METHOD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_B S_2^{2/3} V_e^{2/8}$</td>
<td>$f \left(\frac{1}{h}, \frac{1}{A_2}, \frac{1}{A_w} \right)$</td>
<td>$0.298 \frac{h^2}{L} \left(\frac{V}{T} \right)^{2.289} (h^{0.192}) K_s$</td>
<td>$1.96 \frac{V}{L_{pp}} \frac{F_{nh}^2}{\sqrt{1 - F_{nh}^2}}$</td>
<td>$2.4 \frac{V}{L_{pp}} \frac{F_{nh}^2}{\sqrt{1 - F_{nh}^2}}$</td>
</tr>
</tbody>
</table>

SHIP

Largest FISHING BOAT

CONDITION: Barrier Transit, draft = 0.5 Depth, 8.0 kts water speed.

<table>
<thead>
<tr>
<th>LBP</th>
<th>BEAM</th>
<th>Block Co-eff</th>
<th>Draft fwd</th>
<th>Daft Aft</th>
<th>Mean Draft</th>
<th>SPEED</th>
<th>WATER Depth</th>
<th>Channel Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>b</td>
<td>Cb</td>
<td>Df</td>
<td>Da</td>
<td>h</td>
<td>V</td>
<td>T</td>
<td>B2</td>
</tr>
<tr>
<td>14.00 m</td>
<td>6.00 m</td>
<td>0.8000</td>
<td>1.80 m</td>
<td>1.60 m</td>
<td>1.70 m</td>
<td>8.00 kt</td>
<td>3.40 m</td>
<td>25.00 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deep / Shallow Water</th>
<th>Deep</th>
<th>Shallow</th>
<th>Shallow</th>
<th>Deep</th>
<th>Deep</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQUAT (max)</td>
<td>0.53 m</td>
<td>0.49 m</td>
<td>0.97 m</td>
<td>0.10 m</td>
<td>0.12 m</td>
</tr>
</tbody>
</table>

Depth / Draught ratio	2.00	2.00	2.00	2.00	2.00
Blockage factor S	0.120	0.120	0.120	0.120	0.120
Velocity Return Factor S2	0.136	0.136	0.136	0.136	0.136
Width of Influence	51.06 m				
Width of Influence	0.028 nm				
Fwd Pressure Field Extent	2.00 L				
	102.12 m				
	0.055 nm				

Vessel will trim/ squat by: Bow
METHOD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LBP L</td>
<td>14.00 m</td>
<td>14.00 m</td>
<td>14.00 m</td>
</tr>
<tr>
<td>BEAM B</td>
<td>6.00 m</td>
<td>6.00 m</td>
<td>6.00 m</td>
</tr>
<tr>
<td>Block Co-eff Cb</td>
<td>0.8500</td>
<td>0.8000</td>
<td>0.8000</td>
</tr>
<tr>
<td>Draft fwd Df</td>
<td>1.60 m</td>
<td>1.80 m</td>
<td>1.80 m</td>
</tr>
<tr>
<td>Daft Aft Da</td>
<td>1.60 m</td>
<td>1.60 m</td>
<td>1.60 m</td>
</tr>
<tr>
<td>Mean Draft h</td>
<td>1.70 m</td>
<td>1.70 m</td>
<td>1.70 m</td>
</tr>
<tr>
<td>SPEED V<sub>k</sub></td>
<td>8.00 kt</td>
<td>8.00 kt</td>
<td>8.00 kt</td>
</tr>
<tr>
<td>WATER Depth T</td>
<td>3.40 m</td>
<td>3.40 m</td>
<td>3.40 m</td>
</tr>
<tr>
<td>Channel Width B2</td>
<td>25.00 m</td>
<td>25.00 m</td>
<td>25.00 m</td>
</tr>
</tbody>
</table>

SUMMARY

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Largest FISHING BOAT</th>
<th>Method</th>
<th>SQUAT</th>
<th>Width of Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barass [3]</td>
<td>0.53</td>
<td>51.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jachowski</td>
<td>0.49</td>
<td>51.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eryuzlu et al</td>
<td>0.97</td>
<td>51.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hooft & Tuck</td>
<td>0.10</td>
<td>51.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICORELS</td>
<td>0.12</td>
<td>51.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barass [1]</td>
<td>0.54</td>
<td>46.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millward [2]</td>
<td>0.14</td>
<td>51.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>5.60</td>
<td>51.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average of All</td>
<td>1.06</td>
<td>See Note Below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave EXCL Japanese</td>
<td>0.30</td>
<td>Bow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Squat</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Squat</td>
<td>5.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min Influence width</td>
<td>46.88</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or 0.025 nm</td>
<td>51.0615 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Influence width</td>
<td>0.028</td>
<td>nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fwd Pressure Field</td>
<td>89.06</td>
<td>m Minimum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or 0.055 nm</td>
<td>102.12 m</td>
<td>Maximum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Japanese methodology consistently delivers high results, therefore, comparisons are provided that exclude this method.

The contents of this tool are for use by Norwest Interaction Ltd only. Norwest Interaction Ltd does not vouch for the reliability or accuracy of the data produced outwith the company remit.

Anyone using this calculation tool for their own purposes does so ENTIRELY AT THEIR OWN RISK. No liability is accepted by Norwest Interaction Ltd for use of the data produced herein.