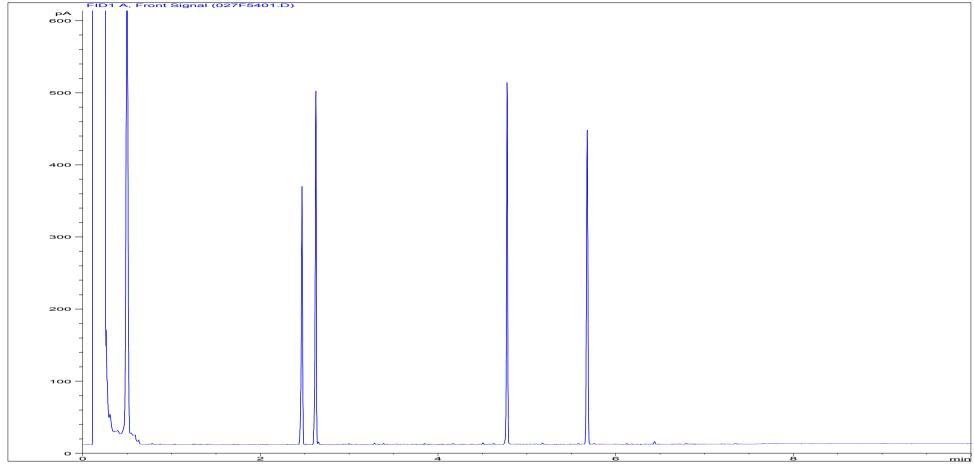
Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
GC-FID Chromatograms (Pages 3 to 10)
Subcontracted Analysis Reports (Page 11)
The accreditation status of subcontracted analysis is displayed on the appended subcontracted analysis reports.
Analytical and Deviating Sample Overview (Page 12)
Table of Additional Report Notes (Page 13)
Table of Method Descriptions (Page 14)
Table of Report Notes (Page 15)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG :

Declan Burns Managir


Managing Director Multi-Sector Services Date of Issue: 27-Nov-2015

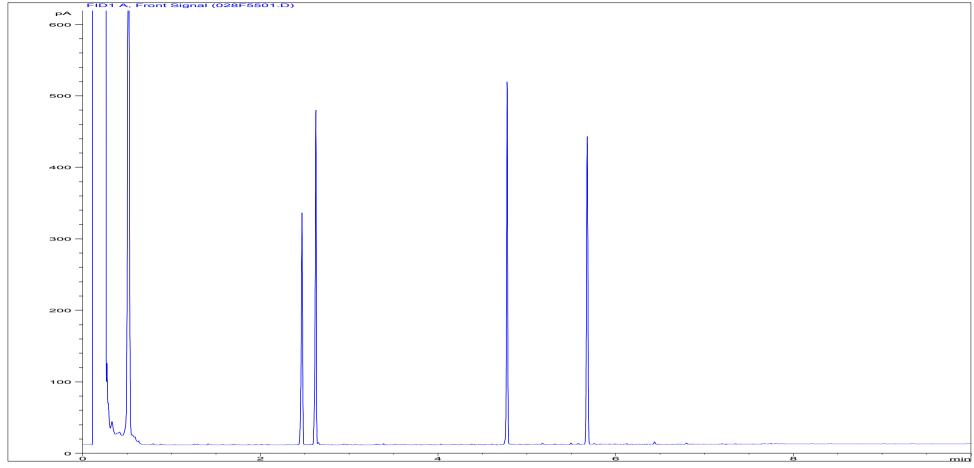
Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	μg/l
		od Codes :	WSLM3	WSLM2	WSLM12	WSLM12	KONENS	ICPWATVAR	ICPWATVAR				ICPWATVAR	ICPWATVAR	TPHFID	WSLM27	ICPWATVAR	DISGAS1
	Method Reporti			100			1	3	1	1	1	1	0.01	0.01	0.01	5	0.01	6
	UKAS A	ccredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Bicarbonate Alkalinity as CaCO3 w	Chioride as Cl w	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Dissolved) a	Potassium as K (Dissolved) a	Manganese as MN (Dissolved) a	Iron as Fe (Dissolved) a	ТРН GC	Total Dissolved Solids w	Aluminium as Al (Dissolved) a	^Dissolved Methane
1640457	WF 11	17-Nov-15	8.3	898	438	408	29	29	35	7	178	4	0.32	0.05	<0.01	520	0.01	6
1640458	HW 11	17-Nov-15	8.4	823	399	359	24	17	30	6	167	3	0.29	0.03	<0.01	470	<0.01	6
1640459	ETF 11	17-Nov-15	8.4	3070	729	691	112	765	54	27	592	8	0.03	0.05	<0.01	2020	0.01	<4
1640460	D 11U	17-Nov-15	8.3	883	256	242	71	63	148	8	20	12	<0.01	0.15	0.04	610	0.02	
1640461	D 11D	17-Nov-15	8.3	784	321	207	62	54	138	6	19	9	<0.01	0.14	0.02	550	0.03	
1640462	TV 11	17-Nov-15	8.6	1620	636	560	50	148	24	6	376	4	0.04	0.03	<0.01	970	<0.01	2379
1640463	DW 11	17-Nov-15	6.7	<100	3	3	<1	<3	<1	<1	<1	<1	<0.01	<0.01	0.01	<5	<0.01	
1640464	D 11DD	17-Nov-15	8.3	803	229	213	62	54	136	6	19	9	<0.01	0.14	0.02	550	0.03	
1	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ		Client N		Armelle E							Date Pri	nted	ple Ana	27-	Nov-2015 XR/209637		
	Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422				Disso	Ived (Gasse	es in \	Nater	S		Table Nu				1		

Sample ID:EX1640457Job Number:W20_9637Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

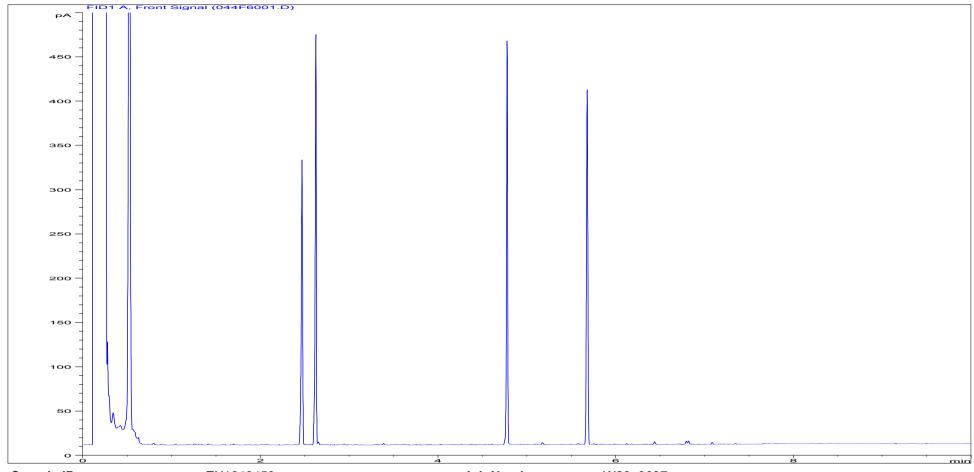
Acquisition Method: TPH_RUNF.M Client Sample Ref: WF 11

Acquisition Date/Time: 25-Nov-15, 01:17:07

Datafile: D:\TES\DATA\Y2015\112415TPH_GC15\112415 2015-11-24 10-09-11\027F5401.D

Page 3 of 15 EXR/209637 Ver. 1

Sample ID:EX1640458Job Number:W20_9637Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

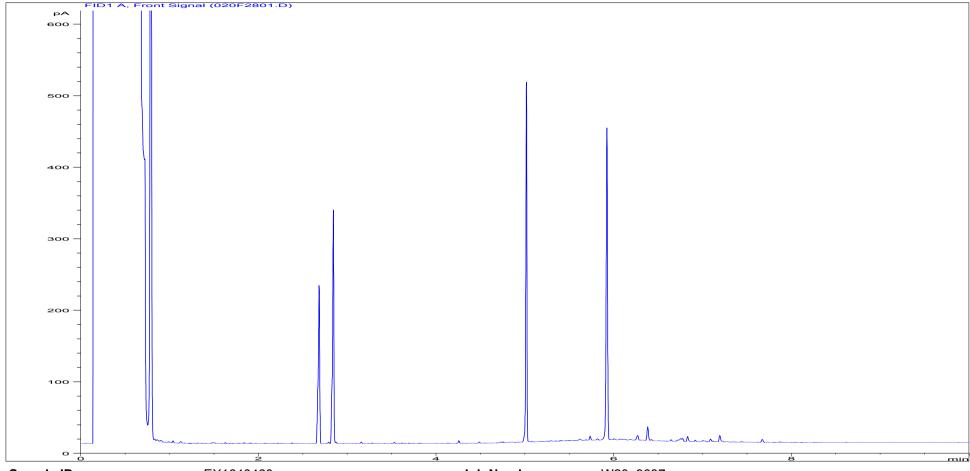
Acquisition Method: TPH_RUNF.M Client Sample Ref: HW 11

Acquisition Date/Time: 25-Nov-15, 01:33:39

Datafile: D:\TES\DATA\Y2015\112415TPH_GC15\112415 2015-11-24 10-09-11\028F5501.D

Page 4 of 15 EXR/209637 Ver. 1

Sample ID:EX1640459Job Number:W20_9637Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

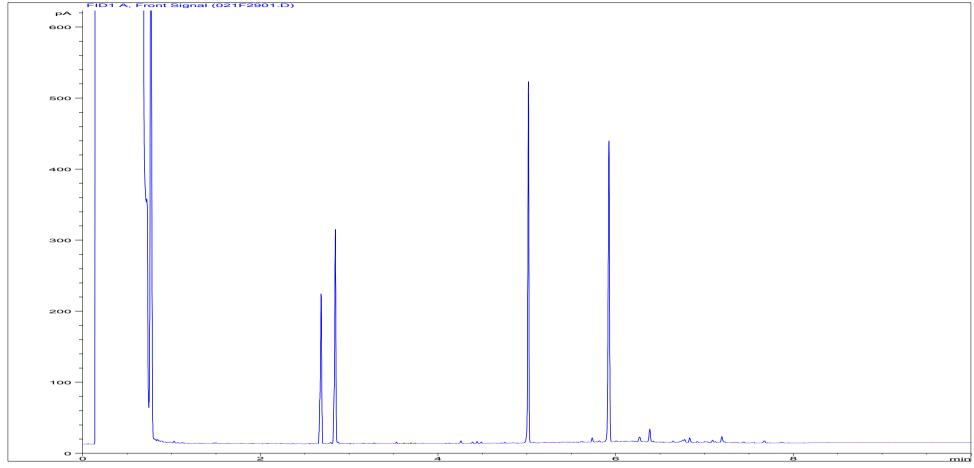
Acquisition Method: TPH_RUNF.M Client Sample Ref: ETF 11

Acquisition Date/Time: 25-Nov-15, 02:58:22

Datafile: D:\TES\DATA\Y2015\112415TPH_GC15\112415 2015-11-24 10-09-11\044F6001.D

Page 5 of 15 EXR/209637 Ver. 1

Sample ID:EX1640460Job Number:W20_9637Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

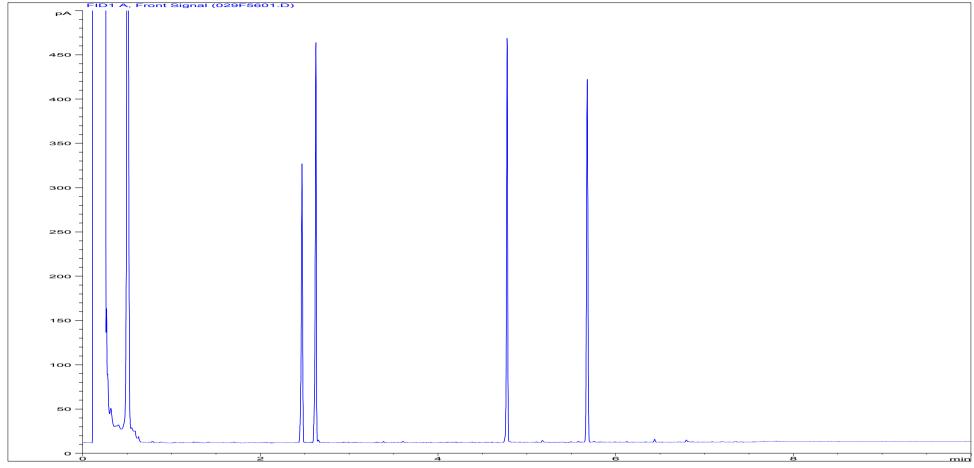
Acquisition Method: TPH_RUNF.M Client Sample Ref: D 11U

Acquisition Date/Time: 26-Nov-15, 17:41:43

Datafile: D:\TES\DATA\Y2015\112615TPH_GC17\112615 2015-11-26 09-09-06\020F2801.D

Page 6 of 15 EXR/209637 Ver. 1

Sample ID:EX1640461Job Number:W20_9637Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

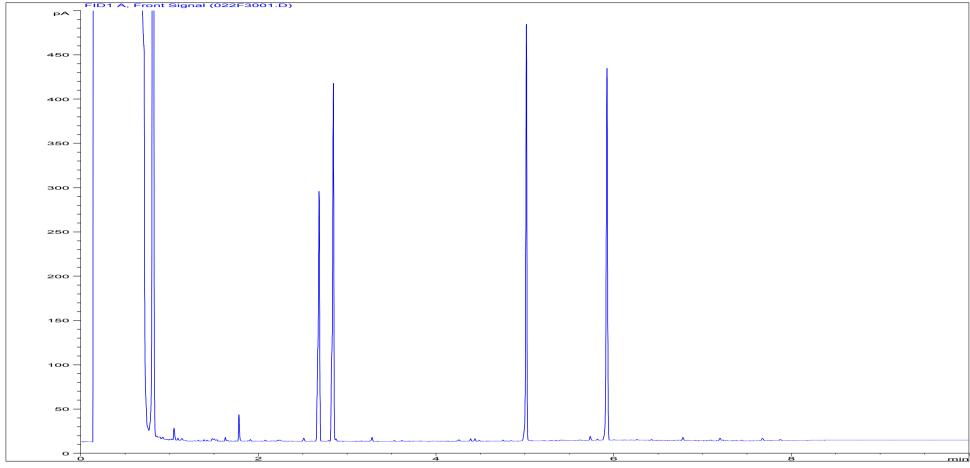
Acquisition Method: TPH_RUNF.M Client Sample Ref: D 11D

Acquisition Date/Time: 26-Nov-15, 18:00:21

Datafile: D:\TES\DATA\Y2015\112615TPH_GC17\112615 2015-11-26 09-09-06\021F2901.D

Page 7 of 15 EXR/209637 Ver. 1

Sample ID:EX1640462Job Number:W20_9637Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

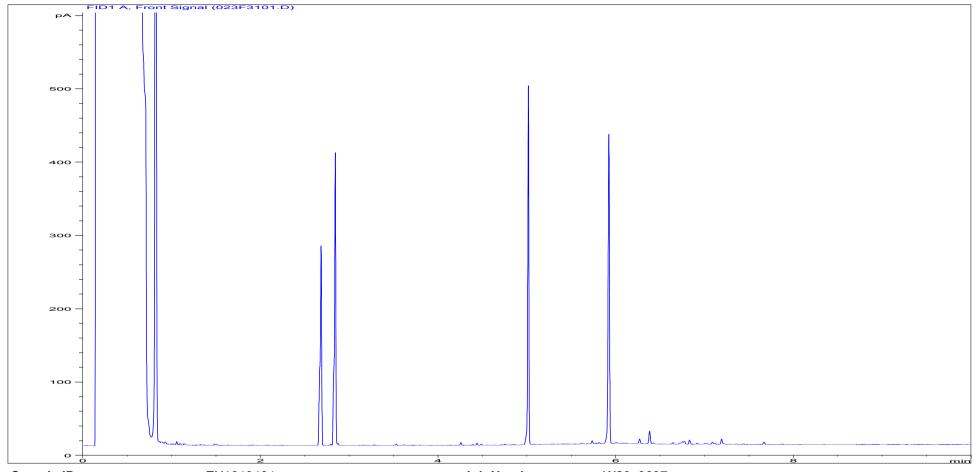
Acquisition Method: TPH_RUNF.M Client Sample Ref: TV 11

Acquisition Date/Time: 25-Nov-15, 01:50:05

Datafile: D:\TES\DATA\Y2015\112415TPH_GC15\112415 2015-11-24 10-09-11\029F5601.D

Page 8 of 15 EXR/209637 Ver. 1

Sample ID:EX1640463Job Number:W20_9637Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: DW 11

Acquisition Date/Time: 26-Nov-15, 18:19:16

Datafile: D:\TES\DATA\Y2015\112615TPH_GC17\112615 2015-11-26 09-09-06\022F3001.D

Page 9 of 15 EXR/209637 Ver. 1

Sample ID:EX1640464Job Number:W20_9637Multiplier:0.005Client:Envireau Water

Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: D 11DD

Acquisition Date/Time: 26-Nov-15, 18:37:58

Datafile: D:\TES\DATA\Y2015\112615TPH_GC17\112615 2015-11-26 09-09-06\023F3101.D

Page 10 of 15 EXR/209637 Ver. 1

GAS ANALYSIS

Customer: ESG - (BEC BRE), Environmental Chemistry

Date Received: 20 November 2015 Date Sampled: Report N° GA01037

Date Analysed: 24 November 2015 Site: Envireau Water

SAMPLE REFERENCE	Analysis % V/V
	Dissolved Methane (CH ₄)†
Method of Analysis	9

1640457	0.0007
1640458	0.0007
1640459	<0.0005
1640462	0.3020

Method of 9 Dissolved Gas (Not UKAS Accredited) Analysis:-

† Not UKAS Accredited

Customer Analytical Requirements

CH₄

Phil Shead

Comment Box
Report No: 209637

Authorised by:

Analyst: Daniel Bignell Issue Date: 24 November 2015

ESG accepts no responsibility for the collection of any of the samples referred to in this report.

Phil Shead, Operations Manager Direct Dial: 01 283 554461

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W209637

Customer Site Report No Envireau Water
Dissolved Gasses in Waters

W209637

Consignment No W96113
Date Logged 19-Nov-2015

Report Due 26-Nov-2015

								טם זונ													
			MethodID	CUSTSERV	DISGAS1	ICPWATVAR								KONENS	TPHFID	WSLM12			WSLM2	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Report A	^Dissolved Methane	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as Al (Dissolved) VAR	Chloride as Cl (Kone)	ТРН GC	P Alkalinity as CaCO3	Total Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
						✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓		✓
EX/1640457	WF 11	Groundwater	17/11/15																		
EX/1640458	HW 11	Groundwater	17/11/15																		
EX/1640459	ETF 11	Groundwater	17/11/15																		
EX/1640460	D 11U	Surface Water	17/11/15																		
EX/1640461	D 11D	Surface Water	17/11/15																		
EX/1640462	TV 11	Groundwater	17/11/15																		
EX/1640463	DW 11	Surface Water	17/11/15																		
EX/1640464	D 11DD	Surface Water	17/11/15																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: W/EXR/209637

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
TPHFID	EX1640460 EX1640461 EX1640463 EX1640464	This sample has been taken from a non standard inorganic bottle. Accreditation has therefore been removed from these samples. These circumstances should be taken into consideration when utilising the data.

Report Number: W/EXR/209637

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by GCFID
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite

TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- **I.S(g)** Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 15 of 15 EXR/209637 Ver. 1

Sample Descriptions

Client : Envireau Water

Site: Dissolved Gasses in Waters

Report Number: W20_9637

Lab ID Number	Client ID	Description
EX/1640457	WF 11	Groundwater
EX/1640458	HW 11	Groundwater
EX/1040436	TVV 11	Groundwater
EX/1640459	ETF 11	Groundwater
EX/1640460	D 11U	Surface Water
EX/1640461	D 11D	Surface Water
EX/1640462	TV 11	Groundwater
EX/1640463	DW 11	Surface Water
EX/1640464	D 11DD	Surface Water

Appendix A Page 1 of 1 27/11/2015EXR/209637 Ver. 1

Water Analysis Test Certificate

Round 12

Our Ref: EXR/211176 (Ver. 1)

Your Ref:

December 18, 2015 **Environmental Chemistry** ESG Bretby Business Park Ashby Road Burton-on-Trent Staffordshire

Armelle Bonneton Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire **DE72 3NB**

Telephone: 01283 554400 Facsimile: 01283 554422

DE15 0YZ

For the attention of Armelle Bonneton

Dear Armelle Bonneton

Sample Analysis - Dissolved Gasses in Waters

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

L Thompson **Project Co-ordinator** 01283 554467

TEST REPORT

Report No. EXR/211176 (Ver. 1)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: Dissolved Gasses in Waters

The 8 samples described in this report were registered for analysis by ESG on 14-Dec-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 18-Dec-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Table of TPH Texas banding (0.01) (Page 4)
GC-FID Chromatograms (Pages 5 to 12)
Analytical and Deviating Sample Overview (Pages 13 to 14)
Table of Method Descriptions (Page 15)
Table of Report Notes (Page 16)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG :

Declan Burns

Managing Director Multi-Sector Services

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 18-Dec-2015

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	Mathad F	Method Codes : Reporting Limits :	WSLM3	WSLM2 100	WSLM12	WSLM12	KONENS	ICPWATVAR 3	ICPWATVAR	ICPWATVAR	ICPWATVAF	R ICPWATVAR	0.01	ICPWATVAR 0.01	TPHFID 0.01	TPHFID 0.01	WSLM27 5	ICPWATVAR 0.01
		KAS Accredited :	Yes	Yes	Yes	Yes	1 Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Bicarbonate Alkalinity as CaCO3 w	Chloride as Cl w	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Dissolved) a	Potassium as K (Dissolved) a	Manganese as MN (Dissolved) a	Iron as Fe (Dissolved) a	Carbon Banding	ТРН ӨС	Total Dissolved Solids w	Aluminium as Al (Dissolved) a
1647466	WF/12	10-Dec-15 13:45	7.8	940	433	433	28	32	35	8	184	3	0.34	0.06	Req	0.11	652	<0.01
1647467	HW/12	10-Dec-15 16:15	7.8	825	402	402	23	18	29	6	169	3	0.30	0.05	Req	0.02	612	<0.01
1647468	ETF/12	10-Dec-15 11:30	8.0	3100	715	715	114	749	48	26	665	6	0.03	0.07	Req	0.03	2100	0.01
1647469	D/12U	10-Dec-15 13:00	7.9	885	267	267	69	75	162	9	23	8	<0.01	0.17	Req	0.03	697	0.02
1647470	D/12D	10-Dec-15 12:30	8.1	765	233	233	58	64	139	7	21	6	<0.01	0.17	Req	0.03	646	0.04
1647471	TV/12	10-Dec-15 16:45	8.0	1610	643	643	49	153	23	6	379	4	0.03	0.04	Req	0.12	1020	<0.01
1647472	DW/12	10-Dec-15 17:30	7.4	<100	8	8	<1	<3	<1	<1	<1	<1	<0.01	<0.01	Req	0.02	<5	<0.01
1647473	FW/12	10-Dec-15 14:00	7.8	932	430	430	28	30	35	8	185	3	0.34	0.06	Req	0.03	625	0.01
Bri Bu T	retby Business Park, Ashby Road urton-on-Trent, Staffordshire, DE15 0YZ Fel +44 (0) 1283 554420 Fax +44 (0) 1283 554422		Client N Contact		Armelle B		Gasse	es in V	N ater:			Date Pri Report N	nted Number	ple Ana	18-	-Dec-2015 XR/211176		

Page 2 of 16 Where individual results are flagged see report notes for status. EXR/211176 Ver. 1

		Units: L	µg/l											
	Method (codes : DIS	GAS1											
	Method Reporting I UKAS Accre	imits :	6											
	UKAS Accre	edited :												
LAB ID Number EX/	Client Sample Description		^Dissolved Methane											
1647466	WF/12 10-Dec-15	13:45	6											
1647467	HW/12 10-Dec-19	16:15	5											
1647468	ETF/12 10-Dec-15	11:30	314											
1647469	D/12U 10-Dec-15	13:00												
1647470	D/12D 10-Dec-15	12:30												
1647471	TV/12 10-Dec-15	16:45 2	136											
1647472	DW/12 10-Dec-15	17:30												
1647473	FW/12 10-Dec-19		14											
	ESG 😥		ient Name	Envirea	u Water					Sam	ple Ana	lysis		
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		-			Gasse	es in V	Vater	S	Date Printed Report Number Table Number			Dec-2015 XR/211176 1	

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

Customer and Site Details: Envireau Water: Dissolved Gasses in Waters

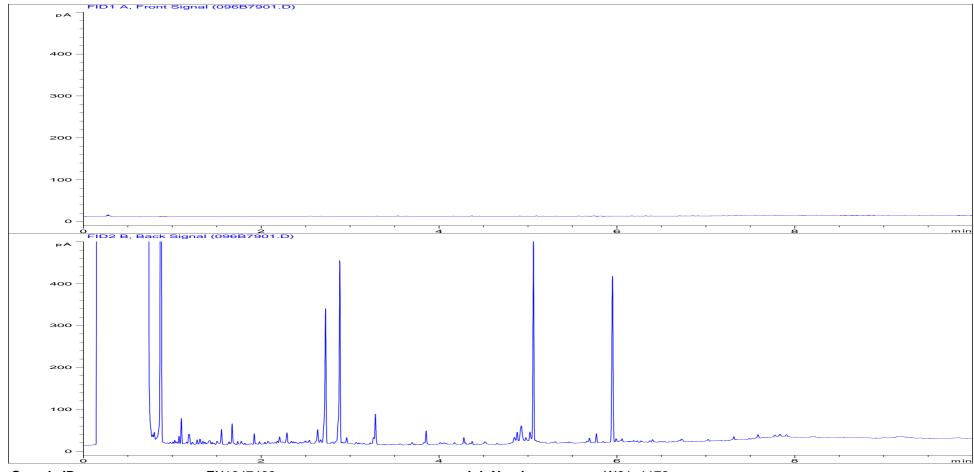
Job Number: W21_1176
QC Batch Number: 150852

Directory: D:\TES\DATA\Y2015\121615TPH_GC15\121615A 2015-12-17 08-45-24\041B8601.D

Method: Bottle

Matrix: Water

Date Booked in: 14-Dec


Date Booked in: 14-Dec-15

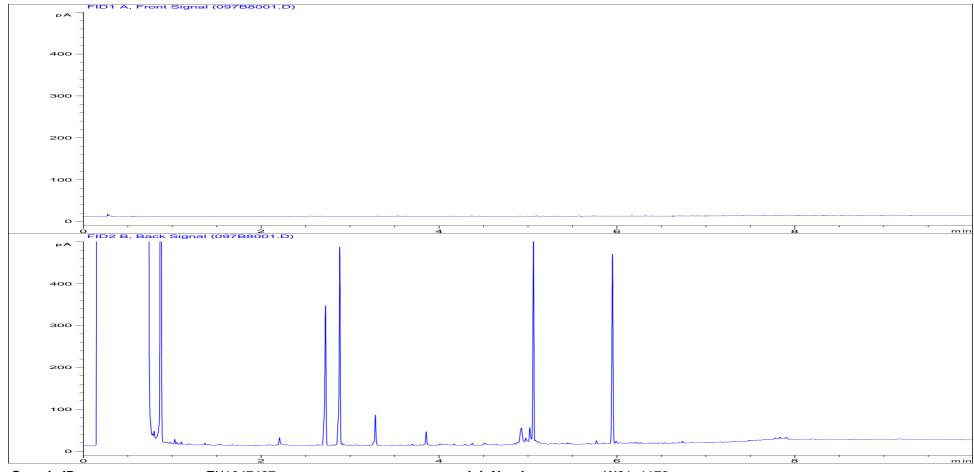
Date Extracted: 17-Dec-15

Date Analysed: 18-Dec-15, 08:47:26

* Sample data with an asterisk are not UKAS accredited.

			C	concentration, (mg	/I)	
Sample ID	Client ID	>C8 - C10	>C10 - C12	>C12 - C16	>C16 - C21	>C21 - C35
EX1647466	WF/12	0.012	0.013	0.022	0.01	0.038
EX1647467	HW/12	<0.01	<0.01	<0.01	<0.01	<0.01
EX1647468	ETF/12	<0.01	<0.01	<0.01	<0.01	0.012
EX1647469	D/12U	<0.01	<0.01	<0.01	<0.01	0.016
EX1647470	D/12D	<0.01	<0.01	<0.01	<0.01	0.018
EX1647471	TV/12	<0.01	<0.01	<0.01	0.011	0.088
EX1647472	DW/12	<0.01	<0.01	<0.01	<0.01	<0.01
EX1647473	FW/12	<0.01	<0.01	<0.01	<0.01	0.015

Sample ID:EX1647466Job Number:W21_1176Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

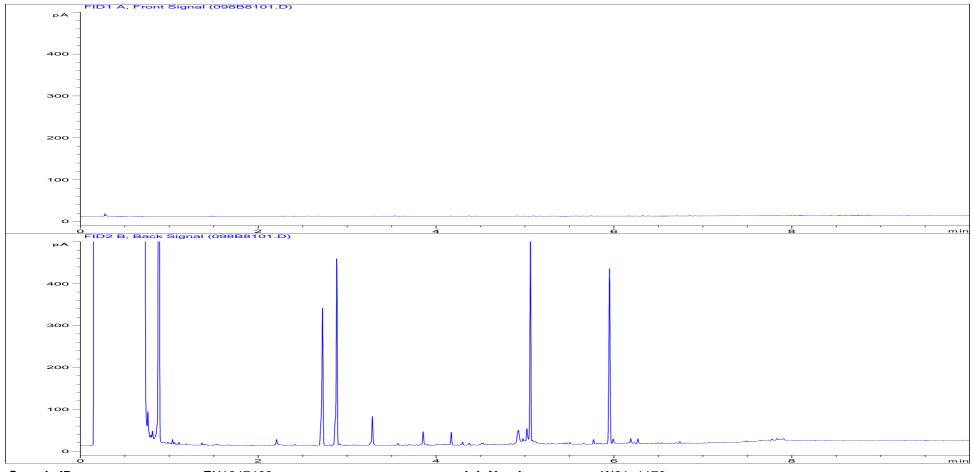
Acquisition Method: TPH_RUNF.M Client Sample Ref: WF/12

Acquisition Date/Time: 18-Dec-15, 06:52:40

Datafile: D:\TES\DATA\Y2015\121615TPH_GC15\121615A 2015-12-17 08-45-24\096B7901.D

Page 5 of 16 EXR/211176 Ver. 1

Sample ID:EX1647467Job Number:W21_1176Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

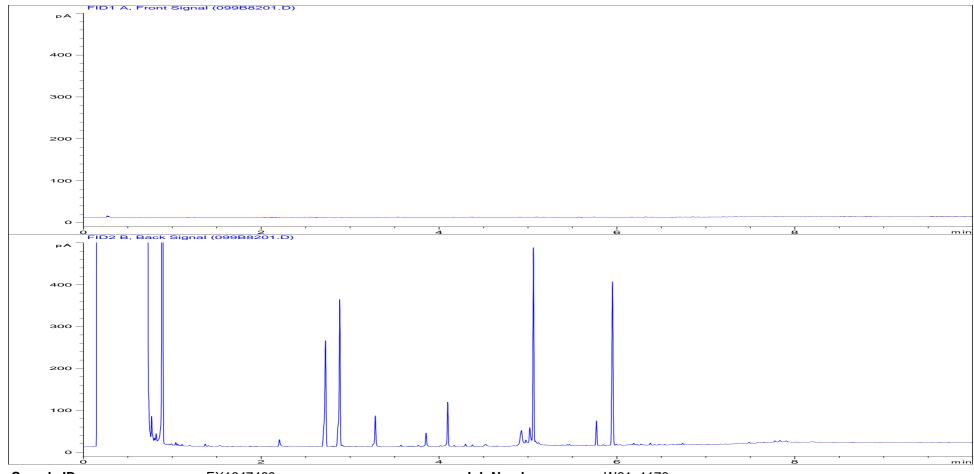
Acquisition Method: TPH_RUNF.M Client Sample Ref: HW/12

Acquisition Date/Time: 18-Dec-15, 07:08:56

Datafile: D:\TES\DATA\Y2015\121615TPH_GC15\121615A 2015-12-17 08-45-24\097B8001.D

Page 6 of 16 EXR/211176 Ver. 1

Sample ID:EX1647468Job Number:W21_1176Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

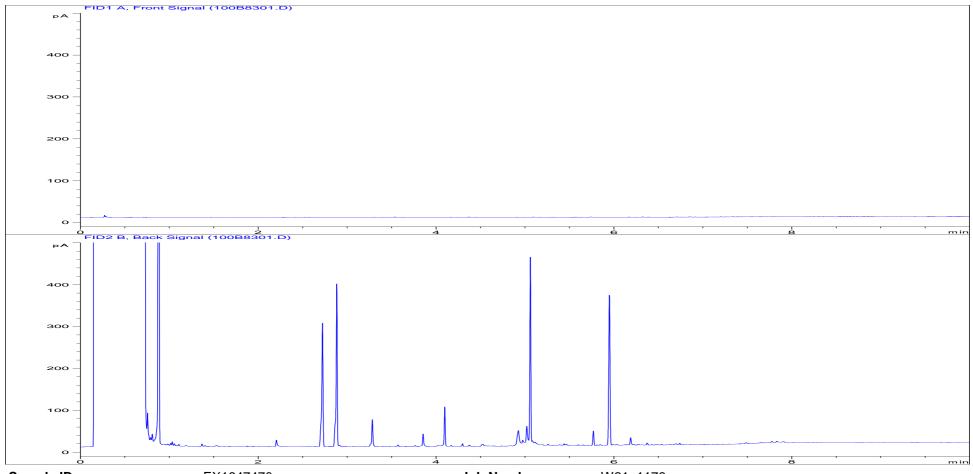
Acquisition Method: TPH_RUNF.M Client Sample Ref: ETF/12

Acquisition Date/Time: 18-Dec-15, 07:25:20

Datafile: D:\TES\DATA\Y2015\121615TPH_GC15\121615A 2015-12-17 08-45-24\098B8101.D

Page 7 of 16 EXR/211176 Ver. 1

Sample ID:EX1647469Job Number:W21_1176Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

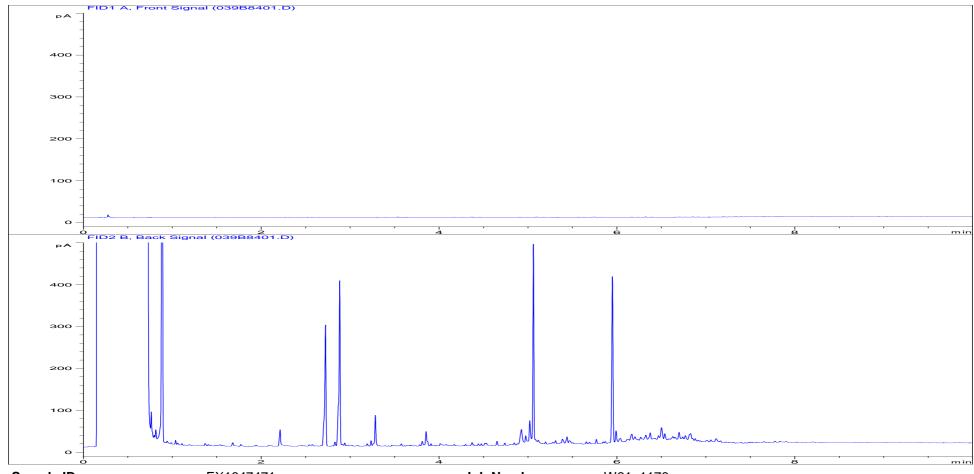
Acquisition Method: TPH_RUNF.M Client Sample Ref: D/12U

Acquisition Date/Time: 18-Dec-15, 07:41:50

Datafile: D:\TES\DATA\Y2015\121615TPH_GC15\121615A 2015-12-17 08-45-24\099B8201.D

Page 8 of 16 EXR/211176 Ver. 1

Sample ID:EX1647470Job Number:W21_1176Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: D/12D

Acquisition Date/Time: 18-Dec-15, 07:58:16

Datafile: D:\TES\DATA\Y2015\121615TPH_GC15\121615A 2015-12-17 08-45-24\100B8301.D

Page 9 of 16 EXR/211176 Ver. 1

Sample ID:EX1647471Job Number:W21_1176Multiplier:0.005Client:Envireau Water

Dilution: 1 **Site:** Dissolved Gasses in Waters

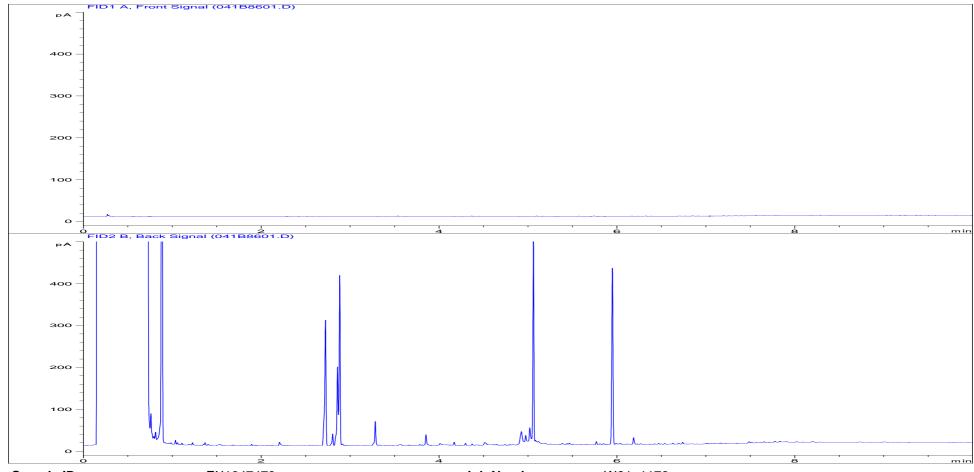
Acquisition Method: TPH_RUNF.M Client Sample Ref: TV/12

Acquisition Date/Time: 18-Dec-15, 08:14:36

Datafile: D:\TES\DATA\Y2015\121615TPH_GC15\121615A 2015-12-17 08-45-24\039B8401.D

Page 10 of 16 EXR/211176 Ver. 1

Sample ID:EX1647472Job Number:W21_1176Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: DW/12

Acquisition Date/Time: 18-Dec-15, 08:30:59

Datafile: D:\TES\DATA\Y2015\121615TPH_GC15\121615A 2015-12-17 08-45-24\040B8501.D

Page 11 of 16 EXR/211176 Ver. 1

Sample ID:EX1647473Job Number:W21_1176Multiplier:0.005Client:Envireau Water

Dilution: 1 **Site:** Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: FW/12

Acquisition Date/Time: 18-Dec-15, 08:47:26

Datafile: D:\TES\DATA\Y2015\121615TPH_GC15\121615A 2015-12-17 08-45-24\041B8601.D

Page 12 of 16 EXR/211176 Ver. 1

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W211176

Customer Envireau Water

Site Dissolved Gasses in Waters

Report No W211176

Consignment No W97319
Date Logged 14-Dec-2015

Report Due 21-Dec-2015

							rtopt	אני בייני	IE Z 1-	D00 /	2010											
			MethodID	CUSTSERV	DISGAS1	ICPWATVAR								KONENS	TPHFID		WSLM12			WSLM2	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Report A	^Dissolved Methane	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as Al (Dissolved) VAR	Chloride as CI (Kone)	TPH Carbon Banding	ТРН GC	P Alkalinity as CaCO3	Total Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
						✓	✓	✓	✓	✓	✓	✓		✓	*	✓	✓	*	✓	✓		✓
EX/1647466	WF/12	Groundwater	10/12/15											Е								
EX/1647467	HW/12	Groundwater	10/12/15																			
EX/1647468	ETF/12	Groundwater	10/12/15											Е								
EX/1647469	D/12U	Surface Water	10/12/15											Е								
EX/1647470	D/12D	Surface Water	10/12/15											Е								
EX/1647471	TV/12	Groundwater	10/12/15																			
EX/1647472	DW/12	Surface Water	10/12/15																			
EX/1647473	FW/12	Groundwater	10/12/15											Е								

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W211176

Customer Envireau Water

Site Dissolved Gasses in Waters

Report No W211176

Consignment No W97319
Date Logged 14-Dec-2015

Report Due 21-Dec-2015

			MethodID	WSLM3
ID Number	Description	Matrix Type	Sampled	pH units
				✓
EX/1647466	WF/12	Groundwater	10/12/15	
EX/1647467	HW/12	Groundwater	10/12/15	
EX/1647468	ETF/12	Groundwater	10/12/15	
EX/1647469	D/12U	Surface Water	10/12/15	
EX/1647470	D/12D	Surface Water	10/12/15	
EX/1647471	TV/12	Groundwater	10/12/15	
EX/1647472	DW/12	Surface Water	10/12/15	
EX/1647473	FW/12	Groundwater	10/12/15	

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: W/EXR/211176

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by GCFID
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- $\P \ {\sf Samples \ submitted \ for \ this \ analyte \ were \ not \ preserved \ on \ site \ in \ accordance \ with \ laboratory \ protocols.}$

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 16 of 16 EXR/211176 Ver. 1

Sample Descriptions

Client : Envireau Water

Site: Dissolved Gasses in Waters

Report Number: W21_1176

Lab ID Nomban	Oli ID	Description
Lab ID Number	Client ID	Description
EX/1647466	WF/12	Groundwater
EX/1647467	HW/12	Groundwater
EX/1647468	ETF/12	Groundwater
EX/1647469	D/12U	Surface Water
EX/1647470	D/12D	Surface Water
EX/1647471	TV/12	Groundwater
EX/1047471	1 V/12	Giuniavaei
EX/1647472	DW/12	Surface Water
EX/1647473	FW/12	Groundwater
	+	
	+	
	<u> </u>	

Appendix A Page 1 of 1 18/12/2015EXR/211176 Ver. 1

Water Analysis Test Certificate

Round 13

Our Ref: EXR/212494 (Ver. 1)

Your Ref:

January 21, 2016

Armelle Bonneton Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Environmental Chemistry
ESG
Bretby Business Park
Ashby Road
Burton-on-Trent
Staffordshire

DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Armelle Bonneton

Dear Armelle Bonneton

Sample Analysis - Dissolved Gasses in Waters

Samples from the above site have been analysed in accordance with the schedule supplied.

The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

L Thompson
Project Co-ordinator

01283 554467

TEST REPORT

Report No. EXR/212494 (Ver. 1)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: Dissolved Gasses in Waters

The 8 samples described in this report were registered for analysis by ESG on 14-Jan-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 21-Jan-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2) GC-FID Chromatograms (Pages 3 to 10) Analytical and Deviating Sample Overview (Page 11) Table of Method Descriptions (Page 12) Table of Report Notes (Page 13) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG :

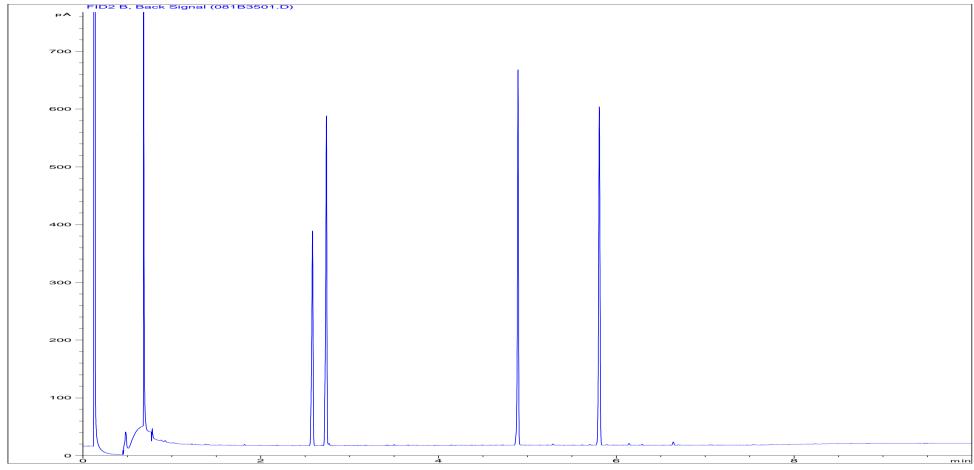
Declan Burns Managing Director
Multi-Sector Services

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Page 1 of 13


Date of Issue: 21-Jan-2016

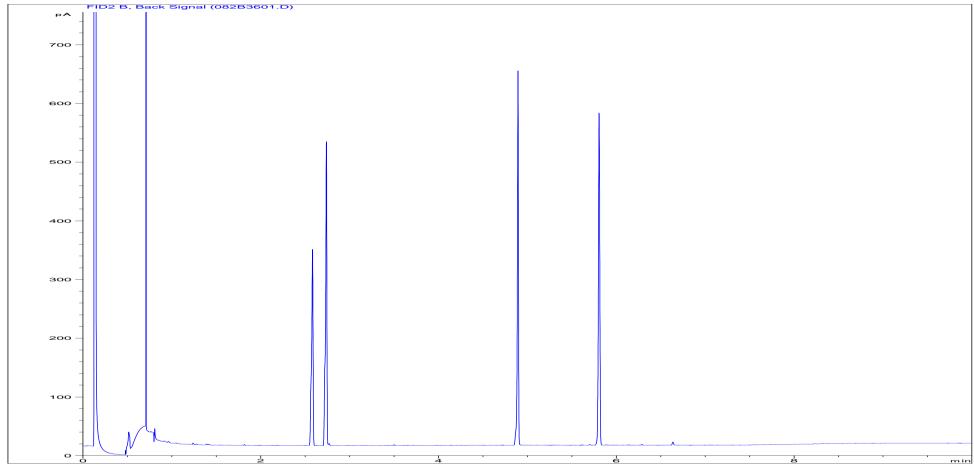
		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	μg/l
		Method Codes:	WSLM3	WSLM2 100	WSLM12	WSLM12	KONENS	ICPWATVAR 3	ICPWATVAR 1	ICPWATVAR 1	ICPWATVAR	ICPWATVAR			TPHFID 0.01	WSLM27	ICPWATVAR	
		porting Limits : AS Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	0.01 Yes	0.01 Yes	Yes	No	0.01 No	6
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Bicarbonate Alkalinity as CaCO3 w	Chloride as Cl w	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Dissolved) a	Potassium as K (Dissolved) a	Manganese as MN (Dissolved) a	Iron as Fe (Dissolved) a	трн сс	Total Dissolved Solids w	Aluminium as Al (Dissolved) a	^Dissolved Methane
1652839	WF/13	12-Jan-16 12:30	7.6	918	444	444	28	30	34	8	179	3	0.34	0.08	0.01	571	<0.01	6
1652840	HW/13	12-Jan-16 13:30	7.6	828	414	414	22	17	28	6	162	3	0.30	0.05	<0.01	484	<0.01	5
1652841	ETF/13	12-Jan-16 13:30	7.8	2880	737	737	114	737	48	26	592	6	0.02	0.07	<0.01	2000	0.02	<4
1652842	D/13U	12-Jan-16 11:45	7.8	709	246	246	49	45	122	7	19	7	0.01	0.15	0.02	491	0.02	
1652843	D/13D	12-Jan-16 11:30	7.9	659	244	244	45	40	117	6	18	6	<0.01	0.14	0.02	457	0.03	
1652844	TV/13	12-Jan-16 11:30	7.7	1590	647	647	48	147	22	6	387	4	0.04	0.03	<.01	983	0.01	1458
1652845 1652846	DW/13 WH/13	12-Jan-16 12:45 12-Jan-16 13:45	6.3 7.6	<100 826	0 427	0 427	23	<3 17	<1 27	<1 6	<1 159	<1	<0.01	<0.01 0.05	0.01	6 487	<0.01	9
'	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ		Client N Contact		Armelle B							Date Pri	nted	ole Ana	21-	-Jan-2016 XR/212494		
	Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422				Disso	Ived C	Sasse	es in V	Vaters	5		Table Nu			L/	1		

Where individual results are flagged see report notes for status.

Page 2 of 13

EXR/212494 Ver. 1

Sample ID:EX1652839Job Number:W21_2494Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

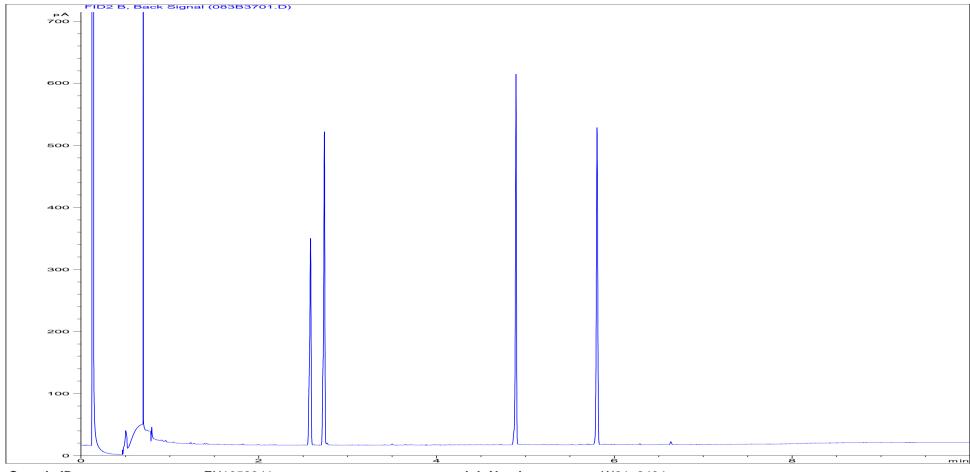
Acquisition Method:TPH_RUNF.MClient Sample Ref:WF/13

Acquisition Date/Time: 16-Jan-16, 02:57:43

Datafile: D:\TES\DATA\Y2016\011516TPH_GC17\011516 2016-01-15 16-36-39\081B3501.D

Page 3 of 13 EXR/212494 Ver. 1

Sample ID:EX1652840Job Number:W21_2494Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

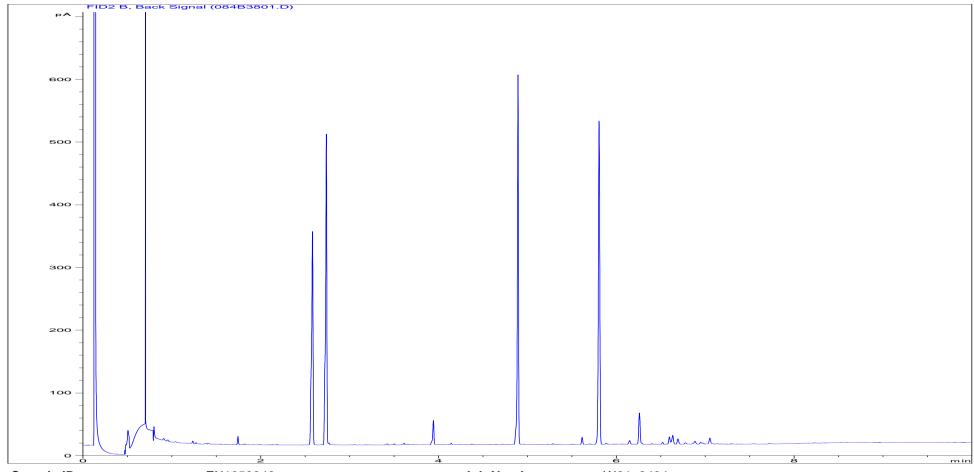
Acquisition Method: TPH_RUNF.M Client Sample Ref: HW/13

Acquisition Date/Time: 16-Jan-16, 03:15:19

Datafile: D:\TES\DATA\Y2016\011516TPH_GC17\011516 2016-01-15 16-36-39\082B3601.D

Page 4 of 13 EXR/212494 Ver. 1

Sample ID:EX1652841Job Number:W21_2494Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

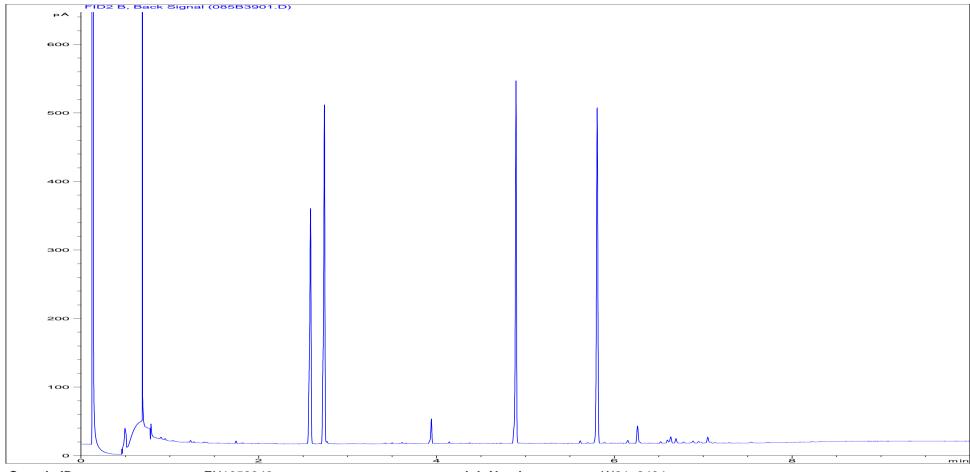
Acquisition Method: TPH_RUNF.M Client Sample Ref: ETF/13

Acquisition Date/Time: 16-Jan-16, 03:32:54

Datafile: D:\TES\DATA\Y2016\011516TPH_GC17\011516 2016-01-15 16-36-39\083B3701.D

Page 5 of 13 EXR/212494 Ver. 1

Sample ID:EX1652842Job Number:W21_2494Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

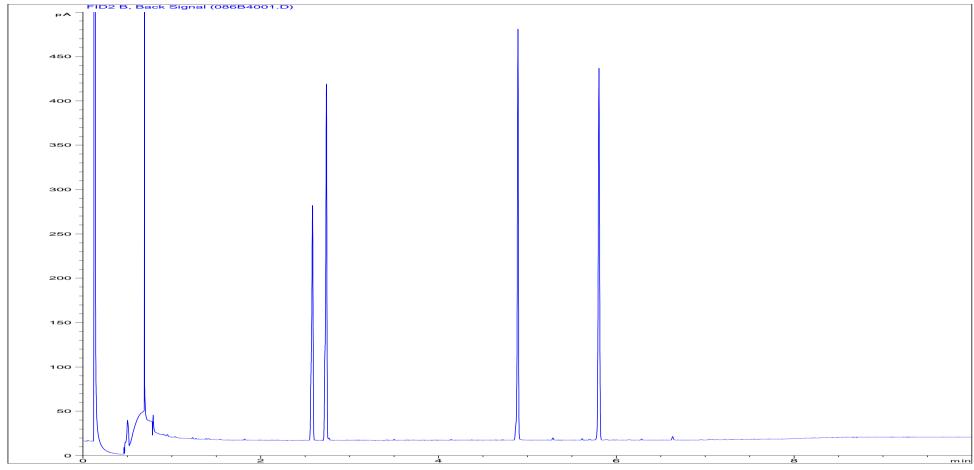
Acquisition Method: TPH_RUNF.M Client Sample Ref: D/13U

Acquisition Date/Time: 16-Jan-16, 03:50:43

Datafile: D:\TES\DATA\Y2016\011516TPH_GC17\011516 2016-01-15 16-36-39\084B3801.D

Page 6 of 13 EXR/212494 Ver. 1

Sample ID:EX1652843Job Number:W21_2494Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

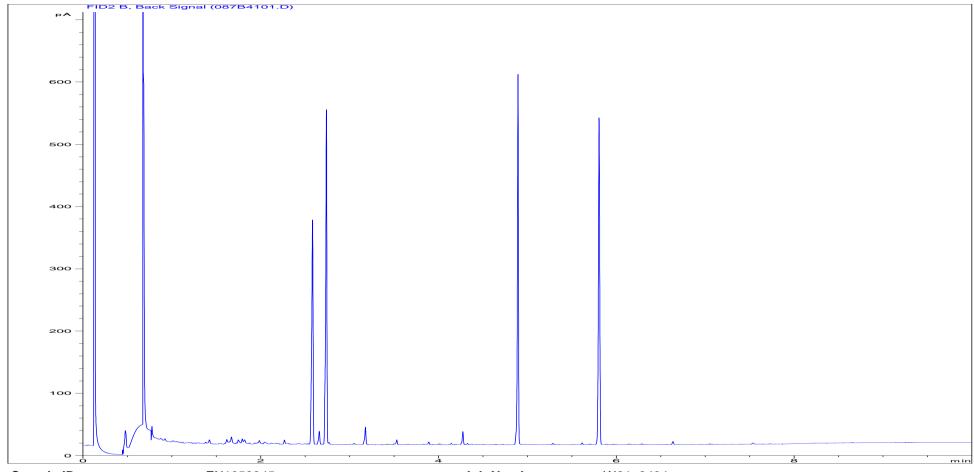
Acquisition Method: TPH_RUNF.M Client Sample Ref: D/13D

Acquisition Date/Time: 16-Jan-16, 04:08:18

Datafile: D:\TES\DATA\Y2016\011516TPH_GC17\011516 2016-01-15 16-36-39\085B3901.D

Page 7 of 13 EXR/212494 Ver. 1

Sample ID:EX1652844Job Number:W21_2494Multiplier:0.005Client:Envireau Water


Dilution: 1 Site: Dissolved Gasses in Waters

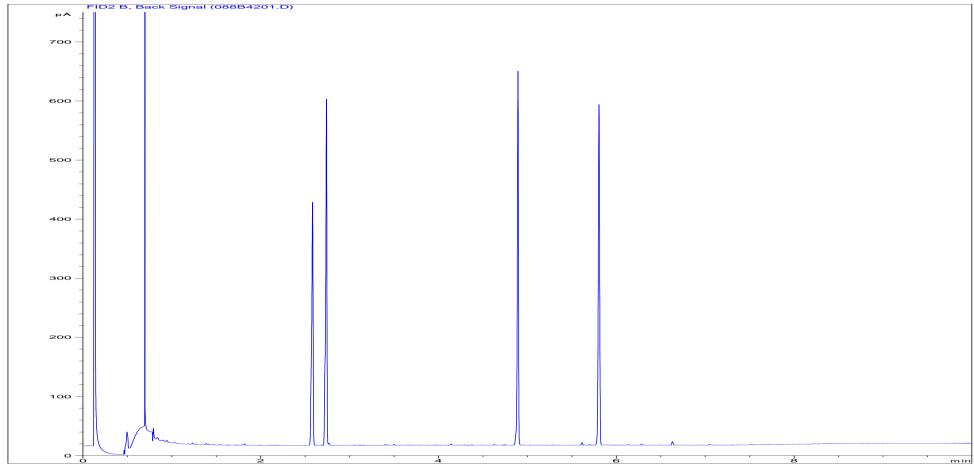
Acquisition Method: TPH_RUNF.M Client Sample Ref: TV/13

Acquisition Date/Time: 16-Jan-16, 04:25:52

Datafile: D:\TES\DATA\Y2016\011516TPH_GC17\011516 2016-01-15 16-36-39\086B4001.D

Page 8 of 13 EXR/212494 Ver. 1

Sample ID:EX1652845Job Number:W21_2494Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: DW/13

Acquisition Date/Time: 16-Jan-16, 04:43:50

Datafile: D:\TES\DATA\Y2016\011516TPH_GC17\011516 2016-01-15 16-36-39\087B4101.D

Page 9 of 13 EXR/212494 Ver. 1

Sample ID:EX1652846Job Number:W21_2494Multiplier:0.005Client:Envireau Water

Dilution: 1 Site: Dissolved Gasses in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: WH/13

Acquisition Date/Time: 16-Jan-16, 05:01:12

Datafile: D:\TES\DATA\Y2016\011516TPH_GC17\011516 2016-01-15 16-36-39\088B4201.D

Page 10 of 13 EXR/212494 Ver. 1

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W212494

Customer Envireau Water Site Dissolved Gass

Dissolved Gasses in Waters

Report No W212494

Consignment No W98375
Date Logged 14-Jan-2016

Report Due 21-Jan-2016

				S	Ë	ICPWA			16 21-					Š	Ŧ	×			8	×	\$
			MethodID	CUSTSERV	DISGAS1	WATVAF								KONENS	TPHFID	WSLM12			WSLM2	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Report A	^Dissolved Methane	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as Al (Dissolved) VAR	Chloride as Cl (Kone)	трн дс	P Alkalinity as CaCO3	Total Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
						√	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓		✓
EX/1652839	WF/13	Groundwater	12/01/16																		
EX/1652840	HW/13	Groundwater	12/01/16																		
EX/1652841	ETF/13	Groundwater	12/01/16																		
EX/1652842	D/13U	Surface Water	12/01/16																		
EX/1652843	D/13D	Surface Water	12/01/16																		
EX/1652844		Groundwater	12/01/16																		
EX/1652845	DW/13	Surface Water	12/01/16													·			·		
EX/1652846	WH/13	Groundwater	12/01/16																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- B The sample was received without the correct preservation for this analysis
- C Headspace present in the sample containerD The sampling date was not supplied so hold
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

- Analysis Required
- Analysis dependant upon trigger result Note: due date may be affected if triggered
- No analysis scheduled
- Analysis Subcontracted Note: due date may vary

Report Number: W/EXR/212494

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by GCFID
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.

 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- P Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 13 of 13 EXR/212494 Ver. 1

Sample Descriptions

Client : Envireau Water

Site: Dissolved Gasses in Waters

Report Number: W21_2494

EX/1652839 EX/1652840 EX/1652841 EX/1652842 EX/1652843 EX/1652844 EX/1652845 EX/1652846	Client ID WF/13 HW/13 ETF/13 D/13U D/13D	Description Groundwater Groundwater Groundwater
EX/1652840 EX/1652841 EX/1652842 EX/1652843 EX/1652844 EX/1652845	HW/13 ETF/13 D/13U	Groundwater Groundwater
EX/1652841 EX/1652842 EX/1652843 EX/1652844 EX/1652845	ETF/13 D/13U	Groundwater
EX/1652842 EX/1652843 EX/1652844 EX/1652845	D/13U	
EX/1652843 EX/1652844 EX/1652845	D/13U D/13D	
EX/1652844 EX/1652845	D/13D	Surface Water
EX/1652845	57.105	Surface Water
EX/1652845 EX/1652846	TV/13	Groundwater
EX/1652846	DW/13	Surface Water
	WH/13	Groundwater

Appendix A Page 1 of 1 21/01/2016EXR/212494 Ver. 1

Water Analysis Test Certificate

Round 14

Our Ref: EXR/214925 (Ver. 1)

Your Ref:

February 26, 2016

Armelle Bonneton Envireau Water Cedars Farm Barn **Market Street** Draycott Derbyshire **DE72 3NB**

Environmental Chemistry ESG **Bretby Business Park** Ashby Road Burton-on-Trent Staffordshire

Telephone: 01283 554400 Facsimile: 01283 554422

DE15 0YZ

For the attention of Armelle Bonneton

Dear Armelle Bonneton

Sample Analysis - Dissolved Gases in Waters

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

L Thompson **Project Co-ordinator** 01283 554467

> Environmental Chemistry, ESG, P.O. Box 100, Burton-upon-trent, DE15 0XD Tel: 01283 554400 Fax: 01283 554422 Environmental Scientifics Group Limited. EXR/214925 Ver. 1

TEST REPORT

Report No. EXR/214925 (Ver. 1)

Envireau Water Cedars Farm Barn Market Street Draycott Derbyshire DE72 3NB

Site: Dissolved Gases in Waters

The 8 samples described in this report were registered for analysis by ESG on 20-Feb-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 26-Feb-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Table of TPH Texas banding (0.01) (Page 4)
GC-FID Chromatograms (Pages 5 to 12)
Analytical and Deviating Sample Overview (Pages 13 to 14)
Table of Method Descriptions (Page 15)
Table of Report Notes (Page 16)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:

Declan Burns

Managing Director
Multi-Sector Services

ae

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 26-Feb-2016

		Units :	pH units	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	Moth od E	Method Codes:	WSLM3	WSLM2	WSLM12	WSLM12	KONENS	ICPWATVAR	ICPWATVAR 1	ICPWATVAR 1	ICPWATVAR	ICPWATVAR			TPHFID	TPHFID	WSLM27	ICPWATVAR
		Reporting Limits : IKAS Accredited :	Yes	100 Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	0.01 Yes	0.01 Yes	0.01 Yes	0.01 Yes	No	0.01 No
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Conductivity uS/cm @ 25C w	Total Alkalinity as CaCO3 w	Bicarbonate Alkalinity as CaCO3 w	Chloride as Cl w	Total Sulphur as SO4 (Dissolved) a	Calcium as Ca (Dissolved) a	Magnesium as Mg (Dissolved) a	Sodium as Na (Dissolved) a	Potassium as K (Dissolved) a	Manganese as MN (Dissolved) a	Iron as Fe (Dissolved) a	Carbon Banding	TPH GC	Total Dissolved Solids w	Aluminium as Al (Dissolved) a
1663325	WF/14	17-Feb-16 10:50	7.9	950	463	463	28	30	34	8	175	3	0.34	0.06	Req	<0.01	530	<0.01
1663326	ETF/14	17-Feb-16 10:20	7.9	3160	680	680	106	830	69	33	597	7	0.01	0.08	Req	<0.01	2100	0.02
1663327	D/14U	17-Feb-16 12:00	7.3	304	94	94	24	11	43	2	7	4	0.02	1.21	Req	0.04	180	0.15
1663328	DU/14	17-Feb-16 12:15	7.3	301	93	93	24	11	44	2	7	4	<0.01	1.34	Req	0.05	170	0.17
1663329	D/14D	17-Feb-16 11:45	7.4	311	106	106	23	11	45	2	7	4	<0.01	0.95	Req	0.06	180	0.11
1663330	TV/14	17-Feb-16 13:00	7.8	1640	650	650	47	152	23	6	365	4	0.04	0.04	Req	0.01	950	<0.01
1663331 1663332	HW/14 DW/14	17-Feb-16 13:30	7.8 6.3	837 <100	417	417	22	17	29	6	162	3	0.29 <0.01	0.06 <0.01	Req Req	0.01 <0.01	450	<0.01
	Bretby Business Park, Ashby Road		Client Name Envireau Water Contact Armelle Bonneton Date Printed 25-Feb-2016															
	Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422				Disso	olved	Gase	s in W	aters			Report N Table Nu			E)	XR/214925 1	-	

	Matha	Units: Method Codes:	DISGAS1									
	Method	I Reporting Limits : UKAS Accredited :	6									
LAB ID Number EX/	Client Sample Description	Sample Date	^Dissolved Methane									
1663325	WF/14	17-Feb-16 10:50	<4									
1663326	ETF/14	17-Feb-16 10:20	<4									
1663327		17-Feb-16 12:00										
1663328		17-Feb-16 12:15										
1663329		17-Feb-16 11:45										
1663330		17-Feb-16 13:00	1573									
1663331 1663332		17-Feb-16 13:30 17-Feb-16 13:15	14									
	ESG &			ame	Envireau Water Armelle Bonneton				Samı	ple Analysis		
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422				Dissolved Gase	s in W	aters	Date Prin Report N Table Nu	lumber		-Feb-2016 XR/214925 1	

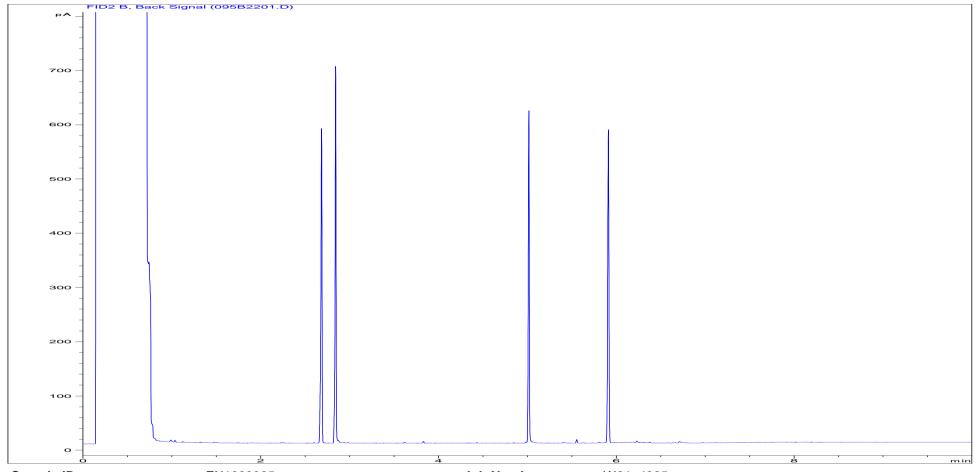
Total Petroleum Hydrocarbons (TPH) Carbon Ranges

Customer and Site Details: Envireau Water: Dissolved Gases in Waters

Job Number: W21_4925
QC Batch Number: 160115

Directory: D:\TES\DATA\Y2016\022316TPH_GC15\022316B 2016-02-24 08-15-37\049B2901.D

Method: Bottle


Matrix: Water
Date Booked in: 20-Feb-16

Date Extracted: 20-Feb-16

Date Analysed: 24-Feb-16, 16:10:41

* Sample data with an asterisk are not UKAS accredited.	
Concentration (m	~/I\

			·	Concentration, (mg	/1)	
Sample ID	Client ID	>C8 - C10	>C10 - C12	>C12 - C16	>C16 - C21	>C21 - C35
EX1663331	HW/14	<0.01	<0.01	<0.01	<0.01	<0.01
EX1663332	DW/14	<0.01	<0.01	<0.01	<0.01	<0.01

Sample ID:EX1663325Job Number:W21_4925Multiplier:0.005Client:Envireau Water

Dilution: 1 **Site:** Dissolved Gases in Waters

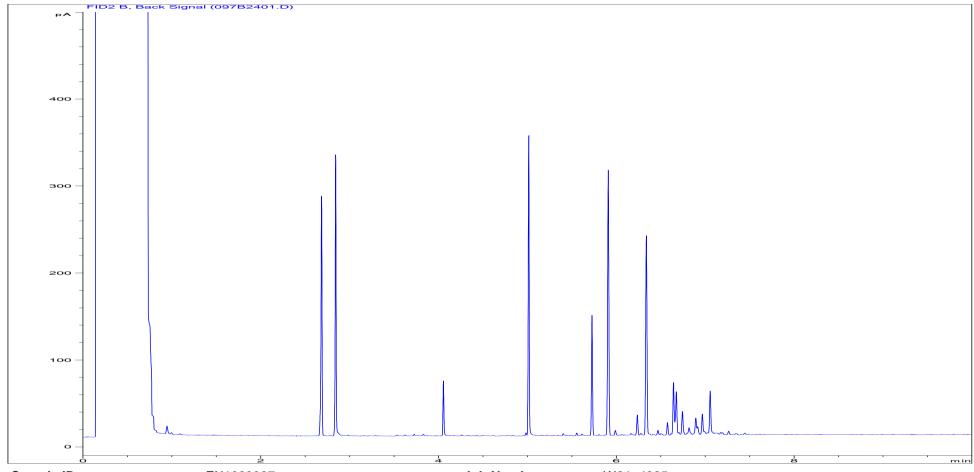
Acquisition Method: TPH_RUNF.M Client Sample Ref: WF/14

Acquisition Date/Time: 24-Feb-16, 14:11:47

Datafile: D:\TES\DATA\Y2016\022316TPH_GC15\022316B 2016-02-24 08-15-37\095B2201.D

Page 5 of 16 EXR/214925 Ver. 1

Sample ID:EX1663326Job Number:W21_4925Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gases in Waters

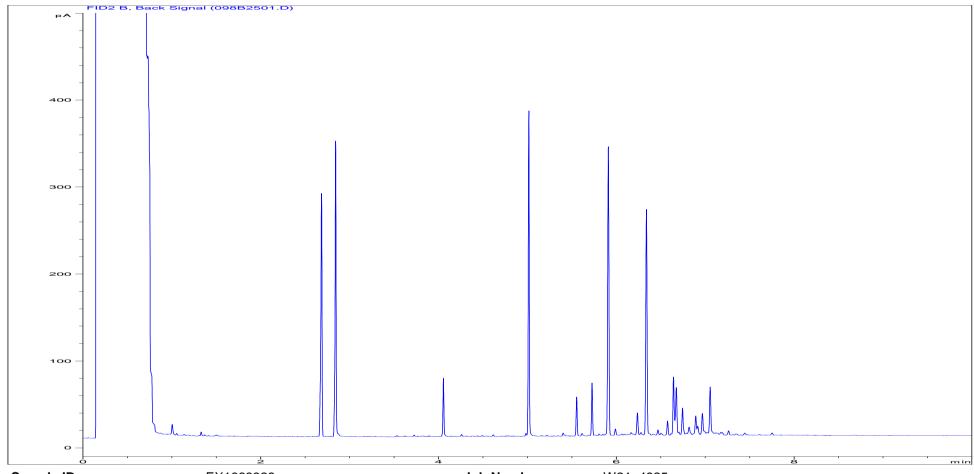
Acquisition Method: TPH_RUNF.M Client Sample Ref: ETF/14

Acquisition Date/Time: 24-Feb-16, 14:29:44

Datafile: D:\TES\DATA\Y2016\022316TPH_GC15\022316B 2016-02-24 08-15-37\096B2301.D

Page 6 of 16 EXR/214925 Ver. 1

Sample ID:EX1663327Job Number:W21_4925Multiplier:0.005Client:Envireau Water


Dilution:1Site:Dissolved Gases in Waters

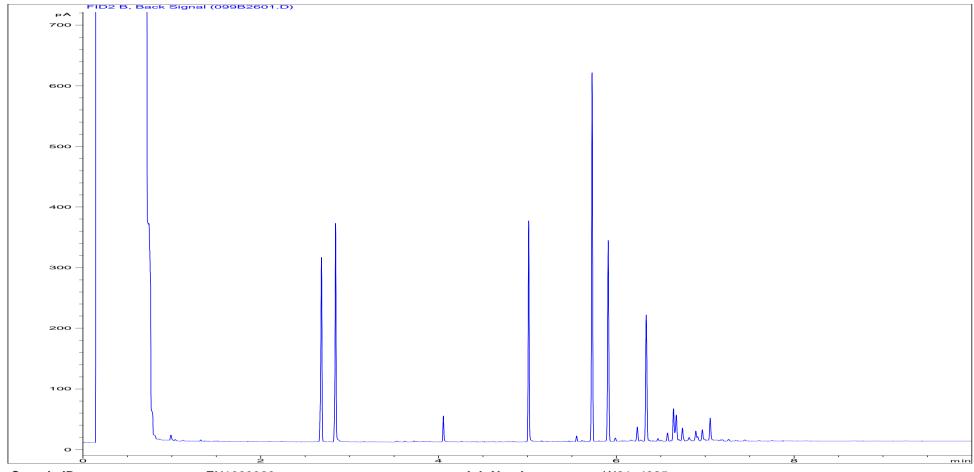
Acquisition Method: TPH_RUNF.M Client Sample Ref: D/14U

Acquisition Date/Time: 24-Feb-16, 14:46:21

Datafile: D:\TES\DATA\Y2016\022316TPH_GC15\022316B 2016-02-24 08-15-37\097B2401.D

Page 7 of 16 EXR/214925 Ver. 1

Sample ID:EX1663328Job Number:W21_4925Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gases in Waters

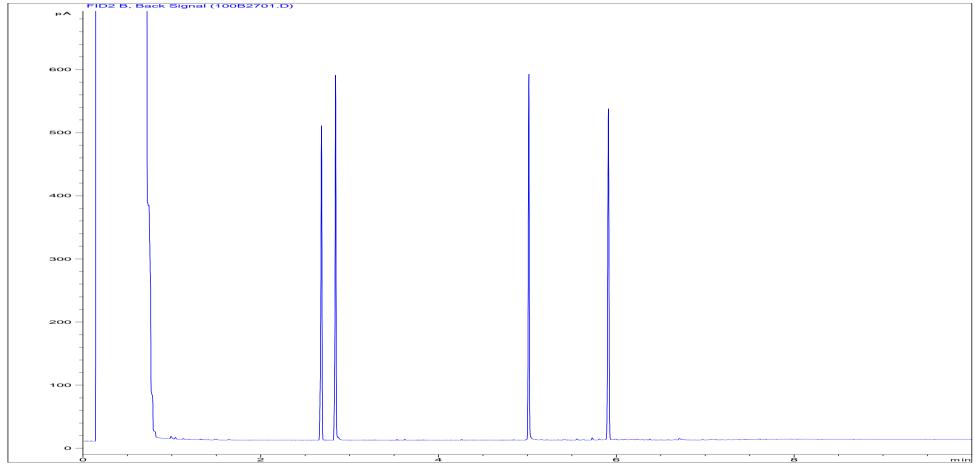
Acquisition Method: TPH_RUNF.M Client Sample Ref: DU/14

Acquisition Date/Time: 24-Feb-16, 15:04:25

Datafile: D:\TES\DATA\Y2016\022316TPH_GC15\022316B 2016-02-24 08-15-37\098B2501.D

Page 8 of 16 EXR/214925 Ver. 1

Sample ID:EX1663329Job Number:W21_4925Multiplier:0.005Client:Envireau Water


Dilution:1Site:Dissolved Gases in Waters

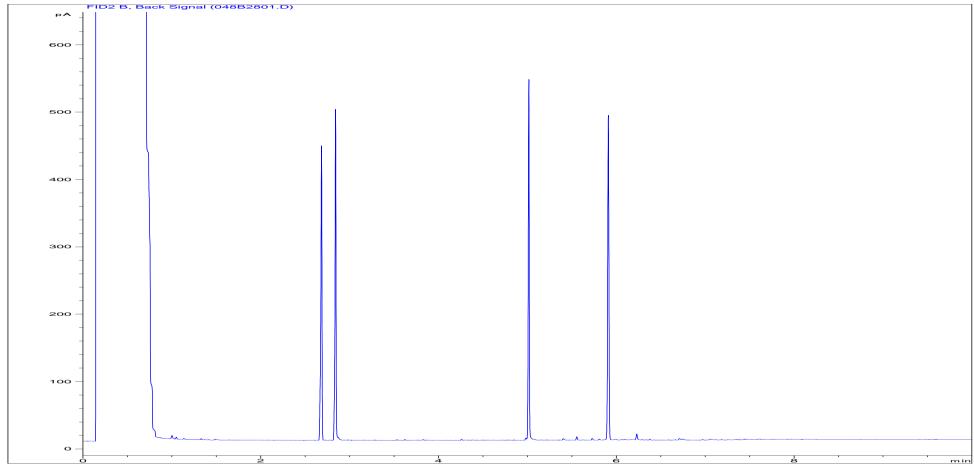
Acquisition Method: TPH_RUNF.M Client Sample Ref: D/14D

Acquisition Date/Time: 24-Feb-16, 15:20:52

Datafile: D:\TES\DATA\Y2016\022316TPH_GC15\022316B 2016-02-24 08-15-37\099B2601.D

Page 9 of 16 EXR/214925 Ver. 1

Sample ID:EX1663330Job Number:W21_4925Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gases in Waters

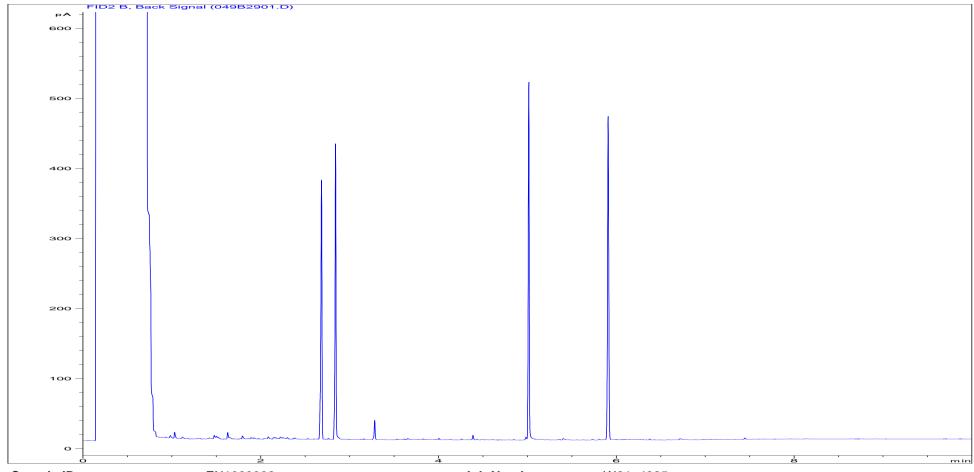
Acquisition Method: TPH_RUNF.M Client Sample Ref: TV/14

Acquisition Date/Time: 24-Feb-16, 15:37:39

Datafile: D:\TES\DATA\Y2016\022316TPH_GC15\022316B 2016-02-24 08-15-37\100B2701.D

Page 10 of 16 EXR/214925 Ver. 1

Sample ID:EX1663331Job Number:W21_4925Multiplier:0.005Client:Envireau Water


Dilution: 1 **Site:** Dissolved Gases in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: HW/14

Acquisition Date/Time: 24-Feb-16, 15:54:16

Datafile: D:\TES\DATA\Y2016\022316TPH_GC15\022316B 2016-02-24 08-15-37\048B2801.D

Page 11 of 16 EXR/214925 Ver. 1

Sample ID:EX1663332Job Number:W21_4925Multiplier:0.005Client:Envireau Water

Dilution: 1 **Site:** Dissolved Gases in Waters

Acquisition Method: TPH_RUNF.M Client Sample Ref: DW/14

Acquisition Date/Time: 24-Feb-16, 16:10:41

Datafile: D:\TES\DATA\Y2016\022316TPH_GC15\022316B 2016-02-24 08-15-37\049B2901.D

Page 12 of 16 EXR/214925 Ver. 1

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W214925

Customer Envireau Water Site Dissolved Gase

Dissolved Gases in Waters

Report No W214925

Consignment No W100263 Date Logged 20-Feb-2016

Report Due 26-Feb-2016

			MethodID	CUSTSERV	DISGAS1	ICPWATVAR								KONENS	TPHFID		WSLM12			WSLM2	WSLM27	WSLM3
ID Number	Description	Matrix Type	Sampled	Report A	^Dissolved Methane	Total Sulphur as SO4 (Diss) VAR	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Sodium as Na (Dissolved) VAR	Potassium as K (Dissolved) VAR	Manganese as Mn (Dissolved) VAR	Iron as Fe (Dissolved) VAR	Aluminium as Al (Dissolved) VAR	Chloride as Cl (Kone)	TPH Carbon Banding	трн GC	P Alkalinity as CaCO3	Total Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Conductivity uS/cm @ 25C	Total Dissolved Solids	pH units
						✓	\	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓		✓
EX/1663325	WF/14	Groundwater	17/02/16																			
EX/1663326	ETF/14	Groundwater	17/02/16																			
EX/1663327	D/14U	Groundwater	17/02/16																			
EX/1663328	DU/14	Surface Water	17/02/16																			
EX/1663329	D/14D	Surface Water	17/02/16																			
EX/1663330	TV/14	Groundwater	17/02/16																			
EX/1663331	HW/14	Surface Water	17/02/16																			
EX/1663332	DW/14	Groundwater	17/02/16																			

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- B The sample was received without the correct preservation for this analysis
- C Headspace present in the sample containerD The sampling date was not supplied so hold
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

- Analysis Required
- Analysis dependant upon trigger result Note: due date may be affected if triggered
- No analysis scheduled
- Analysis Subcontracted Note: due date may vary

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W214925

Customer Env

Report No

Envireau Water

Dissolved Gases in Waters

W214925

Consignment No W100263
Date Logged 20-Feb-2016

Report Due 26-Feb-2016

			MethodID	WSLM3
ID Number	Description	Matrix Type	Sampled	pH units
				✓
EX/1663325	WF/14	Groundwater	17/02/16	
EX/1663326	ETF/14	Groundwater	17/02/16	
EX/1663327	D/14U	Groundwater	17/02/16	
EX/1663328	DU/14	Surface Water	17/02/16	
EX/1663329	D/14D	Surface Water	17/02/16	
EX/1663330	TV/14	Groundwater	17/02/16	
EX/1663331	HW/14	Surface Water	17/02/16	
EX/1663332	DW/14	Groundwater	17/02/16	

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- B The sample was received without the correct preservation for this analysis
- C Headspace present in the sample containerD The sampling date was not supplied so hold
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

- Analysis Required
- Analysis dependant upon trigger result Note: due date may be affected if triggered
- No analysis scheduled
- Analysis Subcontracted Note: due date may vary

Report Number: W/EXR/214925

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	DISGAS1	As Received	Ultrasonic Extraction , dispersive IR and GC Detection
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	TPHFID	As Received	Determination of pentane extractable hydrocarbons in water by GCFID
Water	WSLM12	As Received	Titration with Sulphuric Acid to required pH
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.

 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- P Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 16 of 16 EXR/214925 Ver. 1

Sample Descriptions

Client : Envireau Water

Site: Dissolved Gases in Waters

Report Number : W21_4925

Lab ID Number	Client ID	Description
EX/1663325	WF/14	Groundwater
EX/1663326	ETF/14	Groundwater
EX/1663327	D/14U	Groundwater
EX/1663328	DU/14	Surface Water
EX/1663329	D/14D	Surface Water
EX/1663330	TV/14	Groundwater
EX/1663331	HW/14	Surface Water
EX/1663332	DW/14	Groundwater

Appendix A Page 1 of 1 26/02/2016EXR/214925 Ver. 1

Water Analysis Test Certificate

Round 15

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Phil Ham

Date : 12th April, 2016

Your reference : KMA

Our reference: Test Report 16/6703 Batch 1

Location: Various

Date samples received : 24th March, 2016

Status: Final report

Issue:

Eleven samples were received for analysis on 24th March, 2016 of which eleven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

5,60-2

Simon Gomery BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/6703

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/6703						H=H ₂ SO ₄ ,	Z=ZNAC, N=	NaOH, HN=	:HNU ₃			
J E Sample No.	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-43	44-51	52-59			
Sample ID	WF/15	ETF/15	D/15U	D/15D	TV/15	HW/15	DW/15	BA/15	BB/15	BC/15			
Depth											Please se	e attached r	otos for all
COC No / misc												ations and a	
Containers	V HN P G	VHNPG	V HN P G	VHNPG	V HN P G	V HN P G	VHNPG	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G			
Sample Date													
•													
Sample Type		Ground Water	Surface Water			Ground Water		Ground Water	Ground Water				
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	24/03/2016	24/03/2016	24/03/2016	24/03/2016	24/03/2016	24/03/2016	24/03/2016	24/03/2016	24/03/2016	24/03/2016			140.
Dissolved Aluminium #	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	ug/l	TM30/PM14
Dissolved Antimony #	-	-	-	-	-	-	-	<2	<2	<2	<2	ug/l	TM30/PM14
Dissolved Arsenic#	-	-	-	-	-	-	-	<2.5	<2.5	<2.5	<2.5	ug/l	TM30/PM14 TM30/PM14
Dissolved Barium # Dissolved Beryllium	-	-	-	-	-	-	-	84 <0.5	26 <0.5	189 <0.5	<3 <0.5	ug/l ug/l	TM30/PM14
Dissolved Beryllidini Dissolved Boron	-	-	-	-	-	-	-	70	125	<0.5 82	<12	ug/l	TM30/PM14
Dissolved Cadmium #	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	ug/l	TM30/PM14
Dissolved Calcium#	35.6	63.3	116.8	98.3	24.2	29.3	<0.2	315.3 _{AA}	298.7 _{AA}	216.1 _{AA}	<0.2	mg/l	TM30/PM14
Total Dissolved Chromium#	-	-	-	-	-	-	-	<1.5	<1.5	<1.5	<1.5	ug/l	TM30/PM14
Dissolved Cobalt #	-	-	-	-	-	-	-	<2	<2	<2	<2	ug/l	TM30/PM14
Dissolved Copper#	-	-	-	-	-	-	-	<7	<7	<7	<7	ug/l	TM30/PM14
Total Dissolved Iron #	<20	280	<20	<20	156	167	<20	1032	1075	2298	<20	ug/l	TM30/PM14
Dissolved Lead#	-	-	-	-	-	-	-	<5	<5	<5	<5	ug/l	TM30/PM14
Dissolved Lithium	-	-	-	-	-	-	-	66	76	46	<5	ug/l	TM30/PM14
Dissolved Magnesium #	7.2	30.5	8.5	7.4	6.1	5.4	<0.1	6.4	11.0	14.2	<0.1	mg/l	TM30/PM14
Dissolved Manganese #	320	3	3	<2	36	275	<2	179	148	66	<2	ug/l	TM30/PM14
Dissolved Mercury # Dissolved Nickel #	-	-	-	-	-	-	-	<1 3	<1 <2	<1 <2	<1 <2	ug/l ug/l	TM30/PM14 TM30/PM14
Dissolved Nickel Dissolved Potassium #	3.3	5.9	6.0	5.1	3.7	2.8	<0.1	2.9	3.2	2.2	<0.1	mg/l	TM30/PM14
Dissolved Felenium #	-	-	-	-	-	-	-	<3	<3	<3	<3	ug/l	TM30/PM14
Dissolved Silver	-	-	-	-	-	-	-	<5	<5	<5	<5	ug/l	TM30/PM14
Dissolved Sodium#	185.7	635.9 _{AB}	31.1	28.7	367.2 _{AA}	160.7	<0.1	34.9	31.9	22.9	<0.1	mg/l	TM30/PM14
Dissolved Strontium	-	-	-	-	-	-	-	455	519	421	<5	ug/l	TM30/PM14
Dissolved Vanadium#	-	-	-	-	-	-	-	<1.5	<1.5	<1.5	<1.5	ug/l	TM30/PM14
Dissolved Zinc#	-	-	-	-	-	-	-	<3	<3	<3	<3	ug/l	TM30/PM14
Total Iron	<20	3042	108	37	159	172	<20	1038	1559	2308	<20	ug/l	TM30/PM14
Total Manganese	322	11	3	<2	38	291	<2	203	168	68	<2	ug/l	TM30/PM14
EBU (00 0 to) #	40	-10	.40	.40	-40	-10	-10				.40	//	TME/DMOO
EPH (C8-C40) # EPH >C8-C10	<10 -	<10	<10	<10	<10	<10	<10	- <10	<10	- <10	<10 <10	ug/l ug/l	TM5/PM30 TM5/PM30
EPH >C10-C16	-	- -	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C16-C24	-	-	-	_	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C24-C40	-	-	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C8-C40	-	-	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
GRO (>C4-C8)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM36/PM12
Benzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM36/PM12
Toluene #	<5 -5	<5 -5	<5	<5 -5	<5 -5	<5 -5	<5	<5 -5	<5 -5	<5 -5	<5 -5	ug/l	TM36/PM12
Ethylbenzene # m/p-Xylene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	ug/l ug/l	TM36/PM12 TM36/PM12
m/p-xylene * o-Xylene *	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	ug/l	TM36/PM12
u-Ayierie	ζ3	<0	₹3	<0	<0	<0	<0	<0	<0	<0	<0	ug/i	I IVIOU/F IVI I Z

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/6703

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

	ı	1	1		1	1	1	1	1		1		
J E Sample No.	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-43	44-51	52-59			
Sample ID	WF/15	ETF/15	D/15U	D/15D	TV/15	HW/15	DW/15	BA/15	BB/15	BC/15			
Depth											Please se	e attached n	otes for all
COC No / misc												ations and a	
				_									
Containers	VHNPG	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G									
Sample Date	22/03/2016 12:20	22/03/2016 11:00	22/03/2016 13:15	22/03/2016 12:45	22/03/2016 14:30	22/03/2016 15:00	22/03/2016 14:35	22/03/2016 16:00	22/03/2016 17:00	23/03/2016 09:50			
Sample Type	Ground Water	Ground Water	Surface Water	Surface Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water			
Batch Number	1	1	1	1	1	1	1	1	1	1			
											LOD/LOR	Units	Method No.
Date of Receipt	24/03/2016	24/03/2016	24/03/2016	24/03/2016	24/03/2016	24/03/2016	24/03/2016	24/03/2016	24/03/2016	24/03/2016			
Fluoride	-	-	-	-	-	-	-	<0.3	<0.3	0.4	<0.3	mg/l	TM27/PM0
Bromide	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	mg/l	TM27/PM0
Sulphate#	32.21	883.95	93.08	84.74	150.45	18.26	1.28	297.98	317.49	185.82	<0.05	mg/l	TM38/PM0
Monoethylene glycol	-	-	-	-	-	-	-	<0.001	<0.001	<0.001	<0.001	mg/l	TM24/PM30
Chloride #	30.0	94.9	74.7	69.1	48.8	23.6	<0.3	87.1	58.3	34.9	<0.3	mg/l	TM38/PM0
Nitrate as NO3#	-	-	-	-	-	-	-	0.4	0.4	0.5	<0.2	mg/l	TM38/PM0
Nitrite as NO2 #	-	-	-	-	-	-	-	<0.02	<0.02	<0.02	<0.02	mg/l	TM38/PM0
Ortho Phosphate as P#	-	-	-	-	-	-	-	<0.03	<0.03	<0.03	<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as N#	-	-	-	-	-	-	-	0.09	0.14	0.24	<0.03	mg/l	TM38/PM0
Dissolved Methane #	<1	723	-	-	2421	9	-	8	12	7	<1	ug/l	TM25/PM0
Dissolved Ethane #	-	-	-	-	-	-	-	<1	<1	<1	<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	-	-	-	-	-	-	-	380684**	365047**	252467**	<1	ug/l	TM25/PM0
Dissolved Propane	-	-	-	-	-	-	-	<1	<1	<1	<1	ug/l	TM25/PM0
Dissolved Butane	-	-	-	-	-	-	-	<1	<1	<1	<1	ug/l	TM25/PM0
Acetic Acid	-	-	-	-	-	-	-	<10	<10	<10	<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3#	407	598	176	139	592	392	23	416	422	382	<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	407	598	176	116	592	392	23	416	422	382	<1	mg/l	TM75/PM0
Acrylamide	-	-	-	-	-	-	-	<50	<50	<50	<50	ug/l	TM103/PM59
BOD (Settled) #	-	-	-	-	-	-	-	<1	<1	<1	<1	mg/l	TM58/PM0
COD (Settled) #	-	-	-	-	-	-	-	14	14	20	<7	mg/l	TM57/PM0
Electrical Conductivity @25C#	860	2893	762	619	1413	755	15	1455	1393	1051	<2	uS/cm	TM76/PM0
Formaldehyde	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	mg/l	TM51/PM0
рН#	7.60	7.73	8.16	8.38	7.86	7.78	5.41	7.09	7.05	7.19	<0.01	pH units	TM73/PM0
Redox	-	-	-	-	-	-	-	95	114	120		mV	TM72/PM0
Salinity	-	-	-	-	-	-	-	0.2	0.2	0.2	<0.1	%	TM64/PM0
Sodium Persulphate	-	-	-	-	-	-	-	71	<60	<60	<60	mg/l	TM100/PM0
Total Dissolved Solids #	533	1835	433	384	950	1065	40	1080	832	796	<10	mg/l	TM20/PM0
Total Suspended Solids #	-	-	-	-	-	-	-	37	11	37	<10	mg/l	TM37/PM0
													1
	l .	l	l		l	l	l	l	l	l	l		

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/6703

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/6703	 	 	 H=H ₂ SO ₄ , 2	Z=ZnAc, N=	naoh, hin=	:HNU ₃	_		
J E Sample No.	60-67							1		
Sample ID	BE/15									
Depth										
COC No / misc									e attached r ations and a	
Containers	V H HN P BOD G									
Sample Date										
Sample Type	Ground Water									ı
Batch Number	1							LOD/LOR	Units	Method
Date of Receipt	24/03/2016									No.
Dissolved Aluminium #	<20							<20	ug/l	TM30/PM14
Dissolved Antimony#	<2							<2	ug/l	TM30/PM14
Dissolved Arsenic #	<2.5							<2.5	ug/l	TM30/PM14
Dissolved Barium #	14							<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5							<0.5	ug/l	TM30/PM14
Dissolved Boron	1510							<12	ug/l	TM30/PM14 TM30/PM14
Dissolved Cadmium # Dissolved Calcium #	<0.5 42.3							<0.5	ug/l	TM30/PM14
Total Dissolved Chromium #	42.5 <1.5							<0.2 <1.5	mg/l ug/l	TM30/PM14
Dissolved Cobalt #	<2							<2	ug/l	TM30/PM14
Dissolved Copper #	<7							<7	ug/l	TM30/PM14
Total Dissolved Iron #	370							<20	ug/l	TM30/PM14
Dissolved Lead #	<5							<5	ug/l	TM30/PM14
Dissolved Lithium	50							<5	ug/l	TM30/PM14
Dissolved Magnesium #	6.7							<0.1	mg/l	TM30/PM14
Dissolved Manganese #	13							<2	ug/l	TM30/PM14
Dissolved Mercury#	<1							<1	ug/l	TM30/PM14
Dissolved Nickel #	<2							<2	ug/l	TM30/PM14
Dissolved Potassium#	3.4							<0.1	mg/l	TM30/PM14
Dissolved Selenium #	<3							<3	ug/l	TM30/PM14
Dissolved Silver	<5							<5	ug/l	TM30/PM14
Dissolved Sodium#	384.6 _{AA}							<0.1	mg/l	TM30/PM14
Dissolved Strontium	947							<5	ug/l	TM30/PM14
Dissolved Vanadium#	<1.5							<1.5	ug/l	TM30/PM14
Dissolved Zinc#	<3							<3	ug/l	TM30/PM14
Total Iron	382							<20	ug/l	TM30/PM14
Total Manganese	14							<2	ug/l	TM30/PM14
EDIT (00 0 40) #	-							<10	//	TM5/PM30
EPH (C8-C40) # EPH >C8-C10	<10							<10	ug/l ug/l	TM5/PM30
EPH >C10-C16	<10							<10	ug/l	TM5/PM30
EPH >C16-C24	<10							<10	ug/l	TM5/PM30
EPH >C24-C40	<10							<10	ug/l	TM5/PM30
EPH >C8-C40	<10							<10	ug/l	TM5/PM30
GRO (>C4-C8) #	<10							<10	ug/l	TM36/PM12
GRO (>C8-C12) #	<10							<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10							<10	ug/l	TM36/PM12
MTBE#	<5							<5	ug/l	TM36/PM12
Benzene #	<5							<5	ug/l	TM36/PM12
Toluene #	<5							<5	ug/l	TM36/PM12
Ethylbenzene #	<5							<5	ug/l	TM36/PM12
m/p-Xylene #	<5							<5	ug/l	TM36/PM12
o-Xylene [#]	<5							<5	ug/l	TM36/PM12

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/6703

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE JOD NO.:	16/6/03					$H=H_2SO_4, I$, 11	144011, 1114	111403			
J E Sample No.	60-67											
Sample ID	BE/15											
D												
Depth											e attached ne	
COC No / misc												,
Containers	V H HN P BOD G											
Sample Date	23/03/2016 14:20											
Sample Type	Ground Water											
Batch Number	1											Method
Date of Receipt	24/03/2016									LOD/LOR	Units	No.
Fluoride	0.4									<0.3	mg/l	TM27/PM0
Bromide	<0.05									<0.05	mg/l	TM27/PM0
Sulphate #	246.53									<0.05	mg/l	TM38/PM0
Monoethylene glycol	<0.001									<0.001	mg/l	TM24/PM30
Chloride#	48.8									<0.3	mg/l	TM38/PM0
Nitrate as NO3#	0.4									<0.2	mg/l	TM38/PM0
Nitrite as NO2 #	<0.02									<0.02	mg/l	TM38/PM0
Ortho Phosphate as P#	<0.03									<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as N #	1.62									<0.03	mg/l	TM38/PM0
Dissolved Methane #	258									<1	ug/l	TM25/PM0
Dissolved Ethane * Dissolved Carbon Dioxide	<1 123502 ⁺⁺									<1 <1	ug/l ug/l	TM25/PM0 TM25/PM0
Dissolved Propane	123502									<1	ug/l	TM25/PM0
Dissolved Butane	<1									<1	ug/l	TM25/PM0
Acetic Acid	<10									<10	mg/l	TM127/PM0
Acetic Acid	V10									<10	ilig/i	TIVITZT/FIVIO
Total Alkalinity as CaCO3#	607									<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	607									<1	mg/l	TM75/PM0
Acrylamide	<50									<50	ug/l	TM103/PM59
BOD (Settled)#	<1									<1	mg/l	TM58/PM0
COD (Settled) #	9									<7	mg/l	TM57/PM0
Electrical Conductivity @25C#	1625									<2	uS/cm	TM76/PM0
Formaldehyde	<0.5									<0.5	mg/l	TM51/PM0
рН #	8.01									<0.01	pH units	TM73/PM0
Redox	78									-0.1	mV o/	TM72/PM0 TM64/PM0
Salinity Sodium Persulphate	0.3 <60									<0.1 <60	% mg/l	TM64/PM0 TM100/PM0
Total Dissolved Solids #	1039									<10	mg/l	TM20/PM0
Total Suspended Solids #	10									<10	mg/l	TM37/PM0
		_	_		_		_		_		•	

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 16/6703

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

16/6703

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
CO	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
TB	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution
AB	x10 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified USEPA 8163. Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM27	Modified US EPA method 9056.Determination of water soluble anions using Dionex (lon-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM59	As received solid samples are extracted with water in a 1:1 water to solid ratio using end over end.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Tel: +44 (0) 1244 833780

Fax: +44 (0) 1244 833781

Attention : Phil Ham

Date : 29th April, 2016

Your reference : KMA

Our reference : Test Report 16/6703 Batch 1 Schedule C

Location: Various

Date samples received: 24th March, 2016

Status: Final report

Issue:

Eleven samples were received for analysis on 24th March, 2016 of which four were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

5,60-2

Simon Gomery BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/6703

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/6703				 	H=H ₂ 3O ₄ , 2	Z=ZnAc, N=	ivaOn, niv=	111103	_		
J E Sample No.	36-43	44-51	52-59	60-67								
Sample ID	BA/15	BB/15	BC/15	BE/15								
Depth										Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	ronyms
Containers	V H HN P BOD G											
Sample Date	22/03/2016 16:00	22/03/2016 17:00	23/03/2016 09:50	23/03/2016 14:20								
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water								
Batch Number	1	1	1	1						LOD/LOR	Units	Method
Date of Receipt	24/03/2016	24/03/2016	24/03/2016	24/03/2016						LODILOR	OTINO	No.
Anionic Surfactants	0.3	<0.2	<0.2	<0.2						<0.2	mg/l	TM33/PM0
	<u> </u>	<u> </u>										

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason					
					No deviating sample report results for job 16/6703						

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 16/6703

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

16/6703

ABBREVIATIONS and ACRONYMS USED

# ISO17025 (UKAS) accredited - UK. B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see "Note" on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Tip Blank Sample OC Outside Calibration Range		
DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample TB Trip Blank Sample	#	ISO17025 (UKAS) accredited - UK.
M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	В	Indicates analyte found in associated method blank.
NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	DR	Dilution required.
NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	M	MCERTS accredited.
ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	NA	Not applicable
NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	NAD	No Asbestos Detected.
SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	ND	None Detected (usually refers to VOC and/SVOC TICs).
SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	NDP	No Determination Possible
W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	SS	Calibrated against a single substance
+ AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	W	Results expressed on as received basis.
* Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
An Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	++	Result outside calibration range, results should be considered as indicative only and are not accredited.
CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	*	Analysis subcontracted to a Jones Environmental approved laboratory.
LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	AD	Samples are dried at 35°C ±5°C
ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	СО	Suspected carry over
NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	ME	Matrix Effect
LB Blank Sample N Client Sample TB Trip Blank Sample	NFD	No Fibres Detected
N Client Sample TB Trip Blank Sample	BS	AQC Sample
TB Trip Blank Sample	LB	Blank Sample
	N	Client Sample
OC Outside Calibration Range	ТВ	Trip Blank Sample
	OC	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Phil Ham

Date : 12th April, 2016

Your reference : KM8 Baseline

Our reference : Test Report 16/6988 Batch 1

Location: KMA

Date samples received: 1st April, 2016

Status: Final report

Issue:

Two samples were received for analysis on 1st April, 2016 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Balen

Paul Lee-Boden BSc Project Manager

Client Name: Envireau Ltd Report : Liquid

Reference: KM8 Baseline Location: KMA

Contact: Phil Ham Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.: 16/6988 H=H-SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	16/6988				H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN0 ₃			
J E Sample No.	1-8	9-16									
Sample ID	BD/15	DB/15									
Depth									Diagon on	o ottoobod n	otoo for all
COC No / misc										e attached n ations and a	
Containers	V H HN P BOD G	V H HN P BOD G									
Sample Date	31/03/2016 12:30	31/03/2016 12:45									
Sample Type											
Batch Number	1	1							LOD/LOR	Units	Method No.
Date of Receipt											
Dissolved Aluminium#	1074	1089							<20	ug/l	TM30/PM14
Dissolved Antimony #	4 <2.5	-							<2 <2.5	ug/l ug/l	TM30/PM14 TM30/PM14
Dissolved Arsenic # Dissolved Barium #	19	-							<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	_							<0.5	ug/l	TM30/PM14
Dissolved Boron	234	-							<12	ug/l	TM30/PM14
Dissolved Cadmium #	<0.5	-							<0.5	ug/l	TM30/PM14
Dissolved Calcium#	0.7	0.5							<0.2	mg/l	TM30/PM14
Total Dissolved Chromium#	<1.5	-							<1.5	ug/l	TM30/PM14
Dissolved Cobalt#	<2	-							<2	ug/l	TM30/PM14
Dissolved Copper#	<7	-							<7	ug/l	TM30/PM14
Total Dissolved Iron #	31	<20							<20	ug/l	TM30/PM14
Dissolved Lead #	<5	-							<5	ug/l	TM30/PM14
Dissolved Lithium	125	-							<5	ug/l	TM30/PM14
Dissolved Magnesium #	<0.1	<0.1							<0.1	mg/l	TM30/PM14
Dissolved Manganese # Dissolved Mercury #	<2 <1	<2							<2 <1	ug/l ug/l	TM30/PM14 TM30/PM14
Dissolved Nickel #	<2	_							<2	ug/l	TM30/PM14
Dissolved Potassium#	10.5	10.9							<0.1	mg/l	TM30/PM14
Dissolved Selenium #	<3	-							<3	ug/l	TM30/PM14
Dissolved Silver	<5	-							<5	ug/l	TM30/PM14
Dissolved Sodium#	728.7 _{AA}	704.1 _{AA}							<0.1	mg/l	TM30/PM14
Dissolved Strontium	60	-							<5	ug/l	TM30/PM14
Dissolved Vanadium#	<1.5	-							<1.5	ug/l	TM30/PM14
Dissolved Zinc#	<3	-							<3	ug/l	TM30/PM14
Total Iron	57320 _{AA}	57910 _{AA}							<20	ug/l	TM30/PM14
Total Manganese	607	599							<2	ug/l	TM30/PM14
EPH (C8-C40) #	-	<10							<10	ug/l	TM5/PM30
EPH >C8-C10	<10	-							<10	ug/l	TM5/PM30
EPH >C10-C16	<10	-							<10	ug/l	TM5/PM30
EPH >C16-C24	<10	-							<10	ug/l	TM5/PM30
EPH >C24-C40	<10	-							<10	ug/l	TM5/PM30
EPH >C8-C40	<10	-							<10	ug/l	TM5/PM30
GRO (>C4-C8)#	<10	<10							<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10							<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10							<10	ug/l	TM36/PM12
MTBE # Benzene #	<5 <5	<5 <5							<5 <5	ug/l ug/l	TM36/PM12 TM36/PM12
Toluene #	<5 <5	<5 <5							<5 <5	ug/l	TM36/PM12
Ethylbenzene #	<5	<5 <5							<5	ug/l	TM36/PM12
m/p-Xylene #	<5	<5							<5	ug/l	TM36/PM12
o-Xylene #	<5	<5							<5	ug/l	TM36/PM12
						•				<u> </u>	

Client Name: Envireau Ltd Report : Liquid

Reference: KM8 Baseline Location: KMA

Contact: Phil Ham Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.: 16/6988 H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	16/6988				H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN0 ₃	_		
J E Sample No.	1-8	9-16									
Sample ID	BD/15	DB/15									
Depth											
-										e attached n ations and a	
COC No / misc											,
Containers	V H HN P BOD G	V H HN P BOD G									
Sample Date	31/03/2016 12:30	31/03/2016 12:45									
Sample Type	Ground Water	Ground Water									
Batch Number	1	1									Method
Date of Receipt	01/04/2016	01/04/2016							LOD/LOR	Units	No.
Fluoride	1.9	-							<0.3	mg/l	TM27/PM0
Bromide	0.45	-							<0.05	mg/l	TM27/PM0
D. G. Mildo	0.10								10.00	9	
Sulphate #	19.02	18.90							<0.05	mg/l	TM38/PM0
Managath, daga ah sad	.0.004								.0.004		TM24/DM20
Monoethylene glycol	<0.001	-							<0.001	mg/l	TM24/PM30
Chloride#	655.7	657.4							<0.3	mg/l	TM38/PM0
Nitrate as NO3#	0.6	-							<0.2	mg/l	TM38/PM0
Nitrite as NO2#	<0.02	-							<0.02	mg/l	TM38/PM0
Ortho Phosphate as P#	<0.03	-							<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as N #	1.13	-							<0.03	mg/l	TM38/PM0
Dissolved Methane #	55621	57692							<1	ug/l	TM25/PM0
Dissolved Ethane #	8	-							<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	<1	-							<1	ug/l	TM25/PM0
Acetic Acid	<10	-							<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3#	535	534							<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	32	26							<1	mg/l	TM75/PM0
Acrylamide	<50	-							<50	ug/l	TM103/PM59
Anionic Surfactants	0.6	-							<0.2	mg/l	TM33/PM0
BOD (Settled)#	3	-							<1	mg/l	TM58/PM0
COD (Settled) #	29	-							<7	mg/l	TM57/PM0
Electrical Conductivity @25C#	2983	2939							<2	uS/cm	TM76/PM0
Formaldehyde	<0.5	-							<0.5	mg/l	TM51/PM0
рН#	10.66	10.67							<0.01	pH units	TM73/PM0
Redox	455	-							-0.1	mV o/	TM72/PM0 TM64/PM0
Salinity Sodium Persulphate	0.2 <60	-							<0.1 <60	% ma/l	TM64/PM0 TM100/PM0
Total Dissolved Solids #	1640	1589							<10	mg/l mg/l	TM20/PM0
Total Suspended Solids #	<10	-							<10	mg/l	TM37/PM0
									1.0	9/1	
Dissolved Propane	<1	~							<1	ug/l	TM25/PM0
Dissolved Butane	<1	~							<1	ug/l	TM25/PM0

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 16/6988

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
AA	x10 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМО	Not available	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified USEPA 8163. Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM27	Modified US EPA method 9056. Determination of water soluble anions using Dionex (lon-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.	Yes			_

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM59	As received solid samples are extracted with water in a 1:1 water to solid ratio using end over end.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				

Water Analysis Test Certificate

Round 16

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Phil Ham

Date: 6th May, 2016

Your reference : KMA

Our reference : Test Report 16/7892 Batch 1

Location: Various

Date samples received: 21st April, 2016

Status: Final report

Issue:

Thirteen samples were received for analysis on 21st April, 2016 of which thirteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

5.60-20

Simon Gomery BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/7892

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/7892						H=H ₂ SO ₄ ,	∠=∠nAc, N=	NaOH, HN=	:HNU ₃			
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-36	37-42	43-51	52-60	61-69			
Sample ID	WF/16	ETF/16	D/16U	D/16D	TV/16	HW/16	DW/16	BA/16	BB/16	BC/16			
Depth											Please se	e attached r	notes for all
COC No / misc												ations and a	
Containers	V HN P G	VHNPG	V HN P G	VHNPG	V HN P G	VHNPG	VHNPG	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G			
Sample Date	20/04/2016 15:15	20/04/2016 14:15	20/04/2016 13:45	20/04/2016 13:30	20/04/2016 16:00	20/04/2016 15:45	20/04/2016 16:15	19/04/2016 15:00	19/04/2016 17:00	20/04/2016 09:30			
Sample Type		Ground Water											
Batch Number													
	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt				21/04/2016					21/04/2016				
Dissolved Aluminium#	<20	<20	-	-	<20	<20	-	<20	<20	<20	<20	ug/l	TM30/PM14
Dissolved Antimony#	-	-	-	-	-	-	-	<2	<2	<2	<2	ug/l	TM30/PM14 TM30/PM14
Dissolved Arsenic #	-							<2.5	<2.5	<2.5	<2.5	ug/l	TM30/PM14
Dissolved Barium #		-	-	-	-	-	-	80	22	180	<3	ug/l	+
Dissolved Beryllium Dissolved Boron	-	-	-	-	-	-	-	<0.5	<0.5	<0.5 88	<0.5	ug/l	TM30/PM14 TM30/PM14
Dissolved Boron Dissolved Cadmium #	-	-	-	-	-	-	-	75 <0.5	131 <0.5	<0.5	<12 <0.5	ug/l ug/l	TM30/PM14
Dissolved Calcium#	32.7	54.4	124.2	127.6	23.2	28.2	<0.2	332.4 _{AA}	308.4 _{AA}	194.8	<0.2	mg/l	TM30/PM14
Total Dissolved Chromium#	-	-	-	-	-	-	-	<1.5	<1.5	<1.5	<1.5	ug/l	TM30/PM14
Dissolved Cobalt #	-	-	-	-	_	-	-	2	<2	<2	<2	ug/l	TM30/PM14
Dissolved Copper#	-	-	-	-	-	-	-	<7	<7	<7	<7	ug/l	TM30/PM14
Total Dissolved Iron #	<20	288	-	-	131	119	-	642	1113	1906	<20	ug/l	TM30/PM14
Dissolved Lead#	-	-	-	-	-	-	-	<5	<5	<5	<5	ug/l	TM30/PM14
Dissolved Lithium	-	-	-	-	-	-	-	65	76	46	<5	ug/l	TM30/PM14
Dissolved Magnesium #	7.5	28.8	8.5	7.3	6.3	5.5	<0.1	6.9	11.5	14.7	<0.1	mg/l	TM30/PM14
Dissolved Manganese #	310	3	-	-	34	263	-	169	138	64	<2	ug/l	TM30/PM14
Dissolved Mercury#	-	-	-	-	-	-	-	<1	<1	<1	<1	ug/l	TM30/PM14
Dissolved Nickel #	-	-	-	-	-	-	-	2	<2	<2	<2	ug/l	TM30/PM14
Dissolved Potassium #	3.0	5.4	12.7	9.0	3.5	2.6	<0.1	2.7	3.0	2.1	<0.1	mg/l	TM30/PM14
Dissolved Selenium #	-	-	-	-	-	-	-	<3	<3	<3	<3	ug/l	TM30/PM14
Dissolved Silver	-	-	-	-	-	-	-	<5	<5	<5	<5	ug/l	TM30/PM14
Dissolved Sodium#	161.3	638.2 _{AB}	27.4	24.7	370.5 _{AA}	146.7	<0.1	34.9	30.7	22.5	<0.1	mg/l	TM30/PM14
Dissolved Strontium	-	-	-	-	-	-	-	479	531	434	<5	ug/l	TM30/PM14
Dissolved Vanadium #	-	-	-	-	-	-	-	<1.5	<1.5	<1.5	<1.5	ug/l	TM30/PM14
Dissolved Zinc #	-	-	-	-	-	-	-	<3	<3	<3	<3	ug/l	TM30/PM14
Total Iron	<20	1171	471	111	134	142	<20	2297	1486	2119	<20	ug/l	TM30/PM14
Total Manganese	317	6	13	<2	35	276	<2	191	142	66	<2	ug/l	TM30/PM14
EPH (C8-C40) #	<10	<10	<10	<10	<10	<10	<10	-	-	-	<10	ug/l	TM5/PM30
EPH >C8-C10	-	-	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C10-C16	-	-	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C16-C24	-	-	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C24-C40	-	-	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C8-C40	-	-	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
GRO (>C4-C8) #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C8-C12) #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM36/PM12
Benzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM36/PM12
Toluene #	<5	<5 .5	<5	<5 .5	<5	<5 .5	<5 .5	<5 .c	<5 .c	<5	<5 .c	ug/l	TM36/PM12
Ethylbenzene #	<5	<5 .5	<5	<5 .5	<5	<5 .5	<5 .F	<5 .c	<5 .c	<5	<5 .c	ug/l	TM36/PM12
m/p-Xylene #	<5 -5	<5 -5	<5 -5	<5 -5	<5 -5	<5 -5	<5 -5	<5 -F	<5 -F	<5 -F	<5 -F	ug/l	TM36/PM12
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM36/PM12

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/7892

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

											ı		
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-36	37-42	43-51	52-60	61-69			
Sample ID	WF/16	ETF/16	D/16U	D/16D	TV/16	HW/16	DW/16	BA/16	BB/16	BC/16			
Depth											Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and ad	cronyms
Containers	V HN P G	VHNPG	V HN P G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G							
Sample Date	20/04/2016 15:15	20/04/2016 14:15	20/04/2016 13:45	20/04/2016 13:30	20/04/2016 16:00	20/04/2016 15:45	20/04/2016 16:15	19/04/2016 15:00	19/04/2016 17:00	20/04/2016 09:30			
Sample Type													
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt					21/04/2016								
Fluoride	-	-	-	-	-	-	-	<0.3	<0.3	0.4	<0.3	mg/l	TM27/PM0
Bromide	-	-	-	-	-	-	-	0.08	0.06	<0.05	<0.05	mg/l	TM27/PM0
Sulphate #	30.92	779.78	83.64	68.18	150.72	17.57	1.30	276.14	308.66	173.24	<0.05	mg/l	TM38/PM0
						-		-		-		3	
Monoethylene glycol	-	-	-	-	-	-	-	<0.001	<0.001	<0.001	<0.001	mg/l	TM24/PM30
Chloride #	28.3	97.8	74.6	58.5	47.1	22.0	<0.3	95.1	56.2	34.2	<0.3	mg/l	TM38/PM0
Nitrate as NO3#	-	-	-	-	-	-	-	0.3	0.3	0.3	<0.2	mg/l	TM38/PM0
Nitrite as NO2 #	-	-	-	-	-	-	-	0.03	<0.02	<0.02	<0.02	mg/l	TM38/PM0
Ortho Phosphate as P #	-	-	-	-	-	-	-	<0.03	<0.03	<0.03	<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as N #	-	-	-	-	-	-	-	0.09	0.14	0.24	<0.03	mg/l	TM38/PM0
Dissolved Methane #	<1	550	<1	<1	2841	9	<1	<1	13	9	<1	ug/l	TM25/PM0
Dissolved Ethane #	-	-	-	-	-	-	-	<1	<1	<1	<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	-	-	-	-	-	-	-	264488**	320059**	200286**	<1	ug/l	TM25/PM0
Acetic Acid	-	-	-	-	-	-	-	<10	<10	<10	<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3#	404	637	227	246	603	381	7	404	416	378	<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	404	637	183	205	603	381	7	404	416	378	<1	mg/l	TM75/PM0
Acrylamide	-	-	-	-	-	-	-	<50	<50	<50	<50	ug/l	TM103/PM59
Anionic Surfactants	-	-	-	-	-	-	-	0.5	0.2	0.3	<0.2	mg/l	TM33/PM0
BOD (Settled) #	-	-	-	-	-	-	-	1	<1	1	<1	mg/l	TM58/PM0
COD (Settled) #	907	2880	705	765	1//0	763	- 17	18	11	15	<7	mg/l	TM57/PM0
Electrical Conductivity @25C * Formaldehyde	907	2880	795	765	1449	763	17	1470 <0.5	1381 <0.5	1051 <0.5	<2 <0.5	uS/cm mg/l	TM76/PM0 TM51/PM0
pH [#]	7.90	8.07	8.69	8.57	8.04	8.00	5.77	7.28	7.31	7.43	<0.01	pH units	TM73/PM0
Redox	-	-	-	-	-	-	-	482	476	465		mV	TM72/PM0
Salinity	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	%	TM64/PM0
Sodium Persulphate	-	-	-	-	-	-	-	<60	71	202	<60	mg/l	TM100/PM0
Total Dissolved Solids#	544	416	553	517	827	471	81	1106	1006	768	<10	mg/l	TM20/PM0
Total Suspended Solids #	-	-	-	-	-	-	-	73	24	13	<10	mg/l	TM37/PM0
Dissolved Propane	-	-	-	_	_	_	_	<1	<1	<1	<1	ug/l	TM25/PM0
Dissolved Proparte Dissolved Butane	-	-	-	-	-	-	-	<1	<1	<1	<1	ug/l	TM25/PM0
								**	•	**	**	-9"	370
													

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/7892

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/7892					H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN=	:HN0 ₃			
J E Sample No.	70-77	78-86	87-92									
Sample ID	BD/16	BE/16	ETF/16D									
Depth												
COC No / misc											e attached r ations and a	
Containers	V H HN P BOD G	V H HN P BOD G	V HN P G									
Sample Date												
Sample Type												
Batch Number	1	1	1									
										LOD/LOR	Units	Method No.
Date of Receipt										00		Than O / Dhaa a
Dissolved Aluminium #	699	<20	<20							<20	ug/l	TM30/PM14
Dissolved Antimony #	2	<2	-							<2	ug/l	TM30/PM14
Dissolved Arsenic #	<2.5	<2.5	-							<2.5	ug/l	TM30/PM14
Dissolved Barium #	25	12	-							<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	-							<0.5	ug/l	TM30/PM14
Dissolved Boron	237	1584	-							<12	ug/l	TM30/PM14
Dissolved Cadmium #	<0.5	<0.5	- EE 1							<0.5	ug/l	TM30/PM14
Dissolved Calcium#	0.8	43.7	55.1							<0.2	mg/l	TM30/PM14
Total Dissolved Chromium * Dissolved Cobalt *	<1.5	<1.5	-							<1.5	ug/l	TM30/PM14 TM30/PM14
	<2	<2	-							<2	ug/l	
Dissolved Copper#	<7	<7	-							<7	ug/l	TM30/PM14 TM30/PM14
Total Dissolved Iron #	<20	433	289							<20	ug/l	TM30/PM14
Dissolved Lead #	<5 130	<5 47								<5 -5	ug/l	TM30/PM14
Dissolved Lithium	130	47	-							<5	ug/l	TM30/PM14
Dissolved Magnesium #	0.2 <2	6.9	28.7							<0.1 <2	mg/l	TM30/PM14
Dissolved Manganese * Dissolved Mercury *	<1	<1	-							<1	ug/l	TM30/PM14
Dissolved Nickel #	<2	<2	-							<2	ug/l ug/l	TM30/PM14
Dissolved Nickel Dissolved Potassium #	11.3	3.2	5.4							<0.1	mg/l	TM30/PM14
Dissolved Selenium #	<3	<3	-							<3	ug/l	TM30/PM14
Dissolved Silver	<5	<5	_							<5	ug/l	TM30/PM14
Dissolved Sodium#	707.1 _{AB}	375.7 _{AA}	661.1 _{AB}							<0.1	mg/l	TM30/PM14
Dissolved Strontium	66	920								<5	ug/l	TM30/PM14
Dissolved Vanadium #	<1.5	<1.5	-							<1.5	ug/l	TM30/PM14
Dissolved Zinc#	<3	<3	-							<3	ug/l	TM30/PM14
Total Iron	8405	555	1187							<20	ug/l	TM30/PM14
Total Manganese	102	15	7							<2	ug/l	TM30/PM14
rotal manganood	.02		•							~_	ug,.	
EPH (C8-C40) #	-	-	<10							<10	ug/l	TM5/PM30
EPH >C8-C10	<10	<10	-							<10	ug/l	TM5/PM30
EPH >C10-C16	<10	<10	-							<10	ug/l	TM5/PM30
EPH >C16-C24	<10	<10	-							<10	ug/l	TM5/PM30
EPH >C24-C40	<10	<10	-							<10	ug/l	TM5/PM30
EPH >C8-C40	<10	<10	-							<10	ug/l	TM5/PM30
											ŭ	
GRO (>C4-C8)#	<10	<10	<10		1					<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10		1					<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10							<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5							<5	ug/l	TM36/PM12
Benzene #	<5	<5	<5							<5	ug/l	TM36/PM12
Toluene #	<5	<5	<5							<5	ug/l	TM36/PM12
Ethylbenzene #	<5	<5	<5							<5	ug/l	TM36/PM12
m/p-Xylene #	<5	<5	<5							<5	ug/l	TM36/PM12
o-Xylene #	<5	<5	<5							<5	ug/l	TM36/PM12

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/7892

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/7892				 Π=Π ₂ δΟ ₄ , Δ	Z=ZNAC, N=	NaOH, HN=	: I I I I I I I I I I I I I I I I I I I	_		
J E Sample No.	70-77	78-86	87-92								
Sample ID	BD/16	BE/16	ETF/16D								
Depth									Diagon	a attached n	ataa far all
COC No / misc										e attached n ations and a	
Containers	V H HN P BOD G	V H HN P BOD G	V HN P G								
Sample Date	20/04/2016 11:30	20/04/2016 12:50	20/04/2016 14:25								
Sample Type	Ground Water	Ground Water	Ground Water								
Batch Number	1	1	1								Method
Date of Receipt	21/04/2016	21/04/2016	21/04/2016						LOD/LOR	Units	No.
Fluoride	2.2	0.3	-						<0.3	mg/l	TM27/PM0
Bromide	0.37	<0.05	-						<0.05	mg/l	TM27/PM0
Sulphate#	15.18	248.74	764.02						<0.05	mg/l	TM38/PM0
Sulphate	13.10	240.74	704.02						VO.03	mg/i	TIVIOO/T IVIO
Monoethylene glycol	<0.001	<0.001	-						<0.001	mg/l	TM24/PM30
Chloride #	635.4	45.4	100.4						<0.3	mg/l	TM38/PM0
Nitrate as NO3#	0.3	0.3	-						<0.2	mg/l	TM38/PM0
Nitrite as NO2 #	<0.02	<0.02	-						<0.02	mg/l	TM38/PM0
Ortho Phosphate as P#	0.05	<0.03	-						<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as N #	1.03	1.48	-						<0.03	mg/l	TM38/PM0
Dissolved Methane #	58406 ⁺⁺	195	523						<1	ug/l	TM25/PM0
Dissolved Ethane #	9	<1	-						<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	<1	102831**	-						<1	ug/l	TM25/PM0
Acetic Acid	<10	<10	-						<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3#	534	611	649						<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	59	611	649						<1	mg/l	TM75/PM0
Acrylamide	<50	<50	-						<50	ug/l	TM103/PM59
Anionic Surfactants	0.4	0.3	-						<0.2	mg/l	TM33/PM0
BOD (Settled) #	5 37	2 25	-						<1 <7	mg/l	TM58/PM0 TM57/PM0
COD (Settled) # Electrical Conductivity @25C #	2898	1612	2833						<2	mg/l uS/cm	TM76/PM0
Formaldehyde	<0.5	<0.5	-						<0.5	mg/l	TM51/PM0
pH [#]	10.45	8.15	8.12						<0.01	pH units	TM73/PM0
Redox	433	434	-							mV	TM72/PM0
Salinity	0.2	<0.1	-						<0.1	%	TM64/PM0
Sodium Persulphate	<60	<60	-						<60	mg/l	TM100/PM0
Total Dissolved Solids#	1534	994	1606						<10	mg/l	TM20/PM0
Total Suspended Solids #	30	<10	-						<10	mg/l	TM37/PM0
Dissolved Propane	<1	<1	-						<1	ug/l	TM25/PM0
Dissolved Butane	<1	<1	-						<1	ug/l	TM25/PM0
		I	l	1	l				l		

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 16/7892

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

16/7892

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution
AB	x10 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified USEPA 8163. Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM27	Modified US EPA method 9056.Determination of water soluble anions using Dionex (lon-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM59	As received solid samples are extracted with water in a 1:1 water to solid ratio using end over end.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				

Water Analysis Test Certificate

Round 17

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Phil Ham

Date: 10th June, 2016

Your reference : KMA

Our reference : Test Report 16/9455 Batch 1

Location: Various

Date samples received : 26th May, 2016

Status: Final report

Issue:

Thirteen samples were received for analysis on 26th May, 2016 of which thirteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Prolon

Paul Lee-Boden BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/9455

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/9455						H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN=	=HINU ₃	_		
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-36	37-42	43-51	52-60	61-69			
Sample ID	WF/17	ETF/17	D/17U	D/17D	TV/17	HW/17	B/17	BA/17	BB/17	BC/17			
Depth											Please se	e attached r	notes for all
COC No / misc												ations and a	
Containers	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G	VHNPG	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G			
Sample Date								25/05/2016 10:30	25/05/2016 12:05	25/05/2016 13:05			
Sample Type										Ground Water			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt				26/05/2016		26/05/2016	26/05/2016			26/05/2016			
Dissolved Aluminium #	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	ug/l	TM30/PM14
Dissolved Antimony#	-	-	-	-	-	-	-	<2	<2	<2	<2	ug/l	TM30/PM14
Dissolved Arsenic #	-	-	-	-	-	-	-	<2.5	<2.5	<2.5	<2.5	ug/l	TM30/PM14 TM30/PM14
Dissolved Barium #	-	-	-	-	-	-	-	90	21	172	<3	ug/l	TM30/PM14
Dissolved Beryllium Dissolved Boron	-	-	-	-	-	-	-	<0.5 82	<0.5 143	<0.5 92	<0.5 <12	ug/l ug/l	TM30/PM14
Dissolved Boron Dissolved Cadmium #	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	ug/l	TM30/PM14
Dissolved Calcium#	33.7	75.9	101.2	76.4	23.1	28.1	<0.2	300.2 _{AA}	300.7 _{AA}	249.8 _{AA}	<0.2	mg/l	TM30/PM14
Total Dissolved Chromium#	-	-	-	-	-	-	-	<1.5	<1.5	<1.5	<1.5	ug/l	TM30/PM14
Dissolved Cobalt #	-	-	-	-	-	-	-	<2	2	<2	<2	ug/l	TM30/PM14
Dissolved Copper#	-	-	-	-	-	-	-	<7	<7	<7	<7	ug/l	TM30/PM14
Total Dissolved Iron #	447	674	99	26	55	236	<20	633	1326	1351	<20	ug/l	TM30/PM14
Dissolved Lead#	-	-	-	-	-	-	-	<5	<5	<5	<5	ug/l	TM30/PM14
Dissolved Lithium	-	-	-	-	-	-	-	62	80	42	<5	ug/l	TM30/PM14
Dissolved Magnesium #	7.4	36.1	7.2	4.5	6.2	5.4	<0.1	6.2	11.0	15.5	<0.1	mg/l	TM30/PM14
Dissolved Manganese #	147	<2	14	<2	22	186	<2	157	118	42	<2	ug/l	TM30/PM14
Dissolved Mercury#	-	-	-	-	-	-	-	<1	<1	<1	<1	ug/l	TM30/PM14
Dissolved Nickel #	-	-	-	-	-	-	-	<2	<2	<2	<2	ug/l	TM30/PM14
Dissolved Potassium #	3.0	5.8	12.2	9.0	3.5	2.6	<0.1	2.5	2.8	2.3	<0.1	mg/l	TM30/PM14
Dissolved Selenium #	-	-	-	-	-	-	-	<3	<3	<3	<3	ug/l	TM30/PM14
Dissolved Silver	- 170.0	-	-	-	-	-	-	<5	<5	<5	<5	ug/l	TM30/PM14
Dissolved Sodium#	170.3	730.6 _{AB}	23.2	31.3	411.0 _{AA}	150.3	<0.1	31.1	29.4 522	23.6 444	<0.1	mg/l	TM30/PM14 TM30/PM14
Dissolved Strontium Dissolved Vanadium#	-	-	-	-	-	-	-	442 <1.5	<1.5	<1.5	<5 <1.5	ug/l ug/l	TM30/PM14
Dissolved Variadium Dissolved Zinc#	_	_	_	-	_	_	_	<3	<3	<3	<3	ug/l	TM30/PM14
Total Iron	480	1112	501	628	66	298	<20	751	1668	1831	<20	ug/l	TM30/PM14
Total Manganese	243	<2	26	2	31	278	<2	164	123	65	<2	ug/l	TM30/PM14
•													
EPH (C8-C40)#	<10	<10	<10	<10	<10	<10	<10	-	-	-	<10	ug/l	TM5/PM30
EPH >C8-C10	-	-	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C10-C16	-	-	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C16-C24	-	-	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C24-C40	-	-	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C8-C40	-	-	-	-	-	-	-	<10	<10	<10	<10	ug/l	TM5/PM30
GRO (>C4-C8)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM36/PM12
Benzene #	<5 -5	<5 -5	<5 -5	<5 -5	<5 -5	<5 -5	<5 -5	<5 -F	<5 -F	<5 -F	<5 -5	ug/l	TM36/PM12
Toluene #	<5 -5	<5 -5	<5 -5	<5 -5	<5 -5	<5 -5	<5 -5	<5 -F	<5 -F	<5 -F	<5 -5	ug/l	TM36/PM12
Ethylbenzene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	ug/l	TM36/PM12 TM36/PM12
m/p-Xylene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	ug/l	TM36/PM12
o-Xylene #	<5	<5	<0	<0	<5	<5	<5	<5	<5	<5	<5	ug/l	I IVISO/PIVITZ

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/9455

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/9455						H=H ₂ SO ₄ , A	Z=ZnAc, N=	NaOH, HN=	HNU ₃	_		
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-36	37-42	43-51	52-60	61-69			
Sample ID	WF/17	ETF/17	D/17U	D/17D	TV/17	HW/17	B/17	BA/17	BB/17	BC/17			
Depth											Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	V HN P G	VHNPG	VHNPG	V HN P G	VHNPG	V HN P G	V HN P G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G			
Sample Date	25/05/2016 12:30	25/05/2016 12:00	25/05/2016 15:15	25/05/2016 14:40	25/05/2016 13:00	25/05/2016 14:00	25/05/2016 14:20	25/05/2016 10:30	25/05/2016 12:05	25/05/2016 13:05			
Sample Type				Surface Water									
Batch Number	1	1	1	1	1	1	1	1	1	1			
											LOD/LOR	Units	Method No.
Date of Receipt	-	26/05/2016	26/05/2016	26/05/2016	26/05/2016	-	-	<0.3	<0.3	0.4	<0.3	ma/l	TM27/PM0
Bromide	-	-	-	-	-	-	-	0.15	0.09	0.09	<0.05	mg/l mg/l	TM27/PM0
												3	
Sulphate #	36.01	721.93	39.68	54.25	146.20	16.78	1.31	219.92	288.72	194.59	<0.05	mg/l	TM38/PM0
Chloride #	28.5	95.0	48.3	49.6	49.0	22.6	<0.3	88.6	56.0	35.3	<0.3	mg/l	TM38/PM0
Nitrate as NO3#	-	-	-	-	-	-	-	0.4	0.4	0.4	<0.2	mg/l	TM38/PM0
Nitrite as NO2 # Ortho Phosphate as P #	-	-	-	-	-	-	-	<0.02 <0.03	<0.02 <0.03	<0.02 <0.03	<0.02 <0.03	mg/l mg/l	TM38/PM0 TM38/PM0
Offile Friesphate as i								40.00	νο.σο	νο.σο	40.00	mg/i	TWOO/T WIG
Monoethylene glycol	-	-	-	-	-	-	-	<0.001	<0.001	<0.001	<0.001	mg/l	TM24/PM30
Ammoniacal Nitrogen as N #	-	-	-	-	-	-	-	0.09	0.16	0.20	<0.03	mg/l	TM38/PM0
Dissolved Methane #	11	<1	-	-	<1	<1	-	<1	11	6	<1	ug/l	TM25/PM0
Dissolved Ethane #	-	-	-	-	-	-	-	<1	<1	<1	<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	-	-	-	-	-	-	-	253159 ⁺⁺	269315**	181860 ⁺⁺	<1	ug/l	TM25/PM0
Dissolved Propane	-	-	-	-	-	-	-	<1	<1	<1	<1	ug/l	TM25/PM0
Dissolved Butane	-	-	-	-	-	-	-	<1	<1	<1	<1	ug/l	TM25/PM0
Acetic Acid	-	-	-	-	-	-	-	<10	<10	<10	<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3#	418	648	202	149	615	387	9	420	420	384	<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	418	648	202	149	615	387	9	420	420	384	<1	mg/l	TM75/PM0
Acrylamide	-	-	-	-	-	-	-	<50	<50	<50	<50	ug/l	TM103/PM59
Anionic Surfactants	-	-	-	-	-	-	-	0.8	1.4	0.4	<0.2	mg/l	TM33/PM0
BOD (Settled)#	-	-	-	-	-	-	-	<1	<1	2	<1	mg/l	TM58/PM0
COD (Settled) # Electrical Conductivity @25C#	927	2641	577	501	1376	729	- 18	27 1334	22 1307	31 1078	<7 <2	mg/l uS/cm	TM57/PM0 TM76/PM0
Formaldehyde	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	mg/l	TM51/PM0
pH#	7.93	8.02	7.73	7.76	8.12	7.96	5.63	7.41	7.30	7.51	<0.01	pH units	TM73/PM0
Redox	-	-	-	-	-	-	-	518	487	498		mV	TM72/PM0
Salinity	-	-	-	-	-	-	-	0.8	0.8	0.6	<0.1	%	TM64/PM0
Sodium Persulphate	-	-	-	-	-	-	-	702	<60	71	<60	mg/l	TM100/PM0
Total Dissolved Solids #	588	1968	466	368	970	518	<10	1026	1060	868	<10	mg/l	TM20/PM0
Total Suspended Solids #	-	-	-	-	-	-	-	15	43	<10	<10	mg/l	TM37/PM

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/9455

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/9455				 H=H ₂ SO ₄ ,	Z=ZNAC, N=	inaon, nin=	HINU3			
J E Sample No.	70-78	79-87	88-93								
Sample ID	BD/17	BE/17	DD/17D								
Depth											
COC No / misc										e attached r ations and a	
		V H HN P BOD G									
Sample Date	25/05/2016 14:25	25/05/2016 15:20	25/05/2016 14:45								
Sample Type	Ground Water	Ground Water	Surface Water								
Batch Number	1	1	1					,			Method
Date of Receipt	26/05/2016	26/05/2016	26/05/2016						LOD/LOR	Units	No.
Dissolved Aluminium #	421	<20	<20						<20	ug/l	TM30/PM14
Dissolved Antimony#	<2	<2	-						<2	ug/l	TM30/PM14
Dissolved Arsenic#	<2.5	<2.5	-						<2.5	ug/l	TM30/PM14
Dissolved Barium #	36	11	-						<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	-						<0.5	ug/l	TM30/PM14
Dissolved Boron	246	1803	-						<12	ug/l	TM30/PM14
Dissolved Cadmium #	<0.5	<0.5	-						<0.5	ug/l	TM30/PM14
Dissolved Calcium#	0.8	36.6	73.9						<0.2	mg/l	TM30/PM14
Total Dissolved Chromium#	<1.5	<1.5	-						<1.5	ug/l	TM30/PM14
Dissolved Cobalt#	<2	<2	-						<2	ug/l	TM30/PM14
Dissolved Copper#	<7	<7	-						<7	ug/l	TM30/PM14
Total Dissolved Iron #	<20	221	26						<20	ug/l	TM30/PM14
Dissolved Lead #	<5	<5	-						<5	ug/l	TM30/PM14
Dissolved Lithium	132	46	-						<5	ug/l	TM30/PM14
Dissolved Magnesium #	0.3	6.2	4.4						<0.1	mg/l	TM30/PM14
Dissolved Manganese #	<2	<2	<2						<2	ug/l	TM30/PM14
Dissolved Mercury#	<1	<1	-						<1	ug/l	TM30/PM14 TM30/PM14
Dissolved Nickel # Dissolved Potassium #	<2 10.7	<2 3.0	8.7						<2 <0.1	ug/l	TM30/PM14
Dissolved Potassium Dissolved Selenium #	<3	<3	-						<3	mg/l ug/l	TM30/PM14
Dissolved Selement	<5	<5	_						<5	ug/l	TM30/PM14
Dissolved Sodium#	771.0 _{AB}	415.0 _{AA}	30.5						<0.1	mg/l	TM30/PM14
Dissolved Strontium	87	848	-						<5	ug/l	TM30/PM14
Dissolved Vanadium #	<1.5	<1.5	-						<1.5	ug/l	TM30/PM14
Dissolved Zinc#	<3	<3	-						<3	ug/l	TM30/PM14
Total Iron	446	262	403						<20	ug/l	TM30/PM14
Total Manganese	<2	5	<2						<2	ug/l	TM30/PM14
EPH (C8-C40) #	-	-	<10						<10	ug/l	TM5/PM30
EPH >C8-C10	<10	<10	-						<10	ug/l	TM5/PM30
EPH >C10-C16	<10	<10	-						<10	ug/l	TM5/PM30
EPH >C16-C24	<10	<10	-						<10	ug/l	TM5/PM30
EPH >C24-C40	<10	<10	-						<10	ug/l	TM5/PM30
EPH >C8-C40	<10	<10	-						<10	ug/l	TM5/PM30
GRO (>C4-C8) #	<10	<10	<10						<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10						<10	ug/l	TM36/PM12 TM36/PM12
GRO (>C4-C12) # MTBE #	<10	<10	<10 <5						<10 <5	ug/l	TM36/PM12
MIBE" Benzene#	<5 <5	<5 <5	<5 <5						<5 <5	ug/l ug/l	TM36/PM12
Toluene #	<5 <5	<5 <5	<5 <5						<5 <5	ug/l	TM36/PM12
Ethylbenzene #	<5 <5	<5 <5	<5 <5						<5	ug/l	TM36/PM12
m/p-Xylene #	<5	<5	<5						<5	ug/l	TM36/PM12
o-Xylene #	<5	<5	<5						<5	ug/l	TM36/PM12

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/9455

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/9455						H=H ₂ SO ₄ , A	Z=ZnAc, N=	NaOH, HN=	:HN0 ₃	_		
J E Sample No.	70-78	79-87	88-93										
Sample ID	BD/17	BE/17	DD/17D										
Depth											Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	V H HN P BOD G	V H HN P BOD G	VHNPG										
Sample Date	25/05/2016 14:25	25/05/2016 15:20											
Sample Type													
Batch Number	1	1	1										
											LOD/LOR	Units	Method No.
Date of Receipt	2.1	0.3	-								<0.3	mg/l	TM27/PM0
Bromide	0.32	0.07	-								<0.05	mg/l	TM27/PM0
Sulphate #	12.72	244.65	54.07								<0.05	mg/l	TM38/PM0
Chloride #	648.9	45.9	50.5								<0.3	mg/l	TM38/PM0
Nitrate as NO3#	0.4	0.4	-								<0.2	mg/l	TM38/PM0
Nitrite as NO2 [#] Ortho Phosphate as P [#]	<0.02 <0.03	<0.02 <0.03	-								<0.02 <0.03	mg/l mg/l	TM38/PM0 TM38/PM0
Orano i nospinate as i	40.00	10.00									10.00	9.	111100/11110
Monoethylene glycol	<0.001	<0.001	-								<0.001	mg/l	TM24/PM30
Ammoniacal Nitrogen as N #	0.54	<0.03	-								<0.03	mg/l	TM38/PM0
Dissolved Methane #	47957**	8	-								<1	ug/l	TM25/PM0
Dissolved Ethane #	<1	<1	-								<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	1352	84992**	-								<1	ug/l	TM25/PM0
Dissolved Propane	<1	<1	-								<1	ug/l	TM25/PM0
Dissolved Butane	<1	<1	-								<1	ug/l	TM25/PM0
Acetic Acid	<10	<10	-								<10	mg/l	TM127/PM0
7.00.00 7.000	1.0	1.0									1.0	9.	2771 1110
Total Alkalinity as CaCO3#	543	626	140								<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	117	626	140								<1	mg/l	TM75/PM0
A and and de	-50	-50									.50	/1	TM402/DM50
Acrylamide	<50	<50	-								<50	ug/l	TM103/PM59
Anionic Surfactants	0.5	0.3	-								<0.2	mg/l	TM33/PM0
BOD (Settled) #	14	1	-								<1	mg/l	TM58/PM0
COD (Settled) #	24	30	-								<7	mg/l	TM57/PM0
Electrical Conductivity @25C#	2803	1559	510								<2	uS/cm	TM76/PM0
Formaldehyde pH [#]	<0.5	<0.5	7.04								<0.5	mg/l	TM51/PM0 TM73/PM0
рн Redox	10.21 480	8.22 471	7.84								<0.01	pH units mV	TM73/PM0
Salinity	1.8	1.0	-								<0.1	%	TM64/PM0
Sodium Persulphate	<60	<60	-								<60	mg/l	TM100/PM0
Total Dissolved Solids #	1620	1092	294								<10	mg/l	TM20/PM0
Total Suspended Solids #	11	<10	-								<10	mg/l	TM37/PM0
		<u> </u>	<u> </u>	1	ı	l	l	l	1	1	l		

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 16/9455

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

_	
#	ISO17025 (UKAS) accredited - UK.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution
AB	x10 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified USEPA 8163. Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM27	Modified US EPA method 9056. Determination of water soluble anions using Dionex (lon-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM59	As received solid samples are extracted with water in a 1:1 water to solid ratio using end over end.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				

Water Analysis Test Certificate

Round 18

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Phil Ham

Date : 4th July, 2016

Your reference : KMA

Our reference : Test Report 16/10466 Batch 1

Location: Various

Date samples received: 18th June, 2016

Status: Final report

Issue:

Eleven samples were received for analysis on 18th June, 2016 of which eleven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

5.600

Simon Gomery BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/10466

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/10466						$H=H_2SO_4, Z$	∠=∠nAc, N=	:NaOH, HN=	±HNU ₃	_		
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-39	40-48	49-57	58-66	67-75			
Sample ID	WF/18	ETF/18	TV/18	HW/18	DW/18	BA/18	BB/18	BC/18	BD/18	BE/18			
Depth											Please se	e attached n	notes for all
COC No / misc												iations and a	
Containers	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G			
Sample Date	15/06/2016 17:30	15/06/2016 17:00	15/06/2016 15:45	15/06/2016 16:30	16/06/2016 16:00	16/06/2016 10:05	16/06/2016 10:50	16/06/2016 12:15	16/06/2016 14:05	16/06/2016 15:00			
•	Ground Water								Ground Water				
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
•	18/06/2016	18/06/2016	18/06/2016	18/06/2016	18/06/2016								
Dissolved Aluminium #	-	-	-	-	-	<20	<20	<20	354	<20	<20	ug/l	TM30/PM14
Dissolved Antimony#	<2	<2	<2	<2	<2	<2 6.7	<2 6.1	<2 4.0	2 4.6	<2 6.7	<2 <2.5	ug/l	TM30/PM14 TM30/PM14
Dissolved Arsenic * Dissolved Barium *	-	-	-	-	-	93	24	175	35	13	<3	ug/l ug/l	TM30/PM14
Dissolved Barlum Dissolved Beryllium		-	-	-	_	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM30/PM14
Dissolved Beryllium Dissolved Boron	-	-	-	-	-	69	131	89	236	1619	<12	ug/l	TM30/PM14
Dissolved Cadmium #	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM30/PM14
Dissolved Calcium#	33.9	84.3	22.4	28.7	<0.2	299.7 _{AA}	292.8 _{AA}	195.6	0.7	41.8	<0.2	mg/l	TM30/PM14
Total Dissolved Chromium#	-	-	-	-	-	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	ug/l	TM30/PM14
Dissolved Cobalt #	-	-	-	-	-	<2	3	<2	<2	<2	<2	ug/l	TM30/PM14
Dissolved Copper#	-	-	-	-	-	<7	<7	<7	<7	<7	<7	ug/l	TM30/PM14
Total Dissolved Iron #	1006	781	122	271	<20	1439	1188	2271	<20	511	<20	ug/l	TM30/PM14
Dissolved Lead#	-	-	-	-	-	<5	<5	<5	<5	<5	<5	ug/l	TM30/PM14
Dissolved Lithium	-	-	-	-	-	59	69	40	141	46	<5	ug/l	TM30/PM14
Dissolved Magnesium #	7.7	40.4	6.2	5.7	<0.1	6.2	11.6	14.6	0.3	6.8	<0.1	mg/l	TM30/PM14
Dissolved Manganese #	332	8	37	271	<2	150	133	64	<2	13	<2	ug/l	TM30/PM14
Dissolved Mercury#	-	-	-	-	-	<1	<1	<1	<1	<1	<1	ug/l	TM30/PM14
Dissolved Nickel #	- 24	- 0.7	-	-	- 0.4	<2	<2	<2	<2	<2	<2	ug/l	TM30/PM14
Dissolved Potassium # Dissolved Selenium #	3.1	6.7	3.6	2.9	<0.1	2.6	3.1 <3	2.2 <3	12.0	3.4	<0.1 <3	mg/l ug/l	TM30/PM14 TM30/PM14
Dissolved Selenium Dissolved Silver		_	_	-	_	<5 <5	<5 <5	<5 <5	<5	<5	<5 <5	ug/l	TM30/PM14
Dissolved Sodium#	177.8	554.7 _{AA}	362.2 _{AA}	158.8	<0.1	31.5	30.3	21.8	713.1 _{AA}	390.1 _{AA}	<0.1	mg/l	TM30/PM14
Dissolved Strontium	-	-	-	-	-	453	523	429	84	924	<5	ug/l	TM30/PM14
Dissolved Vanadium#	-	-	-	-	-	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	ug/l	TM30/PM14
Dissolved Zinc#	-	-	-	-	-	<3	<3	<3	<3	<3	<3	ug/l	TM30/PM14
Total Iron	1018	1075	131	277	<20	2430	1196	2931	69	535	<20	ug/l	TM30/PM14
Total Manganese	338	10	37	278	<2	156	139	64	<2	13	<2	ug/l	TM30/PM14
EPH (C8-C40)#	<10	<10	<10	<10	<10	-	-	-	-	-	<10	ug/l	TM5/PM30
EPH >C8-C10	-	-	-	-	-	<10	<10	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C10-C16	-	-	-	-	-	<10	<10	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C16-C24 EPH >C24-C40	-	-	-	-	-	<10	<10 <10	<10 <10	<10	<10 <10	<10 <10	ug/l	TM5/PM30 TM5/PM30
EPH >C8-C40	-	-	-	-	-	<10 <10	<10	<10	<10 <10	<10	<10	ug/l ug/l	TM5/PM30
LF11 >00-040		-	-	-	-	<10	210	210	210	210	210	ug/i	TIVIS/FIVISO
GRO (>C4-C8) #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
MTBE#	<5	<5 .5	<5 .5	<5 .5	<5	<5	<5	<5 .c	<5	<5	<5 .5	ug/l	TM36/PM12
Benzene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	ug/l	TM36/PM12 TM36/PM12
Toluene # Ethylbenzene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	ug/l ug/l	TM36/PM12
m/p-Xylene #	<5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	ug/l	TM36/PM12
o-Xylene #			<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	1	1	1		~g/1	1

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/10466

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE JOD NO.:	16/10466						H=H ₂ SO ₄ , A			111103	-		
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-39	40-48	49-57	58-66	67-75			
Sample ID	WF/18	ETF/18	TV/18	HW/18	DW/18	BA/18	BB/18	BC/18	BD/18	BE/18			
Depth											Diagram		-t fII
COC No / misc												e attached no ations and ac	
Containers	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G			
			15/06/2016 15:45		_		16/06/2016 10:50		16/06/2016 14:05				
Sample Date													
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	18/06/2016	18/06/2016	18/06/2016	18/06/2016	18/06/2016	18/06/2016	18/06/2016	18/06/2016	18/06/2016	18/06/2016			No.
Fluoride	-	-	-	-	-	<0.3	<0.3	0.5	2.1	<0.3	<0.3	mg/l	TM27/PM0
Bromide	-	-	-	-	-	0.13	<0.05	0.10	0.30	<0.05	<0.05	mg/l	TM27/PM0
Sulphate #	30.42	726.70	148.38	16.97	2.54	211.87	292.54	157.53	11.77	252.55	<0.05	mg/l	TM38/PM0
Chloride #	29.0	95.6	50.6	22.1	<0.3	101.2	54.6	35.9	624.2	45.7	<0.3	mg/l	TM38/PM0
Nitrate as NO3 #	-	-	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/l	TM38/PM0
Nitrite as NO2 #	-	-	-	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/l	TM38/PM0
Ortho Phosphate as P#	-	-	-	-	-	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/l	TM38/PM0
Monoethylene glycol	-	-	-	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	mg/l	TM24/PM30
Ammoniacal Nitrogen as N #	-	-	-	-	-	0.08	0.14	0.24	1.05	1.57	<0.03	mg/l	TM38/PM0
Dissolved Methane #	17	808	2971**	10	-	<1	14	<1	67051**	130	<1	ug/l	TM25/PM0
Dissolved Ethane #	-	-	-	-	-	<1	<1	<1	10	<1	<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	-	-	-	-	-	300089**	307516 ⁺⁺	214854**	1472	100126**	<1	ug/l	TM25/PM0
Dissolved Butane	-	-	-	-	-	<2	<2	<2	<2	<2	<2	ug/l	TM25/PM0
Dissolved Propane	-	-	-	-	-	<2	<2	<2	<2	<2	<2	ug/l	TM25/PM0
Acetic Acid	-	-	-	-	-	<10	<10	<10	<10	<10	<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3#	425	646	623	393	11	438	438	390	553	618	<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	425	646	623	393	11	438	438	390	121	618	<1	mg/l	TM75/PM0
Acrylamide	-	-	-	-	-	<50	<50	<50	<50	<50	<50	ug/l	TM103/PM59
Anionic Surfactants	-	-	-	-	-	0.8	0.6	0.7	1.4	1.0	<0.2	mg/l	TM33/PM0
BOD (Settled)#	-	-	-	-	-	1	<1	<1	<1	<1	<1	mg/l	TM58/PM0
COD (Settled) #	-	-	-	-	-	24	16	25	24	<7	<7	mg/l	TM57/PM0
Electrical Conductivity @25C#	842	2601	1445	739	32	1417	1363	1087	2917	1635	<2	uS/cm	TM76/PM0
Formaldehyde	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	mg/l	TM51/PM0
pH [#] Redox	7.68	7.35	7.36	7.42	6.90	7.05 464	7.05 475	7.18 477	10.17 478	7.96 484	<0.01	pH units mV	TM73/PM0 TM72/PM0
Salinity	-	-	-	-	-	0.2	0.1	<0.1	0.3	0.1	<0.1	%	TM64/PM0
Sodium Persulphate	-	-	-	-	-	95	<60	<60	107	<60	<60	mg/l	TM100/PM0
Total Dissolved Solids #	558	1946	812	460	50	1016	972	682	1622	1044	<10	mg/l	TM20/PM0
Total Suspended Solids #	-	-	-	-	-	54	30	58	<10	<10	<10	mg/l	TM37/PM0
								l	l				

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/10466

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/10466			 Π=Π ₂ SO ₄ , A	Z=ZNAC, N=	NaOH, HN=	ПИО3			
J E Sample No.	76-81									
Sample ID	VT/18									
Depth								-		
COC No / misc									e attached r ations and a	
Containers										
Sample Date	15/06/2016 16:00									
Sample Type	Ground Water									
Batch Number	1							1 OD/I OD	Units	Method
Date of Receipt	18/06/2016							LOD/LOR	Offics	No.
Dissolved Aluminium #	-							<20	ug/l	TM30/PM14
Dissolved Antimony#	<2							<2	ug/l	TM30/PM14
Dissolved Arsenic#	-							<2.5	ug/l	TM30/PM14
Dissolved Barium #	-							<3	ug/l	TM30/PM14
Dissolved Beryllium	-							<0.5	ug/l	TM30/PM14
Dissolved Boron	-							<12	ug/l	TM30/PM14
Dissolved Cadmium #	-							<0.5	ug/l	TM30/PM14
Dissolved Calcium#	22.7							<0.2	mg/l	TM30/PM14
Total Dissolved Chromium#	-							<1.5	ug/l	TM30/PM14
Dissolved Cobalt #	-							<2	ug/l	TM30/PM14
Dissolved Copper#	-							<7	ug/l	TM30/PM14
Total Dissolved Iron #	124							<20	ug/l	TM30/PM14
Dissolved Lead#	-							<5	ug/l	TM30/PM14
Dissolved Lithium	-							<5	ug/l	TM30/PM14
Dissolved Magnesium #	6.2							<0.1	mg/l	TM30/PM14
Dissolved Manganese #	37							<2	ug/l	TM30/PM14
Dissolved Mercury#	-							<1	ug/l	TM30/PM14
Dissolved Nickel #	-							<2	ug/l	TM30/PM14
Dissolved Potassium#	3.8							<0.1	mg/l	TM30/PM14
Dissolved Selenium #	-							<3	ug/l	TM30/PM14
Dissolved Silver	-							<5	ug/l	TM30/PM14
Dissolved Sodium#	363.4 _{AA}							<0.1	mg/l	TM30/PM14
Dissolved Strontium	-							<5	ug/l	TM30/PM14
Dissolved Vanadium #	-							<1.5	ug/l	TM30/PM14
Dissolved Zinc#	-							<3	ug/l	TM30/PM14
Total Iron	132							<20	ug/l	TM30/PM14
Total Manganese	38							<2	ug/l	TM30/PM14
-									-	
EPH (C8-C40)#	<10							<10	ug/l	TM5/PM30
EPH >C8-C10	-							<10	ug/l	TM5/PM30
EPH >C10-C16	-							<10	ug/l	TM5/PM30
EPH >C16-C24	-							<10	ug/l	TM5/PM30
EPH >C24-C40	-							<10	ug/l	TM5/PM30
EPH >C8-C40	-							<10	ug/l	TM5/PM30
GRO (>C4-C8)#	<10							<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10							<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10							<10	ug/l	TM36/PM12
MTBE#	<5							<5	ug/l	TM36/PM12
Benzene #	<5							<5	ug/l	TM36/PM12
Toluene #	<5							<5	ug/l	TM36/PM12
Ethylbenzene #	<5							<5	ug/l	TM36/PM12
m/p-Xylene #	<5							<5	ug/l	TM36/PM12
										TM36/PM12
o-Xylene #	<5							<5	ug/l	TM36/PM

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/10466

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

JE Job No.:	16/10466			$H=H_2SO_4$,	Z=ZnAc, N=	NaOH, HN=	HN0 ₃			
J E Sample No.	76-81									
Sample ID	VT/18									
Depth										
COC No / misc									e attached n ations and a	
Containers	V HN P G									
Sample Date										
Sample Type	Ground Water									
Batch Number	1							LOD/LOR	Units	Method
Date of Receipt	18/06/2016							200/2011	01.11.0	No.
Fluoride	-							<0.3	mg/l	TM27/PM0
Bromide	-							<0.05	mg/l	TM27/PM0
Sulphate #	141.77							<0.05	mg/l	TM38/PM0
Chloride #	50.2							<0.3	mg/l	TM38/PM0
Nitrate as NO3 # Nitrite as NO2 #	-							<0.2 <0.02	mg/l mg/l	TM38/PM0 TM38/PM0
Ortho Phosphate as P#	-							<0.02	mg/l	TM38/PM0
									, ,	
Monoethylene glycol	-							<0.001	mg/l	TM24/PM30
Ammoniacal Nitrogen as N #	-							<0.03	mg/l	TM38/PM0
Dissolved Methane #	2852 ⁺⁺							<1	ug/l	TM25/PM0
Dissolved Ethane #	-							<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide Dissolved Butane	-							<1 <2	ug/l	TM25/PM0 TM25/PM0
Dissolved Butane Dissolved Propane	-							<2	ug/l ug/l	TM25/PM0
2.000.rea : repaire									ug.	111120/11110
Acetic Acid	-							<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3#	623							<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	623							<1	mg/l	TM75/PM0
Acrylamide	-							<50	ug/l	TM103/PM59
Anionic Surfactants	_							<0.2	mg/l	TM33/PM0
BOD (Settled) #	-							<0.2	mg/l	TM58/PM0
COD (Settled) #	-							<7	mg/l	TM57/PM0
Electrical Conductivity @25C#	1441							<2	uS/cm	TM76/PM0
Formaldehyde	-							<0.5	mg/l	TM51/PM0
pH [#]	7.68							<0.01	pH units	TM73/PM0
Redox	-								mV	TM72/PM0
Salinity	-							<0.1	%	TM64/PM0
Sodium Persulphate	- 050							<60	mg/l	TM100/PM0 TM20/PM0
Total Dissolved Solids # Total Suspended Solids #	858							<10 <10	mg/l mg/l	TM20/PM0
rotal Suspended Sullus	-							~10	9/1	7.14107/1 1410

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 16/10466

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

16/10466

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМО	Not available	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Gravimetric determination of Total Dissolved Solids/Total Solids based on BS 1377-3:1990 and BSEN 15126	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM27	Modified US EPA method 9056. Determination of water soluble anions using Dionex (Ion-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM59	As received solid samples are extracted with water in a 1:1 water to solid ratio using end over end.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				

Water Analysis Test Certificate

Round 19

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Envireau Ltd

Cedars Farm Barn

Market Street

Draycott

Derby

Tel: +44 (0) 1244 833780

Fax: +44 (0) 1244 833781

Attention: Phil Ham

Date: 12th August, 2016

Your reference : KM8

DE72 3NB

Our reference : Test Report 16/12035 Batch 1

Location: Various

Date samples received: 22nd July, 2016

Status: Final report

Issue:

Fifteen samples were received for analysis on 22nd July, 2016 of which fifteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Prolon

Paul Lee-Boden BSc Project Manager

Client Name: Envireau Ltd

Reference: KM8
Location: Various
Contact: Phil Ham
JE Job No.: 16/12035

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE JOB NO.:	16/12035						11=112004, 2		Naoh, HN=	=FINO3				
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-36	37-42	43-48	49-54	55-60				
Sample ID	WF/19	ETF/19	TV/19	HW/19	DW/19	BA/19	BB/19	BC/19	BD/19	BE/19				
Depth											Please se	e attached n	otos for all	
COC No / misc												ations and a		
Containers	V HN P G	VHNPG	V HN P G	V HN P G	V HN P G	V HN P G	VHNPG	VHNPG	VHNPG	V HN P G				
Sample Date				20/07/2016 14:45										
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Surface Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water				
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method	
Date of Receipt	22/07/2016	22/07/2016	22/07/2016	22/07/2016	22/07/2016	22/07/2016	22/07/2016	22/07/2016	22/07/2016	22/07/2016			No.	
Dissolved Aluminium #	<20	<20	<20	<20	<20	<20	<20	<20	313	<20	<20	ug/l	TM30/PM14	
Dissolved Calcium#	33.0	64.7	23.5	28.4	<0.2	322.6 _{AA}	341.5 _{AA}	197.6	0.6	33.7	<0.2	mg/l	TM30/PM14	
Total Dissolved Iron #	477	399	98	261	<20	1147	1077	1467	<20	237	<20	ug/l	TM30/PM14	
Dissolved Magnesium#	7.4	31.8	6.0	5.3	<0.1	5.8	10.5	13.6	0.3	5.5	<0.1	mg/l	TM30/PM14	
Dissolved Manganese # Dissolved Potassium #	300	5.9	37 3.7	245 2.7	<2 <0.1	143 2.4	128 2.9	63 2.0	<2 11.1	10 3.0	<2 <0.1	ug/l	TM30/PM14 TM30/PM14	
Dissolved Sodium#	159.7	745.1 _{AB}	392.9 _{AA}	149.9	<0.1	30.8	30.1	21.9	828.5 _{AB}	480.2 _{AA}	<0.1	mg/l mg/l	TM30/PM14	
Total Iron	513	2057	115	287	<20	1198	1756	4359	1585	397	<20	ug/l	TM30/PM14	
Total Manganese	315	13	38	265	<2	148	139	72	15	11	<2	ug/l	TM30/PM14	
-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		TM5/PM30	
EPH (C8-C40)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l		
GRO (>C4-C8) #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12	
GRO (>C8-C12) #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12	
GRO (>C4-C12) #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12	
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM36/PM12	
Benzene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	ug/l	TM36/PM12 TM36/PM12	
Toluene [#] Ethylbenzene [#]	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	ug/l ug/l	TM36/PM12	
m/p-Xylene #	<5	<5 <5	<5 <5	<5 <5	<5 <5	<5	<5 <5	<5	<5	<5 <5	<5	ug/l	TM36/PM12	
o-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM36/PM12	
,														
Sulphate #	37.89	684.17	147.77	18.46	1.63	205.56	296.33	154.15	10.85	248.70	<0.05	mg/l	TM38/PM0	
Chloride #	30.4	104.9	48.8	22.7	<0.3	107.7	56.7	37.9	663.6	46.4	<0.3	mg/l	TM38/PM0	
Total Alkalinity as CaCO3#	393	367	405	265	<1	316	355	329	473	580	<1	mg/l	TM75/PM0	
Bicarbonate Alkalinity as CaCO3	393	367	405	265	<1	316	355	329	146	580	<1	mg/l	TM75/PM0	
Dissolved Methane*	9	4	5	9	-	6	10	11	49100	45	<1	ug/l	Subcontracted	
Electrical Conductivity @25C#	879	2753	1378	799	23	1348	1393	1085	3053	1746	<2	uS/cm	TM76/PM0	
pH#	7.86	7.81	7.86	7.78	4.48	7.10	7.09	7.24	10.12	8.07	<0.01	pH units	TM73/PM0	
Total Dissolved Solids #	490	1908	906	482	38	1074	1060	766	1530	1100	<35	mg/l	TM20/PM0	
		<u> </u>												

Client Name: Envireau Ltd

Reference: KM8
Location: Various
Contact: Phil Ham
JE Job No.: 16/12035

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	16/12035					Π=Π ₂ SO ₄ ,	Z=ZNAC, N=	:NaOH, HN=	=HINU3	_		
J E Sample No.	61-66	67-73	74-79	80-85	86-91							
Sample ID	WH/19	AB/19	CB/19	CF/19	TE/19							
Depth												
COC No / misc											e attached n ations and a	
Containers	VHNPG	VHNPG	VHNPG	VHNPG	V HN P G							
Sample Date				20/07/2016 13:15								
Sample Type												
Batch Number	1	1	1	1	1					LOD/LOR	Units	Method No.
Date of Receipt												
Dissolved Aluminium #	<20	<20	<20	<20	<20					<20	ug/l	TM30/PM14
Dissolved Calcium #	28.7	72.5	95.0	28.0	20.9					<0.2	mg/l	TM30/PM14
Total Dissolved Iron #	168	148	39	71	217					<20	ug/l	TM30/PM14
Dissolved Magnesium#	5.3	8.2	7.2	6.3	5.3					<0.1	mg/l	TM30/PM14 TM30/PM14
Dissolved Manganese * Dissolved Potassium *	182 2.7	2951 7.8	2.2	226 2.9	60 3.2					<2 <0.1	ug/l	TM30/PM14 TM30/PM14
Dissolved Potassium* Dissolved Sodium#	149.3	104.4	15.6	2.9 263.4 _{AA}	3.2 197.1					<0.1	mg/l mg/l	TM30/PM14
Total Iron	225	529	181	83	599					<20	ug/l	TM30/PM14
Total Manganese	252	3942	4	230	84					<2	ug/l	TM30/PM14
3 · · · · ·	-										- 3	
EPH (C8-C40) #	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM30
GRO (>C4-C8)#	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
GRO (>C8-C12) #	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
Benzene #	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
Toluene #	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
Ethylbenzene #	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
m/p-Xylene #	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
o-Xylene #	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
Culabata#	19.40	10.96	40.04	90.02	64.15					40.0E	ma/l	TM38/PM0
Sulphate # Chloride #	18.49 23.1	80.8	48.84 31.4	27.2	25.4					<0.05 <0.3	mg/l mg/l	TM38/PM0
Chionae	20.1	00.0	01.4	27.2	20.4					40.0	mgn	TIVIOO/T WIO
Total Alkalinity as CaCO3#	350	317	169	429	419					<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3		317	169	429	419					<1	mg/l	TM75/PM0
											-	
Dissolved Methane*	11	-	-	5	8					<1	ug/l	Subcontracted
Electrical Conductivity @25C#	783	860	590	1070	951					<2	uS/cm	TM76/PM0
pH#	7.85	7.81	7.98	7.93	8.05					<0.01	pH units	TM73/PM0
Total Dissolved Solids #	496	568	380	640	630					<35	mg/l	TM20/PM0

Notification of Deviating Samples

Client Name: Envireau Ltd Matrix : Liquid

Reference: KM8
Location: Various
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
16/12035	1					Liquid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 16/12035

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution
AB	x10 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Gravimetric determination of Total Dissolved Solids/Total Solids based on BS 1377-3:1990 and BSEN 15126	PM0	No preparation is required.	Yes			
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 and 6010B	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 and 6010B	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
Subcontracted	Subcontracted analysis, sent to an ISO 17025 accredited laboratory where possible.						

Water Analysis Test Certificate

Round 20

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Phil Ham

Date: 1st September, 2016

Your reference : KM8

Our reference : Test Report 16/13285 Batch 1

Location: Various

Date samples received: 19th August, 2016

Status: Final report

Issue:

Fourteen samples were received for analysis on 19th August, 2016 of which fourteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Balon

Paul Lee-Boden BSc Project Manager

Client Name: Envireau Ltd

Reference: KM8
Location: Various
Contact: Phil Ham
JE Job No.: 16/13285

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	16/13285						H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN=	:HNU ₃	_		
J E Sample No.	1-6	7-12	13-19	20-25	26-31	32-37	38-43	44-49	50-55	56-61			
Sample ID	WF/20	ETF/20	TV/20	HW/20	DW/20	BA/20	BB/20	BC/20	BD/20	BE/20			
Depth											Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	V HN P G	VHNPG	VHNPG	V HN P G	V HN P G	VHNPG	VHNPG	VHNPG	VHNPG	VHNPG			
Sample Date		17/08/2016 11:45							17/08/2016 13:45				
		Ground Water											
									Ground Water				
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
•		19/08/2016		19/08/2016		19/08/2016		19/08/2016		19/08/2016			
Dissolved Aluminium #	<20	<20	<20	<20	<20	<20	<20	<20	294	<20	<20	ug/l	TM30/PM14
Dissolved Calcium#	34.7	81.4	22.5	27.7	0.2	298.3 _{AA}	300.9 _{AA}	189.5	0.9	31.1	<0.2	mg/l	TM30/PM14
Total Dissolved Iron #	609	388	28	<20	<20	368	186	2136	<20	244	<20	ug/l	TM30/PM14 TM30/PM14
Dissolved Magnesium #	7.8	39.6	6.2 38	5.7 100	<0.1	6.4	11.3 107	14.8	0.4	5.7	<0.1	mg/l	TM30/PM14
Dissolved Manganese # Dissolved Potassium #	334	<2 6.6	3.8	2.7	<2 <0.1	153 2.5	2.9	48 2.1	<2 12.2	3.3	<2 <0.1	ug/l mg/l	TM30/PM14
Dissolved Potassium Dissolved Sodium#	164.5	610.6 _{AA}	3.8 393.5 _{AA}	150.7	<0.1	33.3	31.1	23.3	813.6 _{AA}	415.3 _{AA}	<0.1	mg/l	TM30/PM14
Total Iron	874	452	80	47	<20	567	302	2401	672	276	<20	ug/l	TM30/PM14
Total Manganese	337	5	39	160	<2	156	123	67	6	10	<2	ug/l	TM30/PM14
EPH (C8-C40)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM5/PM30
GRO (>C4-C8)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
Benzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
Toluene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
o-Xylene#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
Sulphate # Chloride #	36.34 29.8	726.33 108.8	152.89 50.4	17.29 23.2	2.81 <0.3	209.56 102.9	300.66 57.4	165.46 38.8	7.77 664.8	259.02 44.8	<0.05 <0.3	mg/l mg/l	TM38/PM0 TM38/PM0
Cilionae			****										
Dissolved Methane #	27	554	3159**	<1	-	4	10	4	57896 ⁺⁺	100	<1	ug/l	TM25/PM0
Total Alkalinity as CaCO3#	410	680	613	380	6	412	419	388	540	638	<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	410	680	613	380	6	412	419	388	156	638	<1	mg/l	TM75/PM0
Electrical Conductivity @25C #	891	2910	1552	799	22	1391	1377	1125	3229	1758	<2	uS/cm	TM76/PM0
рН#	7.82	7.96	7.90	8.07	5.90	7.04	7.05	7.12	10.02	8.01	<0.01	pH units	TM73/PM0
Total Dissolved Solids#	524	1940	946	462	<35	982	1002	745	1691	1085	<35	mg/l	TM20/PM0

Client Name: Envireau Ltd

Reference: KM8
Location: Various
Contact: Phil Ham
JE Job No.: 16/13285

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	16/13285					H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN0₃			
J E Sample No.	62-67	68-73	74-79	80-85								
Sample ID	FW <u>/</u> 20	CB/20	CF/20	TE/20								
Depth										Di		
COC No / misc											e attached n ations and a	
Containers	V HN P G	V HN P G	V HN P G	V HN P G								
Sample Date	17/08/2016 12:30	17/08/2016 11:15	17/08/2016 12:45	17/08/2016 13:30								
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water								
Batch Number	1	1	1	1								Method
Date of Receipt	19/08/2016	19/08/2016	19/08/2016	19/08/2016						LOD/LOR	Units	No.
Dissolved Aluminium #	<20	<20	<20	<20						<20	ug/l	TM30/PM14
Dissolved Calcium#	28.4	94.8	28.5	22.6						<0.2	mg/l	TM30/PM14
Total Dissolved Iron#	44	<20	88	187						<20	ug/l	TM30/PM14
Dissolved Magnesium #	6.9	7.9	6.9	6.1						<0.1	mg/l	TM30/PM14
Dissolved Manganese #	131	<2	229	<2						<2	ug/l	TM30/PM14
Dissolved Potassium#	3.0	2.3	3.0	2.4						<0.1	mg/l	TM30/PM14
Dissolved Sodium#	268.4 _{AA}	16.1	261.1 _{AA}	278.0 _{AA}						<0.1	mg/l	TM30/PM14
Total Iron	78	86	94	376						<20	ug/l	TM30/PM14
Total Manganese	229	<2	232	5						<2	ug/l	TM30/PM14
EPH (C8-C40)#	<10	<10	<10	<10						<10	ug/l	TM5/PM30
GRO (>C4-C8)#	<10	<10	<10	<10						<10	ug/l	TM36/PM12
GRO (>C8-C12) #	<10	<10	<10	<10						<10	ug/l	TM36/PM12
GRO (>C4-C12) #	<10	<10	<10	<10						<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5						<5	ug/l	TM31/PM12
Benzene#	<5	<5	<5	<5						<5	ug/l	TM31/PM12
Toluene #	<5	<5	<5	<5						<5	ug/l	TM31/PM12
Ethylbenzene #	<5	<5	<5	<5						<5	ug/l	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5						<5	ug/l	TM31/PM12
o-Xylene #	<5	<5	<5	<5						<5	ug/l	TM31/PM12
Sulphate #	90.29	51.47	91.01	86.28						<0.05	mg/l	TM38/PM0
Chloride #	27.5	31.5	26.5	25.8						<0.3	mg/l	TM38/PM0
Dissolved Methane #	15	-	12	7						<1	ug/l	TM25/PM0
Total Alkalinity as CaCO3#	464	193	461	462						<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	464	193	461	462						<1	mg/l	TM75/PM0
Electrical Conductivity @25C#	1138	608	1065	1074						<2	uS/cm	TM76/PM0
pH#	7.80	7.99	7.89	8.12						<0.01	pH units	TM73/PM0
Total Dissolved Solids #	671	383	671	676						<35	mg/l	TM20/PM0
												1

Notification of Deviating Samples

Client Name: Envireau Ltd Matrix : Liquid

Reference: KM8
Location: Various
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
16/13285	1					Liquid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 16/13285

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Gravimetric determination of Total Dissolved Solids/Total Solids based on BS 1377-3:1990 and BSEN 15126	PM0	No preparation is required.	Yes			
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 and 6010B	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 and 6010B	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

Water Analysis Test Certificate

Round 21

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Phil Ham

Date: 27th September, 2016

Your reference : KMA

Our reference : Test Report 16/14463 Batch 1

Location: Various

Date samples received: 16th September, 2016

Status: Final report

Issue:

Fifteen samples were received for analysis on 16th September, 2016 of which fifteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Prolon

Paul Lee-Boden BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/14463

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	16/14463						H=H ₂ SO ₄ , 2	∠=∠nAc, N=	NaOH, HN=	:HNU ₃	_		
J E Sample No.	1-7	8-14	15-21	22-28	29-35	36-42	43-49	50-56	57-63	64-70			
Sample ID	WF/21	ETF/21	TV/21	HW/21	DW/21	BA/21	BB/21	BC/21	BD/21	BE/21			
Depth											Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	V HN P G	VHNPG	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G	VHNPG	VHNPG	VHNPG			
Sample Date		13/09/2016 14:15								14/09/2016 13:15			
		Ground Water							Ground Water				
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
•		16/09/2016		16/09/2016				16/09/2016		16/09/2016			
Dissolved Aluminium #	<20	<20	<20	<20	<20	<20	<20	<20	258	<20	<20	ug/l	TM30/PM14
Dissolved Calcium#	33.3	67.7	23.9	28.4	<0.2	262.1 _{AA}	273.0 _{AA}	205.0	0.7	31.6	<0.2	mg/l	TM30/PM14
Total Dissolved Iron # Dissolved Magnesium #	221	460	36	172 5.7	<20	748	512 11.2	237	<20	261	<20	ug/l	TM30/PM14 TM30/PM14
Dissolved Manganese #	7.5 210	34.3 6	6.6 34	166	<0.1 <2	6.1 140	120	14.8	0.4 <2	5.7	<0.1 <2	mg/l	TM30/PM14
Dissolved Ivianganese Dissolved Potassium #	3.1	6.1	3.9	2.7	<0.1	2.4	2.9	2.1	12.5	3.1	<0.1	ug/l mg/l	TM30/PM14
Dissolved Polassium Dissolved Sodium #	166.7	560.2 _{AA}	323.7 _{AA}	156.2	<0.1	31.5	29.9	22.2	655.2 _{AA}	380.2 _{AA}	<0.1	mg/l	TM30/PM14
Total Iron	438	1185	89	201	<20	892	795	361	263	366	<20	ug/l	TM30/PM14
Total Manganese	302	11	38	265	<2	153	135	60	2	13	<2	ug/l	TM30/PM14
EPH (C8-C40) #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM5/PM30
GRO (>C4-C8)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C4-C12) #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
Benzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
Toluene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
o-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
0.1.1.#	04.0	700.0	450.5	40.4	4.5	000.0	005.0	477.5	0.0	000.4	0.5		T1400/D140
Sulphate # Chloride #	31.8 30.6	762.8 105.4	156.5 52.6	19.4 24.1	1.5	208.0 106.5	305.0 60.4	177.5 41.8	8.9 702.1	262.4 48.1	<0.5 <0.3	mg/l mg/l	TM38/PM0 TM38/PM0
Dissolved Methane #	31	111	3764**	12	-	8	13	6	67025**	68	<1	ug/l	TM25/PM0
Total Alkalinity as CaCO3#	406	599	608	383	17	408	416	381	525	618	<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	406	599	608	383	17	408	416	381	170	618	<1	mg/l	TM75/PM0
Electrical Conductivity @25C#	875	2862	1554	815	21	1378	1437	1125	3078	1717	<2	uS/cm	TM76/PM0
рН#	7.94	7.99	7.95	7.88	5.99	7.23	7.16	7.33	9.95	8.14	<0.01	pH units	TM73/PM0
Total Dissolved Solids #	552	2032	990	493	<35	1037	1048	783	1697	1113	<35	mg/l	TM20/PM0
													1
		1			·		·	1	1				

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 16/14463

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	16/14463					H=H ₂ SO ₄ ,	Z=ZnAc, N=	:NaOH, HN=	:HN0 ₃			
J E Sample No.	71-77	78-83	84-90	91-97	98-104							
Sample ID	FW/21	AB/21	CB/21	CF/21	TE/21							
Depth										5.		
COC No / misc											e attached n ations and a	
Containers	V HN P G	V HN P G										
Sample Date	13/09/2016 15:00	13/09/2016 15:30	15/09/2016 13:45	13/09/2016 16:15	13/09/2016 16:30							
Sample Type	Ground Water	Surface Water	Surface Water	Ground Water	Ground Water							
Batch Number	1	1	1	1	1							
Date of Receipt				16/09/2016						LOD/LOR	Units	Method No.
Dissolved Aluminium #	<20	<20	<20	<20	<20					<20	ug/l	TM30/PM14
Dissolved Calcium#	33.8	110.1	96.4	28.2	24.0					<0.2	mg/l	TM30/PM14
Total Dissolved Iron #	287	<20	54	98	212					<20	ug/l	TM30/PM14
Dissolved Magnesium#	7.6	8.9	7.8	6.7	6.3					<0.1	mg/l	TM30/PM14
Dissolved Manganese #	311	19	<2	215	23					<2	ug/l	TM30/PM14
Dissolved Potassium#	3.1	7.1	2.3	2.8	3.4					<0.1	mg/l	TM30/PM14
Dissolved Sodium#	168.2	63.9	16.1	236.6 _{AA}	215.2 _{AA}					<0.1	mg/l	TM30/PM14
Total Iron	376	165	129	98	306					<20	ug/l	TM30/PM14
Total Manganese	320	135	3	233	31					<2	ug/l	TM30/PM14
EPH (C8-C40) #	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM30
GRO (>C4-C8)#	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5	<5					<5	ug/l	TM31/PM12
Benzene #	<5	<5	<5	<5	<5					<5	ug/l	TM31/PM12
Toluene #	<5	<5	<5	<5	<5					<5	ug/l	TM31/PM12
Ethylbenzene #	<5	<5	<5	<5	<5					<5	ug/l	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5					<5	ug/l	TM31/PM12
o-Xylene #	<5	<5	<5	<5	<5					<5	ug/l	TM31/PM12
Sulphate #	33.5	44.7	52.7	92.3	80.1					<0.5	mg/l	TM38/PM0
Chloride #	30.7	124.3	33.4	27.8	29.3					<0.3	mg/l	TM38/PM0
Dissolved Methane #	30	-	-	18	10					<1	ug/l	TM25/PM0
Total Alkalinity as CaCO3#	412	257	186	445	442					<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	412	257	186	445	432					<1	mg/l	TM75/PM0
Electrical Conductivity @25C#	907	1016	605	1054	1051					<2	uS/cm	TM76/PM0
pH#	7.95	8.20	8.05	7.95	8.30					<0.01	pH units	TM73/PM0
Total Dissolved Solids #	530	578	428	664	683					<35	mg/l	TM20/PM0
		1			1	l	<u> </u>	1	<u> </u>	<u> </u>		1

Notification of Deviating Samples

Client Name: Envireau Ltd Matrix : Liquid

Reference: KMA
Location: Various
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
16/14463	1					Liquid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 16/14463

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 and 6010B	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 and 6010B	PM14	Analysis of waters and leachates for metals by ICP OES. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

BASELINE WATER QUALITY DATA, APRIL - JUNE 2017

KIRBY MISPERTON A WELLSITE, NORTH YORKSHIRE

For

Third Energy UK Gas Limited Knapton Generating Station East Knapton Malton North Yorkshire YO17 8JF

Ву

Envireau Water Aske Stables

Aske Tel: 01748 889 268

Richmond E mail: info@envireauwater.co.uk
North Yorkshire Web: www.envireauwater.co.uk

DL10 5HG

Ref: P:\Third Energy KMA (1996)\40 - Reporting\PreOp Conditions\PO3\KMA Baseline report r4.docx September 2017

TABLE OF CONTENTS

1	INTRODUCTION	1
	1.1 Background	1
	1.2 Permit Conditions	1
	1.3 Purpose of this Report	2
	1.4 Previous Reports	2
2	BASELINE MONITORING	3
	2.1 Overview	3
	2.2 Monitoring Points	3
	2.3 Monitoring Frequency	3
	2.4 Sampling Method	3
	2.5 Analysis Methods	4
3	BASELINE RESULTS	4
	3.1 Availability	4
	3.2 Results	4
	3.3 Trends	4
	3.3.1 Summary of Surface Water	5
	3.3.2 Summary of Groundwater Data	5
	3.3.3 Piper Diagram	7
	3.3.4 Hydrocarbons including Methane	8
	3.3.5 Micro-constituents	10
	3.3.6 Headspace Methane	10
	3.3.7 Duplicates and Blanks	11
4	DISCUSSION	12
	4.1 Summary	12
	4.2 Future Monitoring	12
5	REFERENCES	13

FIGURES

Figure 1	Monitoring Points
Figure 2	Concentrations of selected analytical parameters in surface waters
Figure 3a	$Concentrations \ of \ selected \ analytical \ parameters \ in \ groundwaters \ within \ superficial \ deposits$
Figure 3b	Concentrations of selected analytical parameters in groundwaters within Kimmeridge Clay
Figure 3c	Concentrations of selected analytical parameters in groundwaters within Corallian Group
Figure 4	Piper Diagram - Monitoring Rounds 23 to 25 (April - June 2017)
Figure 5	Geological Horizons Targeted by Monitoring Points
Figure 6	$\delta^{13}\text{CO}_2$ and $\delta^{13}\text{CH}_4$ signatures

APPENDICES

Appendix A
 Appendix B
 Appendix C
 Analysis Methods
 Appendix D
 Analysis Results
 Appendix E
 Laboratory Test Certificates
 Appendix F
 Headspace Methane Reports

© Envireau Ltd. 2017

Envireau Ltd. Registered in England & Wales No. 6647619. Registered office: Cedars Farm Barn, Market Street, Draycott, Derbyshire, DE72 3NB, UK.

Any report provided by Envireau Ltd. is for the client's use and may be reproduced by the client for internal use. The report must not be issued to third parties without the express written consent of Envireau Ltd. If the report is released to any third party, Envireau Ltd will not accept responsibility or liability of any nature to that third party to whom the report (or part thereof) is released. Moreover, Envireau Ltd will accept no liability for damage or loss as a result of any report being made known to, or relied upon by, a third party, unless expressly agreed with Envireau Ltd in writing.

Revision	Details	Completed by	Date	Checked by	Date
REV01	Draft	PH/DB	06/07/2017	PH	07/07/2017
REV02	Client Issue	PH/JS	14/07/2017	DB	14/07/2017
REV03	Environment Agency Issue	PH	18/07/2017	PJ	19/07/2017
REV04	Environment Agency Reissue	JS	05/09/2017	PH	05/09/2017

BASELINE WATER QUALITY DATA, APRIL – JUNE 2017

KIRBY MISPERTON A WELLSITE, NORTH YORKSHIRE

1 INTRODUCTION

1.1 Background

Third Energy UK Gas Limited (Third Energy) is proposing to hydraulically fracture an existing hydrocarbon production well (KM8) at Kirby Misperton A Wellsite, North Yorkshire ("the KMA Wellsite").

The KM8 well was constructed in 2013 to a depth of 3099m true vertical depth (TVD) below ground level. The KM8 well is a vertical well and targets the Carboniferous Bowland Shale Formation, at depths of between c. 2000 and 3100 m TVD. The proposal is to hydraulically fracture the well at five intervals between approximately 2,123m and 3,044m TVD to enhance the production of natural gas (methane) from the target strata.

The location of the KMA Wellsite is shown on Figure 1.

1.2 Permit Conditions

A mining waste and groundwater activity permit (Ref. EPR/DB3002HE; "the permit") was issued by the Environment Agency for the hydraulic fracturing operation in April 2016 [Ref. 1]. The permit includes five pre-operational measures (PO1 – PO5). PO3 states:

At least 4 weeks prior to commencement of permitted activities the operator shall submit to the Environment Agency for approval an updated Emissions Monitoring Plan (EMP) which will include, but is not limited to:

- Complete details of the baseline air quality study undertaken prior to activities commencing; and details of any changes made to the ambient air monitoring programme proposed,
- Complete details of the baseline surface water and groundwater study undertaken prior to activities commencing; and details of any changes made to the surface water and groundwater monitoring programme proposed. Baseline monitoring shall include as a minimum the parameters listed in table S3.5; and the locations, depth, construction method of the monitoring boreholes,
- The plan should also address the requisite surveillance requirements to monitor groundwater both pre-operation and over the lifetime of the activities authorised by this permit,
- Complete details of the surface water management procedures, and related process monitoring,

and shall obtain the Environment Agency's written approval to the updated EMP.

1.3 Purpose of this Report

This report provides the details of three months of baseline surface water and groundwater monitoring carried out by Third Energy between April to June 2017; in accordance with the monitoring requirements of the permit.

The three months of baseline monitoring was carried out following extensive discussions with the Environment Agency to agree a deviation from the monitoring requirements listed in Table S3.5 of the permit. The deviation is acknowledged in the Environment Agency's Compliance Assessment Report (CAR) ID: 402444/0285072 [Ref. 2], which forms an agreement in writing under Condition 3.5.1 of the permit to remove the requirement to monitor for citric acid triethyl ester, hemicellulase enzyme, maltodextrin, sodium carboxymethyl cellulose, sodium gluconate, 1,3,5 triazine and glycine as listed in Table S3.5. The deviation was required because it is not possible to analyse for these seven parameters in groundwater samples. Full details relating to this are available through the Environment Agency's online consultation hub (https://consult.environment-agency.gov.uk/onshore-oil-and-gas/third-energy-kirby-misperton-information-page/).

1.4 Previous Reports

The three months of baseline monitoring presented in this report supplements all the baseline monitoring data that has been collected from the KMA wellsite and nearby water features since February 2015, which was originally presented to the Environment Agency in November 2016 [Ref. 3].

VERY IMPORTANT: Please note that to ensure absolute consistency with the referencing of the wellsite monitoring boreholes in the permit (and the permit decision document and permit application documents), there has been a change to the way in which the KMA wellsite monitoring boreholes have been referenced in this report. To avoid potential confusion with previous submissions, and as agreed with the Environment Agency, Ref. 3 has been updated to reflect the changes and resubmitted to the Environment Agency.

2 BASELINE MONITORING

2.1 Overview

The environmental permit requires baseline monitoring to be undertaken at five on-site monitoring boreholes (BHA to BHE) at the KMA Wellsite and nine offsite monitoring locations, for a period of at least three months prior to the hydraulic fracturing operation.

2.2 Monitoring Points

The locations of the groundwater monitoring boreholes at the KMA Wellsite and the offsite surface water and groundwater monitoring points are shown on Figure 1. Note that, in addition to the single monitoring location on the Sugar Hill Drain (S1) specified in the environmental permit, water samples have also been collected from a location upstream of the KMA Wellsite on the Sugar Hill Drain (S4).

Summary details of the monitoring locations, including the depth and construction method of the monitoring boreholes are provided in Tables A1 - A3 in Appendix A.

2.3 Monitoring Frequency

Water sampling has been carried out on a monthly basis at every monitoring location (with the exception of some of the surface water points, where they were found to be essentially dry at the time of sampling). The three rounds of baseline sampling took place on 24th/25th April 2017, 17th/18th May 2017 and 14th/15th June 2017.

2.4 Sampling Method

Water samples have been collected from the various surface water and groundwater features with reference to relevant parts of BS ISO 5667 (Water Quality Sampling). The sampling techniques are described in a separate sampling protocol that has been prepared by Envireau Water and adopted as a Third Energy operational technique [Ref. 4].

In accordance with the surface water and groundwater monitoring requirements listed in the permit, monitoring has also been undertaken for headspace methane (i.e. gas phase methane occurring in the atmosphere above the water level in the enclosed monitoring boreholes). Monitoring for headspace methane was carried out by staff from Ground Gas Solutions Ltd using portable gas analysers as follows:

- Monitoring of the onsite boreholes (BHA to BHE) was carried out using either a GFM400 series or GA5000 gas analyser. The gas analysers were connected to gas ports located at the top of the boreholes. Headspace gas was then pumped out of the sealed borehole top and through the detector, and flow rates, bulk gas concentrations (methane, carbon dioxide and oxygen), and trace gas compounds (hydrogen sulphide and carbon monoxide) were measured. Methane, carbon dioxide and oxygen were measured as volume % in air whilst hydrogen sulphide and carbon monoxide were measured in parts per million by volume (ppmv). During gas sampling the exhaust of the gas analyser was attached to the inlet of a TDL-500 gas analyser to additionally allow more sensitive measurements of methane as low as 1 ppmv.
- The offsite monitoring boreholes and water wells are not fitted with gas ports and therefore monitoring
 was carried out using a TDL-500 gas analyser to detect methane at levels as low as 1 ppmv. In these cases,
 water samples were collected and the inlet tubing of the TDL was placed insider the sample container to

obtain a methane measurement. These determinations are therefore not made in the well headspace, but rather made in the headspace of the sample container.

2.5 Analysis Methods

The final list of monitoring parameters is presented as Appendix B. This is based on the requirements of the permit [Ref. 1] and the deviation that was agreed with the Environment Agency [Ref. 2].

Field analysis has been carried out using handheld devices for determination of water temperature, pH, electrical conductivity (EC) and redox potential (ORP), and also headspace methane.

Water samples have been submitted for laboratory analysis to Jones Environmental Laboratory and the University of Durham (the latter for stable isotope analysis only). Summary details of the analysis methods used by Jones Environmental Laboratory are provided in Appendix C. The method used by the University of Durham for stable isotope (¹³C) analysis was based on Roberts and Shiller [Ref. 5].

3 BASELINE RESULTS

3.1 Availability

Data are available for all three sampling rounds. It should be noted that the Sugar Hill Drain (locations S1 downstream of the KMA Wellsite and S4 upstream of the KMA Wellsite) was dry during all three sampling rounds and therefore no analysis results are reported. Ackland Beck (location S3) was almost dry during the June sampling round and it was not possible to collect a water sample to carry out meaningful analysis.

3.2 Results

The results from the three rounds of baseline water sampling have been tabulated and are provided in the data file in Appendix D. The full laboratory test certificates are presented in Appendix E. The results from headspace methane monitoring are presented in Appendix F. The following sections discuss the results from these three sampling rounds and provide a general comparison, and comment on consistency with the earlier baseline sampling presented in Ref. 3.

3.3 Trends

Selected chemical indicators have been plotted graphically to illustrate the trends in water chemistry across the monitoring period. The indicators include major ions and other minor constituents and have been chosen to align with the BGS baseline data that is currently available in a graphical format through the BGS website (http://www.bgs.ac.uk/research/groundwater/shaleGas/monitoring/waterQualityYorkshire.html). It should be noted that the charts present selected indicator analytes and not the full suite of analytes, simply to make presentation of a manageable size for a summary report. The full list of analytes and their concentrations are presented in Appendices D, E & F.

Surface water data are presented on Figure 2 and groundwater data are presented on Figures 3a, 3b and 3c. Data have also been plotted as a Piper diagram and the resulting chart is presented on Figure 4. The Piper diagram is a common presentation, used to plot the relative proportions (in milliequivalents per litre) of the major cations and anions (Na $^+$, Ca $^{++}$, Mg $^{++}$, K $^+$, Cl $^-$, SO₄ $^=$ and HCO₃ $^-$) in a water sample. The water sample depths are illustrated on the generalised vertical section on Figure 5.

3.3.1 Summary of Surface Water

Ackland Beck (location S3) was almost dry during the June sampling round and a sample was not submitted to the laboratory for analysis. Furthermore, the Sugar Hill Drain (locations S1 and S4) was dry during all three sampling rounds and therefore no samples are reported.

In Ackland Beck (S3), therefore, only two new samples were available. Concentrations of some major ions (calcium, sodium, chloride, sulphate) exhibit a decrease in concentration from April – June 2017, while others (potassium, alkalinity) exhibit a modest increase. As observed in the previous report [Ref. 3], Ackland Beck (S3) has generally higher concentrations of calcium, magnesium sodium, potassium, alkalinity and chloride than Costa Beck (S2). Nitrate concentrations are somewhat lower in Ackland Beck (S3 – 0.3-0.4 mg/l as NO_3 -) than were recorded in the preceding baseline period.

In Costa Beck (S2), concentrations of plotted parameters are relatively consistent across the sampling period April-June 2017. Nitrate concentrations are in the range 26-29 mg/l (as NO_3^-), which is consistent with the previous baseline period.

The results for iron ('dissolved' iron, using laboratory parlance) show that concentrations were all below 100 μ g/l for the most recent sampling period (April-June 2017).

The surface waters tend to have rather variable pH and alkalinity. The field pH was in the range 7.3 to 8.2 for this latest sampling period (as compared with 7 - 8.7 for the previous baseline series), with laboratory alkalinities in the range 3.8 to 4.6 meq/l (Costa Beck) and 5.8 to 6.3 meq/l (Ackland Beck). It is likely that the variability reflects responses to rainfall and surface run-off. Ackland Beck (S3) still exhibits slightly higher pH and higher alkalinity than the Costa Beck (S2).

Both surface waters contained concentrations of dissolved oxygen (9.5 to 13.5 mg/l), which were close to saturation.

The results from this latest sampling period are broadly consistent, in terms of major ion chemistry, with the results from the previous baseline report.

3.3.2 Summary of Groundwater Data

The major ion chemistry of the groundwater samples has remained consistent across the monitoring period, with the minor exceptions of:

- G6 (The Ellers), which has exhibited a modest decrease in most major ion parameters from April-June 2017.
- BoreholeBHA, which has exhibited a modest decline in Mg⁺⁺ and SO₄⁼ and a slight increase in alkalinity during the period April-June 2017.

Selected indicator analytes are shown on Figures 3a, 3b and 3c.

Superficial Deposits / Weathered Kimmeridge Clay

As was deduced from the previous baseline water quality data set [Ref. 3], the latest data set supports the assertion that, on the basis of major ion data, the boreholes targeting the superficial deposits / weathered Kimmeridge Clay can be divided into three main groups: the KMA Wellsite boreholes (BHA, BHB and BHC), the borehole at The Villa

(G3) and the remaining offsite groundwater sources (G2, G4, G5, G6). The main differences in water chemistry between the three groups are that, in general:

- The KMA Wellsite boreholes have higher concentrations of calcium, chloride, sulphate and iron, and lower concentrations of sodium and oxygen. These are all Ca-HCO₃-SO₄ or Ca-SO₄-HCO₃ waters.
- The borehole at The Villa (G3) has higher concentrations of sodium and methane, somewhat elevated chloride and lower concentrations of calcium and iron. This is a Na-HCO₃ water.
- The remaining offsite groundwater sources (G2, G4, G5, G6) have a very similar composition with lower concentrations of calcium, chloride and sulphate, and intermediate concentrations of sodium. They tend to exhibit moderate to relatively high concentrations of dissolved oxygen. These are Na-HCO₃ waters.

During April-June 2017 (and this is consistent with the findings from the previous baseline reporting period), the boreholes in superficial deposits / weathered Kimmeridge Clay typically exhibit laboratory alkalinities in the range 7 to 10 meq/l (i.e. higher than surface waters), although borehole G3 at The Villa exhibits typical alkalinities of 12 to 13 meq/l. Monitoring locations G2 to G5 typically yield groundwaters with field pH in the range 7 to 8 (with borehole G6 yielding water with a pH in excess of 8). The on-site boreholes BHA to BHC yield water with lower field pH, in the range 6.89 to 7.0.

As regards dissolved oxygen, the groundwaters range from rather anoxic (<0.5 mg/l O₂) in the on-site boreholes BHA-BHC, to essentially oxygen-saturated (G6). The other groundwater sources exhibit intermediate dissolved oxygen contents. It should be noted that, especially in the offsite wells, the dissolved oxygen content may be influenced by the pumping methodology and equipment from which samples are collected.

Nitrate concentrations range from below detection limit to c. 2.7 mg/l during the period April-June 2017.

The groundwater chemistry of these wells and boreholes is broadly consistent with the previous reported period of groundwater monitoring with the following exceptions:

- Dissolved iron concentrations in well G2 seem somewhat higher in April-June 2017 than in the previous baseline period.
- Calcium concentrations in well G6 seem somewhat lower in April-June 2017 than in the previous baseline period.
- Sodium, calcium, magnesium and sulphate concentrations are somewhat higher in Borehole BHC in April-June 2017 than in the previous baseline period.
- Calcium, magnesium, manganese, alkalinity and, especially, sulphate (and, to a lesser extent, potassium and sodium) are significantly higher in Borehole BHA in April-June 2017 than in the previous baseline period.

Kimmeridge Clay

The major ion data show that the water from the borehole at Elm Tree Farm (G1) is more mineralised than the water from the intermediate borehole at the KMA Wellsite (BHD). In general, the water at Elm Tree Farm has the higher concentrations of the key chemical indicators, the most notable difference being the concentration of

sulphate, which is at least three times greater at Elm Tree Farm than at BHD at the KMA wellsite. These observations are entirely consistent with the preceding baseline water quality data set [Ref. 3].

Nitrate was consistently below detection limit (<0.2 mg/l) in both wells G1 and BHD in the period April-June 2017.

As regards pH, the water from G1 exhibits a typical range of around 7.6 to 7.85 (field pH) and a laboratory total alkalinity of 12.6 to 13.3 meq/l. BHD exhibits a field pH of 7.8 to 8.1 in the period April-June 2017 and a laboratory total alkalinity of around 13 meq/l. These values are consistent with the previous baseline data set, although the current BHD alkalinity is a little higher than previously (typically c. 12 meq/l in the previous reporting period).

The groundwater chemistry of these wells is broadly consistent with the previous reported period of groundwater monitoring with the following exceptions:

- Calcium and magnesium concentrations are now somewhat lower in Borehole BHD in April-June 2017 than in the previous baseline period.

Corallian Group

The Corallian Group borehole (BHE) at the KMA Wellsite exhibits relatively stable indicator parameter concentrations across the monitoring period. The main differences between the water composition from the Corallian Group and the other monitoring points is that the concentrations of chloride (and methane) are much higher, being over six (6) times greater than the highest concentrations from the other monitoring points. The water has a high (alkaline) field pH of 9.1 to 9.9 in the period April-June 2017 and a laboratory total alkalinity of around 10.4 to 11.1 meq/l. These values are consistent with the preceding baseline water quality data set [Ref. 3]. It is noteworthy that the water is very poor in calcium and magnesium (< 1 mg/l of each): this is most likely due to the high pH having caused these elements to precipitate out as carbonate minerals.

The very low sulphate and oxygen concentrations in the groundwater at BHE suggest highly reducing conditions. The very high methane concentrations confirm the very reducing nature of the water. The low dissolved iron and manganese concentrations likely represent the low solubility of these metals in a sulphide-rich environment. There is thus a large contrast between the moderately brackish, highly reducing, sulphate-poor Corallian water and the sulphate-rich, fresher, generally more oxidising waters of the superficial deposits.

The groundwater chemistry of this borehole is broadly consistent with the previous reported period of groundwater monitoring with the following exceptions:

- Sulphate concentrations are now lower in Borehole BHE in April-June 2017 than in the previous baseline period, although they had previously been exhibiting a declining trend.

Some of the above observations suggest that the groundwater as sampled (especially from the new monitoring boreholes) may still be in the process of reaching a representative equilibrium with the aquifer.

3.3.3 Piper Diagram

The Piper diagram on Figure 4 illustrates the major ion composition of the water samples and indicates that the water from the monitoring points can be split into five main groups:

• The surface water monitoring points. The surface waters can be described as calcium-bicarbonate (Ca-HCO₃) type, which is indicative of reasonably fresh water from shallow systems.

- The KMA Wellsite superficial deposits boreholes (BHA to BHC). These bear many resemblances to the surface waters in composition. The boreholes have, however, a somewhat higher sulphate concentration than the surface water monitoring points and can be described as Ca-HCO₃-SO₄ or Ca-SO₄-HCO₃ waters. These might be expected to originate from oxidation of sulphide minerals or dissolution of secondary sulphate minerals in the clay horizons encountered in the boreholes.
- The offsite superficial deposits/weathered Kimmeridge Clay groundwater sources (G2 to G6) and the Kimmeridge Clay borehole at the KMA Wellsite (BHD) have a sodium-bicarbonate type composition. This difference in composition suggests that the boreholes are drawing on deeper, more hydrochemically mature water, in comparison with the onsite superficial deposits boreholes. The chemical signature may reflect cation exchange processes or other preferential sodium accumulation processes.
- Groundwater from the Kimmeridge Clay borehole at Elm Tree Farm (G1) has a higher sulphate concentration than the offsite superficial boreholes and can be described as having a sodium-sulphatebicarbonate (Na-SO₄-HCO₃) type composition. The source of the sulphide is likely to be either oxidation of sulphide minerals in the clay, or dissolution of secondary sulphate minerals. Overall, the water from this borehole is more mineralised.
- Groundwater from the Corallian Group borehole (BHE) has a higher chloride concentration than the other monitoring points and can be described as having a sodium-chloride (Na-Cl) type composition. The water has a relatively high mineralisation and salinity, which is indicative of the deep and confined nature of the Corallian limestone at this location. The low sulphate and oxygen concentrations, coupled with the elevated dissolved methane content, suggest that the water is highly reducing in nature.

The interpretation of the samples and their positions on the Piper Diagram remains essentially unchanged from the previously baseline data period, although some minor differences in the plotting of the surface water samples can be ascertained, ascribable to their natural variability.

3.3.4 Hydrocarbons including Methane

A key aspect of the baseline water quality programme is the analysis of dissolved hydrocarbons, including methane. Results from the water sampling carried out by Third Energy are presented in Appendices D and E by carbon banding. Dissolved methane, ethane, propane and butane have been analysed in all groundwater and surface water samples.

Methane analyses of the surface waters showed modest, but detectable, methane concentrations, typically of around 8-12 μg/l in the two streams (the first sample from Ackland Beck returned <1 μg/l).

Dissolved methane concentrations in the groundwater samples from boreholes targeting the superficial deposits and Kimmeridge Clay range between <1 μg/l to 3.5 mg/l. Lower concentrations of <1 to several tens of μg/l were recorded from G2, G4, G5, G6, BHA, BHB and BHC. The higher concentrations were from G1 (0.6 – 0.8 mg/l), G3 (2.9 – 3.5 mg/l) and BHD (0.09 - 0.12 mg/l). Methane concentrations in the Corallian borehole at the KMA Wellsite (BHE) range between 36 - 65 mg/l. The highest values should be treated with some caution as they are outside the calibration limits of the analytical equipment.

All the above are wholly consistent with the preceding period of baseline sampling.

The results of the methane isotope analysis (Appendices D and E), as shown in Figure 6, exhibit a significant degree of variation. Most of the groundwater (and all of the surface water) samples exhibit δ^{13} C of methane (CH₄) of between -45 and -70‰. Most thermogenic methane signatures are heavier (i.e. higher) than -55 to -50‰ [Ref. 5, Ref. 6]. The two most likely explanations for the bulk of the methane signatures from this study are:

- That the methane is derived from biogenic acetate fermentation processes typical of shallow onshore environments, or
- That the low methane content had equilibrated with ambient laboratory atmosphere by the time of analysis.

The δ^{13} C of the dissolved CO₂ in these water samples is around -26‰, which is very typical of soil gas-derived CO₂. Two of the samples (from borehole BHD) have slightly heavier δ^{13} CH₄ signatures of -39 to -43‰. Heavy δ^{13} CH₄ could indicate a contribution of thermogenic methane or may simply be the result of isotopic fractionation during methane oxidation.

All the samples from the deep borehole BHE (and two other samples, from BHB and G1) exhibit a very distinctive δ^{13} CH₄ signature in the range -70 to -84‰. This is most likely ascribable to deep biogenic methane, formed by processes of carbon dioxide reduction, rather than acetate fermentation [Ref. 6, Ref. 7, Ref. 8, Ref. 9]. These samples also exhibit a heavy δ^{13} CO₂ signature, indicating possible influence of aquifer marine carbonates.

Concentrations of dissolved ethane, propane and butane were all below the laboratories' limits of analytical detection for all surface and groundwater samples, with the exceptions of:

- Borehole BHE (deep Corallian borehole), where one ethane concentration of 9 μg/l was recorded during the April sampling round.
- Concentrations of 16-20 μg/l ethane on all three sampling rounds at the Villa (G3). Ethane was not detected at G3 during previous baseline sampling.

Aside from light hydrocarbons (methane to butane; C1-C4) discussed above, the results show that no detectable concentrations of heavier dissolved hydrocarbons or of MTBE have been observed in any of the samples from the surface water and groundwater monitoring points during the latest period of monitoring (April-June 2017), with the exception of:

- 140 μg/l C₈-C₁₀ hydrocarbons in Costa Beck (S2) on 14th June 2017.
- 60 μg/l C₈-C₁₀ hydrocarbons in one of two duplicate samples from Coultas Farm (G4), but not in the other duplicate, also on 14th June 2017.
- 110 μ g/l C₈-C₁₀ and 60 μ g/l C₁₀-C₁₆ hydrocarbons in the sample from The Ellers (G6), also on 14th June 2017.

The fact that all these positive "detects" took place from widely spaced localities on a single date is strongly suggestive of trace contamination either during sampling or analysis. All of the "detects" were made in the context of the extractable petroleum hydrocarbons (EPH) analysis. The samples were therefore reanalysed and all results were reported as below detection ($< 10 \,\mu g/I$).

No heavier dissolved hydrocarbons had been detected during the preceding baseline monitoring period since March 2016.

3.3.5 Micro-constituents

Appendix E also provides data on a number of micro-constituents.

No acetic acid, sodium persulphate, formaldehyde, non-ionic surfactants or acrylamide was detected in any of the surface water samples. Anionic surfactants were detected at around 0.5 to 0.9 mg/l in the surface water samples.

No acetic acid, acrylamide or sodium persulphate was detected in any of the groundwater samples.

Formaldehyde was detected in groundwater in one of the two duplicate samples collected from the deep Corallian borehole BHE in May 2017 at 1.3 mg/l. In the other duplicate and in all other samples from this and other wells, it remained <0.5 mg/l from April-June 2017.

Non-ionic surfactants were <5 µg/l in all groundwater samples from April-June 2017, with the exception of:

- Borehole BHA in April 2017 at 27 μg/l and June 2017 at 144 μg/l.
- Borehole BHC in April 2017 at 26 µg/l.

Anionic surfactants were detected at around 0.2 to 1.4 mg/l in all groundwater samples. These results were reconfirmed through reanalysis of the June 2017 samples. Anionic surfactants were also detected at 1.1 mg/l in one of the blank samples, which was also reconfirmed during reanalysis, so the significance of the apparent positives is difficult to determine and is discussed in more detail in Section 3.3.7.

3.3.6 Headspace Methane

In addition to determining concentrations of dissolved methane in water:

- Concentrations of methane (CH₄), carbon dioxide (CO₂), oxygen (O₂), hydrogen sulphide (H₂S) and carbon monoxide (CO) were also determined in the air within the borehole headspace of boreholes BHA-BHE.
- Concentrations of methane (CH₄) were measured in the air within the sampling containers, at the end of the hose or within the sampling bucket (surface waters and G1-G6).

As one might expect, the gas concentrations were extremely variable:

- Carbon monoxide (CO) was not detected (detection limit <1 ppmv parts per million by volume) in the onsite boreholes BHA-BHE during any of the three sampling rounds (April-June 2017).
- Hydrogen sulphide (H₂S) was only detected at around 1 ppmv in June 2017 in BHA, BHC and BHE. In all other cases, H₂S was <1 ppmv in the on-site boreholes. A smell of H₂S was consistently noted when sampling G1. The presence of H₂S suggests sulphate-reducing conditions.
- Oxygen (O2) concentrations in the headspace of boreholes BHA-BHE varied very strongly from <1% to 20-21%v/v (the latter figure representing atmospheric partial pressure). O2 content tended to be lowest in BHA and BHB during all sampling rounds, and was highest at times of high atmospheric pressure.
- Carbon dioxide (CO₂) concentrations in the headspace of boreholes BHA-BHE also varied very strongly. In contrast to oxygen, the highest concentrations were typically found in BHB, then BHA, with relatively low concentrations in BHC, BHD and BHE. The generally lowest concentrations of CO2 coincided with highest

atmospheric pressure. These observations suggest that the groundwater in BHAand BHBmay contain the highest excess partial pressure of dissolved CO₂, or that the subsurface around these boreholes is subject to especially strong soil respirative processes.

Methane (CH₄) concentrations in the headspace of BHA, BHB, BHC and BHD are typically a few ppmv or several tens of ppmv, with BHB typically yielding results at the upper end of this range. BHE yields the highest CH₄ concentrations in the headspace air, typically of several hundreds or several thousands of ppmv. Of the offsite wells, the only ones registering consistent CH₄ "detects" were G1 and G3 (as one might expect, given the dissolved CH₄ results, see above).

3.3.7 **Duplicates and Blanks**

Three duplicate samples were collected during the latest baseline monitoring period, from Well G4, from Borehole BHB and the deep Borehole BHE, in June, April and May 2017, respectively. Generally, reproducibility between duplicates was excellent, with the exception of bromide, where the reproducibility was rather poor, and for certain specific instances, as follows:

- For Borehole BHB (April 2017) the duplicates returned divergent values of:
 - 10 and $<1 \mu g/l$ for dissolved methane.
 - 25 and 16 mg/l for total suspended solids.
 - 13 and 23 mg/l for chemical oxygen demand (COD).
- For Borehole BHE (May 2017) the duplicates returned divergent values of:
 - 6.2 and 1.9 mg/l for sulphate.
 - 1.3 and <0.5 mg/l for formaldehyde.
- For Well G4 (June 2017) the duplicates returned divergent values of:
 - 2.6 and <1.5 μ g/l for vanadium. This was reported as below detection (<1.5 μ g/l) on reanalysis.
 - 60 and $<10 \mu g/I$ for extractable petroleum hydrocarbons (EPH) in the C_8 to C_{10} range.

Three blank samples of distilled water were also submitted to the laboratory, one in connection with each of the three sampling rounds. In only three cases, were there positive "detects" registered for the blank samples:

- A "detect" of 13 μg/l dissolved methane, in the sample of April 2017, relative to a detection limit of 1 μg/l. Subsequent sampling rounds using distilled water have provided results below detection limit, as would be
- A "detect" of 3 μg/l arsenic (As), relative to a detection limit of 2.5 μg/l, in June 2017. This was reported as below detection ($<2.5 \mu g/I$) on reanalysis.
- A "detect" of 1.1 mg/l anionic surfactants, relative to a detection limit of 0.2 mg/l, in June 2017. This result was reconfirmed on reanalysis, suggesting potential trace contamination during sampling or analysis.

4 DISCUSSION

4.1 Summary

Third Energy has collected an additional three months of baseline water quality data from a range of surface water and groundwater features at and close to the KMA Wellsite. Monitoring has been carried out in accordance with the requirements of the permit [Ref. 1] and the deviation that was agreed with the Environment Agency [Ref. 2]. The submission of this latest baseline data fulfils the requirement specified in PO3 of the permit, to provide complete details of the baseline surface water and groundwater monitoring, and will be presented to the Environment Agency as part of an updated Emissions Monitoring Plan.

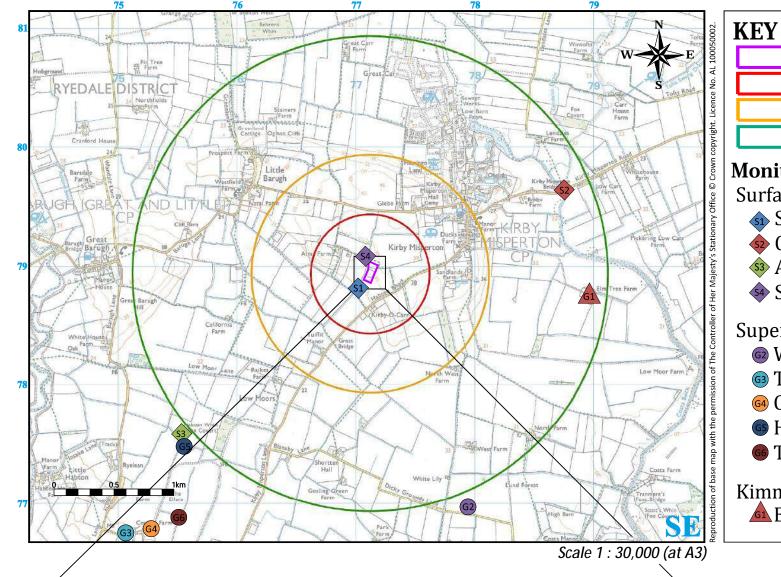
There is a good correspondence between the new baseline data, the previously collected baseline data and the data that are being collected by the BGS as part of their own baseline water quality monitoring programme.

The baseline data shows clear chemical signatures for waters from different provenances; and monitoring points can be grouped together on this basis. The surface waters exhibit a calcium-bicarbonate water chemistry. The shallower groundwaters exhibit a calcium-sulphate-bicarbonate chemistry, tending towards sodium-bicarbonate-sulphate in the deeper (Kimmeridge Clay) boreholes. The deepest (Corallian) borehole exhibits a highly reducing (sulphate-poor and methane-rich) water chemistry of sodium-chloride composition.

There are some differences in the major ion chemistry in the wellsite monitoring boreholes, as compared with the previous baseline data rounds. This may suggest that the groundwater as sampled from the boreholes is still to some extent in the process of reaching a representative equilibrium with the aquifer.

As observed in the previous baseline period, there is a large range of dissolved methane concentrations across the monitoring points. The highest concentration of dissolved methane (around 36 - 65 mg/l) is found in the deepest (Corallian) borehole, BHE, along with 9 μ g/l dissolved ethane in one sample.

4.2 Future Monitoring


There are no proposed changes to future baseline or operational monitoring. Further rounds of baseline sampling may be carried out depending on the exact timing of the hydraulic fracturing operation and discussions with the Environment Agency.

Envireau Water 05/09/2017

5 REFERENCES

- Ref. 1 Kirby Misperton A Wellsite, Permit number EPR/DB3002HE. Environment Agency, 11/04/16.
- Ref. 2 Environment Agency EPR Compliance Assessment Report ID: 402444/0285072, 19/05/2017.
- Ref. 3 Baseline Water Quality Data, Kirby Misperton A Wellsite, North Yorkshire. Prepared by Envireau Water for Third Energy UK Gas Ltd, November 2016. Report resubmitted September 2017.
- Ref. 4 Groundwater and Surface Water Sampling Protocol. Prepared by Envireau Water for Third Energy UK Gas Ltd, October 2016.
- Ref. 5 Roberts H. M. and Shiller A.M., 2015. Determination of dissolved methane in natural waters using headspace analysis with cavity ring-down spectroscopy. Analytica Chimica Acta, 856:68-73.
- Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta 44: 649-661.
- Ref. 7 Schoell M (1988) Multiple origins of methane in the Earth. Chemical Geology 71: 1-10.
- Ref. 8 Baldassare FJ (2010) Applications in the use of isotope geochemistry to identify the origin of methane in the environment. Pennsylvania Department of Environmental Protection.
- Ref. 9 Whiticar MJ, Faber E & Schoelll M (1986) Biogenic methane formation in marine and freshwater environments: CO₂ reduction vs. acetate fermentation-Isotope evidence. Geochimica et Cosmochimica Acta 50: 693-709.

FIGURES

KMA Wellsite boundary

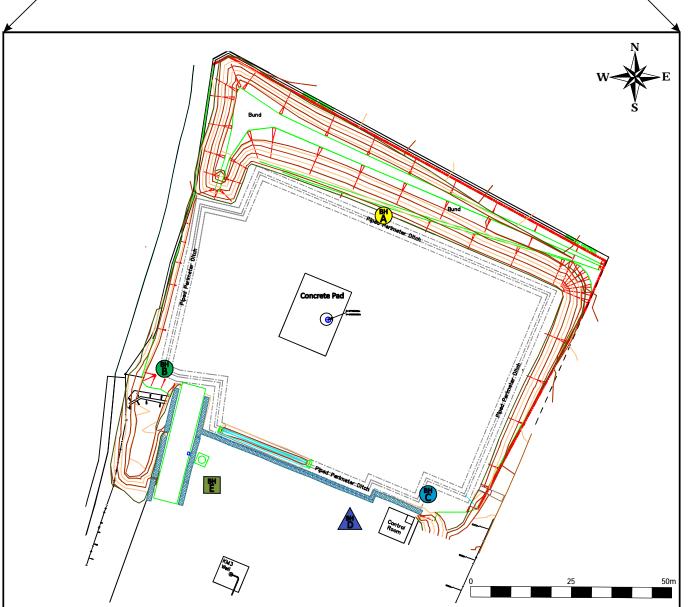
500 m Radius

1 km Radius

2 km Radius

Monitoring Points:

Surface Waters:


- s Sugar Hill Downstream
- **Costa Beck**
- **43** Ackland Beck
- Sugar Hill Upstream

Superficial Deposits

- West Farm
- ⁶³ The Villa
- Goultas Farm
- **65** Habton Whin
- **66** The Ellers

Kimmeridge Clay:

Elm Tree Farm

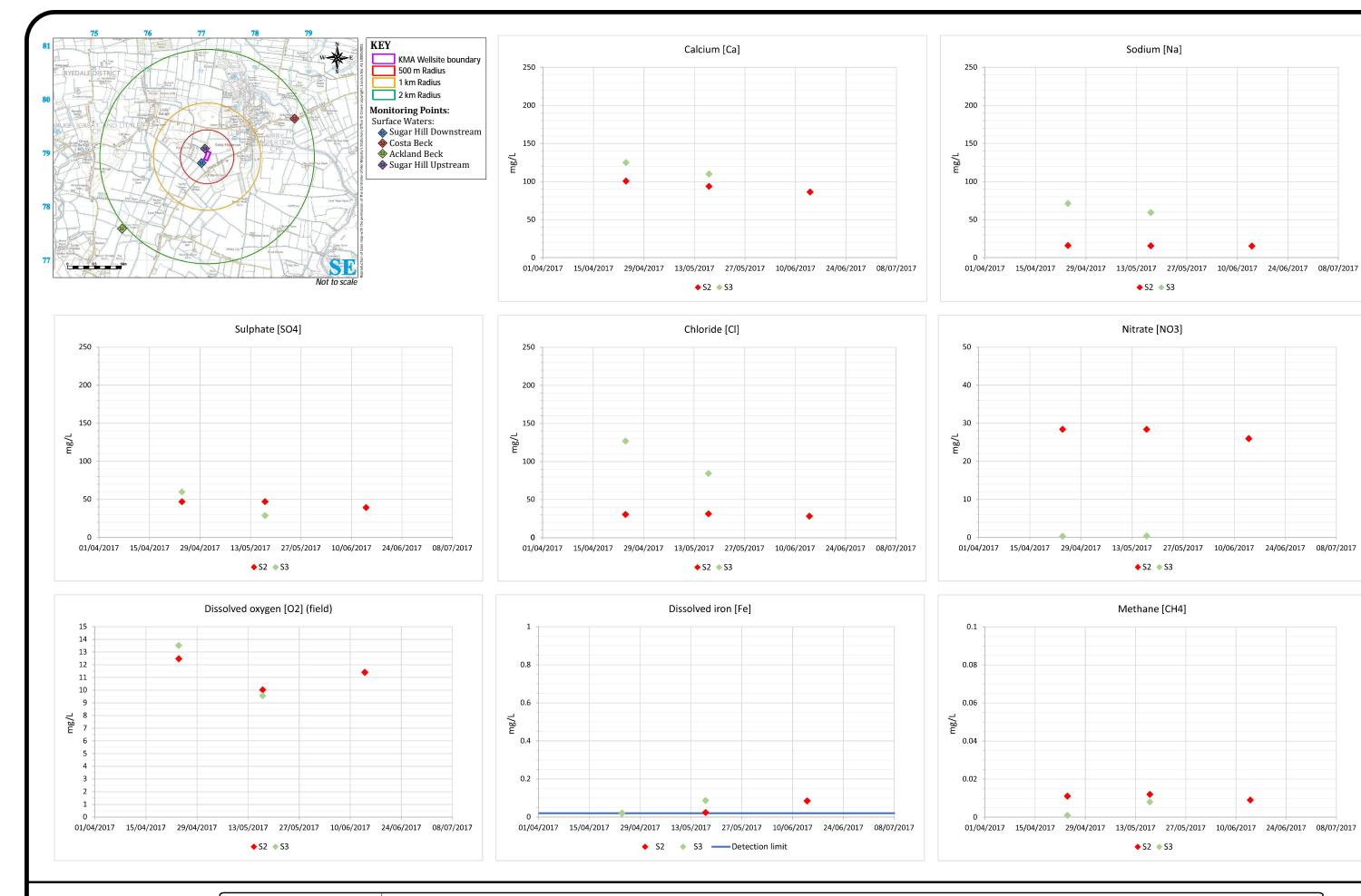
KMA Wellsite

Monitoring Points:

Superficial Deposits:

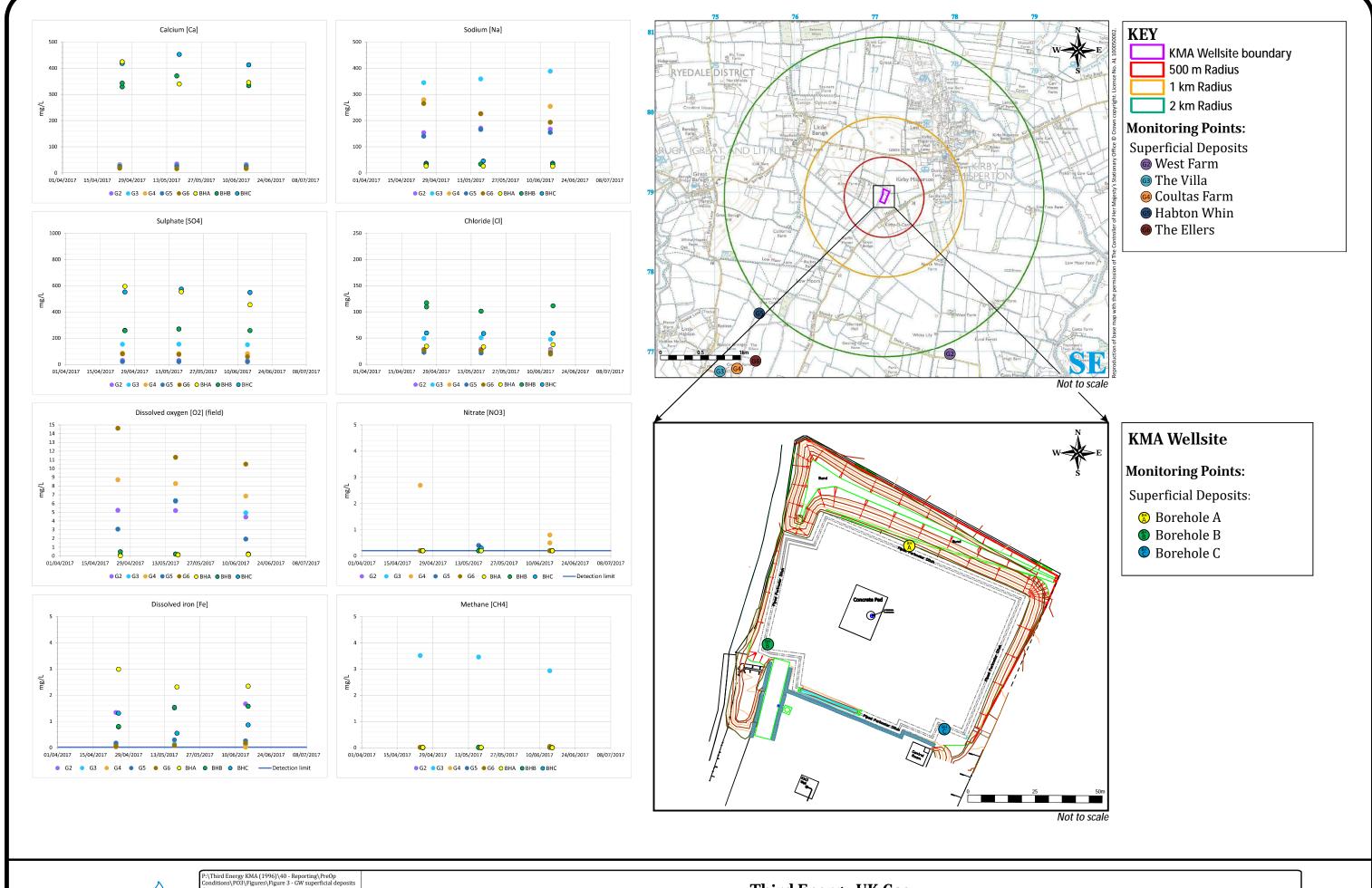
- Borehole A
- Borehole B
- Borehole C

Kimmeridge Clay: Borehole D


Corallian Group:

Borehole E

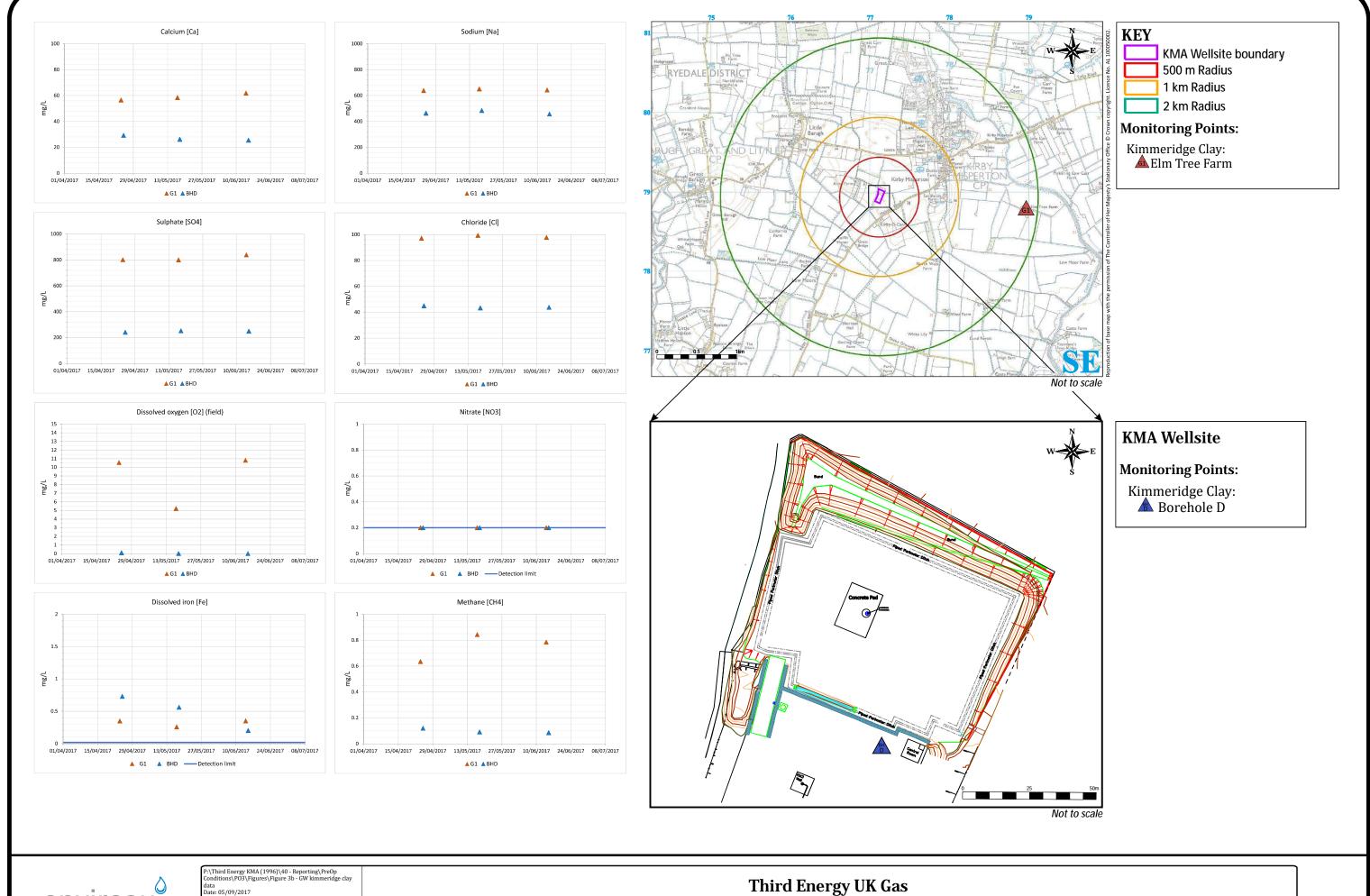
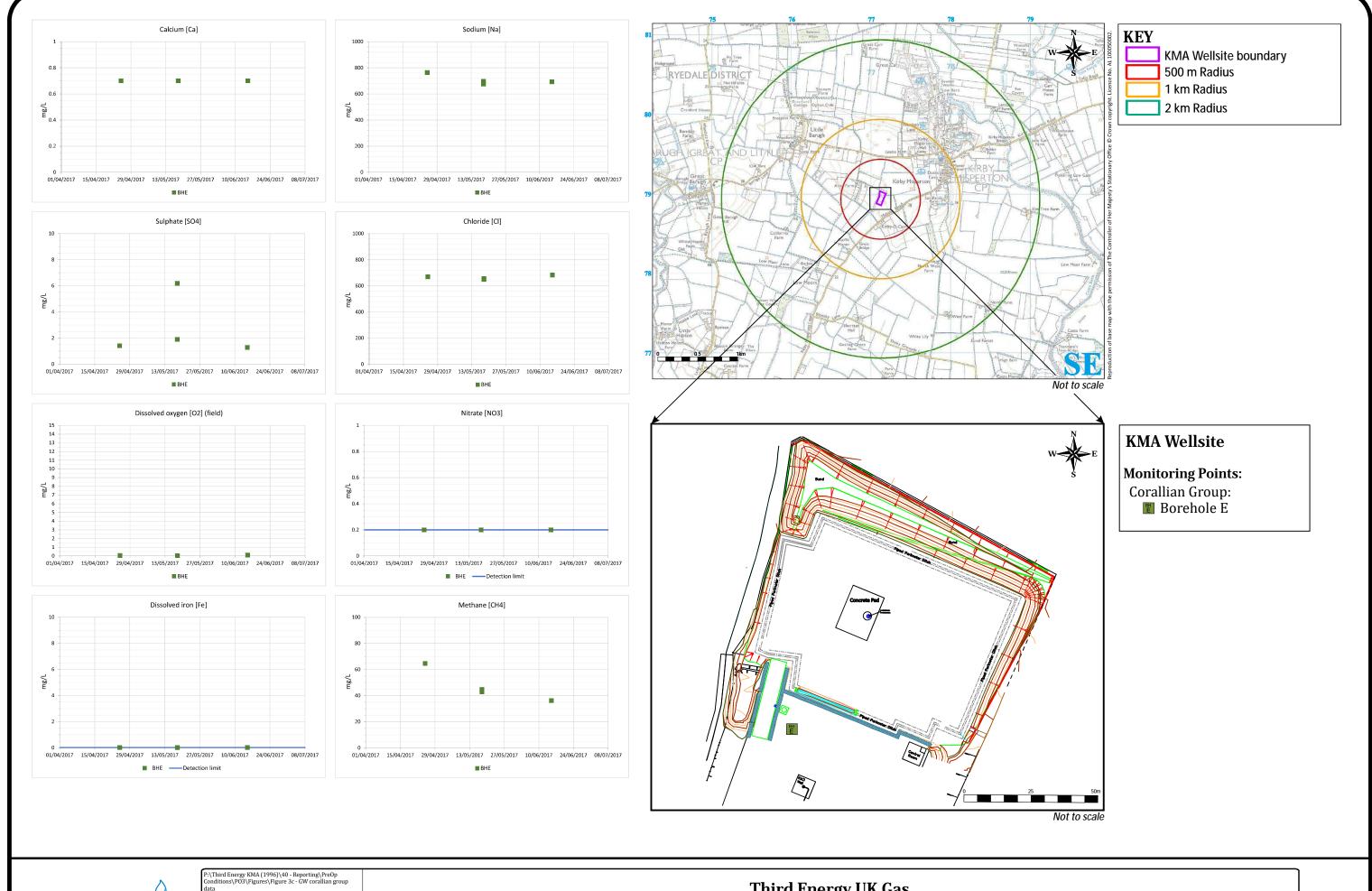
Scale 1: 1,000 (at A3)

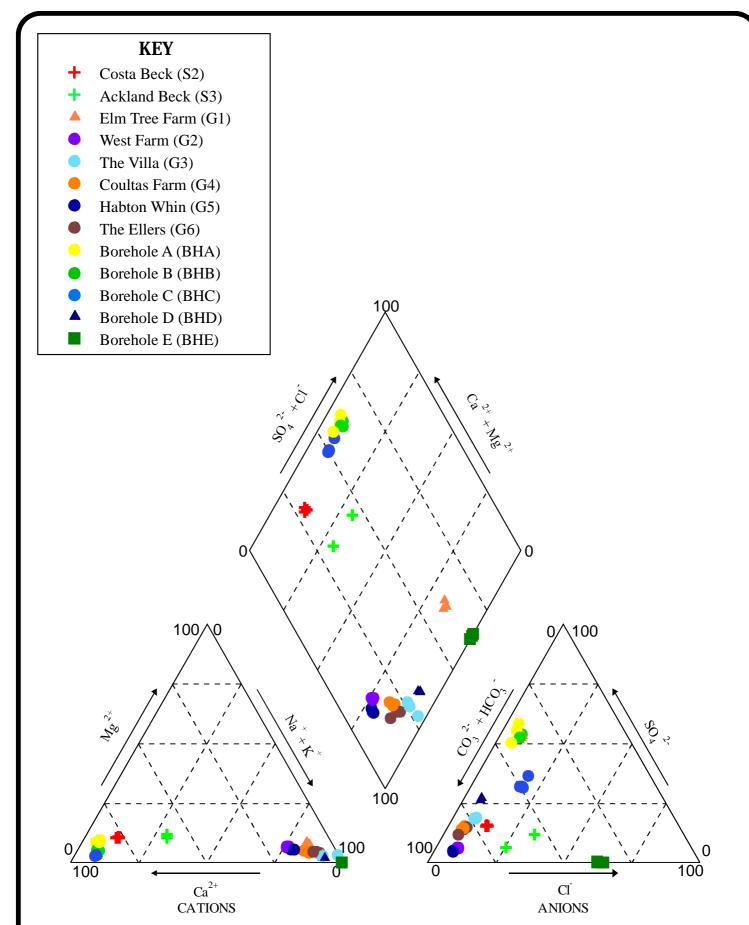


\Third Energy KMA (1996)\40 - Reporting\PreOponditions\P03\Figures\Figure 1 - Monitoring scations ate: 05/09/2017	Third Energy UK Gas
Figure 1	Monitoring Points

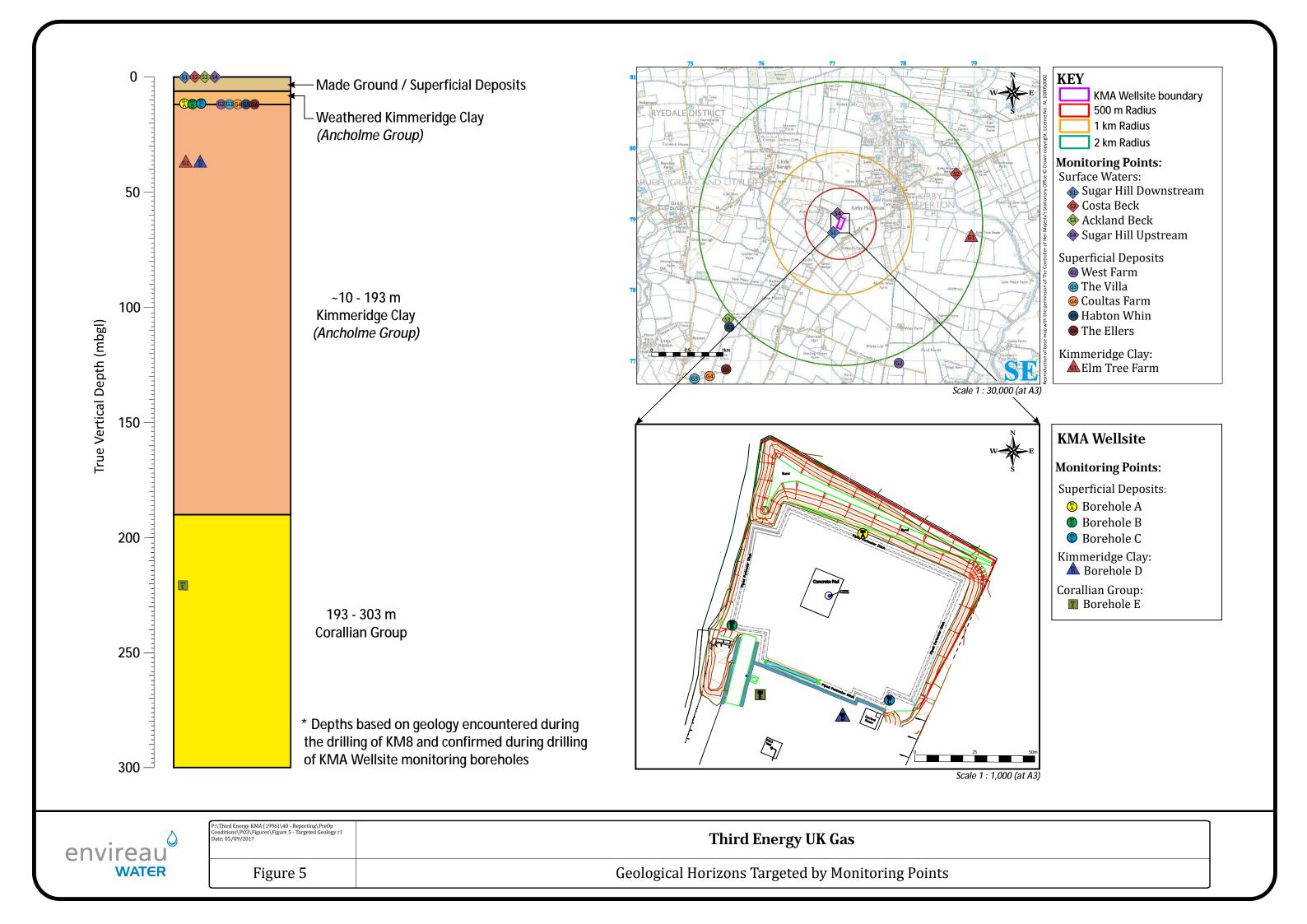
P:\Third Energy KMA (1996)\40 - Reporting\PreOp Conditions\P03\Figures\Figure 2 - SW data Date: 05/09/2017	Third Energy UK Gas
Figure 2	Concentrations of selected analytical parameters in surface waters

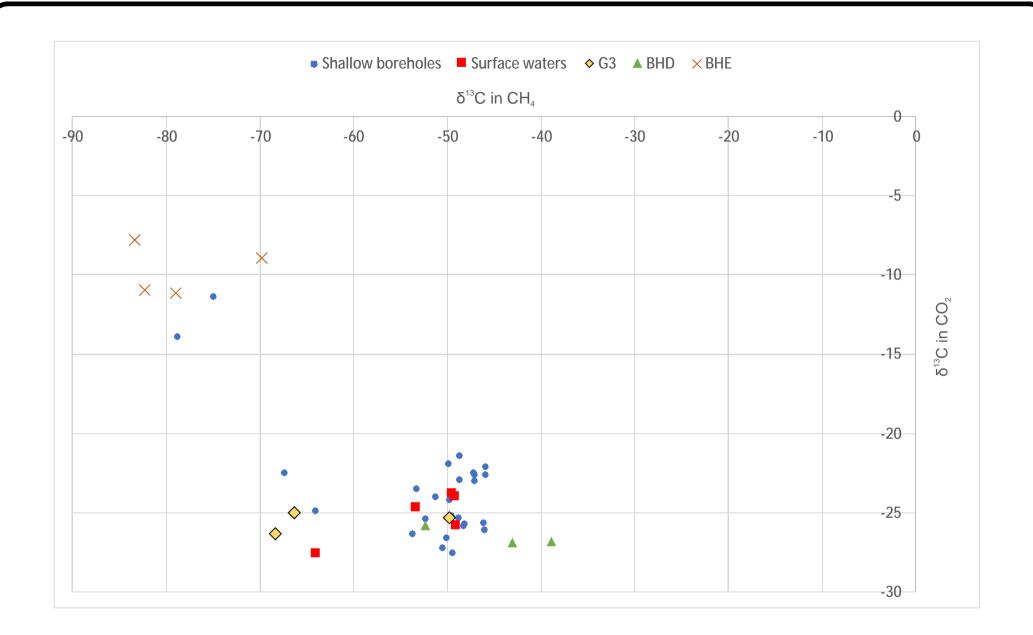
data Date: 05/09/2017	Third Energy UK Gas
Figure 3a	Concentrations of selected analytical parameters in groundwaters within superficial deposits


Figure 3b

Concentrations of selected analytical parameters in groundwaters within Kimmeridge Clay


Trimic Litery Non (1930) No. 1460 ting (Fred Conditions) Poly Sec. GW corallian group data Date: 05/09/2017	Third Energy UK Gas
Figure 3c	Concentrations of selected analytical parameters in groundwaters within Corallian Group



The Piper diagram is a common presentation, used to plot the relative proportions (in milliequivalents per litre) of the major cations and anions (Na^+ , Ca^{++} , Mg^{++} , K^+ , Cl^- , $SO_4^=$ and HCO_3^-) in a water sample

P:\Thirld Energy KMA (1996)\40 - Reporting\PreOp Conditions\PO3\Figures\Figure 4 - Piper Diagram Date: 05/09/2017	Third Energy UK Gas
Figure 4	Piper Diagram - Monitoring Rounds 23 to 25

P:\Third Energy KMA (1996)\40 - Reporting\PreOp Conditions\P03\Figures\Figure 6 - 8 °C and 6 °CH,signatures r1 Date: 05/09/2017	Third Energy UK Gas
Figure 6	$\delta^{^{13}}\text{CO}_{_2}$ and $\delta^{^{13}}\text{CH}_{_4}$ signatures

APPENDIX A

Monitoring Locations

Table A1 Surface Water Monitoring Locations

Name	Monitoring Point	National Grid Reference	Ground Elevation (mAOD)	Description
Sugar Hill Drain Downstream	S1	SE 76995 78777	23	Stream, part of a large field drainage system. Located on low permeability Glacial Till, Lacustrine deposits and the Kimmeridge Clay (Ancholme Group). Drains towards Ackland Beck and Costa Beck. Monitoring point located to the south of the KMA Wellsite.
Costa Beck	S2	SE 78730 79637	22	Medium sized river flowing in a south-easterly direction.
Ackland Beck	\$3	SE 75701 77456	22	Small sized river flowing in a south-easterly direction.
Sugar Hill Drain Upstream	S4	SE 77106 79054	29	Stream, part of a large field drainage system. Located on low permeability Glacial Till, Lacustrine deposits and the Kimmeridge Clay (Ancholme Group). Drains towards Ackland Beck and Costa Beck. Monitoring point located to the north of the KMA Wellsite.

Table A2 **Offsite Groundwater Monitoring Locations**

	Monitoring	National Grid	Ground	Construction Details			
Name	Monitoring Point	Reference	Elevation (mAOD)	Target Formation ¹	Borehole Depth (mbgl)¹	Screened Interval (mbgl)	
Elm Tree Farm	G1	SE 78957 78755	22	Kimmeridge Clay (un- weathered)	36.6	18 – 36	
West Farm ²	G2	G2 SE 78015 Superficial Deposits/ Kimmeridge Clay (weathered)		24.4	Unknown		
The Villa	G3	SE 75099 76592	25	Kimmeridge Clay (weathered/ un-weathered)/ Corallian Group	~50³	Unknown ³	
Coultas Farm	G4	SE 75209 76743	25	Kimmeridge Clay (weathered/ un-weathered)/ Corallian Group	~50³	Unknown ³	
Habton Whin	G5	SE 75705 77454	22	Superficial Deposits/ Kimmeridge Clay (weathered)	4.65	Unknown	
The Ellers	G6	SE 75491 76868	23	Superficial Deposits/ Kimmeridge Clay (weathered)	21.34	Unknown	

- Notes: 1. Based on Envireau Water's interpretation of available borehole construction, geological and other data.
 - 2. The sample point at West Farm is 500m north of the borehole.
 - 3. No construction data available. Anecdotal information suggests the boreholes are in the region of 50m deep and target the Kimmeridge Clay (Ancholme Group).
 - 4. Borehole is no longer observable. Information from landowner suggests it is located beneath the pond at The Ellers and is uncapped (feeds the pond). mbgl: metres below ground level

mAOD: metres above Ordnance Datum

Table A3 Onsite Groundwater Monitoring Locations

	Monitoring	National Grid Reference	Ground	Construction Details			
Name	Point		Elevation (mAOD)	Target Formation ¹	Borehole Depth (mbgl)	Screened Interval (mbgl)	
Borehole A	вна	SE 77153 79025	32	Superficial Deposits/ Kimmeridge Clay (weathered)	11.5	8.0 to 11.0	
Borehole B	внв	SE 77099 78989	32	Superficial Deposits/ Kimmeridge Clay (weathered)	11.5	8.0 to 11.0	
Borehole C	внс	SE 77162 78964	32	Superficial Deposits/ Kimmeridge Clay (weathered)	11.5	8.0 to 11.0	
Borehole D	BHD	SE 77132 78963	29	Kimmeridge Clay (un- weathered)	38.0	25.0 to 37.0	
Borehole E	вне	SE 77110 78969	29	Corallian Group	222.0	Open hole from 192.6 to 222.0	

Notes: 1. Based on Envireau Water's interpretation of available borehole construction, geological and other data.

mbgl: metres below ground level mAOD: metres above Ordnance Datum

APPENDIX B

Monitoring Parameters

No	Parameter
	Conoral Inventory
1	General Inventory: Methane
	Acrylamide
	Alkalinity as CaCO3 Ammoniacal Nitrogen as N
	Arsenic
	Aluminium
	Antimony Barium
	Beryllium
	BOD (settled) Boron
	Bromide δ13C-CH4
	813C-CO2 Cadmium
	Calcium
_	
	Carbon Dioxide
	Chloride
	Chromium (total)
	Cobalt
	COD (Settled)
	Copper
	Dissolved Butane
	Dissolved Propane
	Dissolved Ethane
	Dissolved Methane
	Fluoride
	Iron (total)
	Lead
	Lithium
	Magnesium
	Mercury Nickel
	1
	Nitrate as NO3 Nitrite as NO2
	Oxygen Reduction Potential pH
	Potassium Salinity
	Selenium Silver
	Sodium
	Strontium
44	TPH (including Benzene, DRO (nC10 ro nC24), GRO (nC5 ro nC10), m/p Xylenes, o Xylene, MTBE, Toluene, Xylene,
	Ethylbenzene)
	Luiyibenzene)
45	Total Dissolved Solids
	Total Suspended Solids
	Vanadium
	Zinc
	

No	Parameter
	Fracture fluid additives:
49	Acetic acid;
50	Sodium persulphate;
	Other chemical inventory:
51	Formaldehylde;
	Ethylene glycol;
	Indicators of Fracture Fluid additives:
53	Sulphate
54	Bicarbonate alkalinity
55	Anionic surfactants
56	Nonionic surfactants
	Indicators of other chemical inventory:
57	Phosphate

APPENDIX C

Analysis Methods

Jones Environmental Laboratory (JEL)

Analysis Methods

JE Job No: 17/10356

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМО	Not available	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM27	Modified US EPA method 9056. Determination of water soluble anions using Dionex (Ion-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			

JE Job No: 17/10356

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				

Exova Jones Environmental

Method Code Appendix

JE Job No: 17/10356

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				
Subcontracted	Subcontracted analysis, sent to an ISO 17025 accredited laboratory where possible.						

APPENDIX D

Analysis Results

APPENDIX E

Laboratory Test Certificates

Water Analysis Test Certificates

Round 23

Exova Jones Environmental

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Attention: Phil Ham

Date: 13th July, 2017

Your reference : KMA

Our reference : Test Report 17/7422 Batch 1

Location: Various

Date samples received : 25th April, 2017

Status: Final report

Issue:

Nine samples were received for analysis on 25th April, 2017 of which nine were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

5.60-2

Simon Gomery BSc Project Manager

Exova Jones Environmental

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/7422

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

							11-112004,		1140011, 1111-	 _		
J E Sample No.	1-10	11-19	20-29	30-39	40-49	50-59	60-69	70-79	80			
Sample ID	G2/23	G1/23	G3/23	G5/23	S3/23	S2/23	G4/23	G6/23	G1/23			
Depth										Please se	e attached r	otes for all
COC No / misc											ations and a	
Containers	V H HN P BOD G	V HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	н			
Sample Date	24/04/2017 13:45	24/04/2017 13:00	24/04/2017 14:30	24/04/2017 16:00	24/04/2017 16:15	24/04/2017 12:00	24/04/2017 15:15	24/04/2017 15:30				
•												
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Surface Water	Surface Water	Ground Water	Surface Water	Ground Water			
Batch Number	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	25/04/2017	25/04/2017	25/04/2017	25/04/2017	25/04/2017	25/04/2017	25/04/2017	25/04/2017	25/04/2017			No.
Dissolved Aluminium#	<20	<20	<20	<20	<20	<20	<20	<20	-	<20	ug/l	TM30/PM14
Dissolved Antimony#	<2	<2	<2	<2	<2	<2	<2	<2	-	<2	ug/l	TM30/PM14
Dissolved Arsenic #	3.6	<2.5	3.5	<2.5	<2.5	<2.5	3.5	3.5	-	<2.5	ug/l	TM30/PM14
Dissolved Barium #	67	11	24	99	65	67	30	22	-	<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	ug/l	TM30/PM14
Dissolved Boron	464	2315	1062	444	62	17	875	833	-	<12	ug/l	TM30/PM14
Dissolved Cadmium #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	ug/l	TM30/PM14
Dissolved Calcium#	31.3	56.6	21.2	26.3	124.9	100.8	29.0	18.3	-	<0.2	mg/l	TM30/PM14
Total Dissolved Chromium*	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	-	<1.5	ug/l	TM30/PM14
Dissolved Cobalt #	<2	<2	<2	<2	<2	<2	<2	<2	-	<2	ug/l	TM30/PM14
Dissolved Copper#	<7	<7	<7	<7	<7	<7	<7	<7	-	<7	ug/l	TM30/PM14
Total Dissolved Iron #	1340	351	129	174	<20	<20	<20	56	-	<20	ug/l	TM30/PM14 TM30/PM14
Dissolved Lead # Dissolved Lithium	<5 16	<5 95	<5 47	<5 15	<5 11	<5 6	<5 24	<5 31	-	<5 -5	ug/l	TM30/PM14
Dissolved Litrium Dissolved Magnesium #	6.7	29.6	47 5.6	5.0	13.1	6 8.2	7.0	21 6.2	_	<5 <0.1	ug/l mg/l	TM30/PM14
Dissolved Manganese #	327	3	38	264	50	5	180	7	_	<2	ug/l	TM30/PM14
Dissolved Manganese Dissolved Mercury#	<1	<1	<1	<1	<1	<1	<1	, <1	_	<1	ug/l	TM30/PM14
Dissolved Nickel #	<2	<2	<2	<2	3	<2	<2	<2	-	<2	ug/l	TM30/PM14
Dissolved Potassium #	2.8	5.8	3.5	2.7	3.9	2.1	3.2	3.6	-	<0.1	mg/l	TM30/PM14
Dissolved Selenium #	<3	<3	<3	<3	<3	<3	<3	<3	-	<3	ug/l	TM30/PM14
Dissolved Silver	<5	<5	<5	<5	<5	<5	<5	<5	-	<5	ug/l	TM30/PM14
Dissolved Sodium#	154.3	638.7 _{AA}	344.9 _{AA}	140.7	71.4	16.1	280.0 _{AA}	265.4 _{AA}	-	<0.1	mg/l	TM30/PM14
Dissolved Strontium	537	4036 _{AA}	762	415	324	176	478	361	-	<5	ug/l	TM30/PM14
Dissolved Vanadium #	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	-	<1.5	ug/l	TM30/PM14
Dissolved Zinc#	<3	<3	<3	<3	<3	<3	6	<3	-	<3	ug/l	TM30/PM14
Total Chromium	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	-	<1.5	ug/l	TM30/PM14
Total Iron	1353	1269	106	409	134	170	137	177	-	<20	ug/l	TM30/PM14
Total Manganese	309	8	39	258	42	4	186	35	-	<2	ug/l	TM30/PM14
EPH >C8-C10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	ug/l	TM5/PM30
EPH >C10-C16	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	ug/l	TM5/PM30
EPH >C16-C24	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	ug/l	TM5/PM30
EPH >C24-C40	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	ug/l	TM5/PM30
EPH >C8-C40	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	ug/l	TM5/PM30
GRO (>C4-C8)#	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	-	<5	ug/l	TM31/PM12
Benzene #	<5	<5	<5	<5	<5	<5	<5	<5	-	<5	ug/l	TM31/PM12
Toluene #	<5	<5	<5	<5	<5	<5	<5	<5	-	<5	ug/l	TM31/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	-	<5	ug/l	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	-	<5	ug/l	TM31/PM12
o-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	-	<5	ug/l	TM31/PM12

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/7422

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE JOD NO.:	17/7422						11=112004,		inaon, nin=	111403			
J E Sample No.	1-10	11-19	20-29	30-39	40-49	50-59	60-69	70-79	80				
Sample ID	G2/23	G1/23	G3/23	G5/23	\$3/23	S2/23	G4/23	G6/23	G1/23				
Depth											Diagram	e attached n	
COC No / misc												ations and a	
Containers	V H HN P BOD G	V HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	н				
Sample Date	24/04/2017 13:45	24/04/2017 13:00	24/04/2017 14:30	24/04/2017 16:00	24/04/2017 16:15	24/04/2017 12:00	24/04/2017 15:15	24/04/2017 15:30					
Sample Type													
Batch Number	1	1	1	1	1	1	1	1					
									1		LOD/LOR	Units	Method No.
Date of Receipt Bromide	0.06	0.28	0.19	0.05	0.06	<0.05	0.10	0.05	25/04/2017		<0.05	mg/l	TM27/PM0
Bioinide	0.06	0.20	0.19	0.05	0.06	<0.05	0.10	0.05	-		<0.05	mg/i	TIVIZ//PIVIO
Fluoride	<0.3	1.0	0.6	<0.3	<0.3	<0.3	<0.3	<0.3	-		<0.3	mg/l	TM173/PM0
Sulphate as SO4 #	30.1	801.1	153.8	21.1	59.8	47.0	85.8	80.1	-		<0.5	mg/l	TM38/PM0
Chloride #	28.6	97.2	49.4	22.8	126.9	30.6	25.8	27.3	-		<0.3	mg/l	TM38/PM0
Nitrate as NO3 #	<0.2	<0.2	<0.2	<0.2	0.3	28.4	2.7	<0.2	-		<0.2	mg/l	TM38/PM0
Nitrite as NO2 #	<0.02	<0.02	<0.02	<0.02	<0.02	0.15	<0.02	<0.02	-		<0.02	mg/l	TM38/PM0
Ortho Phosphate as P#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	-		<0.03	mg/l	TM38/PM0
Monoethylene glycol	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-		<0.001	mg/l	TM24/PM30
Ammoniacal Nitrogen as N #	0.71	-	1.22	0.68	0.08	0.11	0.08	0.07	2.32		<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4 #	0.92	-	1.57	0.88	0.10	0.14	0.10	0.09	2.99		<0.03	mg/l	TM38/PM0
Dissolved Methane #	19	635	3519 ⁺⁺	12	<1	11	12	13	-		<1	ug/l	TM25/PM0
Dissolved Ethane #	<1	<1	20	<1	<1	<1	<1	<1	-		<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	64972	156807**	106027**	65873	55715	30910	75749	41772	-		<1	ug/l	TM25/PM0
Dissolved Butane	<2	<2	<2	<2	<2	<2	<2	<2	-		<2	ug/l	TM25/PM0
Dissolved Propane	<2	<2	<2	<2	<2	<2	<2	<2	-		<2	ug/l	TM25/PM0
Acetic Acid	<10	<10	<10	<10	<10	<10	<10	<10	-		<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3#	424	633	612	397	289	217	469	447	-		<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	424	633	612	397	289	217	469	374	-		<1	mg/l	TM75/PM0
Acrylamide	<50	<50	<50	<50	<50	<50	<50	<50	-		<50	ug/l	TM103/PM0
Anionic Surfactants	1.0	1.0	0.7	0.6	0.7	0.5	0.2	0.5	_		<0.2	ma/l	TM33/PM0
BOD (Settled) #	<1.0	<1.0	5	<1	<1	0.5 <1	2	0.5 <1	-		<0.2	mg/l mg/l	TM58/PM0
COD (Settled) #	<7	<7	7	<7	28	<7	15	19	-		<7	mg/l	TM57/PM0
Electrical Conductivity @25C#	820	2673	1396	716	907	534	957	922	-		<2	uS/cm	TM76/PM0
Formaldehyde	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-		<0.5	mg/l	TM51/PM0
Non Ionic Surfactants*	<5	<5	<5	<5	<5	<5	<5	<5	-		<5	ug/l	Subcontracted
рН <i>#</i>	6.20	7.26	7.64	7.60	7.97	7.85	7.73	8.40	-		<0.01	pH units	TM73/PM0
Redox	167.95	171.40	170.06	170.80	174.94	182.16	202.63	165.16	-		2.1	mV	TM72/PM0
Salinity Sodium Persulphate	<0.1 <60	0.2 <60	<0.1 <60	<0.1 <60	<0.1	<0.1 <60	<0.1 <60	<0.1 <60	-		<0.1 <60	% mg/l	TM64/PM0 TM100/PM0
Total Dissolved Solids #	438	1870	<60 869	430	<60 477	352	571	531	-		<60 <35	mg/I mg/I	TM20/PM0
Total Suspended Solids #	<10	31	<10	<10	16	22	12	<10	-		<10	mg/l	TM37/PM0
		J.										9.1	

Exova Jones Environmental Notification of Deviating Samples

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 17/7422	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/7422

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

ISO17025 (UKAS) accredited - UK.
ISO17025 (SANAS) accredited - South Africa.
Indicates analyte found in associated method blank.
Dilution required.
MCERTS accredited.
Not applicable
No Asbestos Detected.
None Detected (usually refers to VOC and/SVOC TICs).
No Determination Possible
Calibrated against a single substance
Surrogate recovery outside performance criteria. This may be due to a matrix effect.
Results expressed on as received basis.
AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
Result outside calibration range, results should be considered as indicative only and are not accredited.
Analysis subcontracted to a Jones Environmental approved laboratory.
Samples are dried at 35°C ±5°C
Suspected carry over
Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
Matrix Effect
No Fibres Detected
AQC Sample
Blank Sample
Client Sample
Trip Blank Sample
Outside Calibration Range
x5 Dilution

Exova Jones Environmental

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM27	Modified US EPA method 9056.Determination of water soluble anions using Dionex (lon-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				

Exova Jones Environmental

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				
Subcontracted	Subcontracted analysis, sent to an ISO 17025 accredited laboratory where possible.						

Registered Address: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Attention: Phil Ham

Date: 5th September, 2017

Your reference : KMA

Our reference : Test Report 17/7422 Batch 2

Location: Various

Date samples received: 26th April, 2017

Status: Final report

Issue:

Seven samples were received for analysis on 26th April, 2017 of which seven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Balen

Paul Boden BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/7422

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/7422						H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN=	⊧HN0 ₃			
J E Sample No.	81-90	91-100	101-110	111-120,151	121-130	131-140	141-150						
Sample ID	BHB/23	BHC/23	BHA/23	BHE/23	BHD/23	B/23	BHBD/23						
Depth											Please se	e attached r	otoc for all
COC No / misc												ations and a	
Containers	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G M	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G						
Sample Date	25/04/2017 10:45	25/04/2017 12:15	25/04/2017 13:15	25/04/2017 16:00	25/04/2017 14:30	25/04/2017 16:15	25/04/2017 11:00						
Sample Type	Ground Water	Surface Water	Ground Water										
Batch Number	2	2	2	2	2	2	2						
Date of Receipt				26/04/2017		26/04/2017					LOD/LOR	Units	Method No.
Dissolved Aluminium#	<20	<20	<20	146	<20	<20	<20				<20	ug/l	TM30/PM14
Dissolved Antimony #	<2	<2	<2	<2	<2	<2	<2				<2	ug/l	TM30/PM14
Dissolved Aritimorry Dissolved Arsenic #	9.6	6.5	6.7	5.3	6.0	<2.5	9.0				<2.5	ug/l	TM30/PM14
Dissolved Barium #	90	24	70	51	12	<3	88				<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM30/PM14
Dissolved Boron	75	143	101	257	1745	<12	81				<12	ug/l	TM30/PM14
Dissolved Cadmium #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM30/PM14
Dissolved Calcium#	329.1 _{AA}	418.0 _{AA}	424.7 _{AA}	0.7	29.3	<0.2	343.0 _{AA}				<0.2	mg/l	TM30/PM14
Total Dissolved Chromium#	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5				<1.5	ug/l	TM30/PM14
Dissolved Cobalt#	<2	3	<2	<2	<2	<2	<2				<2	ug/l	TM30/PM14
Dissolved Copper#	<7	<7	<7	<7	<7	<7	<7				<7	ug/l	TM30/PM14
Total Dissolved Iron #	795	1312	2992	<20	732	<20	807				<20	ug/l	TM30/PM14
Dissolved Lead #	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM30/PM14
Dissolved Lithium	62	87	52	153	46	<5	63				<5	ug/l	TM30/PM14
Dissolved Magnesium #	6.8	15.4	25.0	0.7	5.0	<0.1	6.8				<0.1	mg/l	TM30/PM14
Dissolved Manganese #	125	120	129	<2	13	<2	130				<2	ug/l	TM30/PM14
Dissolved Mercury #	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM30/PM14
Dissolved Nickel #	3	4	6	<2	<2	<2	3				<2	ug/l	TM30/PM14
Dissolved Potassium #	2.5	3.3	2.6	11.1	3.0	<0.1	2.5				<0.1	mg/l	TM30/PM14
Dissolved Selenium* Dissolved Silver	<3 <5	<3 <5	<3 <5	<3 <5	<3 <5	<3 <5	<3 <5				<3 <5	ug/l	TM30/PM14 TM30/PM14
Dissolved Sodium#	33.5	37.2	26.8	764.1 _{AA}	464.3 _{AA}	<0.1	33.6				<0.1	ug/l mg/l	TM30/PM14
Dissolved Strontium	488	724	714	131	729	<5	503				<5	ug/l	TM30/PM14
Dissolved Vanadium #	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5				<1.5	ug/l	TM30/PM14
Dissolved Zinc#	<3	<3	<3	<3	<3	<3	<3				<3	ug/l	TM30/PM14
Total Chromium	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5				<1.5	ug/l	TM30/PM14
Total Iron	809	1039	2769	3794	736	<20	1010				<20	ug/l	TM30/PM14
Total Manganese	127	117	126	44	12	<2	128				<2	ug/l	TM30/PM14
EPH >C8-C10	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM30
EPH >C10-C16	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM30
EPH >C16-C24	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM30
EPH >C24-C40	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM30
EPH >C8-C40	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM30
GRO (>C4-C8)#	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM31/PM12
Benzene #	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM31/PM12
Toluene #	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM31/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM31/PM12
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM31/PM12

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/7422

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/7422						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	⊧HN0₃	_		
J E Sample No.	81-90	91-100	101-110	111-120,151	121-130	131-140	141-150]		
Sample ID	BHB/23	BHC/23	BHA/23	BHE/23	BHD/23	B/23	BHBD/23						
Depth											Please se	e attached n	otos for all
COC No / misc												ations and a	
Containers	V H HN P BOD G M	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G									
Sample Date													
•													
Sample Type													ı
Batch Number	2	2	2	2	2	2	2				LOD/LOR	Units	Method
Date of Receipt	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017						No.
Bromide	0.15	0.07	0.07	0.34	0.07	<0.05	0.24				<0.05	mg/l	TM27/PM0
Fluoride	<0.3	<0.3	0.5	3.2	0.4	<0.3	<0.3				<0.3	mg/l	TM173/PM0
Sulphate as SO4 #	259.7	552.8	595.5	1.4	241.9	<0.5	257.9				<0.5	mg/l	TM38/PM0
Chloride #	109.6	59.7	34.4	669.2	45.0	<0.3	117.3				<0.3	mg/l	TM38/PM0
Nitrate as NO3 #	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				<0.2	mg/l	TM38/PM0
Nitrite as NO2#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02				<0.02	mg/l	TM38/PM0
Ortho Phosphate as P#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03				<0.03	mg/l	TM38/PM0
Monoethylene glycol	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				<0.001	mg/l	TM24/PM30
Ammoniacal Nitrogen as N#	0.06	0.13	0.29	0.95	1.42	<0.03	0.07				<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4 #	0.08	0.17	0.37	1.22	1.83	<0.03	0.09				<0.03	mg/l	TM38/PM0
Dissolved Methane #	<1	9	9	64695**	121	13	10				<1	ug/l	TM25/PM0
Dissolved Ethane #	<1	<1	<1	9	<1	<1	<1				<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	302567**	402070***	346381**	5883	98163	<1	378372				<1	ug/l	TM25/PM0
Dissolved Butane	<2	<2	<2	<2	<2	<2	<2				<2	ug/l	TM25/PM0
Dissolved Propane	<2	<2	<2	<2	<2	<2	<2				<2	ug/l	TM25/PM0
Acetic Acid	<10	<10	<10	<10	<10	<10	<10				<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3 #	426	411	399	541	655	50	427				<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	426	411	399	230	655	50	427				<1	mg/l	TM75/PM0
Acrylamide	<50	<50	<50	<50	<50	<50	<50				<50	ug/l	TM103/PM0
Anionic Surfactants	0.2	0.2	<0.2	0.3	<0.2	<0.2	<0.2				<0.2	mg/l	TM33/PM0
BOD (Settled)#	4	5	4	<1	<1	<1	4				<1	mg/l	TM58/PM0
COD (Settled) #	13 1361	<7 1599	16 1524	22 2755	<7 1577	<7 18	23 1346				<7 <2	mg/l uS/cm	TM57/PM0 TM76/PM0
Electrical Conductivity @25C # Formaldehyde	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	mg/l	TM51/PM0
Non Ionic Surfactants*	<5	26	27	<5	<5	<5	<5				<5	ug/l	Subcontracted
pH#	7.27	7.71	7.18	9.67	8.23	5.86	7.36				<0.01	pH units	TM73/PM0
Redox	250.59	229.80	201.86	85.88	170.79	326.81	249.82					mV	TM72/PM0
Salinity	<0.1	<0.1	<0.1	0.2	0.1	<0.1	<0.1				<0.1	%	TM64/PM0
Sodium Persulphate	<60	<60	<60	<60	<60	<60	<60				<60	mg/l	TM100/PM0
Total Dissolved Solids #	1098	1248	1263	1646	1120	<35	1115				<35	mg/l	TM20/PM0
Total Suspended Solids #	16	20	12	28	<10	<10	25				<10	mg/l	TM37/PM0

Exova Jones Environmental Notification of Deviating Samples

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 17/7422	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/7422

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
CO	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution

Exova Jones Environmental

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM27	Modified US EPA method 9056.Determination of water soluble anions using Dionex (lon-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				

Exova Jones Environmental

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
ТМ100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				
Subcontracted	Subcontracted analysis, sent to an ISO 17025 accredited laboratory where possible.						

Prof. Fred Worrall Professor of Environmental Chemistry

Department of Earth Sciences University of Durham Science laboratories South Road Durham DH1 3LE

Direct line Department Office Fax Email

[44] -0191-334 2295 [44] -0191-334 2300 [44] -0191-334 2301 Fred.Worrall@durham.ac.uk

Durham, 15th May, 2017.

Dear Joe,

Here are the results of the analysis of the groundwater samples you supplied. All results are expressed as per mille relative to VPDB. All results are expressed as mean and 95% confidence interval. We analysed 14 samples and we also included both local tap water and also included our zero air standard. The method we used was based on Roberts and Shiller (*Analytica Chimica Acta, 2015, 856, 68-73*). We detected methane and excess CO₂ in all samples and all samples were run in duplicate. I have added my interpretation based on the range observed. We had identified two samples as potentially having very high concentrations of dissolved CH₄ and so these samples were analysed at a range of water to zero air ratios. Normal analysis used 30 ml of water sample and 30 ml of zero air but this was varied down to 10 ml of water sample and 50 ml of zero air for those samples where there was very high dissolved CH₄ concentrations.

Table 1. ¹³CH₄ isotope analysis. Samples mark (*) show concentrations of CH₄ above that expected for equilibration with air.

Sample code	Sample date	Mean (‰)	95% confidence interval	Primo facie interpretation
Laboratory tap water	April	-52.3	±4	Equilibrated with air
S3/23	April	-49.0	+4	Equilibrated with air
BHB/23	April	-51.3	±4	Equilibrated with air
BHC/23	April	-53.3	<u>±</u> 4	Equilibrated with air
BHA/23	April	-50.1*	±4	Equilibrated with air
BHE/23	April	-69.9*	<u>±</u> 4	Biogenic
BHD/23	April	-52.4	<u>±</u> 4	Equilibrated with air
BHBD/23	April	-49.8	±4	Equilibrated with air
S2/23	April	-49.2	±4	Equilibrated with air
G4/23	April	-46.2	<u>±</u> 4	Equilibrated with air
G5/23	April	-50.5*	±4	Equilibrated with air
G6/23	April	-49.5	±4	Equilibrated with air
G1/23	April	-47.2	<u>±</u> 4	Equilibrated with air
G3/23	April	-68.4*	<u>±</u> 4	Biogenic
G2/23	April	-48.3*	±4	Equilibrated with air

Table 2. ¹³CO₂ isotope analysis.

Sample code	Sample date	Mean (‰)	95% confidence
			interval
Laboratory tap water	April	-27.6	±1.5
S3/23	April	-25.8	±1.5
BHB/23	April	-24.0	±1.5
BHC/23	April	-23.5	±1.5
BHA/23	April	-26.6	±1.5
BHE/23	April	-9.0	±1.5
BHD/23	April	-25.8	±1.5
BHBD/23	April	-24.2	±1.5
S2/23	April	-24.0	±1.5
G4/23	April	-25.6	±1.5
G5/23	April	-27.2	±1.5
G6/23	April	-27.5	±1.5
G1/23	April	-22.5	±1.5
G3/23	April	-26.3	±1.5
G2/23	April	-25.8	±1.5

Yours sincerely

Fred Worrall, MA PhD, Professor of Environmental Chemistry

Water Analysis Test Certificates

Round 24

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Attention: Phil Ham

Date: 13th July, 2017

Your reference : KMA

Our reference : Test Report 17/8767 Batch 1

Location: Various

Date samples received: 18th May, 2017

Status: Final report

Issue:

Seven samples were received for analysis on 18th May, 2017 of which seven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

5.60-25

Simon Gomery BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/8767

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE JOD NO.:	17/8767						11=1125U4, 2	N=	NaOH, HN=	1 11103	_		
J E Sample No.	1-11	12-22	23-33	34-44	45-55	56-66	67-77						
Sample ID	G2/24	G1/24	G3/24	G4/24	G6/24	S2/24	B/24						
Depth											Diana		
COC No / misc												e attached n ations and a	
Containers	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G						
Sample Date													
•													
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water						
Batch Number	1	1	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	18/05/2017	18/05/2017	18/05/2017	18/05/2017	18/05/2017	18/05/2017	18/05/2017						No.
Dissolved Aluminium#	<20	<20	<20	<20	<20	<20	<20				<20	ug/l	TM30/PM14
Dissolved Antimony#	<2	<2	<2	<2	5	<2	<2				<2	ug/l	TM30/PM14
Dissolved Arsenic #	3.1	<2.5	<2.5	<2.5	3.6	<2.5	<2.5				<2.5	ug/l	TM30/PM14
Dissolved Barium #	69	12	25	31	22	68	<3		ļ.		<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM30/PM14 TM30/PM14
Dissolved Boron Dissolved Cadmium #	466 <0.5	2339 <0.5	1128 <0.5	877 <0.5	831 <0.5	15 <0.5	<12 <0.5				<12 <0.5	ug/l ug/l	TM30/PM14
Dissolved Calmium Dissolved Calcium#	34.7	58.5	23.6	27.9	16.4	93.8	<0.5				<0.5	mg/l	TM30/PM14
Total Dissolved Chromium #	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5				<1.5	ug/l	TM30/PM14
Dissolved Cobalt #	<2	<2	<2	<2	<2	<2	<2				<2	ug/l	TM30/PM14
Dissolved Copper#	<7	<7	<7	<7	<7	<7	<7				<7	ug/l	TM30/PM14
Total Dissolved Iron #	1512	260	138	87	86	24	<20				<20	ug/l	TM30/PM14
Dissolved Lead#	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM30/PM14
Dissolved Lithium	17	87	47	23	19	8	<5		Į.		<5	ug/l	TM30/PM14
Dissolved Magnesium #	7.9	31.5	6.6	6.9	6.0	7.8	<0.1				<0.1	mg/l	TM30/PM14
Dissolved Manganese #	332	3	38	224	27	6	<2				<2	ug/l	TM30/PM14
Dissolved Mercury#	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM30/PM14
Dissolved Nickel #	<2	<2	<2	<2	<2	<2	<2				<2	ug/l	TM30/PM14
Dissolved Potassium#	3.3	5.9	3.8	2.9	2.9	2.4	<0.1				<0.1	mg/l	TM30/PM14
Dissolved Selenium #	<3	<3	<3	<3	<3	<3	<3				<3	ug/l	TM30/PM14
Dissolved Silver	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM30/PM14
Dissolved Sodium#	171.4	652.0 _{AA}	359.2 _{AA}	227.0 _{AA}	226.1 _{AA}	15.6	<0.1		ļ.		<0.1	mg/l	TM30/PM14
Dissolved Strontium	578 <1.5	4032 _{AB} <1.5	838 <1.5	479 <1.5	352	171 <1.5	<5 <1.5				<5 <1.5	ug/l	TM30/PM14 TM30/PM14
Dissolved Vanadium * Dissolved Zinc *	<3	<3	<3	<3	<1.5 <3	<3	<3		ļ		<3	ug/l ug/l	TM30/PM14
Total Chromium	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5				<1.5	ug/l	TM30/PM14
Total Iron	1281	939	159	145	172	122	<20				<20	ug/l	TM30/PM14
Total Manganese	325	6	38	220	57	5	<2				<2	ug/l	TM30/PM14
•									ļ.				
EPH >C8-C10	<10	<10	<10	<10	<10	<10	<10		ļ ļ		<10	ug/l	TM5/PM30
EPH >C10-C16	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM30
EPH >C16-C24	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM30
EPH >C24-C40	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM30
EPH >C8-C40	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM30
GRO (>C4-C8) #	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
GRO (>C4-C12) #	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
MTBE#	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5				<5 <5	ug/l	TM31/PM12 TM31/PM12
Benzene # Toluene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5				<5 <5	ug/l ug/l	TM31/PM12
Ethylbenzene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5				<5 <5	ug/l	TM31/PM12
m/p-Xylene #	<5	<5	<5 <5	<5 <5	<5	<5	<5 <5				<5	ug/l	TM31/PM12
	-	1					/		1				

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/8767

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/8767						$H=H_2SO_4, \lambda$	Z=ZNAC, N=I	NaOH, HIN=	:IIIVU3			
J E Sample No.	1-11	12-22	23-33	34-44	45-55	56-66	67-77						
Sample ID	G2/24	G1/24	G3/24	G4/24	G6/24	S2/24	B/24						
Depth											Please se	e attached n	otos for all
COC No / misc												ations and a	
Containers	V H HN P BOD G												
Sample Date													
Sample Type		Ground Water	Ground Water			Ground Water	Ground Water						
Batch Number	1	1	1	1	1	1	1				LOD/LOR	Units	Method No.
Date of Receipt		18/05/2017	18/05/2017	18/05/2017	18/05/2017	18/05/2017	18/05/2017						
Bromide	0.09	0.19	0.11	0.10	<0.05	<0.05	<0.05				<0.05	mg/l	TM27/PM0
Fluoride	<0.3	1.1	0.6	<0.3	<0.3	<0.3	<0.3				<0.3	mg/l	TM173/PM0
Tidonae	VO. 3	1.1	0.0	VO. 3	VO. 5	VO. 3	VO. 5				V0.5	mg/i	1101173/1100
Sulphate as SO4#	30.3	800.0	154.3	81.9	76.1	47.2	<0.5				<0.5	mg/l	TM38/PM0
Chloride #	28.8	99.4	50.5	25.2	26.3	31.3	<0.3				<0.3	mg/l	TM38/PM0
Nitrate as NO3 #	<0.2	<0.2	0.3	0.4	<0.2	28.4	<0.2				<0.2	mg/l	TM38/PM0
Nitrite as NO2#	<0.02	<0.02	<0.02	<0.02	<0.02	0.22	<0.02				<0.02	mg/l	TM38/PM0
Ortho Phosphate as P#	<0.03	<0.03	<0.03	<0.03	<0.03	0.03	<0.03				<0.03	mg/l	TM38/PM0
Monoethylene glycol	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				<0.001	mg/l	TM24/PM30
Ammoniacal Nitrogen as N #	0.75	2.35	1.25	0.69	0.05	0.15	<0.03				<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4 #	0.97	3.02	1.61	0.89	0.06	0.19	<0.03				<0.03	mg/l	TM38/PM0
Dissolved Methane #	17	844**	3463**	14	25	12	<1				<1	ug/l	TM25/PM0
Dissolved Ethane #	<1	<1	19	<1	<1	<1	<1				<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	54651	133529**	94947	68629	41825	23251	<1				<1	ug/l	TM25/PM0
Dissolved Butane	<2	<2	<2	<2	<2	<2	<2				<2	ug/l	TM25/PM0
Dissolved Propane	<2	<2	<2	<2	<2	<2	<2				<2	ug/l	TM25/PM0
Acetic Acid	<10	<10	<10	<10	<10	<10	<10				<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3#	430	663	638	490	448	228	28				<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	430	663	638	490	392	228	28				<1	mg/l	TM75/PM0
Acrylamide	<50	<50	<50	<50	<50	<50	<50				<50	ug/l	TM103/PM0
Anionic Surfactants	0.5	0.4	0.3	<0.2	0.9	0.8	<0.2				<0.2	ma/l	TM33/PM0
BOD (Settled)#	0.5 <1	2	0.3	<0.2 2	3	0.8	<0.2				<0.2	mg/l mg/l	TM58/PM0
COD (Settled)#	<7	<7	<7	<7	22	<7	<7				<7	mg/l	TM57/PM0
Electrical Conductivity @25C#	674	1385	1002	721	500	449	6				<2	uS/cm	TM76/PM0
Formaldehyde	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	mg/l	TM51/PM0
Non Ionic Surfactants*	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	Subcontracted
pH#	7.99	8.00	7.97	7.98	8.38	7.98	6.02				<0.01	pH units	TM73/PM0
Redox	288.64	220.32	233.77	255.78	262.45	282.27	324.73					mV	TM72/PM0
Salinity	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	%	TM64/PM0
Sodium Persulphate	<60	<60	<60 1007	<60 665	<60	<60	<60				<60	mg/l	TM100/PM0
Total Dissolved Solids # Total Suspended Solids #	544 10	1220 23	1007 <10	665 <10	618 11	393 <10	<35 <10				<35 <10	mg/l mg/l	TM20/PM0 TM37/PM0
rotat Suspeniued Sullus	10	23	×10	×10	11	×10	10				\10	1119/1	TIVIO7/FIVIU

Exova Jones Environmental Notification of Deviating Samples

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 17/8767	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/8767

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

17/8767

#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution
AB	x10 Dilution

Exova Jones Environmental

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM27	Modified US EPA method 9056.Determination of water soluble anions using Dionex (lon-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				

Exova Jones Environmental

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				
Subcontracted	Subcontracted analysis, sent to an ISO 17025 accredited laboratory where possible.						

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Attention: Phil Ham

Date: 13th July, 2017

Your reference : KMA

Our reference: Test Report 17/8767 Batch 2

Location: Various

Date samples received: 19th May, 2017

Status: Final report

Issue:

Three samples were received for analysis on 19th May, 2017 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

5.60-00

Simon Gomery BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/8767

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE JOD NO.:	17/8/6/				$H=H_2SO_4, A$	Z-ZIIAC, IN-	ivaOi i, i iiv=	111103			
J E Sample No.	78-88	89-99	100-110								
Sample ID	G5/24	\$3/24	BHB/24								
Depth											
COC No / misc										e attached r ations and a	
		V H HN P BOD G	V H HN D BOD C								
Sample Date											
Sample Type	Ground Water	Ground Water	Ground Water								1
Batch Number	2	2	2						LOD/LOR	Units	Method
Date of Receipt	19/05/2017	19/05/2017	19/05/2017								No.
Dissolved Aluminium #	<20	<20	<20						<20	ug/l	TM30/PM14
Dissolved Antimony#	<2	<2	<2						<2	ug/l	TM30/PM14
Dissolved Arsenic#	<2.5	<2.5	<2.5						<2.5	ug/l	TM30/PM14
Dissolved Barium #	111	81	88						<3	ug/l	TM30/PM14
Dissolved Beryllium Dissolved Boron	<0.5 440	<0.5 72	<0.5 79						<0.5 <12	ug/l	TM30/PM14 TM30/PM14
Dissolved Cadmium #	<0.5	<0.5	<0.5						<0.5	ug/l ug/l	TM30/PM14
Dissolved Calcium#	27.4	110.0	370.8 _{AA}						<0.2	mg/l	TM30/PM14
Total Dissolved Chromium #	<1.5	<1.5	<1.5						<1.5	ug/l	TM30/PM14
Dissolved Cobalt#	<2	<2	<2						<2	ug/l	TM30/PM14
Dissolved Copper#	<7	<7	<7						<7	ug/l	TM30/PM14
Total Dissolved Iron #	294	87	1536						<20	ug/l	TM30/PM14
Dissolved Lead#	<5	<5	<5						<5	ug/l	TM30/PM14
Dissolved Lithium	14	10	63						<5	ug/l	TM30/PM14
Dissolved Magnesium#	5.8	13.2	7.2						<0.1	mg/l	TM30/PM14
Dissolved Manganese #	293	178	163						<2	ug/l	TM30/PM14
Dissolved Mercury#	<1	<1	<1						<1	ug/l	TM30/PM14
Dissolved Nickel #	<2	3	<2						<2	ug/l	TM30/PM14
Dissolved Potassium#	2.9	8.1	2.8						<0.1	mg/l	TM30/PM14
Dissolved Selenium * Dissolved Silver	<3 <5	<3 <5	<3 <5						<3 <5	ug/l	TM30/PM14 TM30/PM14
Dissolved Sodium#	166.1	59.5	34.1						<0.1	ug/l mg/l	TM30/PM14
Dissolved Strontium	403	273	463						<5	ug/l	TM30/PM14
Dissolved Vanadium#	<1.5	<1.5	<1.5						<1.5	ug/l	TM30/PM14
Dissolved Zinc#	<3	<3	8						<3	ug/l	TM30/PM14
Total Chromium	<1.5	<1.5	<1.5						<1.5	ug/l	TM30/PM14
Total Iron	230	737	1306						<20	ug/l	TM30/PM14
Total Manganese	296	103	161						<2	ug/l	TM30/PM14
EDIT OF CAS										-	TM (5.1
EPH >C8-C10	<10	<10	<10						<10	ug/l	TM5/PM30
EPH >C10-C16 EPH >C16-C24	<10 <10	<10 <10	<10 <10						<10 <10	ug/l	TM5/PM30
EPH >C16-C24 EPH >C24-C40	<10 <10	<10 <10	<10 <10						<10 <10	ug/l ug/l	TM5/PM30 TM5/PM30
EPH >C8-C40	<10	<10	<10						<10	ug/l	TM5/PM30
2.11760010	110	110	1.0						1.0	ug,.	THOM HOS
GRO (>C4-C8) #	<10	<10	<10						<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10						<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10						<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5						<5	ug/l	TM31/PM12
Benzene #	<5	<5	<5						<5	ug/l	TM31/PM12
Toluene #	<5	<5	<5						<5	ug/l	TM31/PM12
Ethylbenzene #	<5	<5	<5						<5	ug/l	TM31/PM12
m/p-Xylene #	<5	<5	<5						<5	ug/l	TM31/PM12
o-Xylene [#]	<5	<5	<5		l				<5	ug/l	TM31/PM12

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/8767

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/8767				H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN=	:HN0 ₃			
J E Sample No.	78-88	89-99	100-110								
Sample ID	G5/24	\$3/24	BHB/24								
Depth											
COC No / misc										e attached n ations and a	
		V H HN P BOD G									
Sample Date	17/05/2017 15:30	17/05/2017 15:45	17/05/2017 13:00								
Sample Type	Ground Water	Ground Water	Ground Water								
Batch Number	2	2	2								Method
Date of Receipt	19/05/2017	19/05/2017	19/05/2017						LOD/LOR	Units	No.
Bromide	0.06	0.10	0.24						<0.05	mg/l	TM27/PM0
Fluoride	<0.3	<0.3	<0.3						<0.3	mg/l	TM173/PM0
Sulphate as SO4 #	20.7	29.0	270.1						<0.5	mg/l	TM38/PM0
Chloride #	21.5	84.4	101.4						<0.3	mg/l	TM38/PM0
Nitrate as NO3 #	0.4	0.4	<0.2						<0.2	mg/l	TM38/PM0
Nitrite as NO2#	<0.02	<0.02	<0.02						<0.02	mg/l	TM38/PM0
Ortho Phosphate as P #	<0.03	<0.03	0.05						<0.03	mg/l	TM38/PM0
Monoethylene glycol	<0.001	<0.001	<0.001						<0.001	mg/l	TM24/PM30
Ammoniacal Nitrogen as N#	0.67	0.07	0.08						<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4#	0.86	0.09	0.10						<0.03	mg/l	TM38/PM0
Dissolved Methane #	11	8	6						<1	ug/l	TM25/PM0
Dissolved Ethane #	<1	<1	<1						<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide Dissolved Butane	65085 <2	40296 <2	304466 ⁺⁺						<1 <2	ug/l	TM25/PM0 TM25/PM0
Dissolved Butarie Dissolved Propane	<2	<2	<2						<2	ug/l ug/l	TM25/PM0
2.000.roa i ropane	ļ	ή	ļ							ug.	2071 11.10
Acetic Acid	<10	<10	<10						<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3#	398	316	348						<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	398	316	348						<1	mg/l	TM75/PM0
Acrylamide	<50	<50	<50						<50	ug/l	TM103/PM0
j											
Anionic Surfactants	0.7	0.9	0.4						<0.2	mg/l	TM33/PM0
BOD (Settled) #	<1	2	<1						<1	mg/l	TM58/PM0
COD (Settled) #	<7	<7	<7						<7	mg/l	TM57/PM0
Electrical Conductivity @25C #	785	778	1403						<2	uS/cm	TM76/PM0
Formaldehyde	<0.5	<0.5	<0.5						<0.5	mg/l	TM51/PM0
Non Ionic Surfactants*	<5	<5	<5						<5	ug/l	Subcontracted
pH#	7.75	7.79	7.63						<0.01	pH units	TM73/PM0
Redox	54.70	180.73	240.04							mV	TM72/PM0
Salinity	<0.1	<0.1	<0.1						<0.1	%	TM64/PM0
Sodium Persulphate	<60	<60	<60 1052						<60	mg/l	TM100/PM0
Total Supported Solids #	492	447	1052						<35	mg/l	TM20/PM0 TM37/PM0
Total Suspended Solids #	13	24	19						<10	mg/l	TIVI37/PIVIO

Client Name: Envireau Ltd Matrix : Liquid

Reference: KMA
Location: Various
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/8767	2					Liquid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/8767

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution

Exova Jones Environmental

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM27	Modified US EPA method 9056. Determination of water soluble anions using Dionex (Ion-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				
Subcontracted	Subcontracted analysis, sent to an ISO 17025 accredited laboratory where possible.						

Registered Address: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Attention: Phil Ham

Date: 5th September, 2017

Your reference: KMA

Our reference : Test Report 17/8827 Batch 1

Location: Variuos

Date samples received: 19th May, 2017

Status: Final report

Issue:

Six samples were received for analysis on 19th May, 2017 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Balen

Paul Boden BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Variuos
Contact: Phil Ham
JE Job No.: 17/8827

Report: Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/8827						H=H ₂ SO ₄ , A	Z=ZNAC, N=	:NaOH, HN=	=HINU3	_		
J E Sample No.	1-11	12-22	23-33	34-44	45-55	56							
Sample ID	BHC/24	BHA/24	BHE/24	BHED/24	BHD/24	BHE/24.							
Depth													
COC No / misc												e attached r ations and a	
	V H HN P BOD G	М											
Sample Date		18/05/2017 10:45											
·		Ground Water			Ground Water								
Sample Type													
Batch Number	1	1	1	1	1	1					LOD/LOR	Units	Method No.
Date of Receipt	19/05/2017	19/05/2017	19/05/2017	19/05/2017		19/05/2017							
Dissolved Aluminium	<20	<20	150	151	<20	-					<20	ug/l	TM30/PM14
Dissolved Antimony	<2	<2	<2	<2	<2	-					<2	ug/l	TM30/PM14
Dissolved Arsenic	<2.5	<2.5	<2.5	<2.5	<2.5	-					<2.5	ug/l	TM30/PM14
Dissolved Barium	29	69	54	54	13	-					<3	ug/l	TM30/PM14
Dissolved Beryllium Dissolved Boron	<0.5 134	<0.5 97	<0.5	<0.5 251	<0.5 1778	-					<0.5 <12	ug/l	TM30/PM14 TM30/PM14
Dissolved Boron Dissolved Cadmium	<0.5	<0.5	256 <0.5	<0.5	<0.5	-					<0.5	ug/l ug/l	TM30/PM14
Dissolved Calcium	452.6 _{AB}	339.8 _{AA}	0.7	0.7	26.2	-					<0.2	mg/l	TM30/PM14
Total Dissolved Chromium	<1.5	<1.5	<1.5	<1.5	<1.5	-					<1.5	ug/l	TM30/PM14
Dissolved Cobalt	4	<2	<2	<2	<2	-					<2	ug/l	TM30/PM14
Dissolved Copper	<7	<7	<7	<7	<7	-					<7	ug/l	TM30/PM14
Total Dissolved Iron	547	2314	<20	<20	564	-					<20	ug/l	TM30/PM14
Dissolved Lead	<5	<5	<5	<5	<5	-					<5	ug/l	TM30/PM14
Dissolved Lithium	69	44	137	138	41	-					<5	ug/l	TM30/PM14
Dissolved Magnesium	15.8	23.2	0.6	0.6	4.6	-					<0.1	mg/l	TM30/PM14
Dissolved Manganese	128	127	<2	<2	13	-					<2	ug/l	TM30/PM14
Dissolved Mercury	<1	<1	<1	<1	<1	-					<1	ug/l	TM30/PM14
Dissolved Nickel	10	6	<2	<2	<2	-					<2	ug/l	TM30/PM14
Dissolved Potassium	3.6	2.6	10.6	11.0	3.1	-					<0.1	mg/l	TM30/PM14
Dissolved Selenium	<3	<3	<3	<3	<3	-					<3	ug/l	TM30/PM14
Dissolved Silver	<5	<5	<5	<5	<5	-					<5	ug/l	TM30/PM14
Dissolved Sodium	45.9	26.5	675.4 _{AB}	696.8 _{AB}	484.5 _{AA}	-					<0.1	mg/l	TM30/PM14
Dissolved Strontium	718	660	124	124	659	-					<5	ug/l	TM30/PM14
Dissolved Vanadium	<1.5	<1.5	<1.5	<1.5	<1.5	-					<1.5	ug/l	TM30/PM14
Dissolved Zinc Total Chromium	<3	<3	<3	<3	<3	-					<3	ug/l	TM30/PM14 TM30/PM14
Total Iron	<1.5 697	<1.5 1816	<1.5 3666	<1.5 4244	<1.5 472	-					<1.5 <20	ug/l ug/l	TM30/PM14
Total Manganese	125	124	43	50	6	-					<2	ug/l	TM30/PM14
Total Waligariese	120	12-7	40	00	0						~2	ug/i	111100/111111
EPH >C8-C10	<10	<10	<10	<10	<10	-					<10	ug/l	TM5/PM30
EPH >C10-C16	<10	<10	<10	<10	<10	-					<10	ug/l	TM5/PM30
EPH >C16-C24	<10	<10	<10	<10	<10	-					<10	ug/l	TM5/PM30
EPH >C24-C40	<10	<10	<10	<10	<10	-					<10	ug/l	TM5/PM30
EPH >C8-C40	<10	<10	<10	<10	<10	-					<10	ug/l	TM5/PM30
CBO (- C4 C2)	.40	.40	.40	.40	.40						.40		TM26/DM42
GRO (>C4-C8)	<10	<10	<10	<10	<10	-					<10	ug/l	TM36/PM12
GRO (>C8-C12)	<10	<10	<10	<10 <10	<10	-					<10	ug/l	TM36/PM12 TM36/PM12
GRO (>C4-C12) MTBE#	<10 <5	<10 <5	<10 <5	<10 <5	<10 <5	-					<10 <5	ug/l ug/l	TM36/PM12
Benzene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	-					<5 <5	ug/l	TM31/PM12
Toluene #	<5	<5 <5	<5	<5 <5	<5	-					<5	ug/l	TM31/PM12
Ethylbenzene #	<5 <5	<5 <5	<5	<5 <5	<5	-					<5 <5	ug/l	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	-					<5	ug/l	TM31/PM12
o-Xylene#	<5	<5	<5	<5	<5	-					<5	ug/l	TM31/PM12

Client Name: Envireau Ltd

Reference: KMA
Location: Variuos
Contact: Phil Ham
JE Job No.: 17/8827

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE JOB NO.:	17/8827						11-112004,	,	Naon, nn=	03			
J E Sample No.	1-11	12-22	23-33	34-44	45-55	56							
Sample ID	BHC/24	BHA/24	BHE/24	BHED/24	BHD/24	BHE/24.							
Depth											Division		
COC No / misc												e attached n ations and a	
	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	М							
Sample Date													
Sample Type		Ground Water	Ground Water		Ground Water	Ground Water							ı
Batch Number	1	1	1	1	1	1					LOD/LOR	Units	Method
Date of Receipt	19/05/2017	19/05/2017	19/05/2017	19/05/2017	19/05/2017	19/05/2017							No.
Bromide	0.07	0.09	0.41	0.31	0.07	-					<0.05	mg/l	TM27/PM0
Fluoride	<0.3	0.5	3.3	3.3	0.5	_					<0.3	ma/l	TM173/PM0
ridoride	ζ0.3	0.5	3.3	3.3	0.5	-					V0.3	mg/l	1101173/1100
Sulphate as SO4	574.8	554.7	6.2	1.9	252.9	-					<0.5	mg/l	TM38/PM0
Chloride	58.7	33.4	649.0	656.5	43.4	-					<0.3	mg/l	TM38/PM0
Nitrate as NO3	0.3	<0.2	<0.2	<0.2	<0.2	-					<0.2	mg/l	TM38/PM0
Nitrite as NO2	<0.02	<0.02	<0.02	<0.02	<0.02	-					<0.02	mg/l	TM38/PM0
Ortho Phosphate as P	0.04	<0.03	0.04	0.05	0.05	-					<0.03	mg/l	TM38/PM0
Managhalana	0.004	0.004	0.004	0.004	0.004						0.004		TMO 4 /DM 400
Monoethylene glycol	<0.001	<0.001	<0.001	<0.001	<0.001	-					<0.001	mg/l	TM24/PM30
Ammoniacal Nitrogen as N	0.12	0.27	0.92	0.92	1.37	-					<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4	0.16	0.35	1.18	1.18	1.76	-					<0.03	mg/l	TM38/PM0
-													
Dissolved Methane	<1	11	42988**	44695**	92	29941**					<1	ug/l	TM25/PM0
Dissolved Ethane	<1	<1	<1	<1	<1	-					<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	296332 ⁺⁺	223112 ⁺⁺	5293	6115	82537	-					<1	ug/l	TM25/PM0
Dissolved Butane	<2	<2	<2	<2	<2	-					<2	ug/l	TM25/PM0
Dissolved Propane	<2	<2	<2	<2	<2	-					<2	ug/l	TM25/PM0
Acetic Acid	<10	<10	<10	<10	<10	_					<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3	447	410	553	556	648	-					<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	447	410	249	243	648	-					<1	mg/l	TM75/PM0
Acrylamide	<50	<50	<50	<50	<50	-					<50	ug/l	TM103/PM0
Animaia Confessora	.0.0	0.0	4.4	4.0	0.4						.0.0		TM22/DM2
Anionic Surfactants BOD (Settled)	<0.2 <1	0.3	1.4 5	1.0	0.4 <1	-					<0.2 <1	mg/l mg/l	TM33/PM0 TM58/PM0
COD (Settled)	<7	16	20	28	7	-					<7	mg/l	TM57/PM0
Electrical Conductivity @25C	1715	1595	2824	2862	1625	-					<2	uS/cm	TM76/PM0
Formaldehyde	<0.5	<0.5	<0.5	1.3	<0.5	-					<0.5	mg/l	TM51/PM0
Non Ionic Surfactants*	<5	<5	<5	<5	<5	-					<5	ug/l	Subcontracted
pН	6.89	7.07	9.51	9.56	8.11	-					<0.01	pH units	TM73/PM0
Redox	259.45	224.55	142.89	162.69	225.93	-						mV	TM72/PM0
Salinity	0.1	<0.1	0.2	0.2	0.1	-					<0.1	%	TM64/PM0
Sodium Persulphate Total Dissolved Solids	<60 1269	<60 1222	<60 1590	<60 1593	<60 1082	-					<60 <35	mg/l mg/l	TM100/PM0 TM20/PM0
Total Suspended Solids	26	17	21	22	<10	-					<35	mg/l	TM37/PM0
Tary and a condo					1.5						1.5	9/1	

Client Name: Envireau Ltd Matrix : Liquid

Reference: KMA
Location: Variuos
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/8827	1					Liquid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/8827

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

ISO17025 (UKAS) accredited - UK.
ISO17025 (SANAS) accredited - South Africa.
Indicates analyte found in associated method blank.
Dilution required.
MCERTS accredited.
Not applicable
No Asbestos Detected.
None Detected (usually refers to VOC and/SVOC TICs).
No Determination Possible
Calibrated against a single substance
Surrogate recovery outside performance criteria. This may be due to a matrix effect.
Results expressed on as received basis.
AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
Result outside calibration range, results should be considered as indicative only and are not accredited.
Analysis subcontracted to a Jones Environmental approved laboratory.
Samples are dried at 35°C ±5°C
Suspected carry over
Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
Matrix Effect
No Fibres Detected
AQC Sample
Blank Sample
Client Sample
Trip Blank Sample
Outside Calibration Range
x5 Dilution
x10 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.				
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM27	Modified US EPA method 9056. Determination of water soluble anions using Dionex (lon-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.				
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.				
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.				
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.				
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				
Subcontracted	Subcontracted analysis, sent to an ISO 17025 accredited laboratory where possible.						

Prof. Fred Worrall Professor of Environmental Chemistry

Department of Earth Sciences University of Durham Science laboratories South Road Durham DH1 3LE

Direct line Department Office Fax Email

[44] -0191-334 2295 [44] -0191-334 2300 [44] -0191-334 2301 Fred.Worrall@durham.ac.uk

Durham, 30th May, 2017.

Dear Joe,

Here are the results of the analysis of the groundwater samples you supplied. All results are expressed as per mille relative to VPDB. All results are expressed as mean and 95% confidence interval. We analysed 14 samples and we also included both local tap water and also included our zero air standard. The method we used was based on Roberts and Shiller (*Analytica Chimica Acta, 2015, 856, 68-73*). We detected methane and excess CO₂ in all samples and all samples were run in duplicate. I have added my interpretation based on the range observed. We had identified two samples as potentially having very high concentrations of dissolved CH₄ and so these samples were analysed at a range of water to zero air ratios. Normal analysis used 30 ml of water sample and 30 ml of zero air but this was varied down to 10 ml of water sample and 50 ml of zero air for those samples where there was very high dissolved CH₄ concentrations.

Table 1. ¹³CH₄ isotope analysis. Samples mark (*) show concentrations of CH₄ above that expected for equilibration with air.

Sample code	Sample date	Mean (‰)	95% confidence interval	Primo facie interpretation
Laboratory tap water	May	-44.1	±4	Equilibrated with air
S3/24	May	-64.0*	±4	Biogenic
BHB/24	May	-75.0*	±4	Biogenic
BHC/24	May	-49.9	<u>±</u> 4	Equilibrated with air
BHA/24	May	-67.4*	±4	Biogenic
BHE/24	May	-79.0*	±4	Biogenic
BHD/24	May	-38.9*	±4	Thermogenic
G4/24	May	-64.1*	±4	Biogenic
BHED/24	May	-82.4*	±4	Biogenic
G1/24	May	-78.8*	±4	Biogenic
S2/24	May	-53.3	±4	Equilibrated with air
G5/24	May	-52.4	±4	Equilibrated with air
G6/24	May	-49.6	±4	Equilibrated with air
G3/24	May	-66.3*	±4	Biogenic
G2/24	May	-53.7	±4	Equilibrated with air

Table 2. ¹³CO₂ isotope analysis.

Sample code	Sample date	Mean (‰)	95% confidence
			interval
Laboratory tap water	May	-10.6	±1.5
S3/24	May	-27.6	±1.5
BHB/24	May	-11.4	±1.5
BHC/24	May	-21.9	±1.5
BHA/24	May	-22.5	±1.5
BHE/24	May	-11.2	±1.5
BHD/24	May	-26.8	±1.5
G4/24	May	-24.9	±1.5
BHED/24	May	-11.0	±1.5
G1/24	May	-13.9	±1.5
S2/24	May	-24.7	±1.5
G5/24	May	-25.4	±1.5
G6/24	May	-25.2	±1.5
G3/24	May	-25.0	±1.5
G2/24	May	-26.3	±1.5

Yours sincerely

Fred Worrall, MA PhD, Professor of Environmental Chemistry

Water Analysis Test Certificates

Round 25

Registered Address: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Attention: Phil Ham

Date: 13th July, 2017

Your reference : KMA

Our reference: Test Report 17/10356 Batch 1 Schedule A 17/10356 Batch 1 Schedule B 17/10356 Ba

Location: Various

Date samples received: 15th June, 2017

Status: Final report

Issue:

Nine samples were received for analysis on 15th June, 2017 of which nine were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

5.60-25

Simon Gomery BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/10356

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

							2004,	,	1140011, 1111	 		
J E Sample No.	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90]		
Sample ID	G2/25	G1/25	G3/25	G5/25	B/25	G4D/25	S2/25	G4/25	G6/25			
Depth										Please se	e attached r	otes for all
COC No / misc											ations and a	
Containers	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G			
Sample Date							14/06/2017 10:30					
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Surface Water	Ground Water	Ground Water	Ground Water	Ground Water		1	1
Batch Number	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	15/06/2017	15/06/2017	15/06/2017	15/06/2017	15/06/2017	15/06/2017	15/06/2017	15/06/2017	15/06/2017	203/2011	Onno	No.
Dissolved Aluminium #	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	ug/l	TM30/PM14
Dissolved Antimony#	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM30/PM14
Dissolved Arsenic#	3.0	<2.5	<2.5	3.9	3.0	<2.5	<2.5	<2.5	<2.5	<2.5	ug/l	TM30/PM14
Dissolved Barium #	71	11	23	102	<3	32	68	31	22	<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM30/PM14
Dissolved Boron	476	2329	1118	455	<12	879	15	883	743	<12	ug/l	TM30/PM14
Dissolved Cadmium #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM30/PM14
Dissolved Calcium #	31.9	61.9	21.6	26.7	<0.2	27.8	86.4	27.6	16.8	<0.2	mg/l	TM30/PM14
Total Dissolved Chromium #	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	ug/l	TM30/PM14
Dissolved Cobalt #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM30/PM14
Dissolved Copper#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	ug/l	TM30/PM14
Total Dissolved Iron #	1669	352	129	258	<20	<20	85	<20	175	<20	ug/l	TM30/PM14
Dissolved Lead #	<5	<5 05	<5	<5	<5	<5	<5 .F	<5	<5 47	<5 .5	ug/l	TM30/PM14
Dissolved Lithium	14	85	41	15	<5	20	<5	21	17	<5	ug/l	TM30/PM14 TM30/PM14
Dissolved Magnesium #	7.7 324	35.1 <2	6.3	5.6 263	<0.1 <2	6.8 223	7.0	6.8 225	5.3	<0.1 <2	mg/l ug/l	TM30/PM14
Dissolved Manganese # Dissolved Mercury #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM30/PM14
Dissolved Nickel #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM30/PM14
Dissolved Potassium#	2.9	5.9	3.5	2.6	<0.1	2.9	1.9	2.8	2.5	<0.1	mg/l	TM30/PM14
Dissolved Selenium #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM30/PM14
Dissolved Silver	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM30/PM14
Dissolved Sodium#	167.6	643.7 _{AC}	388.7 _{AA}	154.8	<0.1	255.0 _{AA}	15.3	254.3 _{AA}	193.8	<0.1	mg/l	TM30/PM14
Dissolved Strontium	547	4672 _{AB}	758	412	<5	435	143	437	304	<5	ug/l	TM30/PM14
Dissolved Vanadium #	<1.5	<1.5	<1.5	<1.5	<1.5	2.6	<1.5	<1.5	<1.5	<1.5	ug/l	TM30/PM14
Dissolved Zinc#	<3	<3	<3	<3	<3	7	<3	9	<3	<3	ug/l	TM30/PM14
Total Chromium	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	ug/l	TM30/PM14
Total Iron	1578	779	63	371	<20	121	576	223	297	<20	ug/l	TM30/PM14
Total Manganese	243	5	30	259	<2	163	19	164	54	<2	ug/l	TM30/PM14
EPH >C8-C10	<10	<10	<10	<10	<10	<10	140	60	110	<10	ug/l	TM5/PM30
EPH >C10-C16	<10	<10	<10	<10	<10	<10	<10	<10	60	<10	ug/l	TM5/PM30
EPH >C16-C24	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C24-C40	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM5/PM30
EPH >C8-C40	<10	<10	<10	<10	<10	<10	140	60	170	<10	ug/l	TM5/PM30
GRO (>C4-C10)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C4-C8) #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
Benzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
Toluene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM31/PM12

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/10356

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

										-			
J E Sample No.	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90				
Sample ID	G2/25	G1/25	G3/25	G5/25	B/25	G4D/25	S2/25	G4/25	G6/25				
Depth											Please se	e attached r	notes for all
COC No / misc												ations and a	
Containers	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G				
Sample Date	14/06/2017 12:00	14/06/2017 11:15	14/06/2017 13:45	14/06/2017 14:30	14/06/2017 14:00	14/06/2017 12:45	14/06/2017 10:30	14/06/2017 12:30	14/06/2017 13:15				
Sample Type						Ground Water	Ground Water	Ground Water	Ground Water				
Batch Number	1	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method No.
Date of Receipt				15/06/2017			15/06/2017		15/06/2017				
o-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/l	TM31/PM12
Bromide	<0.05	0.21	0.17	0.07	<0.05	0.08	<0.05	0.08	0.11		<0.05	mg/l	TM27/PM0
Bromido	νο.σσ	0.21	0.17	0.07	40.00	0.00	νο.οο	0.00	0.11		40.00	mg/i	TWIZ77T WIG
Fluoride	<0.3	1.1	0.6	<0.3	<0.3	0.3	<0.3	0.3	0.3		<0.3	mg/l	TM173/PM0
Sulphate as SO4 #	26.4	839.5	150.4	20.0	<0.5	82.0	39.3	81.8	58.8		<0.5	mg/l	TM38/PM0
Chloride #	28.3	97.8	47.6	22.2	<0.3	25.4	28.3	25.1	19.5		<0.3	mg/l	TM38/PM0
Nitrate as NO3 #	<0.2	<0.2	<0.2	<0.2	<0.2	0.5	26.0	0.8	<0.2		<0.2	mg/l	TM38/PM0
Nitrite as NO2 #	0.36	<0.02	<0.02	<0.02	<0.02	80.0	0.24	0.10	<0.02		<0.02	mg/l	TM38/PM0
Ortho Phosphate as P #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/l	TM38/PM0
Monoethylene glycol	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	mg/l	TM24/PM30
Ammoniacal Nitrogen as N#	0.73	2.35	1.23	0.68	<0.03	0.63	0.09	0.63	0.03		<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4#	0.94	3.02	1.58	0.88	<0.03	0.81	0.11	0.81	0.04		<0.03	mg/l	TM38/PM0
Dissolved Methane #	25	785 ⁺⁺	2939**	13	<1	10	9	9	49		<1	ug/l	TM25/PM0
Dissolved Ethane #	<1	<1	16	<1	<1	<1	<1	<1	<1		<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	85257	124760**	102619**	78258	<1	80301	30311	85342	56633		<1	ug/l	TM25/PM0
Dissolved Butane	<2	<2	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM25/PM0
Dissolved Propane	<2	<2	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM25/PM0
Acetic Acid	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	mg/l	TM127/PM0
Total Alkalinity as CaCO3#	422	634	630	397	26	476	190	473	437		<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	361	573	630	397	26	410	149	410	374		<1	mg/l	TM75/PM0
Acrylamide	<50	<50	<50	<50	<50	<50	<50	<50	<50		<50	ug/l	TM103/PM0
Anionic Surfactants	0.7	1.1	1.3	0.7	1.1	1.2	0.7	1.0	1.1		<0.2	mg/l	TM33/PM0
BOD (Settled) #	<1	1	3	<1	<1	1	<1	1	1		<1	mg/l	TM58/PM0
COD (Settled) #	<7	7	9	<7	<7	<7	10	<7	38		<7	mg/l	TM57/PM0
Electrical Conductivity @25C#	808	2719	1436	747	20	1108	534	1001	891		<2	uS/cm	TM76/PM0
Formaldehyde	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	mg/l	TM51/PM0
Non Ionic Surfactants*	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/l	Subcontracte
pH#	8.47	8.38	8.13	7.90	5.66	8.48	8.31	8.49	8.52		<0.01	pH units	TM73/PM0
Redox	199.75	224.92	217.94	231.49	291.00	280.15	274.28	271.52	265.63			mV	TM72/PM0
Salinity	<0.1	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	%	TM64/PM0
Sodium Persulphate	<60	<60	<60	<60	<60	<60	<60	<60	<60		<60	mg/l	TM100/PM0
Total Dissolved Solids #	548	1985	974	496	<35	676	366	697	610		<35	mg/l	TM20/PM0
Total Suspended Solids #	<10	21	<10	<10	<10	<10	16	11	<10		<10	mg/l	TM37/PM0

Client Name: Envireau Ltd Matrix : Liquid

Reference: KMA
Location: Various
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/10356	1					Liquid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/10356

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution
AB	x10 Dilution
AC	x20 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM27	Modified US EPA method 9056. Determination of water soluble anions using Dionex (lon-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				
Subcontracted	Subcontracted analysis, sent to an ISO 17025 accredited laboratory where possible.						

Registered Address: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Attention : Phil Ham

Date: 5th September, 2017

Your reference: KMA

Our reference: Test Report 17/10422 Batch 1

Location: Various

Date samples received: 16th June, 2017

Status: Final report

Issue:

Six samples were received for analysis on 16th June, 2017 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Balen

Paul Boden BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/10422

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/10422						H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN=	:HN0 ₃			
J E Sample No.	1-10	11-20	21-30	31-40	41	42-51							
Sample ID	BHB/25	BHC/25	BHA/25	BHE/25	BHE/25.	BHD/25							
Depth											Diana		-4 4!!
COC No / misc												e attached nations and a	
	V H HN P BOD G	М	V H HN P BOD G										
Sample Date						15/06/2017 15:00							
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water							
Batch Number	1	1	1	1	1	1					LOD/LOR	Units	Method
Date of Receipt	16/06/2017	16/06/2017	16/06/2017	16/06/2017	16/06/2017	16/06/2017					LOD/LOR	Office	No.
Dissolved Aluminium #	<20	<20	<20	129	-	<20					<20	ug/l	TM30/PM14
Dissolved Antimony#	<2	<2	<2	<2	-	<2					<2	ug/l	TM30/PM14
Dissolved Arsenic#	<2.5	<2.5	<2.5	<2.5	-	<2.5					<2.5	ug/l	TM30/PM14
Dissolved Barium #	85	23	70	46	-	9					<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	<0.5	<0.5	-	<0.5					<0.5	ug/l	TM30/PM14
Dissolved Boron	83	144	105	246	-	1665					<12	ug/l	TM30/PM14
Dissolved Cadmium #	<0.5	<0.5	<0.5	<0.5	-	<0.5					<0.5	ug/l	TM30/PM14
Dissolved Calcium#	333.7 _{AA}	412.9 _{AB}	345.6 _{AA}	0.7	-	25.5					<0.2	mg/l	TM30/PM14
Total Dissolved Chromium #	<1.5	<1.5 3	<1.5	<1.5	-	<1.5					<1.5	ug/l	TM30/PM14 TM30/PM14
Dissolved Cobalt # Dissolved Copper #	<2 <7	<7	<2 <7	<2 <7	-	<2 <7					<2 <7	ug/l ug/l	TM30/PM14
Total Dissolved Iron #	1578	868	2345	<20	_	205					<20	ug/l	TM30/PM14
Dissolved Lead #	<5	<5	<5	<5	-	<5					<5	ug/l	TM30/PM14
Dissolved Lithium	67	86	50	147	-	42					<5	ug/l	TM30/PM14
Dissolved Magnesium #	6.7	15.0	21.3	0.7	-	4.6					<0.1	mg/l	TM30/PM14
Dissolved Manganese #	154	123	99	<2	-	10					<2	ug/l	TM30/PM14
Dissolved Mercury#	<1	<1	<1	<1	-	<1					<1	ug/l	TM30/PM14
Dissolved Nickel #	<2	5	2	<2	-	<2					<2	ug/l	TM30/PM14
Dissolved Potassium #	2.7	3.3	2.6	11.1	-	3.0					<0.1	mg/l	TM30/PM14
Dissolved Selenium #	<3	<3	<3	<3	-	<3					<3	ug/l	TM30/PM14
Dissolved Silver	<5	<5	<5	<5	-	<5					<5	ug/l	TM30/PM14
Dissolved Sodium#	33.3	37.6	25.5	692.4 _{AB}	-	458.7 _{AA}					<0.1	mg/l	TM30/PM14
Dissolved Strontium	511	745	647	130	-	682					<5	ug/l	TM30/PM14
Dissolved Vanadium #	<1.5	<1.5	<1.5	<1.5	-	<1.5					<1.5	ug/l	TM30/PM14
Dissolved Zinc#	10	36	7	3	-	<3					<3	ug/l	TM30/PM14
Total Chromium Total Iron	<1.5 975	<1.5 845	<1.5 2531	<1.5 353	-	<1.5 615					<1.5 <20	ug/l	TM30/PM14 TM30/PM14
Total Manganese	161	127	102	<2	-	8					<20	ug/l ug/l	TM30/PM14
rotal manganood			.02								~_	ug.	111100/111111
EPH >C8-C10	<10	<10	<10	<10	-	<10					<10	ug/l	TM5/PM30
EPH >C10-C16	<10	<10	<10	<10	-	<10					<10	ug/l	TM5/PM30
EPH >C16-C24	<10	<10	<10	<10	-	<10					<10	ug/l	TM5/PM30
EPH >C24-C40	<10	<10	<10	<10	-	<10					<10	ug/l	TM5/PM30
EPH >C8-C40	<10	<10	<10	<10	-	<10					<10	ug/l	TM5/PM30
GRO (>C4-C10)	<10	<10	<10	<10	-	<10					<10	ug/l	TM36/PM12
MTBE#	<5	<5	<5	<5	-	<5					<5	ug/l	TM31/PM12
Benzene#	<5	<5	<5	<5	-	<5					<5	ug/l	TM31/PM12
Toluene #	<5	<5	<5	<5	-	<5					<5	ug/l	TM31/PM12
Ethylbenzene #	<5	<5 .5	<5 .5	<5	-	<5 .c					<5	ug/l	TM31/PM12
m/p-Xylene #	<5 <5	<5 <5	<5 <5	<5 <5	-	<5 <5					<5 <5	ug/l	TM31/PM12
o-Xylene [#]	<5	<5	<5	<5	-	<5					<5	ug/l	TM31/PM12
Bromide	0.18	0.06	0.07	0.28	-	0.06					<0.05	mg/l	TM27/PM0
	55	5.55	3.07	JJ	<u> </u>	0.00	l	l	<u> </u>	<u>l</u>	.0.00	9''	

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/10422

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/10422						H=H ₂ SO ₄ ,	Z=Znac, N=	=NaOH, HN=	:HINU3	_		
J E Sample No.	1-10	11-20	21-30	31-40	41	42-51							
Sample ID	BHB/25	BHC/25	BHA/25	BHE/25	BHE/25.	BHD/25							
Depth											Please se	e attached r	notes for all
COC No / misc												ations and a	
Containers	V H HN P BOD G	м	V H HN P BOD G										
Sample Date						15/06/2017 15:00							
•		Ground Water											
Batch Number	1	1	1	1	1	1					LOD/LOR	Units	Method No.
	16/06/2017			16/06/2017	16/06/2017								
Fluoride	<0.3	<0.3	0.5	3.1	-	0.4					<0.3	mg/l	TM173/PM0
Sulphate as SO4 #	258.4	548.8	455.3	1.3	_	249.7					<0.5	mg/l	TM38/PM0
Chloride #	111.7	59.1	37.3	682.7	_	43.8					<0.3	mg/l	TM38/PM0
Nitrate as NO3 #	<0.2	<0.2	<0.2	<0.2	-	<0.2					<0.2	mg/l	TM38/PM0
Nitrite as NO2#	<0.02	<0.02	<0.02	<0.02	-	<0.02					<0.02	mg/l	TM38/PM0
Ortho Phosphate as P#	<0.03	<0.03	<0.03	<0.03	-	<0.03					<0.03	mg/l	TM38/PM0
Monoethylene glycol	<0.001	<0.001	<0.001	<0.001	-	<0.001					<0.001	mg/l	TM24/PM30
	0.00	0.40	0.07	0.04		4.07					.0.02	/1	TMOO/DMO
Ammoniacal Nitrogen as N#	0.08	0.12 0.16	0.27 0.35	0.94 1.21	-	1.37					<0.03	mg/l	TM38/PM0 TM38/PM0
Ammoniacal Nitrogen as NH4#	0.10	0.16	0.35	1.21	-	1.76					<0.03	mg/l	TIVISO/PIVIO
Dissolved Methane #	<1	6	<1	36171**	28685**	86					<1	ug/l	TM25/PM0
Dissolved Ethane #	<1	<1	<1	<1	-	<1					<1	ug/l	TM25/PM0
Dissolved Carbon Dioxide	206519**	206672**	168946**	7363	-	95995					<1	ug/l	TM25/PM0
Dissolved Butane	<2	<2	<2	<2	-	<2					<2	ug/l	TM25/PM0
Dissolved Propane	<2	<2	<2	<2	-	<2					<2	ug/l	TM25/PM0
Acetic Acid	<10	<10	<10	<10	-	<10					<10	mg/l	TM127/PM0
T. IAN U.S. 0.000#	440	405	440	500		050							T1475/D140
Total Alkalinity as CaCO3#	419 419	435	419	522	-	650					<1	mg/l	TM75/PM0
Bicarbonate Alkalinity as CaCO3	419	435	419	209	-	650					<1	mg/l	TM75/PM0
Acrylamide	<50	<50	<50	<50	-	<50					<50	ug/l	TM103/PM0
Anionic Surfactants	1.1	0.4	1.1	1.0	-	1.3					<0.2	mg/l	TM33/PM0
BOD (Settled) #	<1	<1	<1	5	-	1					<1	mg/l	TM58/PM0
COD (Settled) #	15	16	24	53	-	73					<7	mg/l	TM57/PM0
Electrical Conductivity @25C#	1399	1599	1425	2815	-	1598					<2	uS/cm	TM76/PM0
Formaldehyde	<0.5	<0.5	<0.5	<0.5	-	<0.5					<0.5	mg/l	TM51/PM0
Non Ionic Surfactants*	<5	<5	144	<5	-	<5					<5	ug/l	Subcontracted
pH#	7.20	7.16	7.21	9.77	-	8.18					<0.01	pH units	TM73/PM0
Redox	138.06	154.24	138.80	167.65	-	46.59						mV	TM72/PM0
Salinity	<0.1	0.1	<0.1	0.2	-	0.1					<0.1	%	TM64/PM0
Sodium Persulphate	<60	<60	<60	<60	-	<60					<60	mg/l	TM100/PM0
Total Dissolved Solids #	1143	1378	1161	1675	-	1051					<35	mg/l	TM20/PM0
Total Suspended Solids #	10	<10	<10	<10	-	<10					<10	mg/l	TM37/PM0 TM30/PM14
Total Cations Total Anions	18.72 16.91	23.56 21.79	20.17 18.91	30.49 29.72	-	21.68 19.43					<0.00	mmolc/l	TM0/PM0
% Cation Excess	5.08	3.90	3.22	1.28	-	5.47					\U.UU	mmoic/i %	TM0/PM0
I I I I I I I I I I I I I I I I I I	3.00	5.50	5.22	20		J. T.						,0	5/1 1410

Client Name: Envireau Ltd Matrix : Liquid

Reference: KMA
Location: Various
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/10422	1					Liquid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/10422

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

# ISO17025 (UKAS) accredited - UK. SA ISO17025 (SANAS) accredited - South Africa.	
· · ·	
B Indicates analyte found in associated method blank.	
DR Dilution required.	
M MCERTS accredited.	
NA Not applicable	
NAD No Asbestos Detected.	
ND None Detected (usually refers to VOC and/SVOC TICs).	
NDP No Determination Possible	
SS Calibrated against a single substance	
SV Surrogate recovery outside performance criteria. This may be due to a matrix effect.	
W Results expressed on as received basis.	
+ AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previou	is page.
++ Result outside calibration range, results should be considered as indicative only and are not accre	edited.
* Analysis subcontracted to a Jones Environmental approved laboratory.	
AD Samples are dried at 35°C ±5°C	
CO Suspected carry over	
LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS	
ME Matrix Effect	
NFD No Fibres Detected	
BS AQC Sample	
LB Blank Sample	
N Client Sample	
TB Trip Blank Sample	
OC Outside Calibration Range	
AA x5 Dilution	
AB x10 Dilution	

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМО	Not available	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM24	Determination of Glycols by GC-MS	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM27	Modified US EPA method 9056.Determination of water soluble anions using Dionex (Ion-Chromatography).	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				
TM37	Modified USEPA 160.2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM51	Formaldehyde determination by reaction with Ammonium lons and acetylacetone which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			
TM64	Determination of the salinity of liquid samples using a salinity meter.	PM0	No preparation is required.				
TM72	Redox Potential is measured by HI98120 redox meter.	PM0	No preparation is required.				
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM100	Ferrous ammonium sulphate is oxidised by any persulphate present in the samples, any residual ferrous iron is then titrated with potassium permanganate.	PM0	No preparation is required.				
TM103	Determination of specific Amines with Reversed Phase Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM127	Determination of specific Volatile Fatty Acids with Liquid Chromatography and Mass Spectroscopy detection.	PM0	No preparation is required.				
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				
Subcontracted	Subcontracted analysis, sent to an ISO 17025 accredited laboratory where possible.						

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Attention : Phil Ham

18th July, 2017 Date:

Your reference : **KMA**

Our reference : Test Report 17/10356 Batch 1 Schedule D

Location: Various

15th June, 2017 Date samples received :

Status: Final report

Issue:

Nine samples were received for analysis on 15th June, 2017 of which nine were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Simon Gomery BSc Project Manager

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/10356

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/10356						H=H ₂ SO ₄ , A	Z=Znac, N=	NaOH, HN=	HINU ₃	_		
J E Sample No.	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90				
Sample ID	G2/25	G1/25	G3/25	G5/25	B/25	G4D/25	S2/25	G4/25	G6/25				
Depth											Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	V H HN P BOD G	V H HN P BOD G	V H HN P BOD G										
Sample Date	14/06/2017 12:00	14/06/2017 11:15	14/06/2017 13:45	14/06/2017 14:30	14/06/2017 14:00	14/06/2017 12:45	14/06/2017 10:30	14/06/2017 12:30	14/06/2017 13:15				
Sample Type													
Batch Number	1	1	1	1	1	1	1	1	1				
Date of Receipt							15/06/2017		15/06/2017		LOD/LOR	Units	Method No.
Dissolved Arsenic#	-	-	-	-	<2.5	-	-	-	-		<2.5	ug/l	TM30/PM14
Dissolved Vanadium#	-	-	-	-	-	<1.5	-	<1.5	-		<1.5	ug/l	TM30/PM14
EPH > C8-C10	-	-	-	-	-	<10	-	<10	-		<10	ug/l	TM5/PM30
EPH >C10-C16 EPH >C16-C24	-	-	-	-	-	<10 <10	-	<10 <10	-		<10 <10	ug/l ug/l	TM5/PM30 TM5/PM30
EPH >C24-C40	-	-	-	-	-	<10	-	<10	-		<10	ug/l	TM5/PM30
EPH >C8-C40	-	-	-	-	-	<10	-	<10	-		<10	ug/l	TM5/PM30
Dissolved Methane #	-	-	-	-	<1	-	-	-	-		<1	ug/l	TM25/PM0
Dissolved Methane	-	-	-	-	~1	-		-	-		~1	ug/i	TIVI23/FIVIO
Anionic Surfactants	1.2	1.7	1.5	1.8	1.2	1.7	1.3	1.7	1.9		<0.2	mg/l	TM33/PM0
L	l	l			l.								

Client Name: Envireau Ltd Matrix : Liquid

Reference: KMA
Location: Various
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/10356	1					Liquid Samples were received at a temperature above 9°C.
17/10356	1	B/25		41-50	Dissolved Gases	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/10356

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.				
SA	ISO17025 (SANAS) accredited - South Africa.				
В	Indicates analyte found in associated method blank.				
DR	Dilution required.				
M	MCERTS accredited.				
NA	Not applicable				
NAD	No Asbestos Detected.				
ND	None Detected (usually refers to VOC and/SVOC TICs).				
NDP	No Determination Possible				
SS	Calibrated against a single substance				
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.				
W	Results expressed on as received basis.				
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.				
++	Result outside calibration range, results should be considered as indicative only and are not accredited.				
*	Analysis subcontracted to a Jones Environmental approved laboratory.				
AD	Samples are dried at 35°C ±5°C				
CO	Suspected carry over				
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS				
ME	Matrix Effect				
NFD	No Fibres Detected				
BS	AQC Sample				
LB	Blank Sample				
N	Client Sample				
ТВ	Trip Blank Sample				
ОС	Outside Calibration Range				

Exova Jones Environmental

Method Code Appendix

JE Job No: 17/10356

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM25	Determintaion of Dissolved Methane, Ethane and Ethene by Headspace GC-FID	PM0	No preparation is required.	Yes			
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM33	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				

Exova Jones Environmental

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Envireau Ltd Cedars Farm Barn Market Street Draycott Derby DE72 3NB

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Phil Ham

Date: 05th September, 2017

Your reference : KMA

Our reference : Test Report 17/10422 Batch 1 Schedule C

Location: Various

Date samples received: 16th June, 2017

Status: Final report

Issue: 2

Six samples were received for analysis on 16th June, 2017 of which five were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Simon Gomery BSc Project Manager

Exova Jones Environmental

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham
JE Job No.: 17/10422

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/10422					 H=H ₂ 3O ₄ , 2	Z=ZNAC, N=	NaOH, HN=	:HINU3	_		
J E Sample No.	1-10	11-20	21-30	31-40	42-51							
Sample ID	BHB/25	BHC/25	BHA/25	BHE/25	BHD/25							
Depth										Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	V H HN P BOD G											
Sample Date	15/06/2017 11:00	15/06/2017 12:15	15/06/2017 13:30	15/06/2017 16:15	15/06/2017 15:00							
Sample Type	Ground Water											
Batch Number		1	1	1	1					LOD/LOR	Units	Method
Date of Receipt												No.
Anionic Surfactants	1.8	1.3	1.3	2.0	1.2					<0.2	mg/l	TM33/PM0
	<u> </u>											

Exova Jones Environmental Notification of Deviating Samples

Client Name: Envireau Ltd

Reference: KMA
Location: Various
Contact: Phil Ham

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 17/10422	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/10422

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

Exova Jones Environmental

Method Code Appendix

JE Job No: 17/10422

Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
Determination of Anionic surfactants by reaction with Methylene Blue to form complexes which are analysed spectrophotometrically. (MBAS)	PM0	No preparation is required.				
	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes	Description No. (if appropriate) Determination of Anionic surfactants by reaction with Methylene Blue to form complexes	Description No. (if appropriate) Description Description Description	Description No. (if appropriate) Description Description 17025 (UKAS/S ANAS) Determination of Anionic surfactants by reaction with Methylene Blue to form complexes	Description No. (if appropriate) Description Description Output Description Description Description Description Output Description Description Output Description Output Description Description Output D	Determination of Anionic surfactants by reaction with Methylene Blue to form complexes

Prof. Fred Worrall Professor of Environmental Chemistry

Department of Earth Sciences University of Durham Science laboratories South Road Durham DH1 3LE

Direct line
Department Office
Fax
Email

[44] -0191-334 2295 [44] -0191-334 2300 [44] -0191-334 2301 Fred.Worrall@durham.ac.uk

Durham, 24th June, 2017.

Dear Joe,

Here are the results of the analysis of the groundwater samples you supplied. All results are expressed as per mille relative to VPDB. All results are expressed as mean and 95% confidence interval. We analysed 13 samples and we also included both local tap water and also included our zero air standard. The method we used was based on Roberts and Shiller (*Analytica Chimica Acta, 2015, 856, 68-73*). We detected methane and excess CO₂ in all samples and all samples were run in duplicate. I have added my interpretation based on the range observed. We had identified samples with (*) where there was a larger concentration of dissolved CH₄ than as measured in laboratory tap water. Normal analysis used 30 ml of water sample and 30 ml of zero air but this was varied down to 10 ml of water sample and 50 ml of zero air for those samples where there was very high dissolved CH₄ concentrations (i.e. BHE/25). In line with the attached statistical analysis I have modified the reporting of the error on the dissolved CH₄ concentrations.

Table 1. ¹³CH₄ isotope analysis. Samples mark (*) show concentrations of CH₄ above that expected for equilibration with air.

Sample code	Sample date	Mean (‰)	Standard error	Primo facie interpretation
Laboratory tap water	June	-48.8	±4	Equilibrated with air
BHB/25	June	-47.1*	±4	Equilibrated with air
BHC/25	June	-48.7*	±4	Equilibrated with air
BHA/25	June	-48.7*	±4	Equilibrated with air
BHE/25	June	-83.4*	±4	Biogenic
BHD/25	June	-43.1*	±4	Equilibrated with air
S2/25	June	-49.5*	±4	Equilibrated with air
G4/25	June	-48.2*	±4	Equilibrated with air
G1/25	June	-46.0*	±4	Equilibrated with air
G4D/25	June	-47.1*	±4	Equilibrated with air
G5/25	June	-46.1*	±4	Equilibrated with air
G6/25	June	-46.0*	±4	Equilibrated with air
G3/25	June	-49.8*	<u>±</u> 4	Equilibrated with air
G2/25	June	-48.8*	<u>±</u> 4	Equilibrated with air

Table 2. ¹³CO₂ isotope analysis.

Sample code	Sample date	Mean (‰)	95% confidence
			interval
Laboratory tap water	June	-11.6	±1.5
BHB/25	June	-23.0	±1.5
BHC/25	June	-21.4	±1.5
BHA/25	June	-22.9	±1.5
BHE/25	June	-7.85	±1.5
BHD/25	June	-26.9	±1.5
S2/25	June	-23.8	±1.5
G4/25	June	-25.7	±1.5
G1/25	June	-22.6	±1.5
G4D/25	June	-22.6	±1.5
G5/25	June	-26.1	±1.5
G6/25	June	-22.1	±1.5
G3/25	June	-25.3	±1.5
G2/25	June	-25.3	±1.5

Yours sincerely

Fred Worrall, MA PhD, Professor of Environmental Chemistry

APPENDIX F

Headspace Methane Reports

Ref: P:\Third Energy KMA (1996)\40 - Reporting\PreOp Conditions\PO3\KMA Baseline report r4.docx Rev: 05/09/2017

Headspace Methane Results

Round 23

PROJECT ID: GGS1282

SITE: KMA

SPECIALIST: H. Rutter

Experts in Continuous Monitoring

EQUIPMENT: GasData GFM435 (SN: 11028) & TDL-500 (SN: 154011)

BH ID	Site	Date	Time	Barometric Pressure	Line Test	F	low Rate (ltr/h	ır)	Steady	Peak	Steady	Peak	Minimum	Maximum	со	H ₂ S	Steady CH4	Peak CH4	Comments
					ок?	Initial	Duration	Steady	CH ₄ (% v/v)	CH ₄ (% v/v)	CO ₂ (% v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	O ₂ (% v/v)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	
ВН А	KMA	24/04/17	12:20	1006	Y	<0.1	-	<0.1	<0.1	<0.1	4.7	4.7	2.7	2.8	<1	<1	24.5	-	
вн в	KMA	24/04/17	12:00	1007	Y	<0.1	-	<0.1	<0.1	<0.1	10.1	10.1	0.6	0.6	<1	<1	44.4	-	
вн с	KMA	24/04/17	12:15	1006	Y	<0.1	-	<0.1	<0.1	<0.1	0.5	0.5	21.0	20.8	<1	<1	2.0	-	
BH D	KMA	24/04/17	12:10	1006	Y	<0.1	-	<0.1	<0.1	<0.1	0.2	0.2	20.2	20.3	<1	<1	2.8	342.0	Peak of 342 ppm when tap intially opened
BH E	KMA	24/04/17	12:05	1006	Y	<0.1	-	<0.1	<0.1	<0.1	0.1	0.1	20.4	20.4	<1	<1	103.0	664.0	Drop to steady 103 ppm after 2 mins - no bung
ВН А	KMA	25/04/17	09:50	1004	Y	<0.1	-	<0.1	<0.1	<0.1	2.5	3.5	10.8	10.9	<1	<1	14.6	22.8	No continuous monitoring during water sampling
ВН В	KMA	25/04/17	09:30	1006	Y	<0.1	-	<0.1	<0.1	<0.1	10.5	10.5	0.3	0.3	<1	<1	46.8	-	Min 58.9 ppm, max 60.4 ppm with tubing dangled within borehole whilst water sampling
вн с	KMA	25/04/17	09:45	1005	Y	<0.1	-	<0.1	<0.1	<0.1	0.4	0.5	20.1	20.1	<1	<1	2.1	-	No continuous monitoring during water sampling
BH D	KMA	25/04/17	09:40	1005	Y	<0.1	-	<0.1	<0.1	<0.1	0.1	0.1	20.5	20.5	<1	<1	2.0	-	Continuous background levels during water sampling
ВН Е	KMA	25/04/17	09:35	1006	Y	<0.1	-	<0.1	<0.1	<0.1	0.1	0.1	20.5	20.5	<1	<1	50.0	120.0	Drop to steady 50 ppm after 2 mins (no bung). Varied between max 128 ppm & min 10.2 ppm whilst water sampling. After 35 mins 63.7 ppm

PROJECT ID: GGS1282

SITE: KMA

SPECIALIST: H. Rutter

EQUIPMENT: GasData GFM435 (SN: 11028) & TDL-500 (SN: 154011)

Site	Date	Barometric Pressure (mb)	Site Notes
S2 - Costa Beck	24/04/17	1007	Continuous background levels during water sampling
S3 - Auckland Beck	24/04/17	1007	Continuous background levels during water sampling
G1 - Elm Tree Farm	24/04/17	1007	Max 2896 ppm CH4 detected at hose nozzle. H2S smell from hose
G2 - West Farm	24/04/17	1007	Continuous background levels during water sampling
G3 - The Villa	24/04/17	1008	15.7 ppm max detected from water in bucket
G4 - Coultas Farm	24/04/17	1006	Continuous background levels during water sampling
G5 - Habton Whin	24/04/17	1006	Continuous background levels during water sampling
G6 - The Ellers	24/04/17	1006	Continuous background levels during water sampling

Headspace Methane Results

Round 24

PROJECT ID: GGS1282

SITE: KMA

SPECIALIST: H. Rutter

perts in Continuous Monitoring EQUIPMENT: GasData GFM435 (SN: 11028) & TDL-500 (SN: 154011)

BH ID	Site	Date	Time	Barometric Pressure	Line Test	Flo	w Rate (ltr/h	nr)	Steady	Peak	Steady	Peak	Minimum	Maximum	со	H ₂ S	Steady CH4	Peak CH4	Comments
	Site	Date	Time	(mb)	OK?	Initial	Duration	Steady	CH ₄ (% v/v)	CH ₄ (% v/v)	CO₂(%v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	O ₂ (% v/v)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	Committee
ВН А	КМА	17/05/17	12:05	1013	Y	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	20.7	20.7	<1	<1	3.2	-	
вн в	KMA	17/05/17	12:00	1014	Y	<0.1	-	<0.1	<0.1	<0.1	1.5	1.5	18.7	18.7	<1	<1	5.1	-	
вн с	KMA	17/05/17	12:10	1013	Y	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	<1	<1	1.9	-	
BH D	KMA	17/05/17	12:15	1013	Y	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	<1	<1	2.1	-	
ВН Е	KMA	17/05/17	12:20	1013	Y	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	<1	<1	584.0	2484.0	Drop to steady 584 ppm after 2 mins - no bung
ВН А	KMA	18/05/17	08:35	1009	Y	<0.1	-	<0.1	<0.1	<0.1	2.8	3.2	17.8	17.9	<1	<1	8.8	14.3	17.1 initial, 3.5 ppm steady after 30 secs
вн в	KMA	18/05/17	08:40	1009	Y	<0.1	-	<0.1	<0.1	<0.1	6.9	6.9	13.9	14.0	<1	<1	22.7	-	
вн с	KMA	18/05/17	08:30	1009	Y	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.6	<1	<1	3.5	17.1	17.1 initial, 3.5 ppm steady after 30 secs
BH D	KMA	18/05/17	08:50	1008	Y	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	<1	<1	32.8	-	
BH E	KMA	18/05/17	08:45	1008	Y	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	20.1	20.1	<1	<1	2861.0	5000.0	Peak at 0.5% v/v with steady readings at about 0.2% v/v

KEY: <0.1 = Below instrument limit of detection, NM = Not Measured, N/A = Not Applicable, %v/v = Percentage volume by volume, ppmv = parts per million by volume, mb = millibar, ltr/hr = litres per hour, mbgl = metres below ground level

PROJECT ID: GGS1282

SITE: KMA

SPECIALIST: H. Rutter

EQUIPMENT: GasData GFM435 (SN: 11028) & TDL-500 (SN: 154011)

Site	Date	Barometric Pressure (mb)	Site Notes
S2 - Costa Beck	17/05/17	1013	Continuous background levels during water sampling
S3 - Auckland Beck	17/05/17	1013	Continuous background levels during water sampling
G1 - Elm Tree Farm	17/05/17	1014	Max 63.1 ppm within sampling bottle. 5.7 ppm within room. H2S smell from hose
G2 - West Farm	17/05/17	1014	Continuous background levels during water sampling
G3 - The Villa	17/05/17	1013	261 ppm within sampling bottle
G4 - Coultas Farm	17/05/17	1014	Continuous background levels during water sampling
G5 - Habton Whin	17/05/17	1013	Continuous background levels during water sampling
G6 - The Ellers	17/05/17	1014	Continuous background levels during water sampling

Headspace Methane Results

Round 25

PROJECT ID: GGS1282

SITE: KMA

SPECIALIST: H. Rutter

EQUIPMENT: GA5000 (SN: G503519) & TDL-500 (SN: 154011)

BH ID	Site	Date	Time	Barometric Pressure	Line Test	Flo	w Rate (ltr/h	nr)	Steady	Peak	Steady	Peak	Minimum	Maximum	со	H ₂ S	Steady CH4	Peak CH4	Comments
				(mb)	OK?	Initial	Duration	Steady	CH ₄ (% v/v)	CH ₄ (% v/v)	CO ₂ (% v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	O ₂ (% v/v)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	
ВН А	KMA	15/06/17	10:44	1005	Y	<0.1	-	<0.1	<0.1	<0.1	6.4	6.4	4.4	4.4	<1	1	1.8	-	
вн в	KMA	15/06/17	10:30	1005	Y	<0.1	-	<0.1	<0.1	<0.1	7.1	7.1	1.2	1.2	<1	<1	32.4	35.4	
вн с	КМА	15/06/17	10:37	1005	Y	<0.1	-	<0.1	<0.1	<0.1	2.9	2.9	12.2	12.2	<1	1	19.8	42.8	
BH D	KMA	15/06/17	10:54	1005	Υ	<0.1	-	<0.1	<0.1	<0.1	20.2	20.2	20.2	20.2	<1	<1	1.8	19.1	
BH E	KMA	15/06/17	10:49	1005	Υ	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	<1	1	338.0	10000.0	

KEY: <0.1 = Below instrument limit of detection, NM = Not Measured, N/A = Not Applicable, %v/v = Percentage volume by volume, ppmv = parts per million by volume, mb = millibar, ltr/hr = litres per hour, mbgl = metres below ground level

PROJECT ID: GGS1282

SITE: KMA

SPECIALIST: H. Rutter

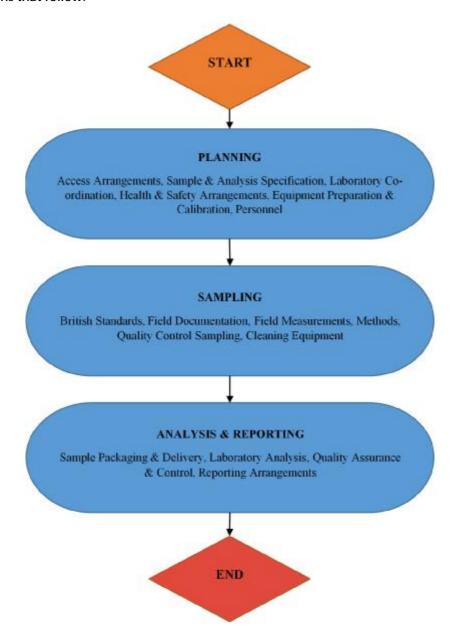
EQUIPMENT: TDL-500 (SN: 154011)

Site	Date	Barometric Pressure (mb)	Site Notes
S2 - Costa Beck	14/06/17	1016	Continuous background levels during water sampling
S3 - Auckland Beck	14/06/17	1016	Continuous background levels during water sampling
G1 - Elm Tree Farm	14/06/17	1014	Max 30.1 ppm within sampling bottle. 4.7 ppm within room. H2S smell from hose
G2 - West Farm	14/06/17	1015	Continuous background levels during water sampling
G3 - The Villa	14/06/17	1016	20.9 ppm within sampling bottle
G4 - Coultas Farm	14/06/17	1014	Continuous background levels during water sampling
G5 - Habton Whin	14/06/17	1016	Continuous background levels during water sampling
G6 - The Ellers	14/06/17	1014	Continuous background levels during water sampling

OPERATING PROCEDURE OP-EN-07

Surface Water and Groundwater Sampling

_	Issue Number	Description / Comments	Date	Reviewed By	Authorised By
Issued	01	Created as working document	15/02/2017	P. Ham	J. Dewar
Reviewed					
Revie					


Page 1 of 9 Issue 01

Introduction

This document presents the procedure for the collection, analysis and reporting of surface water and groundwater samples, as required to support Third Energy's operations in North Yorkshire.

The procedure for water sampling is summarised in the following process diagram and described in the sections that follow.

Page 2 of 9 Issue 01

Planning

Access Arrangements:

Access arrangements are agreed prior to sampling.

Sample & Analysis Specification:

The specification for water sampling and analysis is defined prior to sampling. This is based on the requirements set out in the relevant environmental permits but may also include additional requirements as defined by Third Energy.

Laboratory Co-ordination:

The sample & analysis specification is discussed with the laboratory to confirm that the specification can be delivered and any special arrangements for sample collection and storage, e.g. filtration, preservation. The laboratory will then issue the required sample containers and confirm the requirements for delivery. Sample containers are labelled prior to sampling.

Health & Safety Arrangements:

A risk assessment and method statement (RAMS) is prepared, submitted and agreed prior to sampling.

Equipment Preparation & Calibration:

The equipment required for water sampling is presented as a checklist in Appendix A. The checklist is used in the preparation for sampling. All equipment is cleaned and, where possible, calibrated in the office prior to sampling.

All equipment is regularly maintained and calibrated in accordance with the manufacturer's quidance.

Personnel & Qualifications:

Suitably qualified and experienced personnel are used to carry out sampling.

Sampling

Standards:

Sampling is carried out with reference to BS ISO 5667 (Water Quality Sampling).

Field Documentation & Measurements:

Site location plans showing the location of sampling points and a copy of sampling protocols, and used in the field.

All observations made during sampling are recorded in field notebooks and individual survey sheets for each of the sample locations. These are reviewed after sampling and filed electronically.

Page 3 of 9 Issue 01

Field Measurements:

A list of the field measurements taken during sampling is provided in Appendix B.

Methods:

Hygiene and working area:

Hygiene is essential to minimise the potential for sample contamination. Equipment is cleaned in the office using sanitising wipes or fluids prior to sampling and cleaned between each sampling location. Nitrile gloves are worn by personnel carrying out sampling and changed as required and between each sampling location as a minimum.

Working areas are established on flat areas (wherever practically possible) and clean plastic sheeting used to prepare a clean area where sampling equipment can be set up and stored during sampling.

Obtaining surface water samples:

Surface water samples are collected using a telescopic sampling pole, as follows:

- 1) The beaker at the head of the sampling pole is detached and cleaned using sanitising wipes or fluids. The beaker is then rinsed with distilled water and reattached to the pole.
- 2) The sample pole is extended to the required length and used to retrieve a water sample. Where possible, samples are collected away from the bank. In the case of rivers/streams, samples are collected where water can be observed to flow; ideally midstream. Water samples are not collected when there is insufficient depth of water to submerge the beaker.
- 3) Sufficient sample is obtained to fill the required sample containers, following the method in Section 4.4.4. A sample of water is used for field chemistry analysis using an In-Situ Smartroll multi parameter device, and field measurements recorded.
- 4) Any excess water is discharged downstream on the sampling point.

Obtaining groundwater samples:

A number of methods are used to obtain groundwater samples.

Wellsite Monitoring Boreholes

Low volume pneumatic bladder pumps are installed in purpose constructed monitoring boreholes that are present at a number of Third Energy's wellsites. The pumps are suspended from specially designed well plugs that form a seal at the top of the borehole casing and incorporate a gas sampling valve that connects to portable gas detection equipment.

Water samples are obtained from the wellsite boreholes as follows:

- 1) The steel well head plate is unbolted and removed.
- 2) Gas concentrations are measured and recorded (where required).

Page 4 of 9 Issue 01

Surface Water and Groundwater Sampling

- 3) The well plug is removed from the borehole, allowing access to an airline and water discharge line connected to the bladder pump inside the borehole. Groundwater levels are measured using a hand held dip meter and recorded, together with the date and time the dip measurement is taken. The probe of the dip tape is cleaned prior to dipping each borehole, using sanitising wipes or fluids.
- 4) The compressor to operate the bladder pump is set up and connected to the battery power supply. The compressor is connected to the airline of the bladder pump using the fittings supplied. This requires the removal of the moisture cap that is fitted to the top of the airline inside the borehole. The moisture cap is stored away during sampling.
- 5) The plastic discharge line from the bladder pump is then connected to a flow through cell and then to a bucket used to collect the discharged water. A dedicated water discharge line is used at surface to avoid cross-contamination when sampling. Water collecting in the bucket is emptied into the drainage system at the wellsite.
- 6) The Smartroll multiparameter device is then installed in the flow through cell and connected to an Android device to measure and record field chemistry data. The Smartroll is calibrated in the office prior to use and, where necessary can also be calibrated in the field between sampling locations.
- 7) The compressor is switched on and water is then purged from the borehole at a rate less than ~1 litre/minute. The pressure settings on the compressor can be adjusted to achieve the required flow rate.
- 8) Water chemistry is monitored and recorded through Vu-situ software, which includes a 'stability test' to determine the stability of the water passing through the through cell. Once all the parameters stabilise, purging continues for a minimum of three logging intervals before water samples are collected. This generally takes in the region of 30 45 minutes per borehole.
- 9) Water sample containers are then filled following the method in Section 4.4.4.
- 10) On completion of the sampling, the compressor is switched off. Once the pressure in the airline reduces to zero, the equipment can be disconnected and packed away/moved to the next borehole. The moisture cap is replaced on the airline of the bladder pump and the well plug reinstalled in the borehole. The steel well head plate can then be bolted back in place.

Offsite Boreholes

The construction of the offsite boreholes is variable. The following sampling methods are therefore employed:

- Where boreholes contain pumps or are artesian, water samples are collected using existing
 pumping equipment and sample taps within the distribution network. Sample taps are
 cleaned using sanitising wipes or fluids (where practicably possible) and water purged for at
 least five minutes before water samples are collected.
- Where boreholes do not contain pumps, water samples are collected using disposable single valve bailers lowered into the borehole on Kevlar rope or (in the case of some very shallow supplies) a telescopic sampling pole.

Page 5 of 9 Issue 01

Surface Water and Groundwater Sampling

In both cases, sufficient sample is obtained to fill the required sample containers, following the method in Section 4.4.4. A sample of water is used for field chemistry analysis using an In-Situ Smartroll multi parameter device, and field measurements recorded. Excess water is discharged to discharged to surface.

Filling sample containers:

Sample containers are filled as follows:

- 1) Sample containers are placed in a drip tray, on a flat platform.
- 2) Taking each container in turn, the cap is unscrewed and the container slowly filled with sample water. Containers that do not contain preservatives or are filled with filtered water are rinsed with sample water first. Care is taken to ensure that any pipework or fittings do not come into contact with the container during the rinsing or filling process.
- 3) The rate of filling is controlled to less than ~1 litre per minute to is controlled to minimise aeration and losing any sample preservatives. Sample containers should be filled to the brim, leaving no airspace.
- 4) A small amount of water is placed inside the cap of the container, which is then screwed back in place. Plastic bottles are squeezed gently as the cap is screwed tight to ensure there is no airspace.
- 5) Some water samples require filtering prior to filling containers. In this case, water samples are collected in a clean plastic jug and containers filled with water that is passed through a syringe fitted with a 0.45µm filter. The jug is cleaned using sanitising wipes and rinsed with distilled water between sampling locations.
- 6) Small glass vials (used for volatiles) are filled at a reduced rate (~0.5I/minute) and should be stored upside down to minimise the loss of volatiles from the water.

Quality control sampling:

At least one full duplicate and one blank is collected for analysis.

Cleaning equipment:

Equipment is sanitised and rinsed with distilled water prior to and on completion of sampling at each location.

Page 6 of 9 Issue 01

Analysis & Reporting

Sample Packaging & Delivery:

The outside of each sample container is cleaned with paper towels. The details on each sample label are checked to ensure they have the correct details including Sample ID, location, date and time.

Samples are packaged in a cool box with appropriate protection to prevent damage and then couriered to the laboratory within 24hours of sample collection. A chain of custody is completed and included within the consignment.

Laboratory Analysis:

Analysis of water samples is carried out in a UKAS accredited laboratory, where available.

Quality Assurance & Control:

Sample analysis results are reviewed for consistency and compared to blank and duplicate samples. Anomalies are checked with the laboratory to determine if re-analysis of samples is required.

Reporting Arrangements:

Sample analysis results are tabulated, graphed and reported as required.

Page 7 of 9 Issue 01

Appendix A Equipment Checklist

Page 8 of 9 Issue 01

Appendix BField Measurements

Date/Time	
Weather Conditions	
General observations, e.g. condition of	
borehole	
Water levels	
Water chemistry parameters	
Water appearance	

Page 9 of 9 Issue 01

Third Energy UK Gas Ltd

OPERATING PROCEDURE OP-EN-08

Surface Water Management Procedure

_	Issue Number	Description / Comments	Date	Reviewed By	Authorised By
Issued	01	Created as working document	20/09/2017	S.Smart	J.Dewar
Reviewed					
Revie					

Page | 1 Issue 01

1 INTRODUCTION

The purpose of this document is to outline the surface water management arrangements to be implemented at the Kirby Misperton A (KMA) wellsite during well operations and production operations.

This Surface Water Management Plan is applicable to the KMA wellsite and all production and well operations permitted therein, in accordance with planning consent. It is applicable to Third Energy UK Gas Ltd, its contractors and subcontractors.

Page | 2 Issue 01

2 SITE LOCATION

Kirby Misperton A Wellsite Off Habton Road Kirby Misperton North Yorkshire YO17 6XS England

National Grid Ref: SE 771789

Site Area: 1.465 ha

The KMA wellsite consists of two independent sites, constructed immediately adjacent to each other and share the same access. The Kirby Misperton 1 wellsite was constructed in the mid 1984 to accommodate the drilling of a petroleum exploratory borehole, KM1. The Kirby Misperton 1 wellsite was extended in 2013 to accommodate the drilling of the KM8 petroleum production borehole. Collectively, the well-sites are referred to as Kirby Misperton A wellsite (KMA).

Page | 3 Issue 01

3 OBJECTIVE OF THE SURFACE WATER MANAGEMENT PROCEDURE

The primary objective of this Surface Water Management Procedure is to prevent significant impacts from all liquids and dissolved solids, whose emission to water or land could cause pollution of local amenities, affect human health and the environment. This objective will be achieved through:

- Identification of potential pollution generating sources and activities;
- Implementation of pollution mitigation measures;
- Implementation of a pollution monitoring scheme;
- Procedures for the analysis and reporting of pollution incidents; and
- Training of operational personnel on pollution prevention techniques and their roles and responsibilities.

3.1 Sources of Potential Liquid Pollutants

The following sources of liquids whose emission to water or land could cause pollution have been identified within the production and well operations to be conducted at the KMA wellsite:

- Produced water;
- Fuel used for power generation;
- Oils, lubricants and grease used for maintenance of equipment; and
- Site sewerage (temporary or permanent) and foul water.

3.2 Distribution of the Surface Water Management Procedure

Third Energy will communicate the Surface Water Management Procedure to the KMA wellsite. The Surface Water Management Procedure may be issued as an electronic version or paper copy. The procedure will be made available for review by regulatory bodies.

The Surface Water Management Procedure will be communicated to site personnel and a copy will be made available on site to all personnel during operations.

3.3 Alterations to the Surface Water Management Procedure

Any required changes or deviations from this Surface Water Management Procedure are to be referred to Third Energy in the first instance. No changes to, or deviations from, this Surface Water Management Procedure are to be implemented until the required changes or deviations have been reviewed and approved by Third Energy.

Page | 4 Issue 01

4 REDUCING CONTACT WITH POLLUTING MATERIALS

4.1 Use of Alternative Products

The use of liquid products, whose emission to water or land could cause pollution will be substituted where possible, for alternative products which are deemed safe and effective.

If products cannot be substituted, these products will be identified prior to mobilisation and arrangements will be established to ensure that where practicable, products are contained to prevent accidental release during transportation, storage, handling, use and disposal.

To ensure that the risk of liquid products, whose emission to water or land could cause pollution is minimised, quantities of products stored onsite are to be kept to a minimum where possible.

4.2 Identification of Potential Liquid Emitting Products and Equipment

An inventory of products and equipment whose emission of liquid products to water or land could cause pollution, including description and quantities will be undertaken by Third Energy and an inventory of chemicals shall be held onsite. Where well operations are to take place service providers are required to provide an inventory of chemicals to Third Energy.

During well operations the Wellsite Supervisor will collate service provider inventories and produce a consolidated inventory ensuring that it is updated on receipt/disposal of products and equipment. A copy of the consolidated inventory is to be held within the KMA Wellsite Supervisor's office and be available for review by regulatory bodies.

4.3 Storage Arrangements

Where possible, products whose emission to water or land could cause pollution shall be stored inside buildings/containers or secondary containment systems to reduce potential emissions.

Storage areas will be clearly marked and site personnel informed of specific storage requirements for individual areas when receiving site induction.

Where practicable, storage areas are to be protected from the effects of weather and ingress of water to prevent degradation of containers/sacks etc.

Third Energy is to conduct regular checks of storage areas and products for potential leaks or damage to containers/sacks etc. Records of checks are to be held either at the KMA wellsite or Knapton Generating Station (KGS) and be available for review by regulatory bodies.

4.4 Management of Storage Areas

During well operations the Wellsite Supervisor is responsible for ensuring that storage areas are kept clean, tidy, monitored regularly for signs of leaks or damage to containers or collection of surface water. Containers/sacks identified as leaking or damaged, are to be segregated and provisions implemented for the containment, immediate use or offsite disposal by an Environment Agency licensed waste carrier to an Environment Agency licensed waste facility.

Storage areas are to be secure and protected to ensure that damage from collision and extremes of weather does not occur.

4.5 Waste Storage

Waste products will be segregated and stored in a designated area onsite prior to offsite disposal by an Environment Agency licensed waste carrier to an Environment Agency licensed waste facility. Where practicable, enclosed skips will be used for storage of waste products. Where the use of enclosed skips is not practicable, these skips shall be covered to reduce the potential for ingress of precipitation.

Page | 5 Issue 01

Skips identified as damaged or with significantly reduced integrity are to be withdrawn from service and arrangements made for a replacement skip.

4.6 Storage of Oils and Chemicals

To reduce the likelihood of liquid emissions occurring, consideration is to be taken of the hazards associated with oils and chemicals, where they are stored and correct handling procedures.

All oils and chemicals introduced to the wellsite require a Control of Substances Hazardous to Health (COSHH) Assessment which addresses the health risks to those using the chemical in the way it is utilised in the particular operation. The COSHH Assessment is to be provided by the contractor responsible for the introduction of the oils/chemicals and a copy is to be held by the contractor and Third Energy. The main sources of input to the COSHH Assessment is the Material Safety Data Sheet (MSDS) provided under the Registration, Evaluation, Authorisation and Restriction of Chemicals Regulation (REACH), and the method statement or operational procedure applicable.

Oils and fuels are to be stored in accordance with the Oil Storage (England and Wales) Regulations 2001.

Oils and chemicals are to be stored in suitable, labelled containers in safe storage areas identified within the Surface Water Risk Assessment. Storage areas and containers are to be inspected daily by Third Energy to ensure they are in good condition and free from cracks and leaks. Materials are to be secured on site to reduce the risk of accidental damage, vandalism, theft or arson.

As spillages and leaks cannot be completely avoided, secondary containment, such as bunded wall/tanks or bunded pallets are to be used. This is good practice and will provide time to either correct or minimise the problem before help arrives.

Secondary containment is to provide a minimum of 110% of the tank/container capacity for example, a 1000 litre tank must have a secondary containment system that will hold a minimum of 1,100 litres.

Secondary containment that contains multiple fixed tanks, mobile bowsers or IBCs, must have a capacity that is equal to whichever is the greater of these 2 measurements:

- One quarter of the combined capacity of all the containers; or
- 110% of the capacity of the largest container.

4.7 Equipment Storage

Equipment will be stored in a designated area onsite identified by the Wellsite Supervisor. Where there is the potential for leaks/spillages to occur from equipment within the designated storage area, secondary containment, such as bunded pallets are to be used to ensure that the protection of the wellsite surface and local environment is maintained.

Page | 6 Issue 01

5 SURFACE RUN-OFF WATER

5.1 Wellsite Drainage

Both the Kirby Misperton 1 wellsite and the Kirby Misperton 1 extension (collectively known as KMA wellsite) have independent surface water drainage systems. Both sites have an impermeable membrane separating site activities from the underlying subsoils. Before operations commence, the extensions drain line isolation valve will be closed and locked off, and the interceptor (separator) valve on the KM1 original site will be closed and locked to remove the potential pathway for liquids into the drainage ditch to the west of the site.

The Kirby Misperton 1 wellsite is clay lined with a drainage channel constructed along the perimeter of the wellsite, which captures surface run-off water from the adjacent land and diverts it around the perimeter of the site to discharge points in Sugar Hill Drain. The discharge points are located on the western boundary of the KMA wellsite, one immediately adjacent to the wellsite access gates and the second adjacent to the interceptor, as indicated in drawing Figure 1 KMA Wellsite Drainage (Surface Water Management) within Appendix 1 of this procedure.

The Kirby Misperton 1 extension is lined using HDPE and has a perimeter containment system. The purpose of the impermeable membrane is to capture any surface run off liquids such as rainwater, but also captures any spillages incurred onsite and contains them within the site perimeter ditches, ensuring environmental harm is averted and any spillages can be rectified onsite.

The Kirby Misperton 1 extension perimeter containment system is currently connected to an interceptor, located within the Kirby Misperton 1 wellsite. During periods of activity, such as drilling or intervention activities, the flow line connecting the perimeter containment system within the interceptor is isolated and the surface run-off water collected for reuse within the operation or removed from site via road tanker to an Environment Agency approved waste water treatment works for subsequent treatment and recycling or disposal.

During normal production operations the interceptor will be open allowing the egress of clean surface water from the wellsite. As KM1 and KM1 extension have independent surface water drainage systems the KM1 drainage system can remain open whilst well operations are being undertaken on KM1 extension and vice versa, should Third Energy require this. The surface water drainage system must be locked off from the interceptor if well operations are taking place on its corresponding site to prevent the discharge of pollution.

5.2 Well Cellars

Well cellars have been constructed within the KMA wellsite form a containment area from which the wells were drilled, whilst also housing the wellheads. There is the potential for surface run-off water to collect within the well cellars and Third Energy is to ensure that the surface run-off water collected within the well cellars is not discharged to surface.

Surface run-off water collected within the well cellars is to be treated onsite through the three phase separator or removed offsite via a licenced waste carrier to an Environment Agency permitted licenced waste facility for treatment/disposal.

Page | 7 Issue 01

6 Monitoring Recording and Emergency Response

6.1 Daily Environmental Monitoring and Recording

Third Energy is to undertake daily environmental monitoring and a record is to be held onsite. Environmental monitoring is to include checks on the open containment ditch, wellsite equipment, secondary containment systems and hazardous materials for visible signs of leaks, damage or contamination. A monitoring check sheet has been provided within Appendix 2 of this document and shall be used as a record of compliance.

6.2 Emergency Response Procedures

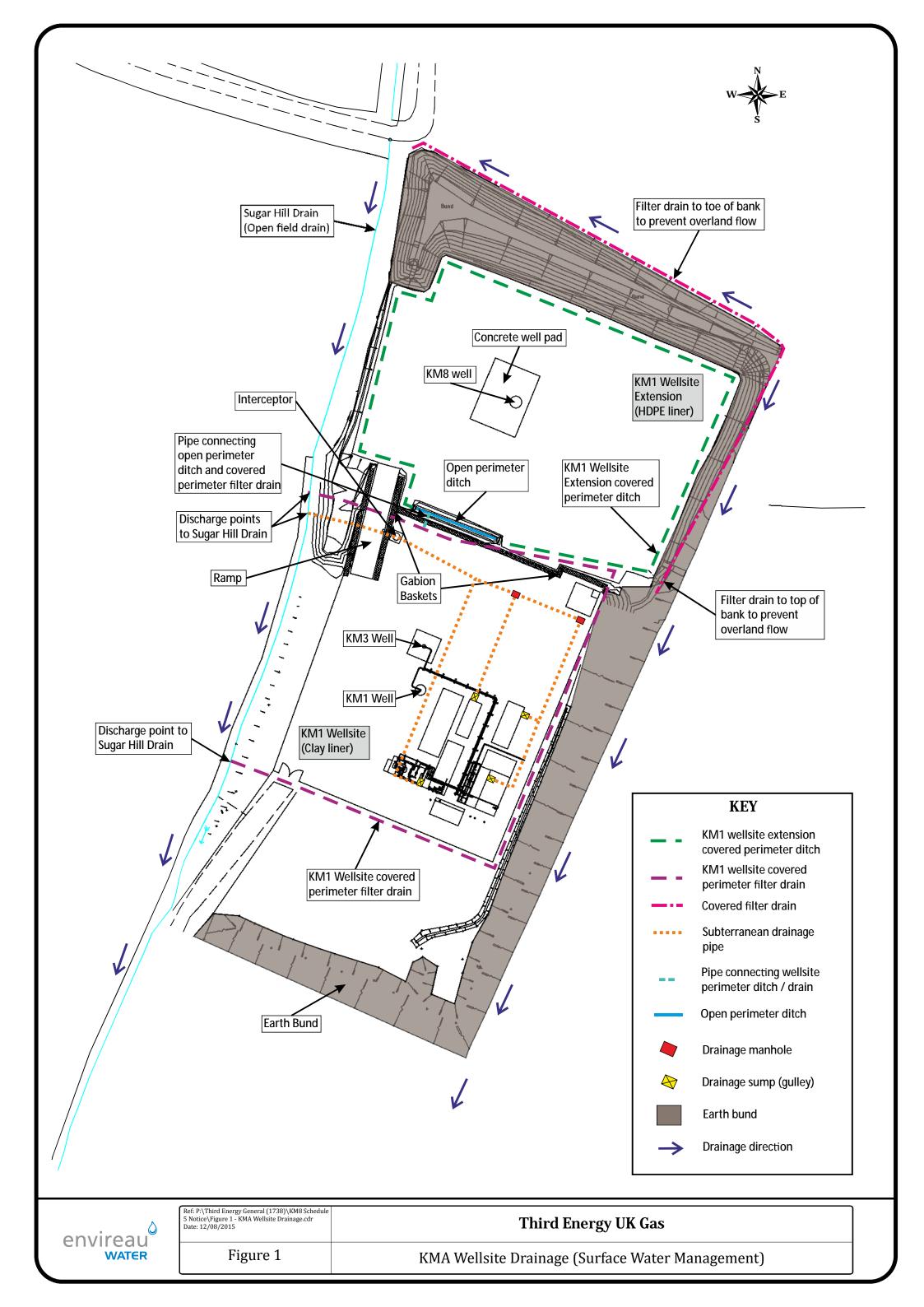
6.2.1 Emergency Action Plan

In the event of a spillage, the Wellsite Supervisor is to comply with the Third Energy emergency procedures ensuring, if safe to do so, immediate action is undertaken to isolate, contain and prevent the spillage from entering any drains or watercourses. The spillage is not to be hosed down or detergents used to remediate the spillage. If oils or chemicals soak into the ground, remediation is to be undertaken and the contaminated soil is to be removed, segregated and disposed of to a regulated facility as hazardous waste.

6.2.2 Spillage Response Equipment

Spillage response equipment will be available at the KMA wellsite. During site inductions, personnel will be shown the location of spillage equipment and how to use the equipment correctly and how to store and use materials safely. Spillage equipment is to be labelled and checked on a regular basis by Third Energy and unserviceable items quarantined and replaced.

Page | 8 Issue 01


APPENDIX 1 – KMA WELLSITE DRAINAGE

Page | 9 Issue 01

Page Left Blank Intentionally

Page | 10 Issue 01

APPENDIX 2 – MONITORING CHECKLIST

Page | 11 Issue 01

Page Left Blank Intentionally

Page | 12 Issue 01

	Surface Water Management Checklist – KMA Wellsite								
No.	Interceptor:								
1.1	Locked off to prevent unauthorised discharge:	Yes			No				
Comm	nent:								
No.	Perimeter Containment Ditch:								
2.1	Signs of visible damage / leaks:	Yes			No				
Comm	nent:								
No.	Perimeter Containment Ditch:	1							
3.1	Water level recorded (% of ditch capacity):	0 🗆	25 🗆	50 □	75 🗆	100 🗆			
Comm	nent:								
No.	Perimeter Containment Ditch:								
4.1	Signs of visible oil / grease:	Yes			No				
Comm	nent:								
No.	Perimeter Containment Ditch:								
5.1	Signs of visible contamination:	Yes			No				
Comm	nent:								

Page | 13 Issue 01

No.	Perimeter Containr	nent Ditch:					
3.1	Water transparency	(% with 100% being clear):	0 🗆	25 🗆	50 □	75 🗆	100 🗆
Comm	ent:		1				
No.	Perimeter Containr	nent Ditch:					
7.1		s / mice / voles etc.):	Yes			No	
Comm		· , , ,					
No.	Storage Tanks / Cor	ntainers / Skips / hoses / union	s / flange	es:			
7.1	Signs of visible dam	age / leaks:	Yes			No	
Comm	ent:			_		_	
Date: _		Time:	_				
Third E	nergy Personnel: _						

Page | 14 Issue 01

APPENDIX 3 – NOISE MONITORING PLAN

*** Page Left Blank Intentionally ***

KM8 Well HF Development and Production

Noise Management and Monitoring Plan

Report ref.

ARC6759/14327/Rev 2

Issued to

Third Energy Gas (UK) Limited

Prepared by

Andrew Corkill MSc, MIOA Director

Version:	Remarks:	Date:
First Issue	For client comment	13 May 2015
Rev 1	For submission to NYCC	13 May 2015
Rev 2	For client comment following revisions required in Condition 33 of Decision Notice 27 May 2016	19 July 2016

SECTION	IITLE	PAGE
1.	Introduction	1
2	PREDICTED MOISE I EVELS	2

2.	PREDICTED NOISE LEVELS	.2
3.	NOISE MONITORING LOCATIONS	.3
4.	NOISE MONITORING PROCEDURE	.4
_	Depositivo	_
5.	REPORTING	. 0
	_	
5.1	FORMAL REPORTS OF NOISE MONITORING.	. 5
5.1 5.2	FORMAL REPORTS OF NOISE MONITORING	
***		. 5

APPENDIX A: Noise Monitoring Locations

1. INTRODUCTION

Third Energy Gas (UK) Ltd has planning consent (Application NY/2015/0233/ENV; Decision No. C3/15/00971/CPO) to hydraulically stimulate and test the various geological formations previously identified during the 2013 KM8 drilling operation, followed by the production of gas from one or more of these formations into the existing production facilities, followed by wellsite restoration.

Spectrum Acoustic Consultants has been instructed to revise the Noise Management and Monitoring Plan¹ (NMMP) submitted with the planning application, in line with the requirement of Condition 33 of the planning permission.

This NMMP details the arrangements to be made for both monitoring noise and managing the actions required in the event that monitoring shows high noise levels arising. It also deals with actions required when complaints on noise are received.

The original plan was prepared in response to a formal request made in writing by Ryedale District Council² and also following a subsequent clarification meeting³ with them.

Condition 33 states:

A revised Noise Management and Monitoring Plan (including details of exact locations and times for noise monitoring and starting from the commencement of operations hereby permitted) shall be submitted, incorporating revised trigger levels based around the proposed noise condition limits, and providing for either some on site attended measurements or remote access to audio files for on-site reporting of noise levels and actions proposed regarding breaches of trigger levels to the County Planning Authority. Such a Plan shall also incorporate provisions for events that noise monitoring indicates that noise levels have exceeded the maximum permitted noise levels. Such a plan shall be submitted for approval in writing by the County Planning Authority, prior to commencement of the development. Thereafter, monitoring shall be carried out in accordance with the approved Noise Management and Monitoring Plan and the results of the each noise monitoring exercise shall be submitted to the County Planning Authority within seven (7) days of the monitoring being carried out.

The noise levels at the nearest sensitive receptors shall be as stated in the table below:

Pre Stimulation Workover							
Noise Sensitive Receptor	Noise Limit Day 07:00-19:00 dB(A) L _{Aeq,1hr}	Noise Limit Evening and Night 19:00-07:00 dB(A) L _{Aeq,1hr}					
Alma House	41	35					
Kirby O Carr	55	46					
5 Shire Grove	47	36					

¹ KM 8 Well HF Development and Production Noise Management and Monitoring Plan. Ref ARC6672/14327, 13 May 2015

² Scoping opinion from Mr Steve Richmond of Ryedale District Council, Health and Environment Manager, 25th February 2015

³ Meeting 5th March 2015 with Mr Steve Richmond

Noise Sensitive Receptor	Noise Limit Day	Noise Limit Evening and Night
,	07:00-19:00 dB(A) L _{Aeq,1hr}	19:00-07:00 dB(A) L _{Aeq,1hr}
Alma House	55	N/A
Kirby O Carr	60	N/A
5 Shire Grove	50	N/A
Hydraulic Fracture Stimulati	 on/Well Test	me
Noise Sensitive Receptor	Noise Limit Day	Noise Limit Evening and Night
Alma Hausa	07:00-19:00 dB(A) L _{Aeq,1hr}	19:00-07:00 dB(A) L _{Aeq,1hr}
Alma House Kirby O Carr	N/A N/A	35 42
5 Shire Grove	N/A N/A	35
5 Shire Grove	IV/A	35
Production		
Noise Sensitive Receptor	Noise Limit Day	Noise Limit Evening and Night
	07:00-19:00 dB(A) LAeq,1hr	19:00-07:00 dB(A) LAeq,1hr
Alma House	45	35
Kirby O Carr	55	35
5 Shire Grove	50	35
Restoration		
Noise Sensitive Receptor	Noise Limit Day	Noise Limit Evening and Night
	07:00-19:00 dB(A) L _{Aeq,1hr}	19:00-07:00 dB(A) LAeq,1hr
Alma House	55	N/A
Kirby O Carr	55	N/A
5 Shire Grove	55	N/A

2. PREDICTED NOISE LEVELS

The predicted noise levels and the times in which they occur are shown in table 1.

	Predicted level, LAeq,1hr			
Development Phase	Alma House	Kirby O Carr	5 Shire Grove	
Pre-stimulation workover, with noise barrier, day and night	34	46	31	
HF and well testing - HF activity, with noise barrier, day only	54	59	48	
HF and well testing - General activity, with noise barrier, at night	35	42	28	
Production	22	25	9	
Restoration, noise barrier removed, day only	52 (16hr)	<52	<52	

Table 1: Summary of Predicted Noise Levels

During pre-stimulation workover the noise levels with the noise barrier in place will, for the substantial majority of nearby receptors, typically be in the range $L_{Aeq,1hr}$ 31-34 dB. Kirby O Carr however is unavoidably in line with the opening in the noise barrier, and therefore noise levels are higher here at 46dB. It is however expected that final detailing of the noise barrier should be able to slightly reduce the noise to this single location by a further 1-2 dB. The priority is to monitor at Kirby O Carr, during the late evening or early night during this phase.

During the HF and well testing phase the daytime noise levels with the noise barrier will generally be in the range $L_{Aeq, 1hr}$ 48-54 dB at all receptors. Again the levels at Kirby O Carr are slightly higher at 59 dB.

At night during the HF and well testing phase, minor activities and analysis continues, and predicted levels with the noise barrier are generally $L_{Aeq, 1hr}$ 28-35 dB. At Kirby O Carr however, the level is 42 dB.

The longer term production phase noise levels range over $L_{Aeq,1hr}$ 9-25 dB. These levels are very low and insignificant in their effect on the community. Furthermore measurements made at the monitoring locations would be unable to detect levels this low.

During restoration the $L_{Aeq,16hr}$ covering the daytime period, at the nearest property, Alma House, is 52 dB. At other receptors, the levels will be lower.

3. Noise monitoring locations

Although predicted noise levels are generally well below levels that are significant, a precautionary approach is proposed to be adopted whereby substantial and detailed noise monitoring will be undertaken. Noise monitoring is proposed to be undertaken at two locations. These are:

- <u>Kirby O Carr 320m south of KM8 well</u>. The measurement position is in the front garden of the bungalow, and does not benefit from screening by the temporary noise barrier, as it is opposite the gap in the barrier required for access to and from the wellsite.
- <u>5 Shire Grove 820m NE of KM8 well.</u> This is representative of a large number of properties within Kirby Misperton village, both closer and further away. It is a position where complaints have been received in the past. It is a 3 storey residential property with bedrooms at the third level.

The locations of these noise monitoring positions are shown in Appendix A along with photos of instrumentation in position during the baseline noise monitoring already undertaken.

It is considered that monitoring noise at these two locations will adequately capture the noise generated and affecting all three assessment positions. It is proposed that if the limits imposed at Kirby O Carr and 5 Shire Grove are achieved, then the limits at Alma House will also be achieved. Monitoring at the third location at which background noise monitoring was taken (Alma House) is not proposed as at this position, the temporary noise barrier will be especially effective in reducing noise to much lower levels than at the very much less screened Kirby O Carr. Both are single properties rather than representing a larger group of houses, such as 5 Shire Grove.

4. Noise monitoring procedure

It is proposed that monitoring will be carried out during the phases and times shown in table 2. Unmanned monitoring is proposed for all but one phase of the development. The noise generated during normal production will not be able to be detected at the monitoring locations as the levels will be so low. For this phase it is proposed to obtain measurements at the site boundary and extrapolate these results to the noise monitoring positions. This will be undertaken using the established noise propagation model for the project.

Development Phase	Time when monitored
Pre-stimulation workover	Unmanned monitoring day and night
HF and well testing	Unmanned monitoring day and night
Normal production	Attended measurement on site and extrapolation in noise model, day only
Restoration	Unmanned monitoring day only

Table 2: Development phases and times to be monitored

Noise monitoring will be carried out simultaneously at two locations using unattended acoustic logging equipment. This will obtain and then transfer across the mobile telephone network, measurement data and very short acoustic recordings (subject to adequate mobile phone signal). Results will include $L_{A10,1hr}$, $L_{A90,1hr}$ and $L_{Aeq,1hr}$ and also 1/3 octave band data.

At the nearest of the monitoring locations (Kirby O Carr), a further noise monitor and microphone will record continuous sound as a permanent record against which subsequent listening can enable the source of high noise to be formally confirmed. This continuous acoustic recording will generate files too large to be transferred across the mobile telephone network, so will be downloaded during weekly visits.

A wind monitoring station will be located at Kirby O Carr to establish an historic wind direction data record for the complete monitoring period.

Monitor results and short sound recordings will be downloaded remotely being transferred across the mobile telephone network and reviewed 4 times in the first fully operational 24 hour period of each of the critical first two phases (Pre Stimulation Workover and HF/Well testing). If the levels are compliant with planning consent limits, then these will be downloaded thereafter on a daily basis for the following 3 days, and then if at least 5dB within the planning limits and if levels become stable and levels are not expected to change, thereafter on a weekly basis. However during each of the 5 daytime HF events; levels will be downloaded remotely and reviewed mid-way and at the end of each 5 hour stimulation. During restoration, the results will be downloaded initially on a daily basis for the first 3 days and then thereafter on a weekly basis as for the first two phases.

5. REPORTING

5.1 FORMAL REPORTS OF NOISE MONITORING

As a formal record of noise monitoring for the project, formal reports will be issued on completion of each of the phases. These will give all the results from the noise monitors and noise measurements, including post-processing to extract the levels during the day, evening and night, discounting data where the wind velocities are in excess of 5m/s and also if appropriate considering results grouped by wind direction. In addition samples of short sound recording files will be available for listening.

5.2 INTERIM RESULTS AND ACTIONS

Reporting interim results as the monitoring commences, and implementing actions in the event that limits are breached, are key elements of the NMMP, and will provide stakeholders with the confidence that limits will be complied with in accordance with permit terms and conditions.

Where interim results show levels are above the planning consent limits, and the short sample recordings show the exceedances are associated with activity on the wellsite, rather than an offsite noise such as local idling road vehicle, garden or agricultural (including milking) machinery, aircraft etc., then Third Energy will be formally notified within 3 hours of data download, of both the time and the duration of a provisional exceedance, and requested to investigate.

Third Energy shall identify the reason for the exceedance and take action to reduce the levels immediately. Where action cannot be taken immediately, then the independent noise specialist shall visit the site within 24 hours of the provisional breach notification, review the continuous acoustic recording, undertake detailed on site measurements of noise to confirm the reason for the exceedance, and make recommendations for further mitigation measures. These measures shall be advanced immediately in order to limit occurrences of further breaches. A summary report will be issued, a copy of which will be forwarded electronically to NYCC, within 24 hours of the noise specialist's site visit.

Table 3 shows three Action Levels (1, 2 and 3) and the actions to take place when these levels are breached.

	Action Level			
Action	Level 1: Consented noise limit -5dB	Level 2: Consented noise limit	Level 3: Consented noise limit +5dB	
Data downloaded and reported to Site Manager	✓	✓	✓	
Short sound recording analysis reported to Site Manager	✓	✓	✓	
Site manager to take action to reduce noise; then re-download		✓	✓	
Noise specialist visit, within 24 hrs, after site manager notification.		✓	✓	
Summary report to NYCC within 24 hours of noise visit.		✓	✓	
Cease operation			✓	

Table 3: Actions proposed to be carried out on breaching Action Levels 1, 2 and 3.

The actions proposed start (Level 1) at notifying the site manager of the noise monitor and short sound recording results. At a breach of the consented noise limit (Level 2), the site manager is required to take

ARC6759 KM8 NMP REV 2/14327 5

action immediately and then if the subsequent downloaded data still exceeds Action Level 2, the noise specialist visits within 24 hours of the original notification, downloads the continuous sound recording meter, undertakes on site noise evaluation measurements and issues a summary report to be copied to NYCC within 24 hours. In the event that Level 3 is breached, operations causing this degree of breach will cease.

In considering the duration over which an Action Level might be breached, wind direction will be a significant influencing factor, with levels being highest under downwind propagation conditions, and being typically as much as 5-15dB lower under upwind conditions. The predicted levels are given for an average of wind conditions which will be 2dB lower than the highest values likely under downwind conditions. The receptor with predicted levels closest to the consented limits is Kirby O Carr to the south of the wellsite. Downwind propagation will only arise here infrequently when there is a NW, N or NE wind.

Tables 4 and 5 show the predicted levels against the Action Levels for the wo monitoring locations.

Phase	Time	Predicted level, LAeq,1hr	Action Level, <i>L</i> _{Aeq,1hr}			
			Level 1 Consented noise limit -5dB	Level 2 (Consented noise limit)	Level 3 Consented noise limit +5dB	
Pre-stimulation workover	Night	46	41	46	51	
HF and well testing	Day	59	55	60	65	
HF and well testing	Night	42	37	42	47	
Normal production	Night	25	30	35	40	
Restoration	Day only	<52	50	55	60	

Table 4: Predicted and Action Levels 1, 2 and 3 for each phase of the development, at Kirby O Carr

Phase Time		Predicted level, LAeq,1hr	Action Level, L _{Aeq,1hr}		
			Level 1 Consented noise limit -5dB	Level 2 (Consented noise limit)	Level 3 Consented noise limit +5dB
Pre-stimulation workover	Night	31	31	36	41
HF and well testing	Day	48	45	50	55
HF and well testing	Night	28	30	35	40
Normal production	Night	9	30	35	40
Restoration	Day only	<52	50	55	60

Table 5: Predicted and Action Levels 1, 2 and 3 for each phase of the development, at 5 Shire Grove

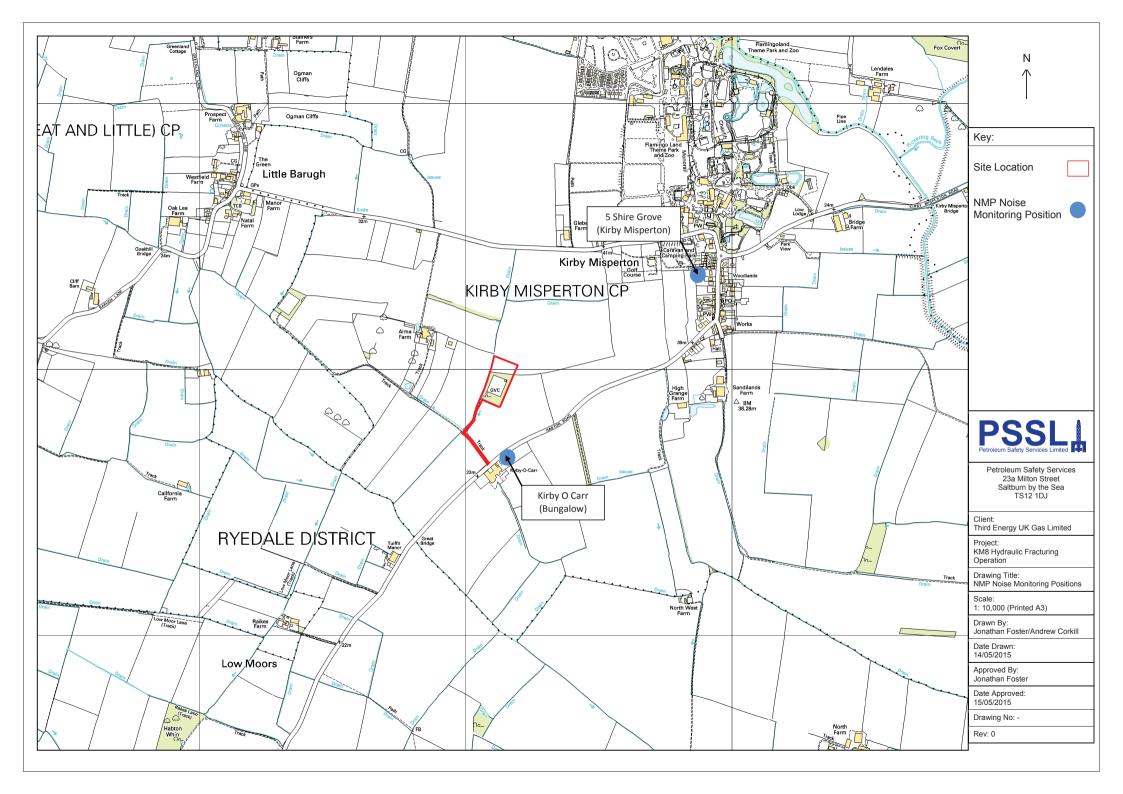
For comparison purposes, the predicted levels at Alma House are shown in table 6to be significantly below the consent noise limits, in comparison with the levels at for example Kirby O Carr, where levels are very

close. Alma House is also less critical than 5 Shire Grove, the latter which is representative of a large number of properties in the village of Kirby Misperton.

Phase	Time	Predicted level, LAeq,1hr	Consented noise limit LAeq,1hr
Pre-stimulation workover	Night	31	35
HF and well testing	Day	48	55
HF and well testing	Night	28	35
Normal production	Night	9	35
Restoration	Day only	<52	55

Table 6: Predicted and Action Levels 1, 2 and 3 for each phase of the development, at Alma House

The site manager will be responsible for coordinating the various inspection and storing of logs and reports made, and issuing these as required to NYCC or other stakeholders.


6. COMPLAINTS

In the event of complaints being received, these should be formally logged by the site manager, along with the time of the complaint and details of the description of the noise, its duration, timing and characteristics, as described by the complainant. Having received an update of the latest noise monitoring results from the noise specialist, the site manager will be in a position to establish whether any Action Levels have been breached and implement the required actions set out within this Noise Management and Monitoring Plan.

APPENDIX A

Noise Monitoring Locations

- NMP monitoring location map
- Photos showing noise and weather monitoring equipment

Noise and weather monitoring equipment to be used during the noise monitoring programme.

Noise monitoring equipment

Weather monitoring station

Head Office

Spectrum Acoustic Consultants Ltd 27-29 High Street Biggleswade Bedfordshire SG18 0JE UNITED KINGDOM

+44 (0)1767 318871

@ enquiries@spectrumacoustic.com

www.spectrumacoustic.com