

# Idle and Torne High Flow Study

Phase 2a

**Environment Agency** 

April 2020

DRAFT

#### Quality information

| Prepared by |                          | Checked by                  |               | Approved by |           |
|-------------|--------------------------|-----------------------------|---------------|-------------|-----------|
| Various     |                          | Omar Sholi<br>Associate Wat | ter Scientist | Omar Sh     | oli       |
| Revision H  | listory<br>Revision date | Details                     | Authorized    | Name        | Position  |
| 1           | April 2020               | After client<br>review      | OS            | Omar Sholi  | Associate |

Prepared for: Environment Agency

Prepared by:

Omar Sholi Associate Water Scientist E: omar.sholi@aecom.com

AECOM Limited

1 New York Street

Manchester M1 4HD

United Kingdom

T: +44 161 601 1700 aecom.com

© 2020 AECOM Limited. All Rights Reserved.

This document has been prepared by AECOM Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

#### **Table of Contents**

| 1. | Introc | luction1                                                |
|----|--------|---------------------------------------------------------|
|    | 1.1    | Project Appreciation 1                                  |
|    | 1.2    | Phase 2 Objectives 1                                    |
|    | 1.3    | Report Structure                                        |
| 2. | Phase  | e 2a Methodology 3                                      |
|    | 2.1    | Overview                                                |
|    | 2.2    | Environmental Baseline Review and Sensitivity Appraisal |
|    | 2.3    | Model Reviews                                           |
|    | 2.3.1  | Hydraulic models 4                                      |
|    | 2.3.2  | Groundwater model review 4                              |
| 3. | Physi  | cal Environment Baseline and Sensitivity5               |
|    | 3.1    | Background5                                             |
|    | 3.2    | Catchment Overview5                                     |
|    | 3.2.1  | General information                                     |
|    | 3.3    | Geology, Hydrogeology and Groundwater                   |
|    | 3.3.1  | Geology and Hydrogeology                                |
|    | 3.3.2  | Groundwater Monitoring                                  |
|    | 3.3.2. | 1 Monitoring data                                       |
|    | 3.3.2. | 2 River Torne catchment                                 |
|    | 3.3.2. | 3 River Idle catchment11                                |
|    | 3.3.3  | Groundwater Conceptualisation                           |
|    | 3.4    | Hydrology 14                                            |
|    | 3.4.1  | Hydrological Monitoring network 14                      |
|    | 3.4.2  | River Torne catchment                                   |
|    | 3.4.2. | 1 Flows                                                 |
|    | 3.4.2. | 2 Levels                                                |
|    | 3.4.3  | River Idle catchment 17                                 |
|    | 3.4.3. | 1 Flows 17                                              |
|    | 3.4.3. | 2 Levels                                                |
|    | 3.5    | Hydromorphology                                         |
|    | 3.5.1  | Overview                                                |
|    | 3.5.2  | Catchment Review                                        |
|    | 3.5.3  | RHS Sites                                               |
|    | 3.5.4  | British Record Library Review                           |

| 3.5.5 Channel surveys                                      | . 25 |
|------------------------------------------------------------|------|
| 3.5.5.1 Description                                        | . 25 |
| 3.5.5.2 Long sections and silt surveys                     | . 27 |
| 3.5.6 Existing Hydraulic Modelling                         | . 30 |
| 3.5.7 Sediment Loads                                       | . 32 |
| 3.5.8 Environment Agency Ecological Monitoring information | . 34 |
| 3.5.8.1 Channel substrate                                  | . 34 |
| 3.5.8.2 Other information                                  | . 35 |
| 3.5.9 Overview                                             | . 56 |
| 3.6 Water Quality                                          | . 56 |
| 3.6.1 Monitoring Overview                                  | . 56 |
| 3.6.2 River Torne catchment                                | . 57 |
| 3.6.2.1 Torne at Auckley                                   | . 57 |
| 3.6.3 River Idle catchment                                 | . 59 |
| 3.6.3.1 River Idle at Mattersey                            | . 59 |
| 3.6.3.2 River Ryton at Scrooby                             | . 62 |
| 3.6.3.3 Old Coates Dyke at Blythe Old Bridge               | . 64 |
| 3.6.3.4 River Poulter at Elkesley (downstream site)        | . 66 |
| 3.6.3.5 River Poulter at Cuckney (upstream site)           | . 68 |
| 3.6.3.6 River Meden at Thoresby (downstream site)          | . 70 |
| 3.6.3.7 River Meden at Warsop Mill (upstream site)         | . 72 |
| 3.6.3.8 River Maun at Whitewater (downstream site)         | . 74 |
| 3.6.3.9 River Maun at Whinney Hill (upstream site)         | . 76 |
| 3.6.4 Water Framework Directive                            | . 78 |
| 3.7 Sensitivity Review                                     | . 78 |
| 3.7.1 Overview and review                                  | . 78 |
| Environmental Features                                     | . 85 |
| 4.1 Background                                             | . 85 |
| 4.2 Designated Sites                                       | . 85 |
| 4.2.1 Approach                                             | . 85 |
| 4.2.2 Internationally and Nationally Designated Sites etc  | . 85 |
| 4.2.3 Local Designated Sites                               | . 91 |
| 4.3 Protected and Invasive Non-Native Species              | . 91 |
| 4.3.1 Approach                                             | . 91 |
| 4.3.2 Protected Species                                    | . 91 |
| 4.3.3 Invasive Non-Native Species                          |      |
|                                                            |      |

4.

| 4.4    | Fish                                                   | 92  |
|--------|--------------------------------------------------------|-----|
| 4.4.1  | Data                                                   | 92  |
| 4.4.2  | Water Framework Status                                 | 93  |
| 4.4.3  | River Torne catchment                                  | 95  |
| 4.4.3. | 1 Fishery Baseline                                     | 95  |
| 4.4.3. | 2 Protected and invasive species                       | 95  |
| 4.4.3. | 3 Migratory species and barriers to migration          | 96  |
| 4.4.3. | 4 Impacts on fish populations and the Torne catchment  | 96  |
| 4.4.4  | River Idle catchment                                   | 97  |
| 4.4.4. | 1 Fishery Baseline                                     | 97  |
| 4.4.4. | 2 Protected and invasive species                       | 98  |
| 4.4.4. | 3 Migratory species and barriers to migration          | 100 |
| 4.4.4. | 4 Impacts on fish populations and the Idle catchment   | 100 |
| 4.5    | Macroinvertebrates                                     | 100 |
| 4.5.1  | Screening                                              | 100 |
| 4.5.2  | Data                                                   | 102 |
| 4.5.3  | Analysis                                               | 102 |
| 4.5.4  | Water Framework Status                                 | 103 |
| 4.5.5  | River Torne catchment                                  | 104 |
| 4.5.6  | River Idle catchment                                   | 106 |
| 4.5.7  | Potential effects of abstractions at time of high flow | 110 |
| 4.6    | Macrophytes and Phytobenthos                           | 111 |
| 4.6.1  | Screening                                              | 111 |
| 4.6.2  | Data                                                   | 111 |
| 4.6.3  | Screening and Analysis                                 | 111 |
| 4.6.4  | Water Framework Status                                 | 111 |
| 4.6.5  | River Torne Catchment                                  | 112 |
| 4.6.6  | River Idle Catchment                                   | 113 |
| 4.6.7  | Potential effects of abstractions at time of high flow | 116 |
| 4.7    | Diatoms                                                | 116 |
| 4.7.1  | Data and Analysis                                      | 116 |
| 4.7.2  | River Torne Catchment                                  | 118 |
| 4.7.2. | 1 Diatom assemblage data                               | 118 |
| 4.7.2. | 2 TDI4                                                 | 118 |
| 4.7.2. | 3 EQR and water body classification                    | 118 |
| 4.7.2. | 4 Summary for River Torne catchment                    | 119 |

|      | 4.7.3 Riv  | er Idle Catchment                                                 | .119 |
|------|------------|-------------------------------------------------------------------|------|
|      | 4.7.3.1    | Diatom assemblage data                                            | .119 |
|      | 4.7.3.2    | A416 at Rainworth Water                                           | 120  |
|      | 4.7.3.3    | Bolham Lane                                                       | 120  |
|      | 4.7.3.4    | Poulter at Nether Langwith                                        | 120  |
|      | 4.7.3.5    | TDI4                                                              | 121  |
|      | 4.7.3.6    | EQR and water body classification                                 | 121  |
|      | 4.7.3.7    | Summary for River Idle catchment                                  | 121  |
|      | 4.8 Wa     | ter Framework Directive                                           | 121  |
|      | 4.8.1 Ove  | erall Designations                                                | 121  |
|      | 4.9 Dat    | a Gaps                                                            | 122  |
|      | 4.9.1 Ove  | erview                                                            | 122  |
|      | 4.9.2 Pro  | tected Species and Invasive Species                               | 122  |
|      | 4.9.3 Fisl | heries                                                            | 122  |
|      | 4.9.4 Ma   | croinvertebrates                                                  | 123  |
|      | 4.9.5 Ma   | crophytes                                                         | 123  |
|      | 4.10 Env   | vironmental Features Summary                                      | 124  |
|      | 4.10.10ve  | erview and review                                                 | 124  |
| 5.   | Model Re   | views                                                             | 130  |
|      | 5.1 Bad    | ckground                                                          | 130  |
|      | 5.2 Hyd    | draulic Models                                                    | 130  |
|      | 5.3 Eas    | st Midlands Yorkshire Sherwood Sandstone Groundwater Model Review | 132  |
|      | 5.3.1 Ove  | erview                                                            | 132  |
|      | 5.3.2 Tor  | ne Catchment                                                      | 134  |
|      | 5.3.2.1    | Torne                                                             | 134  |
|      | 5.3.3 Idle | e catchment                                                       | 138  |
|      | 5.3.3.1    | Idle                                                              | 138  |
|      | 5.3.3.2    | Other tributaries                                                 | 139  |
|      | 5.3.3.3    | Poulter                                                           | 139  |
|      | 5.3.3.4    | Meden                                                             | 145  |
|      | 5.3.3.5    | Maun                                                              | 150  |
|      | 5.3.4 Cor  | nclusions                                                         | 153  |
| 6.   | Phase 2a   | Summary and Phase 2b Recommendations                              | 154  |
|      | 6.1 Sur    | nmary of 2a                                                       | 154  |
|      | 6.2 Pha    | ase 2b recommendations                                            | 154  |
| Appe | ndix A Hyd | raulic Model Audits                                               | 157  |
|      |            |                                                                   |      |

| A.1 River Idle Model Review 158                        | 8 |
|--------------------------------------------------------|---|
| 1. Model Overview                                      | 9 |
| 1.1 Model extent & description 159                     | 9 |
| 1.2 Model originator and date created 159              | 9 |
| 1.3 Software used159                                   | 9 |
| 1.4 Model version reviewed159                          | 9 |
| 1.5 AEP design events provided for review160           | 0 |
| 1.6 Model files reviewed                               | 0 |
| 1.7 Guidance used to inform the review 160             | 0 |
| 2. Survey Review                                       | 1 |
| 3. In-Channel Representation                           | 3 |
| 3.1 Cross-section schematisation16                     | 3 |
| 3.2 Channel roughness                                  | 4 |
| 3.3 Structure representation164                        | 4 |
| 4. 1D Out-of-Bank Representation                       | 6 |
| 4.1 Extended cross-sections                            | 6 |
| 4.2 Floodplain reservoirs                              | 6 |
| 5. 2D Out-of-Bank Representation                       | 9 |
| 5.1 2D domain schematisation                           | 9 |
| 5.2 Top-of-bank schematisation 17                      | 1 |
| 5.3 Out-of-bank roughness                              | 1 |
| 6. Model Boundaries                                    | 3 |
| 6.1 Inflow boundaries                                  | 3 |
| 6.2 Downstream boundary                                | 4 |
| 7. Calibration, Verification, and Sensitivity Analysis | 5 |
| 7.1 Calibration and verification                       | 5 |
| 7.2 Sensitivity analysis                               | 5 |
| 8. Model Run Parameters & Performance                  | 6 |
| 8.1 Model run parameters                               | 6 |
| 8.2 Performance                                        | 6 |
| 9. Audit Trail                                         | 8 |
| 10. Concluding Remarks                                 | 9 |
| 10.1 Suitability of modelling approach175              | 9 |
| 10.2 Key findings and recommendations                  | 9 |
| 11. Model audit signoff                                | 0 |
| 12. Figures                                            | 1 |

| A.2 River Torne Model Review                           | 190  |
|--------------------------------------------------------|------|
| 1. Model Overview                                      | 191  |
| 1.1 Model extent & description                         | 191  |
| 1.2 Model originator and date created                  | 191  |
| 1.3 Software used                                      | 191  |
| 1.4 Model version reviewed                             | 191  |
| 1.5 AEP design events provided for review              | 191  |
| 1.6 Model files reviewed                               | 192  |
| 1.7 Guidance used to inform the review                 | 192  |
| 2. Survey Review                                       | 193  |
| 3. In-Channel Representation                           | 195  |
| 3.1 Cross-section schematisation                       | 195  |
| 3.2 Channel roughness                                  | 196  |
| 3.3 Structure representation                           | 197  |
| 4. 1D Out-of-Bank Representation                       | 199  |
| 4.1 Extended cross-sections                            | 199  |
| 4.2 Floodplain reservoirs                              | 199  |
| 5. 2D Out-of-Bank Representation                       | 201  |
| 5.1 2D domain schematisation                           | 201  |
| 5.2 Top-of-bank schematisation                         | 202  |
| 5.3 Out-of-bank roughness                              | 203  |
| 6. Model Boundaries                                    | 204  |
| 6.1 Inflow boundaries                                  | 204  |
| 6.2 Downstream boundary                                | 205  |
| 7. Calibration, Verification, and Sensitivity Analysis | 206  |
| 7.1 Calibration and verification                       | 206  |
| 7.2 Sensitivity analysis                               | 206  |
| 8. Model Run Parameters & Performance                  | 208  |
| 8.1 Model run parameters                               | 208  |
| 8.2 Performance                                        | 208  |
| 9. Audit Trail                                         | 210  |
| 10. Concluding Remarks                                 | .211 |
| 10.1 Suitability of modelling approach                 | .211 |
| 10.2 Key findings and recommendations                  | .211 |
| 11. Model audit signoff                                | 212  |
| 12. Figures                                            | 213  |

#### 1. Introduction

#### **1.1 Project Appreciation**

The Idle and Torne catchments are closed to any new consumptive abstraction<sup>1</sup> because there is a lack of an evidence base to prove whether high flow abstraction has an ecological effect or not, with regard to the following:

- Uncertainty over the role and importance of high flows in maintaining the geomorphological and ecological functioning of the river systems.
- A degree of uncertainty with respect to water levels and connectivity to floodplain washlands.
- Uncertainty over the importance of high flow in supporting downstream estuarine habitats associated with the river Humber.
- Concerns regarding the over-abstracted nature of the underlying aquifer.

Both systems, encompassing 1,200km<sup>2</sup> in total, are hydrologically complex being comprised of a number sub-catchments including a number in the lower reaches which are pumped.

Abstractions of high flows greater than the Environmental Flow Indicator (EFI) in both catchments is being considered. The EFI for the Torne is equivalent to the  $Q_{15}$  while the EFI for the Idle is equivalent to the  $Q_{18}$ .

The purpose of the overall project is to derive an evidence base to demonstrate whether abstraction at high flows on the Idle and Torne would have an adverse environmental impact or not. Specifically the project aim is to understand the importance of high flows for supporting the **current** and potential **future** ecological status of the river catchments with respect to compliance with relevant environmental protection obligations.

We undertook the first study of this project culminating in October 2015 in the production of a feasibility study report<sup>2</sup>. This identified the next steps from which the current project (Phase 2) has resulted.

#### 1.2 Phase 2 Objectives

The key objective of Phase 2 is to understand the significance of high flows and floodplain connections for in-stream, riparian and terrestrial habitats that are hydraulically connected to the rivers and their floodplains.

Through developing this baseline understanding we would be able to determine the effects of potential abstraction of flows above the EFI.

Phase 2 is separated into two parts, as follows:

- Phase 2a: Review of hydraulic and groundwater models to examine their suitability of use in this study and updated and expanded review of the environmental baseline.
- Phase 2b: Undertake more detailed investigations (activities to be determined on completion of Phase 2a).

This report presents our findings from Phase 2a. This includes our recommendations for Phase 2b.

<sup>&</sup>lt;sup>1</sup> Idle and Torne Licencing Strategy, Environment Agency, February 2013.

<sup>&</sup>lt;sup>2</sup> AECOM (2015) - High Flow Abstraction for Multiple Environmental Benefits in the Idle and Torne Catchments – A Feasibility Study - Phase 1 Report



#### **Report Structure** 1.3

The remainder of this (Phase 2a) report is broken down as follows:

- •
- Phase 2a methodology; Physical environmental baseline; •
- Environmental features baseline and sensitivity review; •
- Model reviews; and •
- Summary and phase 2b recommendations. •

#### 2. Phase 2a Methodology

#### 2.1 Overview

Phase 2a is split into two main parts. The methodology for these is described next.

- Environmental baseline (physical environment and environmental features) baseline review, data gap analysis and sensitivity appraisal; and
- Hydraulic and groundwater model reviews.

#### 2.2 Environmental Baseline Review and Sensitivity Appraisal

Failure to plan across a full array of cross-sector, hydromorphological and ecological river services can have undesirable and unanticipated consequences. Abstraction is known to have many impacts on the functioning of a river and subsequently the aquatic biota. Nevertheless, it should not be considered in isolation, it is important to understand the complexities caused by multiple pressures present that can exacerbate the impacts associated with abstractions.

A preliminary sensitivity map (excluding hydromorphological sensitivity) was produced as part of the previous Feasibility Study<sup>3</sup>. This provided an initial visual summary of the key river reaches and their relative sensitivity to additional abstraction. During the previous study, it was concluded that the most likely sensitive reaches would be those largely unmodified and those reaches susceptible to changes in out of bank flows (i.e. with lateral connectivity remaining in the absence of embankments).

As part of Phase 2a more up to date information was obtained and reviewed, to refine and build upon this initial map. Further efforts have been undertaken with regard to developing our understanding of the physical environment (including a more detailed hydrological review and water quality appraisal). In addition further hydromorphological information has been obtained and analysed.

Up to date Environmental Feature (ecological) information has also been obtained and reviewed in order to refine our understanding of areas that may be sensitive to changes in high flow. Data that has been obtained has included the following:

- Water Framework Directive (WFD) Monitoring data (including fish, macroinvertebrate, macrophytes);
- Fish stock and habitat data;
- Biological record centres data and Magic Maps website (designated sites, including SSSIs);
- RHS data; and
- Previous WFD walkover investigation reports.

A summary of data sets and sources is provided in Table 2.1 below.

#### Table 2.1 Ecological data sets and sources

| Feature/ Receptor                                                                                                                                                                                     | Source of data                                                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Statutory and non-statutory sites for nature conservation                                                                                                                                             | Nottinghamshire Biological and<br>Geological Records Centre            |  |
| <ul> <li>Protected riparian species</li> <li>Water vole (<i>Arvicola amphibious</i>)</li> <li>Otter (<i>Lutra lutra</i>)</li> <li>White clawed crayfish (<i>Austropotamobius pallipes</i>)</li> </ul> | Greater Lincolnshire Nature Partnership<br>(BRC)<br>Environment Agency |  |
| Invasive species                                                                                                                                                                                      |                                                                        |  |

<sup>3</sup> AECOM (2015) - High Flow Abstraction for Multiple Environmental Benefits in the Idle and Torne Catchments – A Feasibility Study - Phase 1 Report



| River Habitat Survey                                                               |                    |
|------------------------------------------------------------------------------------|--------------------|
| WFD monitoring data<br>- Macroinvertebrates<br>- Fish<br>- Macrophytes and diatoms | Environment Agency |
| WFD walkover investigation reports                                                 |                    |

Given the size of the catchments, the aim of Phase 2a review was to screen the data (on the Physical Environment, defined here as hydrogeology, hydrology, water quality and hydromorphology, or ecological receptors), for flow sensitive river reaches and sites. The results of the screening would then be to inform more detailed assessment of the impacts of high flow abstractions on discrete more sensitive areas. In addition potential affects have been examined and screened. Receptors were examined with regard to their importance (i.e. statutory and non-statutory sites for nature conservation and protected riparian species) and availability of monitoring data.

The physical environmental baseline is presented in Section 3 of the report whilst the environmental features baseline is presented in Section 4. Topic specific methodologies are described at the beginning of their respective baseline sections.

#### 2.3 Model Reviews

#### 2.3.1 Hydraulic models

Since the Feasibility Study (completed in 2015), new hydraulic models of both River Idle and Torne have been constructed. These are both strategic scale linked 1D/2D hydraulic Flood Modeller Pro (FMP)-TUFLOW flood models and were completed in 2019.

The review was necessary to ascertain if both models were suitable for use this study (i.e. to help determine abstraction impacts during high flows). The models were built to examine flood risk extents and levels while the minimum flood they were designed to simulate was the 1 in 2 year flood (50% Annual Exceedance Probability (AEP) event). High flows considered in this study are generally lower than the 1 in 2 year flood so the model is not calibrated for flows of importance to this study and may not function reliably. For reasons such as this the appropriateness of the models have been reviewed. A strategic model is constructed at a catchment basis and may not be appropriate to investigate smaller scale effects at a reach level.

This was considered important as the models were built at a strategic level and for flood mapping purposes.

The model reviews were undertaken using a modified version of our standard review proforma which AECOM have employed previously on numerous Environment Agency projects to provide a commentary of the suitability of a hydraulic model. This proforma includes a traffic light comments system and has been adapted to provide an evaluation of key criteria necessary for modelling the impacts of high flow abstraction on floodplain connectivity, and in-stream hydraulic parameters required for geomorphological and eco-hydrological assessment.

#### 2.3.2 Groundwater model review

As part of Phase 2a, AECOM have also undertaken a review of the East Midlands Yorkshire groundwater model) hosted by the National Groundwater Modelling System (NGMS), to examine its potential usefulness in the study.



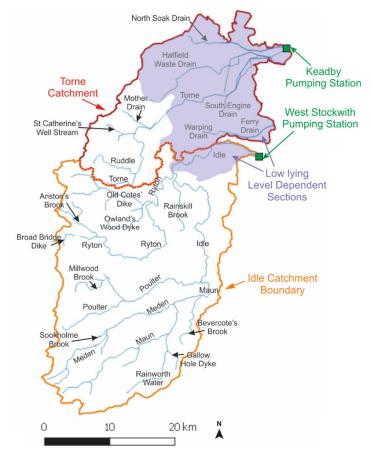
#### 3. Physical Environment Baseline and Sensitivity

#### 3.1 Background

The physical environmental baseline has been developed and expanded from the Feasibility Study that was undertaken in 2015<sup>4</sup>. The baseline is presented through this section and includes the following:

- Catchment Overview;
- Geology and Hydrogeology;
- Hydrology;
- Hydromorphology; and
- Water Quality.

A discussion of the physical environment sensitivity is presented at the end of this section. This is informed by the categories bulleted above. For example from a hydromorphological perspective it is considered that the most likely sensitive reaches would be those largely unmodified and those reaches susceptible to a reduction in out of bank flows (i.e. with lateral connectivity remaining in the absence of embankments).


#### 3.2 Catchment Overview

#### 3.2.1 General information

The Idle and Torne catchments are indicated in Figure 3.1. The figure indicates the main tributaries of both systems as well as the lowermost level dependent pumped sections of the watercourses. 75% of the Torne catchment is a pumped level dependent system (total catchment size of around 520km<sup>2</sup>). Around only 10% of the Idle catchment is a pumped level dependent system (total catchment size of around 880km<sup>2</sup>). The low lying level dependent area of both catchments is collectively referred to as the Isle of Axholme. Watercourses in non-pumped sections of both system flow under gravity.

<sup>&</sup>lt;sup>4</sup> AECOM (2015) - High Flow Abstraction for Multiple Environmental Benefits in the Idle and Torne Catchments – A Feasibility Study - Phase 1 Report

#### AECOM



#### Figure 3.1 Idle and Torne River Network

In the free flowing part of the Torne catchment land cover is reported to be 12% woodland, 47% arable, 17 % grassland and 22% urbanised<sup>5</sup>. The lower level dependent section is mainly agricultural although grassland and urban areas are also present.

At the Mattersey flow gauge on the River Idle, the elevation of the gauge is 5.7m AOD. At the gauge the catchment is reported to be 17% woodland, 47% arable, 17% grassland, 2% mountain/ heath/ bog and 16% urban<sup>6</sup>. The River Ryton joins downstream of this gauge and at its lowermost, and now closed gauge (at Serlby Park/ elevation 7.1m AOD) the Ryton is reported to be 12% woodland, 55% arable, 16% grassland and 16% urban<sup>7</sup>.

The River Idle and River Torne catchments are moderate to lowland catchments dominated by intensive agriculture. The catchments surfaces have been intensively modified from historic woodland and grassland coverage to agriculture, and large extents of the rivers' channels have also been modified by realignment, re-sectioning, and due to construction of near-channel or set-back embankments. All of these modifications are associated with flood protection and drainage engineering for agricultural land use gain. They also influence how high and flood flows manifest through the catchment, i.e. patterns of bankfull and out-of-bank flooding. The local economy relies heavily on agriculture, and in turn groundwater and surface water abstractions (principally for irrigation), hence availability of high flow abstractions for irrigation is an important consideration.

<sup>&</sup>lt;sup>5</sup> National Flow Archive- Torne at Auckley. <u>https://nrfa.ceh.ac.uk/data/station/info/28050</u>

<sup>&</sup>lt;sup>6</sup> National Flow Archive- Idle at Mattersey. <u>https://nrfa.ceh.ac.uk/data/station/info/28015</u>

<sup>&</sup>lt;sup>7</sup> National Flow Archive- Ryton at Serlby Park. <u>https://nrfa.ceh.ac.uk/data/station/info/28016</u>



Keadby pumping station lies at the end of the Torne catchment while West Stockwith is the terminal pumping station at the end of the Idle catchment. Both discharge into the tidal Trent.

#### 3.3 Geology, Hydrogeology and Groundwater

#### 3.3.1 Geology and Hydrogeology

The headwaters of the River Torne include the Ruddle (Paper Mill Dyke) and St Catherine's Well Stream. These rise over Permian strata including the Cadeby Formation, the Edlington Formation and Brotherton Formation to the south of Doncaster and near Maltby. These units are classified as a Principal Aquifer, comprising predominantly limestone. The tributaries subsequently flow over Triassic strata, which predominantly comprise the Nottingham Castle Sandstone Formation, the main unit of the Sherwood Sandstone Group in the study area, and then the Mercia Mudstone in the vicinity of the Isle of Axholme.

The headwaters of the River Idle include the Oldcotes Dyke (near to Maltby), Anston Brook, Broad Bridge Dyke, Millwood Brook, Poulter, Meden, Maun and Rainworth Water. Oldcotes Dyke, Anston Brook, Broad Bridge Dyke and the Meden rise over Carboniferous strata including Wickersley Rock, the Pennine Upper Coal Measures Formation, the Pennine Middle Coal Measures Formation and Mexborough Rock. The Milwood Brook, Poulter and Maun rise over the Cadeby Formation (Permian strata). Rainworth Water rises over the Nottingham Castle Sandstone Formation and, similar to the River Torne, the bedrock geology underlying much of the catchment downstream of the headwaters listed above comprises the Nottingham Castle Sandstone Formation.

The headwaters often overlie bedrock classified as Secondary A aquifer<sup>8</sup> locally. However generally the rivers' headwaters cross the Cadeby Formation aquifer and in much of the lower catchment cross Sherwood Sandstone Group formations, both classified as Principal aquifers, which supports a number of groundwater abstractions.

The Sherwood Sandstone aquifer increases in transmissivity from west to east with increasing thickness, with transmissivity falling deeper into the confined aquifer. The unconfined aquifer is considered to have higher transmissivity to the south compared to the north<sup>9</sup>.

In the underlying Cadeby Formation transmissivities are similar to the Sherwood Sandstone units, but aquifer storage is low in comparison. There is an upward gradient for groundwater flow in the Cadeby Formation aquifer to the Sherwood Sandstone. These units are separated by aquitards (Middle Permian Marls) but in areas of faulting through the aquitards there is the potential for upward flow into the Sherwood Sandstone. Several faults have been identified in the study area with a displacement considered significant to potentially bring the Cadeby Formation and Sherwood Sandstone into hydraulic contact.

The thickness of the intervening formations between the Cadeby Formation and Sherwood Sandstone thickens toward the east.

At the Auckley gauge on the River Torne, bedrock geology is reported to be 91% highly permeable and 9% mixed permeability<sup>10</sup>. The baseflow index calculated (BFIHOST) is an indication of catchment responsiveness accounting for soil type on runoff rates and the extent that groundwater enhances river flows in the upstream catchment (i.e. the interaction between groundwater and surface water).

<sup>&</sup>lt;sup>8</sup> Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers

<sup>&</sup>lt;sup>9</sup> East Midlands-Yorkshire Sherwood Sandstone Modelling Project. April 2009. Entec and Environment Agency.

<sup>&</sup>lt;sup>10</sup> National Flow Archive- Torne at Auckley. <u>https://nrfa.ceh.ac.uk/data/station/info/28050</u>

AECOM

The BFIHOST reported at the gauge (for river and its contributing catchment up to the gauge) is reported to be 0.78 indicating the importance of groundwater contributions and runoff to river flow at times when groundwater levels are above the bed of the river.

At the Mattersey flow gauge on the River Idle, bedrock geology is reported to be 77% highly permeable and 23% mixed permeability<sup>11</sup>. The BFIHOST at the gauge us reported to be 0.79, again indicating importance of groundwater contributions to river flow at times when groundwater levels are above the bed of the river.

#### 3.3.2 Groundwater Monitoring

#### 3.3.2.1 Monitoring data

Groundwater monitoring data for a number of sites was obtained from the Environment Agency. Most of these generally related to monitoring of the Sherwood formation and some of this was for the deeper Cadeby Formation. The data has been reviewed and information presented for a number of sites of particular relevance to this study. These sites are indicated in Figure 3.2 and include long term monitoring sites in both catchments with long term records and superficial monitoring from Hatfield Moors in the Torne catchment (the only such monitoring received for both catchments).



#### Figure 3.2 Location of Groundwater and Surface water flow monitoring at sites in the Idle and Torne catchments described in this section

#### 3.3.2.2 River Torne catchment

Pertinent groundwater monitoring for the Torne catchment is presented in Figure 3.2 along with the flow record for the Torne at Auckley gauge. Figure 3.4 provides further context on the number of days

<sup>&</sup>lt;sup>11</sup> National Flow Archive- Idle at Mattersey. <u>https://nrfa.ceh.ac.uk/data/station/info/28015</u>

in each year where flow was greater than the Q<sub>15</sub>/ EFI at the Torne at Auckley flow gauge (and relatively whether each calendar year could be considered as above average ('wet' with elevated precipitation causing higher flows), below average ('dry' likely linked to a lack of high precipitation events) or typical year in terms of higher flows (and precipitation rates). Table 3.1 presents the information from Figure 3.4 in a tabular format and also includes a ranking of the 20 years since 2000 in terms of number of days flow in each respective year was greater than the Idle and Torne EFIs. From this a relative assessment of wet (5 years with highest number of days above the EFI), dry (5 years with lowest number of days above the EFI) or typical year (the other years) has been made.

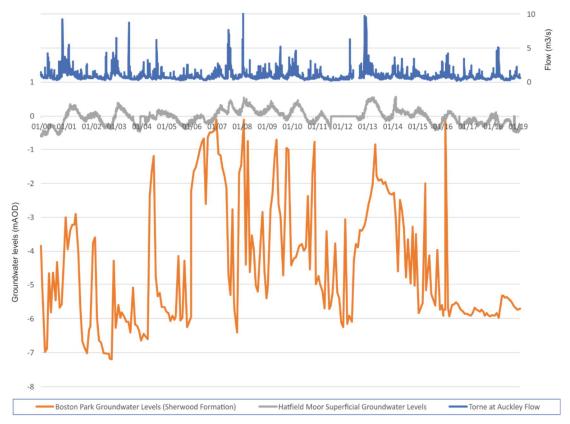



Figure 3.3 Groundwater and correspondent flow monitoring at sites in the Torne catchment

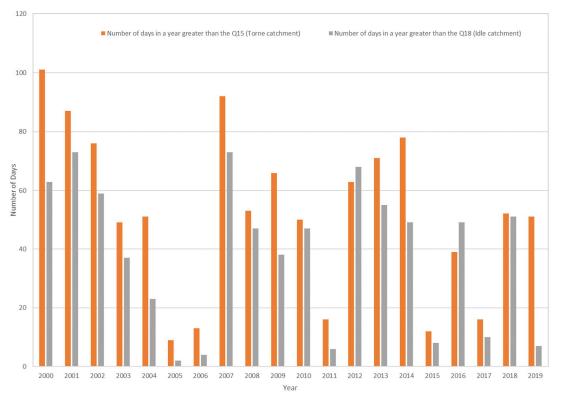



Figure 3.4 No. of days in each calendar year (Jan 2000 – Sept 2019) when daily mean flows (at the Torne at Auckley and Idle at Mattersey gauges) were > their respective EFIs

#### 10

AECOM



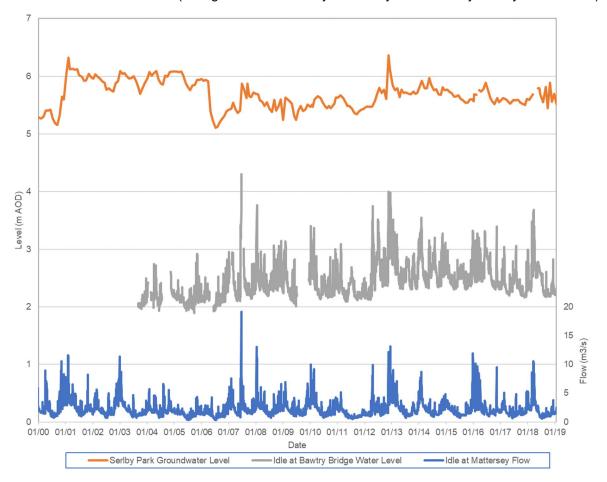
# Table 3.1 Number of days in a calendar year above the EFI flow statistic for the Torne and Idle catchments (at the Torne at Auckley and Idle at Mattersey gauges) and relative rankings

|                | Torne at Auckley |              | Idle at Mattersey |              |
|----------------|------------------|--------------|-------------------|--------------|
| Calendar Year  | N Days Q>EFI     | Rank (of 20) | N Days Q>EFI      | Rank (of 20) |
| 2000           | 101              | 1st Wet      | 63                | 4th Wet      |
| 2001           | 87               | 3rd Wet      | 73                | 1st Wet      |
| 2002           | 76               | 5th Wet      | 59                | 5th Wet      |
| 2003           | 49               | 14th Typical | 37                | 13th Typical |
| 2004           | 51               | 11th Typical | 23                | 14th Typical |
| 2005           | 9                | 20th Dry     | 2                 | 20th Dry     |
| 2006           | 13               | 18th Dry     | 4                 | 19th Dry     |
| 2007           | 92               | 2nd Wet      | 73                | 2nd Wet      |
| 2008           | 53               | 9th Typical  | 47                | 10th Typical |
| 2009           | 66               | 7th Typical  | 38                | 12th Typical |
| 2010           | 50               | 13th Typical | 47                | 11th Typical |
| 2011           | 16               | 16th Dry     | 6                 | 18th Dry     |
| 2012           | 63               | 8th Typical  | 68                | 3rd Wet      |
| 2013           | 71               | 6th Typical  | 55                | 6th Typical  |
| 2014           | 78               | 4th Wet      | 49                | 8th Typical  |
| 2015           | 12               | 19th Dry     | 8                 | 16th Dry     |
| 2016           | 39               | 15th Typical | 49                | 9th Typical  |
| 2017           | 16               | 17th Dry     | 10                | 15th Typical |
| 2018           | 52               | 10th Typical | 51                | 7th Typical  |
| 2019 (to Sept) | 51               | 12th Typical | 8                 | 17th Dry     |

There is larger variation in groundwater levels at Boston Park in the Sherwood Formation (levels varying by ~7m between 2000 and 2019) than in the superficial monitoring of Hatfield Moors (levels varying by ~1.2m between 2000 and 2019). Groundwater levels at Boston Park are strongly influenced by Boston Park public water supply abstraction and we have been advised that the large fluctuations at the site are not representative of the wider sandstone catchment which may be expected to vary seasonally between 1 - 2m.

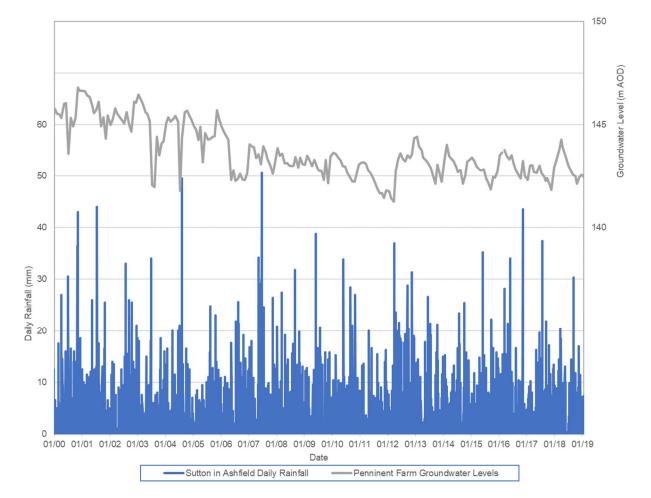
As expected groundwater levels reduce during dry conditions (typically drier through the summer although also dropping during dry years and winters). This is most apparent in the Hatfield Moor monitoring. Refill occurs under wetter periods though a time lag is apparent on review of the Boston Park sandstone formation record.

Level at Boston Park indicate a large drop in groundwater levels in 1983 compared to earlier levels, which is likely when the nearby public water groundwater abstraction began. Since then (1983) groundwater levels in the Sherwood Formation steadily increased through the 1990s through to around 2006.


Levels in the Hatfield Moor are refilled by local rainfall. Winter refill at Hatfield Moor was low in the winters of 2005/06, 2010/11 and since 2016/17.

#### 3.3.2.3 River Idle catchment

Pertinent groundwater monitoring for the lower Idle catchment is presented in Figure 3.2 along with the flow record for the Idle at Mattersey and water level monitoring for the Idle at Bawtry Bridge. Groundwater levels do increase over extended periods of wet weather (with flow also increasing) and


AECOM

drop during extended drier periods. Responses are lower and smoothed out when compared to the surface water monitoring, as would be expected. Between 2000 and present the groundwater levels at Serlby Park varied by not much more than 1m, which is several metres less than at the Torne site examined in Section 3.3.2.2 (noting that the latter may be heavily influenced by nearby abstractions).



## Figure 3.5 Groundwater and correspondent flow monitoring (River Idle at Mattersey flow gauge) at sites in the lower Idle catchment

Groundwater levels in the upper catchment, at Penniment Farm, were also examined as indicated in Figure 3.6. Winter rises, correspondent to periods of high and extended rainfall, such as from the spring of 2012, and summer drawdown patterns are apparent. Decreases were apparent in the period 1990 -2010 which may be related to abstraction patterns.



AECOM

## Figure 3.6 Groundwater and correspondent flow monitoring at sites in the upper Idle catchment

#### 3.3.3 Groundwater Conceptualisation

The 2015 Feasibility Study<sup>12</sup> stated that groundwater recharge may be impacted by abstraction of high river flows, where losing sections of river may enable surface water to recharge the aquifer, particularly where groundwater abstractions drawdown the groundwater level in the vicinity of surface water courses.

However, overall, the recharge to the aquifer is expected to largely occur through the mechanism of rainfall recharge over the wider permeable catchment. Considering that the Sherwood Sandstone aquifer supports a significant amount of groundwater abstraction, localised recharge from flow losses could not support such volumes of abstraction.

Stream flow hydrographs are available for gauges situated where the rivers overlie the Cadeby Formation aquifer and the Sherwood Sandstone Group aquifer. In the rivers Poulter, Meden and Maun accretion occurs across the Cadeby Formation and there is limited or no accretion evident across the Sherwood Sandstone. Some streams do not flow over the Cadeby Formation and tend to have no flow during summer compared to streams with Cadeby Formation baseflow contributions.

<sup>&</sup>lt;sup>12</sup> AECOM (2015) - High Flow Abstraction for Multiple Environmental Benefits in the Idle and Torne Catchments – A Feasibility Study - Phase 1 Report

Less accretion tends to occur nearer to the eastern edge of the Sherwood Sandstone outcrop which may reflect proximity to drawdown caused by groundwater abstractions in the confined aquifer.

The pattern of the hydrographs at the downstream gauge for each river is very similar to that of the upstream gauge which represents baseflow from the Cadeby Formation. As the nature of the hydrograph changes little downstream across the Sherwood Sandstone this also indicates that little accretion occurs, and flow is dependent on the upstream Cadeby Formation baseflows.

Significant levels of groundwater abstraction from the Sherwood Sandstone are considered to have lowered groundwater levels such that rivers lose flow to the unconfined Sherwood Sandstone aquifer.

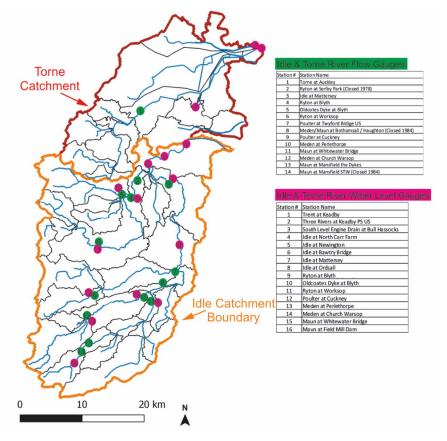
Accretion data are geared around low flows but due to relatively constant abstraction for public water supply it is likely that at high flows the water table remains below riverbed elevation across many reaches overlying Sherwood Sandstone and flow losses continue to occur.

Groundwater contouring in the Sherwood Sandstone indicates that significant extents of these rivers do not gain baseflow from the Sherwood Sandstone at high groundwater levels. There is no convergence of groundwater contours to the River Poulter to indicate discharge of groundwater to form baseflow. The River Meden may gain flow in its central reaches while not accreting in upper reaches and losing in lower reaches. The River Maun may gain in the upper reaches and lose in the lower reaches across the Sherwood Sandstone. The River Idle flows northerly close to where the Sherwood Sandstone outcrop ends and becomes confined by overlying Mercia Mudstone. Groundwater contours indicate there is no discharge of groundwater to the River Idle and groundwater flows north easterly into the confined aquifer. In the north the River Torne may gain baseflow through superficial deposits in the lower catchment level-dependent areas.

Therefore river flows across the Cadeby Formation are very important for maintaining flow across the Sherwood Sandstone. A reduction in flow in the rivers overlying the Cadeby Formation would mean lower flows further downstream which may lead to environmental flow issues.

Water quality in public water supply groundwater abstractions adjacent the Rivers Poulter (Elkesley), Idle (Everton), and Meden (Budby) has been noted to be similar to surface water quality and considered to be an indication of the abstractions drawing surface water through the aquifer.

There have also been reports since the 1970s of stream bed fissures appearing suddenly as a result of underground mining subsidence, and causing flow loss, in Rainworth Water (including Rufford Lake drying out), and the rivers Maun, Meden and Poulter. Stream bed repairs including reprofiling and bed-sealing have been undertaken. The most significant impacts have been around the confluence of the Rivers Maun and Meden. Therefore in these locations in particular there is potential for flow loss related to former collieries where further subsidence may occur and the remedial works may deteriorate over time.


By their nature the reported fissures are the large visible features, while it can be expected that there will be many more smaller fissures which will increase the permeability of the Sherwood Sandstone and alongside abstraction may be contributing to the lack of baseflow accretion across this aquifer.

#### 3.4 Hydrology

#### 3.4.1 Hydrological Monitoring network

An overview of the hydrological monitoring network sites is provided in Figure 3.7 below. Flow gauges are present through the free flowing parts of both catchments while surface water (river) level monitoring is more extensive in the low lying pumped sections in which levels are managed.

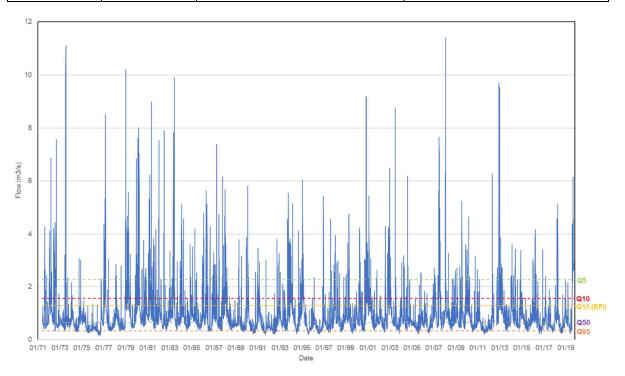
#### AECOM



#### Figure 3.7 Flow and River Level Monitoring in the Idle and Torne catchments

#### 3.4.2 River Torne catchment

#### 3.4.2.1 Flows


Flow is monitored in the River Torne at Auckley (see Figure 3.7 above). The flow record extends from 1971 to present. Elevation at the gauge is 2.2m AOD while the maximum altitude in the catchment is 150m AOD and median altitude is 23m AOD. A Flood Attenuation by Reservoirs and Lakes (FARL) index of 0.97 indicates limited presence of attenuating waterbodies, such as lakes or reservoirs, upstream of the gauge. The average annual rainfall between (SAAR 1961-1990) is reported to be 617mm<sup>13</sup>, which is below average for England.

Key flow statistics for the gauge are indicated in Table 3.2 below while a hydrograph is provided in Figure 3.8. Flows above theQ15 may be reduced if the catchment were opened up to abstractions. An indication of "wet" years (2000, 2001, 2002, 2007 and 2014) and "dry" years (2005, 2006, 2011, 2015 and 2016) is apparent from Figure 3.4 and Table 3.1, presented above.

<sup>&</sup>lt;sup>13</sup> National Flow Archive- Torne at Auckley. <u>https://nrfa.ceh.ac.uk/data/station/info/28050</u>

| Flow Statistic  | All Year | Hydrological Summer (Apr-Sept) | Hydrological Winter (Oct- Mar) |
|-----------------|----------|--------------------------------|--------------------------------|
| Q <sub>99</sub> | 0.26     | 0.23                           | 0.33                           |
| Q <sub>95</sub> | 0.33     | 0.30                           | 0.41                           |
| Q <sub>70</sub> | 0.52     | 0.45                           | 0.63                           |
| Q <sub>50</sub> | 0.66     | 0.56                           | 0.81                           |
| Q <sub>30</sub> | 0.90     | 0.71                           | 1.08                           |
| Q <sub>15</sub> | 1.28     | 0.97                           | 1.50                           |
| Q <sub>10</sub> | 1.56     | 1.21                           | 1.81                           |
| Q <sub>5</sub>  | 2.26     | 1.85                           | 2.43                           |

#### Table 3.2 Flow Statistics for the River Torne at Auckley Gauge

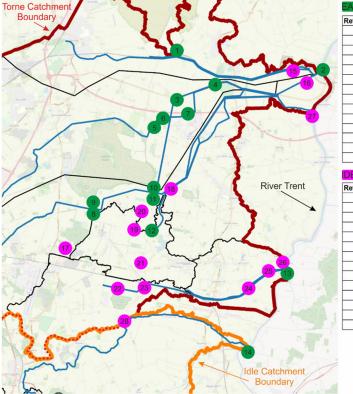


#### Figure 3.8 Torne at Auckley Hydrograph

#### 3.4.2.2 Levels

There are three surface water (river) level monitoring gauges in the Torne catchment. Another is located just downstream in the Tidal Trent while one is associated with lake levels (at Hatfield Lake).

Water levels are monitoring in the "Three Rivers", which forms as the Torne converges with South Engine Drain and Hatfield Waste Drain, just upstream of Keadby pumping station (which discharges into the Tidal Trent). A summary of the surface water level statistics at this sites are provided in Table 3.3 below. The level range between the maximum and minimum recorded levels is less than 2m while 90% of the time levels are between 0.18 and 0.52m AOD indicating a small range.




| Level statistic | Level (m AOD) |
|-----------------|---------------|
| Maximum         | 1.19          |
| H₅              | 0.54          |
| H <sub>10</sub> | 0.52          |
| H <sub>30</sub> | 0.47          |
| H <sub>50</sub> | 0.41          |
| H <sub>70</sub> | 0.35          |
| H <sub>95</sub> | 0.18          |
| Minimum         | -0.63         |

#### Table 3.3 Level flow statistics for the Three Rivers at Keadby PS US (1997 -2019)

Levels are also monitored upstream in South Engine Drain although the records seems to indicate notable drift, particularly through 2013 to 2016 which would make the level statistics unreliable. Hence this record has not been considered further as part of this study.

A map of pumping station across the Isle of Axholme is provided in Figure 3.9 below. Most of these are located in the lower Torne catchment.



| EA Operati  | ed Pump Stations     |                          |         |
|-------------|----------------------|--------------------------|---------|
| Reference # | Pumping Station      | Discharging to           | Op Auth |
| 1           | New Zealand          | North Soak Drain         | EA      |
| 2           | Keadby               | River Trent              | EA      |
| 3           | Dirtness             | South Level Engine Drain | EA      |
| 4           | Belton Grange        | Hatfield Waste Drain     | EA      |
| 5           | Goodcop              | Hatfield Waste Drain     | EA      |
| 6           | Low Bank             | River Trent              | EA      |
| 7           | Woodcarr             | Hatfield Waste Drain     | EA      |
| 8           | Candy Farm South     | River Torne              | EA      |
| 9           | Candy Farm North     | River Torne              | EA      |
| 10          | Tunnel Pits North    | River Torne              | EA      |
| 11          | Tunnel Pits South    | River Torne              | EA      |
| 12          | Bull Hassocks        | South Level Engine Drain | EA      |
| 13          | Snow Sewer Drainhead | River Trent              | EA      |
| 14          | West Stockwith       | River Trent              | EA      |

#### DB Operated Pump Stations

| Reference # | Pumping Station   | Discharging to             | <b>Operation Authority</b> |
|-------------|-------------------|----------------------------|----------------------------|
| 15          | North Soak Drain  | North Soak Drain           | Tween Bridge               |
| 16          | Althorpe          | Three Rivers               | Althorpe IDB               |
| 17          | Blaxton Quarry    | River Torne                | Hatfield Chase IDB         |
| 18          | Greenham          | South Level Engine Drain   | West Axholme IDB           |
| 19          | South Thorne Bank | (South Level Engine Drain) | Hatfield Chase IDB         |
| 20          | Franklins         | (South Level Engine Drain) | Hatfield Chase IDB         |
| 21          | Cadmans           | (South Level Engine Drain) | Hatfield Chase IDB         |
| 22          | Snow Sewer        | Warping Drain              | Finningley IDB             |
| 23          | Park Drain        | Warping Drain              |                            |
| 24          | Four Bridges      | Warping Drain              | South Axholme IDB          |
| 25          | Three Bridges     | Warping Drain              | South Axholme IDB          |
| 26          | South Street      | River Trent                | South Axholme IDB          |
| 27          | Derrythorpe       | River Trent                | West Axholme IDB           |
| 28          | Idle Stop         | River Idle                 |                            |

#### Figure 3.9 Map of Environment Agency and IDB pumping stations through the Isle of Axholme

#### 3.4.3 River Idle catchment

#### 3.4.3.1 Flows

The River Idle forms at the confluence of the Rivers Maun and Poulter. Key tributaries of the Maun include the River Meden and Rainworth Water. Close upstream of Bawtry Bridge (beyond which the Idle is level dependent) the River Ryton joins the River Idle. Key tributaries of the River Ryton are Old



Cotes Dike and Anston Brook. Flow is and has been monitored throughout the River Idle catchment at a number of sites encompassing many key tributaries (see Figure 3.7 previously). Summary flow information for those sites in the Idle catchment is provided in Table 3.4 below.

|                                           |                                      |       |         | Flow statistic (m3/s) |             |             |             |            |       |                   |
|-------------------------------------------|--------------------------------------|-------|---------|-----------------------|-------------|-------------|-------------|------------|-------|-------------------|
| Name                                      | Catchment<br>Area (km <sup>2</sup> ) | Start | End     | <b>Q</b> 95           | <b>Q</b> 70 | <b>Q</b> 50 | <b>Q</b> 10 | <b>Q</b> 5 | QMED* | POT<br>threshold* |
| Ryton at Serlby<br>Park                   | 231                                  | 1965  | 1978    | 0.45                  | 0.98        | 1.27        | 3.23        | 4.42       | -     | -                 |
| Idle at Mattersey                         | 529                                  | 1982  | ongoing | 0.86                  | 1.52        | 2.02        | 4.55        | 5.73       | 10.2  | 6.934             |
| Ryton at Blyth                            | 231                                  | 1984  | ongoing | 0.59                  | 0.95        | 1.19        | 2.69        | 3.67       | 11.5  | 6.318             |
| Old Coates Dyke<br>at Blyth               | 85.2                                 | 1970  | ongoing | 0.26                  | 0.39        | 0.50        | 1.16        | 1.59       | 14.1  | 4.254             |
| Ryton at Worksop                          | 77                                   | 1970  | ongoing | 0.09                  | 0.19        | 0.28        | 0.92        | 1.34       | 5.47  | 2.636             |
| Poulter at Twyford<br>bridge              | 128.2                                | 1969  | ongoing | 0.23                  | 0.40        | 0.50        | 0.94        | 1.18       | -     | -                 |
| Meden/ Maun at<br>Bothamsall/<br>Haughton | 262.6                                | 1965  | 1984    | 0.78                  | 1.18        | 1.41        | 2.68        | 3.42       | -     | -                 |
| Poulter at<br>Cuckney                     | 32.2                                 | 1969  | ongoing | 0.16                  | 0.23        | 0.28        | 0.50        | 0.60       | -     | -                 |
| Meden at<br>Perlethorpe                   | 97                                   | 1994  | ongoing | 0.35                  | 0.51        | 0.62        | 1.11        | 1.36       | -     | -                 |
| Maun at<br>Whitewater Bridge              | 157                                  | 1997  | ongoing | 0.47                  | 0.64        | 0.75        | 1.36        | 1.75       | -     | -                 |
| Meden at Church<br>Warsop                 | 63                                   | 1965  | ongoing | 0.25                  | 0.37        | 0.48        | 1.06        | 1.39       | 4.75  | 3.558             |
| Maun at Mansfield the Dykes               | 31.5                                 | 1992  | ongoing | 0.46                  | 0.55        | 0.62        | 1.05        | 1.31       | 13.2  | 6.862             |
| Maun at Mansfield<br>STW                  | 28.8                                 | 1964  | 1984    | 0.24                  | 0.32        | 0.37        | 0.72        | 0.96       | 11    | 6.777             |

Table 3.4 Summary flow information for gauges in the River Idle catchment

\* From the National Flow Archive.

Flow in the River Idle catchment is not measured in the downstream level dependent pumped section. It is measured in the low lying part of catchment upstream of the level dependent section, however. Specifically flow in the River idle is measured at the Mattersey gauge This gauge is located on the River Idle upstream of its confluence with the River Ryton. Flow in the River Ryton is also measured upstream of its confluence with the River Idle (at Blyth). Further flow information at both of these low lying gauges is provided in Table 3.5 below (including the EFI of  $Q_{18}$  – flows greater than this are being assessed for abstraction impact).

|                   | Idle at Mattersey |                                                |                                              | Ryton at Blyth |                                                |                                         |  |
|-------------------|-------------------|------------------------------------------------|----------------------------------------------|----------------|------------------------------------------------|-----------------------------------------|--|
| Flow<br>Statistic | All Year          | Hydrological<br>Summer (April to<br>September) | Hydrological<br>Winter (October<br>to March) | All Year       | Hydrological<br>Summer (April<br>to September) | Hydrological Winter<br>(October- March) |  |
| Q <sub>99</sub>   | 0.34              | 0.30                                           | 0.62                                         | 0.59           | 0.49                                           | 0.98                                    |  |
| Q <sub>95</sub>   | 0.59              | 0.45                                           | 0.77                                         | 0.86           | 0.74                                           | 1.24                                    |  |
| Q <sub>70</sub>   | 0.95              | 0.85                                           | 1.15                                         | 1.52           | 1.27                                           | 1.87                                    |  |
| Q <sub>50</sub>   | 1.19              | 1.02                                           | 1.49                                         | 2.02           | 1.66                                           | 2.48                                    |  |
| Q <sub>30</sub>   | 1.59              | 1.25                                           | 1.96                                         | 2.82           | 2.23                                           | 3.35                                    |  |
| Q <sub>18</sub>   | 2.05              | 1.53                                           | 2.48                                         | 3.65           | 2.94                                           | 4.12                                    |  |
| Q <sub>10</sub>   | 2.69              | 1.95                                           | 3.21                                         | 4.55           | 3.94                                           | 5.15                                    |  |
| $Q_5$             | 3.67              | 2.73                                           | 4.29                                         | 5.73           | 4.82                                           | 6.53                                    |  |

#### Table 3.5 Flow Statistics for the River Idle at Mattersey and River Ryton at Blyth

A Flood Attenuation by Reservoirs and Lakes (FARL) index of 0.90 indicates limited presence of attenuating waterbodies, such as lakes or reservoirs, upstream of the gauge. The average annual rainfall between (SAAR 1961-1990) is reported to be 650mm<sup>14</sup>, which is below average for England.

#### 3.4.3.2 Levels

Surface water levels are measured at 13 sites throughout the Idle catchment. As mentioned above, Bawtry represents the location where the Idle changes from being free flowing to level controlled via a network of pumping stations, embanked sections and a terminal pumping station located at West Stockwith. Three of the 13 sites are located downstream of Bawtry, while ten are situated at (specifically at Bawtry Bridge) or upstream of Bawtry. Summary level statistics for sites downstream of Bawtry are provided in Table 3.6 while statistics for the other sites are provided in Table 3.7. As in the level dependent section of the Torne, there is limited variation in levels in the level dependent section of the Idle. 90% of the time they are within 0.35m at Ordsall, 0.66m at North Carr Farm and 0.67m at Newington.

| Data information or Level | Level (m AOD)   |                         |                   |  |  |  |
|---------------------------|-----------------|-------------------------|-------------------|--|--|--|
| (H) statistic             | Idle at Ordsall | Idle at North Carr Farm | Idle at Newington |  |  |  |
| Record Start Date         | 15/10/2001      | 06/06/1997              | 14/05/1997        |  |  |  |
| Record End Date           | 27/10/2019      | 27/10/2019              | 27/10/2019        |  |  |  |
| Maximum                   | 1.52            | 3.53                    | 3.82              |  |  |  |
| H <sub>5</sub>            | 0.55            | 2.50                    | 2.73              |  |  |  |
| H <sub>10</sub>           | 0.49 2.35       |                         | 2.56              |  |  |  |
| H <sub>30</sub>           | 0.37            | 2.11                    | 2.29              |  |  |  |
| H <sub>50</sub>           | 0.31            | 2.03                    | 2.16              |  |  |  |
| H <sub>70</sub>           | 0.26            | 1.95                    | 2.06              |  |  |  |
| H <sub>95</sub>           | 0.20            | 1.84                    | 1.91              |  |  |  |
| Minimum                   | 0.00            | 1.62                    | 1.65              |  |  |  |

Table 3.6 Level flow statistics for the River Idle level gauges (level dependent lower section)

<sup>14</sup> National Flow Archive- Idle at Mattersey. <u>https://nrfa.ceh.ac.uk/data/station/info/28015</u>



| Data information or | Level (m AOD)            |                       |                           |                             |                                |  |  |
|---------------------|--------------------------|-----------------------|---------------------------|-----------------------------|--------------------------------|--|--|
| Level (H) statistic | Idle at Bawtry<br>Bridge | Idle at<br>Mattersey  | Maun at Field<br>Mill Dam | Old Coates Dyke<br>at Blyth | Ryton at Blyth                 |  |  |
| Start Date          | 07/09/ 2003              | 26/04/1961            | 07/01/ 2003               | 01/08/ 1971                 | 01/04/ 1990                    |  |  |
| Record End Date     | 23/10/ 2019              | 24/10/2019            | 25/10/ 2019               | 23/10/ 2019                 | 23/10/ 2019                    |  |  |
| Maximum             | 4.30                     | 5.24                  | 108.46                    | 12.49                       | 9.86                           |  |  |
| H₅                  | 3.01                     | 4.03                  | 107.74                    | 10.97                       | 8.76                           |  |  |
| H <sub>10</sub>     | 2.83                     | 3.81                  | 107.71                    | 10.92                       | 8.66                           |  |  |
| H <sub>30</sub>     | 2.52                     | 3.48                  | 107.66                    | 10.86                       | 8.52                           |  |  |
| H <sub>50</sub>     | 2.37                     | 3.32                  | 107.64                    | 10.83                       | 8.46                           |  |  |
| H <sub>70</sub>     | 2.24                     | 3.21                  | 107.62                    | 10.80                       | 8.41                           |  |  |
| H <sub>95</sub>     | 2.08                     | 3.05                  | 107.59                    | 10.77                       | 8.33                           |  |  |
| Minimum             | 1.90                     | 2.80                  | 107.50                    | 10.57                       | 7.89                           |  |  |
| Data information or | Level (m AOD)            |                       |                           |                             |                                |  |  |
| Level (H) statistic | Ryton at<br>Worksop      | Poulter at<br>Cuckney | Meden at<br>Perlethorpe   | Meden at<br>Church Warsop   | Maun at White-<br>water Bridge |  |  |
| Start Date          | 18/06/1970               | 24/07/ 1969           | 01/01/ 1994               | 01/01/ 1970                 | 28/09/ 1992                    |  |  |
| Record End Date     | 23/10/2019               | 23/10/ 2019           | 24/10/ 2019               | 23/10/ 2019                 | 24/10/ 2019                    |  |  |
| Maximum             | 33.76                    | 46.02                 | 32.71                     | 54.65                       | 31.26                          |  |  |
| H₅                  | 32.29                    | 45.81                 | 32.03                     | 53.93                       | 30.59                          |  |  |
| H <sub>10</sub>     | 32.24                    | 45.79                 | 32.00                     | 53.88                       | 30.54                          |  |  |
| H <sub>30</sub>     | 32.17                    | 45.74                 | 31.94                     | 53.77                       | 30.48                          |  |  |
| H <sub>50</sub>     | 32.13                    | 0.13                  | 31.92                     | 0.26                        | 30.45                          |  |  |
| H <sub>70</sub>     | 32.10                    | 0.11                  | 31.90                     | 0.20                        | 30.43                          |  |  |
| H <sub>95</sub>     | 32.06                    | 0.08                  | 31.87                     | 0.15                        | 30.39                          |  |  |
| Minimum             | 32.01                    | 0.06                  | 31.58                     | 0.12                        | 30.30                          |  |  |

#### Table 3.7 Level flow statistics for the River Idle catchment (free flowing section)

#### 3.5 Hydromorphology

#### 3.5.1 Overview

During the 2015 Feasibility Study, it was concluded that the most likely sensitive reaches would be those largely unmodified and those reaches susceptible to a reduction in out of bank flows (i.e. with lateral connectivity to the floodplain remaining in the absence of embankments). Modified channels can be over-widened, over-deep and straightened resulting in a lack of habitat and flow diversity and disconnection from the floodplain. They may also suffer from excessive siltation, with oversized channels reducing velocities, which can smother habitat or spawning grounds, such as gravel beds. Connectivity with the floodplain is important as it provides, amongst others, additional ecological habitat and increases the potential for removal of fine silt from river systems. A reduction in the magnitude of high flows, as a result of abstraction, can reduce connectivity with the floodplain and reduce the likelihood of fines being flushed.

A review of the hydromorphology in the Idle and Torne catchments has been undertaken. This involved the following:

- A review of the catchment;
- A review of River Habitat Survey (RHS) information;
- A review of British Library Records Annual Account Records for the catchments;

AECOM

- A review of River Idle and River Torne topographical survey information provided to us (including a longitudinal channel profile information);
- A review of 2 year flooding extents from the recently constructed Flood Modeller Pro models of the River Idle and River Torne;
- A review of Environment Agency ecological monitoring of relevance to hydromorphology; and
- Calculation and review of sediment fluxes in both catchments.

The review has focussed on assessing the hydromorphological sensitivity of the waterbodies in the catchment, for the reasons described above.

#### 3.5.2 Catchment Review

The maximum elevation in the Torne and Idle catchments is 205 mAOD<sup>15</sup> in the southwest headwaters of the River Idle, and whilst the headwater locations have some moderately steep areas, the majority of the catchments and channels drain gentle lowland relief, and surface hydrology is strongly influenced by groundwater.

Given the nature of catchment drainage, the River Torne and River Idle channels are predominantly low energy, slow flowing systems.

The natural channels of the headwater streams (e.g. the Maun) would be inherently sinuous. Their typology would be a pebbly, gravel bed channel with relatively feeble secondary currents insufficient to erode the bends in the floodplain. However many of the streams have historically been modified by pressures such as flood and land drainage works, localised straightening and milling, all with the potential for erosion and release of sediment to reaches downstream. The main stems of the Idle and Torne are generally "artificial channels" constructed many hundreds of years ago. They replace or augment the original channels which map evidence seems to indicate had a more sinuous lowland course. Again these channels do not actively migrate across the floodplain (either naturally or in modified form). Given the low slopes they have potential to form sediment sinks, into which fine sediment washed from adjacent farm land may deposit/ accumulate. Historic dredging records indicate the scale of desilting that has been needed (see Section 3.5.4).

Parent fluvial sedimentology is predominantly sands, with Sherwood Sandstone the main underlying geology, and fine material with gravels. Survey records provided by the Environment Agency report gravel bedded channels in places, and this is typical of natural channels in this setting, since the matrix of fine parent material tends to be winnowed by hydraulic action to leave less mobile larger substrates. These in turn form valuable channel bed habitats including fish spawning gravels.

Both catchments are dominated by agriculture and horticulture (some 50% of the catchment areas) and areas of grassland and woodland. There are also areas of urbanisation, notably in the southwesterly headwaters and central regions of the Idle catchment (mainly associated with the towns of Mansfield, Worksop, and East Retford). The soils in the catchment are amongst the most susceptible to aeolian erosion in the UK (Downs and Thorne, 1998). All of these land uses are prone to delivering excess fine sediment into river channels. The channels are also influenced by intermittent weirs and other structures which can trap sediments in the channels.

Catchment land use strongly influences channel morphology, and bed composition and structure in particular. The main impact is anthropogenically-influenced excessive fine sediment delivery into the channels. This is combined with extensive channel modifications for flood management (i.e. floodplain disconnection) for land use gains, including channel over-widening and over-deepening, and

<sup>&</sup>lt;sup>15</sup> General catchment data are available at the Centre for Ecology and Hydrology: <u>http://www.ceh.ac.uk/data/nrfa</u>

construction of embankments, which restricts the ability of the rivers to deposit sediment outside of their channels.

The "Geomorphological Monitoring Guidelines for River Restoration Schemes" report includes a case study on the River Idle, and describes the river as having experienced substantial sedimentation following cross-section enlargement and re-sectioning for flood defences between 1978 and 1982. Whilst the flood embankments were constructed over much of the course of the River Idle, the sinuosity of the channel was largely maintained (Environment Agency, 2007). The low gradient and corresponding low stream powers, accompanied by over-widening, means that extensive in-channel sediment deposition has created a uniform bed topography and as a result a low habitat diversity<sup>16</sup>. This pattern is likely to have been modified by periodic channel maintenance as well as capital works.

#### 3.5.3 RHS Sites

River Habitat Survey (RHS) is a method for gathering data and assessing the physical character and quality of the river, including whether channels are modified, and riparian habitats. As such the data is considered useful for this study. However, it is noted that the data is limited insofar as it does not assess processes, which are of importance to this study, although the data has been reviewed in order to establish the baseline and inform reach sensitivity.

RHS data is routinely collected by the Environment Agency as part of their monitoring network to establish the baseline and change characteristics of 500m river reaches of interest. RHS data have been collected throughout most of the River Idle and Torne catchments.

Since Phase 1<sup>17</sup> the Environment Agency has indicated that no they have not collected further RHS data in the idle and Torne catchments. Data provided during Phase 1 has hence been re-examined, covering 29 sites in total.

RHS data assessment includes a numerical Habitat Modification Score<sup>18</sup> (HMS) relating to the artificial modification of the channel. Sites are assigned to 5 different classes based on their HMS score (see Table 3.8). Since this study is focussed on looking at potential impacts associated with changes in winter flow levels within the channel, HMS scores were seen as a good indicator of the naturalness of the channel sections recorded during the RHS surveys.

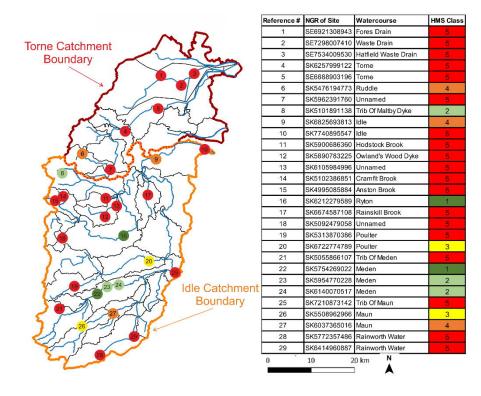
| Class | Description               |
|-------|---------------------------|
| 1     | Pristine and Semi Natural |
| 2     | Predominantly unmodified  |
| 3     | Obviously modified        |
| 4     | Significantly modified    |
| 5     | Severely modified         |

#### Table 3.8 Habitat Modification Classes and Descriptions

The survey locations and HMS classes for each of the 29 sites are indicated in Figure 3.10. Of the 29 sites, 19 were classed as 'Severely modified' (Class 5), three were classed 'Significantly modified' (Class 4) and two were classed as 'Obviously modified' (Class 3). A further three were classed

<sup>&</sup>lt;sup>16</sup> Environment Agency (2007) Geomorphological Monitoring Guidelines for River Restoration Schemes. Bristol, United Kingdom

<sup>&</sup>lt;sup>17</sup> AECOM (2015) - High Flow Abstraction for Multiple Environmental Benefits in the Idle and Torne Catchments – A Feasibility Study - Phase 1 Report


<sup>&</sup>lt;sup>18</sup> <u>http://www.riverhabitatsurvey.org/rhs-doc/habitat-assessment/</u> accessed 28/01/2020

'Predominantly unmodified' (Class 2) while the remaining two site were classed as 'Semi-natural or Pristine' (Class 1). Results are indicated in Figure 3.10 below.

Three of the five sites classed as either Class 1 or 2 were located in the Meden from Sookholme Brook WFD waterbody. No RHS monitoring is located on the Meden upstream and potentially the Meden may also be relatively unmodified in this waterbody. RHS data from one site in the Ryton also indicates that the watercourse is Class 1 (Ryton from Anston Brook to the Idle WFD waterbody).

It is considered that these largely unmodified sections would be more sensitive to abstractions of high flows as this may reduce out of bank flows (i.e. with the rivers likely to be more connected laterally to their natural floodplains in the absence of embankments).

Aside from these sites and based on a limited dataset, the RHS data indicates that much of the remaining catchment channel is severely modified, which is to be expected within a lowland catchment, heavily influenced by agriculture and horticulture and in some areas, urbanisation. Artificial, heavily modified and embanked waterbodies are more likely to be severed from their natural floodplain and therefore, subject to higher and more linear flows, which potentially have a detrimental impact on instream ecology. Embanked waterbodies can also lead to higher in channel velocities which may help keep gravel lenses free from silt, providing an ecological benefit.



#### Figure 3.10 RHS Location Points and HMS Classes

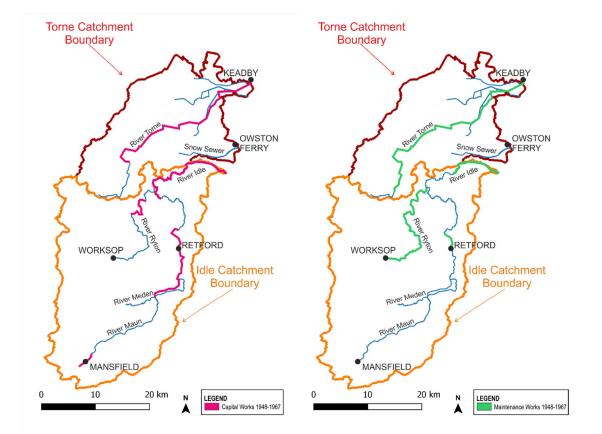
#### 3.5.4 British Record Library Review

Several reports and books describing the artificial nature of the Idle and Torne are held in the British Library and were consulted in December 2019 for this study at the Reading Rooms in London. Historically the Idle and Torne have been highly modified. Prior to 1628, much of the area through which the River Torne now passes was wet marshland and the river channel followed a different path. At that time the River Don flowed across Hatfield Chase from Stainforth to Adlinfleet. The River Idle routed northwards from a point then called Idle Stop, and joined the Don close to Sandtoft. The Torne formed two channels to the west of Wroot, both joining the Idle. In 1626, a Dutch river engineer Cornelius Vermuyden was given the task of draining Hatfield Chase, and he radically altered the

position of the rivers. The Idle became dammed at Idle Stop, and routed eastwards to join the Trent at West Stockwith (its current location). This left the Torne with no outfall into the Idle with the outcome that a new channel needed to be constructed, embanked along both sides, and a completely new channel was constructed for it, which was embanked on both sides. This channel runs ~10km in a north-easterly direction from Wroot, then traversing the Isle of Axholme. The channel the turns east for ~5 km, entering the River Trent at a sluice near Althorpe. Several artificial drains were also built to drain the Iand. The new route of the Torne was not entirely successful, as the embankments frequently failed, flooding agricultural land. In the 1760s, there were further plans to construct a new channel for the Torne to drain Potteric Carr, an area of wetland south of Doncaster. Work between 1765 and 1768 involved construction of a Mother Drain together with two branch drains. By the time the scheme was completed, 7km of the river channel had become rerouted, the Mother Drain had been extended to 7km, and in addition ~5 km of catchwater drains had been formed.

Subsequently between 1783 and 1789 following various studies separate outfalls were built at Althorpe for the Torne and the southern drain. In 1813, the South Engine Drain was routed under the Torne through a syphon, and became the third of the Three Rivers. The 1887 Ordnance Survey map shows only the Torne flowing eastwards from Pilfrey Bridge. It then splits into two at Althorpe using two sluices to drain into the Trent. As early as 1946, maps show a connection between the Torne and the middle of the Three Rivers, with a connection between the middle channel and the east channel downstream of Pilfrey Bridge. By 1966, the channels had become inter-connected much as they are at the current time.

Both the Torne and Idle have very low river gradients and must act as fine sediment sinks. Channels of this type are not natural gravel-bed rivers (i.e. those that actively transport sediment and adjust their planform) and instead are waterbodies that have been heavily modified in the past. Local movement of eroded bed and bank material occurs in the channels although silt predominates.


The search of the British Library in December 2019 for this study has revealed details of subsequent capital and maintenance works of both the Idle and Torne, and other river channels within the catchments. The information comes from the Statutory Annual Reports, for the period 1952 to 1966, of the Trent River Board, Nottingham. These searches are summarised in Figure 3.11 respectively.

For the Idle and Torne the maintenance and capital works records for the period 1952 – 1966, show activities that would be expected of a low gradient artificial channel with embankments and (for the Torne) sluices. Only the most spatially extensive works are included in Figure 3.11. Site-specific capital works such as bridge replacement and inverted syphons have been excluded from our analysis because they are limited in extent and few in numbers. The more continuous maintenance works are generally likely to have had little or no morphological impact by virtue of their nature e.g. trimming of overhanging trees; disposal of trees uprooted in high winds; and removal of silt and shoals by hand labour. The more extensive capital works are likely to have had a greater impact including channel regrading which can be defined as lowering of the bed (including removal of accumulated sediment deposits) to improve water levels for drainage purposes<sup>19</sup>.

Other activities such as embankment construction/ replacement/ repair will also have a hydromorphological effect by severing connectivity with the floodplain. Extensive regrading works have also been completed on the Meden and Ryton. The Maun at Mansfield has experienced capital works though has recovered due to higher stream energies<sup>20</sup>. Sediment dislodged/ sourced from these upstream tributaries (from arable and urban surfaces) would be expected to accumulate in the downstream sediment sinks of the Idle and Torne.

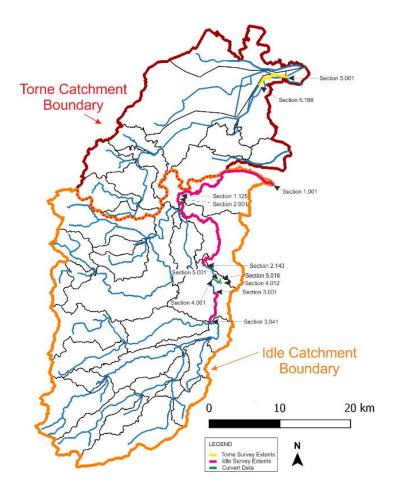
<sup>&</sup>lt;sup>19</sup> Brookes (1988) Channelized rivers: Perspectives for environmental management, Andrew Brookes, Wiley, Chichester

<sup>&</sup>lt;sup>20</sup> Brookes, A. (1987) River channel adjustments downstream from channelization works in England and Wales – Earth Surface Processes and landforms., 12, 337-351



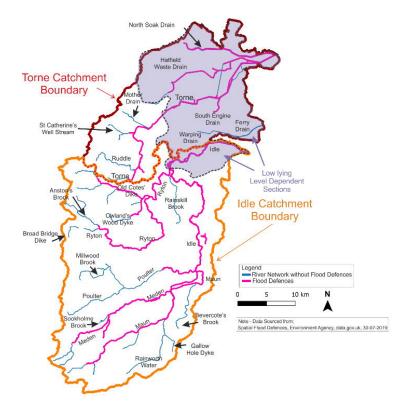
#### Figure 3.11 Capital and Maintenance Works from British Library Records

#### 3.5.5 Channel surveys


#### 3.5.5.1 Description

Topographical surveys (specifically channel cross sections) were undertaken for the Torne by Maltby Land Surveys Itd in November 2013 and Idle by Tower Surveys Ltd in March 2015 in support of the hydraulic models that were built and recently completed for both the Idle and Torne. The models are described further in Section 5.2 although the survey data has been provided to us and has been reviewed with regard to hydromorphology.

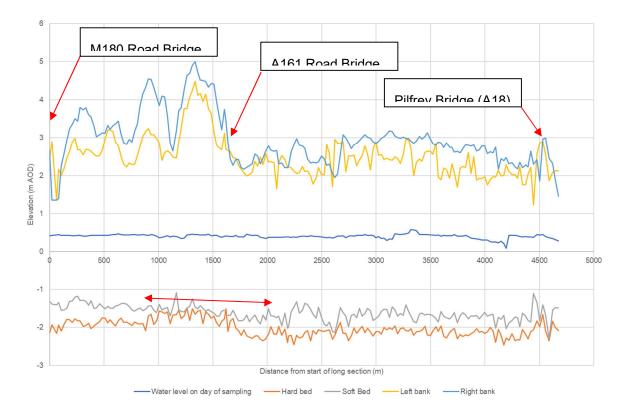
The locations of the topographical surveys are indicated in Figure 3.12 below. The cross- sectional profiles for the Torne are spaced at roughly 30m intervals spanning a range of widths from 30 - 50 meters. The cross-sectional profiles for the Idle are spaced at roughly 150m intervals spanning a range of widths from 30 - 50 meters. Survey data that was provided for the River Torne is limited to a small section towards the lower end of that system. Provided survey data for the Idle covers most of this river (noting that the names of river upstream of where it starts are different), with a gap of around 5.4km. Data on the other contributing catchments, such as the River Meden, River Maun and River Ryton has not been provided and it is likely that these have not been surveyed in detail.


AECOM

AECOM



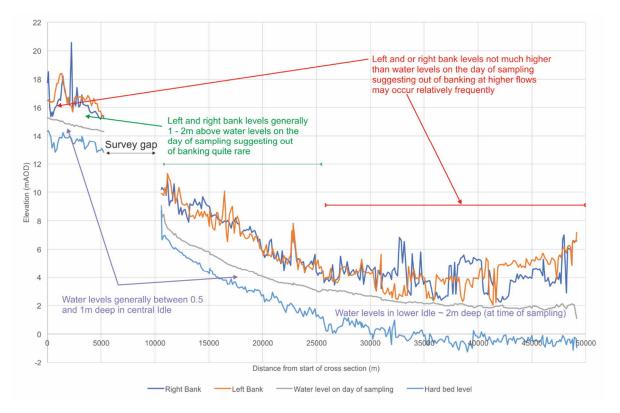
#### Figure 3.12 Location of recent Idle and Torne topographical and silt surveys


A map of flood defences in the River Idle and River Torne catchments is provided in Figure 3.13. The figures shows that flood defences (embanking anticipated) are most prevalent in the lower (downstream) and central parts of both catchment (although they extend into the upper parts of the catchments too).



#### Figure 3.13 Location of Idle and Torne Flood Defences

#### 3.5.5.2 Long sections and silt surveys


A longitudinal channel profile section from the Torne survey is provided in Figure 3.14 (interpolated between cross sections). The section illustrates a flat channel, with a slope of 0%. The long profile indicates that the water levels on the day of the survey are generally 1m below the bank levels along the small length of river reach surveyed. The average depth of silt throughout the surveyed reach was 0.41m, the maximum and minimum silt depth was 1.51m and 0m respectively, and the 25<sup>th</sup> and 75<sup>th</sup> percentile was 0.27m and 0.53m respectively. The character of the river appears to change at main roads that cross the river (roads are indicated on Figure 3.14). In the stretch around the A161 silt depths are at their lowest with the hard bed appearing to be higher than elsewhere in the surveyed reach.



#### Figure 3.14 River Torne survey long section (extent indicated on Figure 3.12)

A longitudinal channel profile section, including hard bed levels and right and left bank levels, interpolated from the Idle cross sectional surveys is given in Figure 3.15. Right bank levels at the top of the Idle are recorded as slightly more than water levels on the day of surveying, indicating that out of bank flows into the floodplain in this area may occur quite frequently. Through the remainder of the surveyed central Idle stretch, flow into the floodplain via out of bank flooding is considered likely to be more infrequent, however, with bank levels being around 1-2m higher than water levels in the channel at the time of the survey. Measured water levels through this stretch were generally between 0.5 and 1m on the day of the survey.

In the lower Idle out of bank flow into the floodplain could potentially occur at times of high or flood flows, with bank levels being of the order of 0.2m above measured water levels at a number of cross section locations, on the day of the topographical survey. This section is level controlled however which would likely reduce level variations through this stretch. Water levels on the day of sampling in this area were indicated to be around 2m.



#### Figure 3.15 River Idle survey long section

Silt depths in the lowermost reach of the Idle were also measured during the topographical survey (section 1.001 to 1.125 on Figure 3.12). These were indicated on a plot that is reproduced in Figure 3.16. This indicates silt depths of frequently 0.4 to 0.8m in the upstream sections and reduced silt depths throughout the central and downstream sections that were surveyed (generally up to 0.4m).

#### 29

### Upstream section

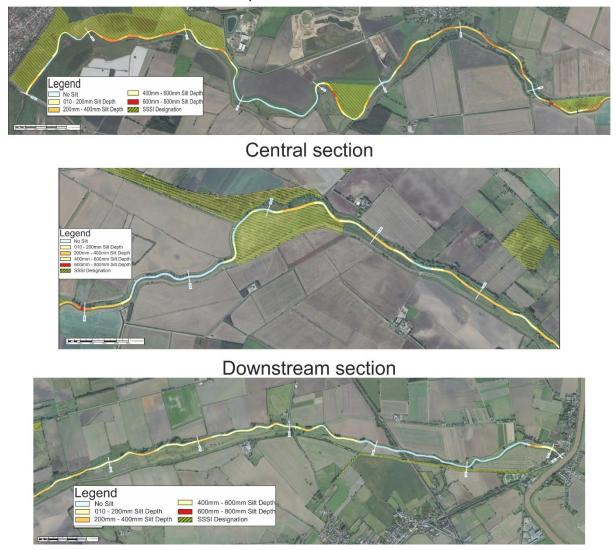



Figure 3.16 Hanson Aggregates Silt survey results (sampling occurred in 2015)<sup>21</sup>

### 3.5.6 Existing Hydraulic Modelling

New hydraulic models have been produced since the 2015 Feasibility Study and the suitability of their use for this current study is considered in Section 5.2. Nevertheless, the lowest event for which these models have already been run is the 50% AEP event (hereon referred to as the 1 in 2 year flood). High flows up to the 1 in 2 year flood are considered to be those which would be most frequently reduced by an abstraction of high flows (larger flows would occur less frequently).

The 1 in 2 year flood map of the Torne is indicated in Figure 3.17. This indicates that there is limited out of banking in the Upper Torne under the 1 in 2 year flood, particularly upstream of the low lying level dependent/ pumped section. Some out of bank flows are observed in the north-west part of the Torne catchment and to the south of Hatfield Moss (designated site). A greater floodplain area is inundated as a result of out of bank flow, is indicated in the lowermost part of the Torne catchment. The small area surveyed in the lower Torne is not associated with overtopping during the 1 in 2 year

<sup>&</sup>lt;sup>21</sup> Hanson Aggregates (2015) River Idle Silt Sampling

flood, corroborating the review of bank levels against water levels through this section (see 3.5.5.2). Areas of the floodplain inundated as a result of out of bank flows at flows less than the 1 in 2 year flood (and flows most likely to be reduced by abstractions at times of high flow/ down to the EFI flow) are not known though would be less than areas indicated in Figure 3.17.

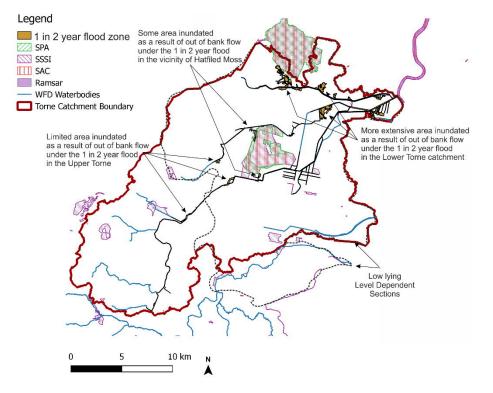
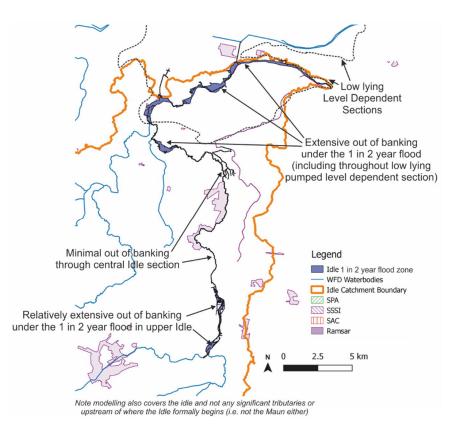
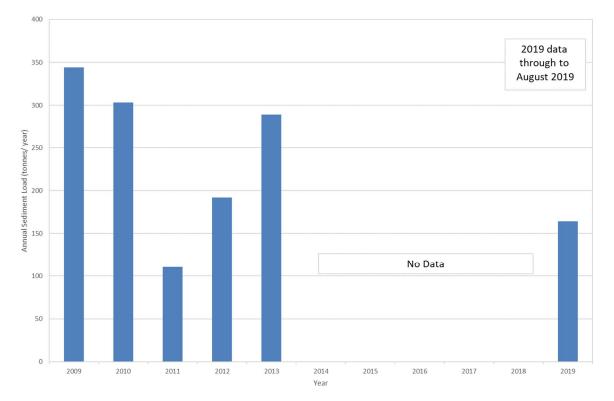




Figure 3.17 Torne 1 in 2 year flood extent

The 1 in 2 year flood map of the Idle is indicated in Figure 3.18. This indicates that flow is contained in the channel through the central section of the Idle (no floodplain inundation). Floodplain inundation as a result of out of bank flow is extensive in the low lying pumped section of the Idle while it is also quite extensive in the upper 5km of the Idle. This generally corroborates our interpretation of the topographical survey data presented in Section 3.5.5.2.

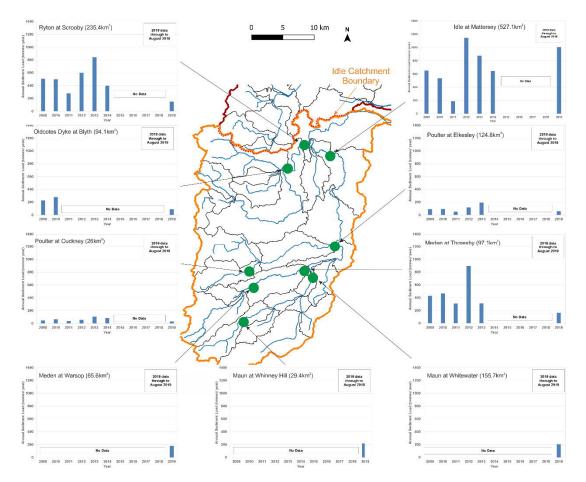
Note the River Idle 2d hydraulic modelling, discussed above, does not cover the main tributaries of the Idle, such as the River Ryton, River Meden, River Poulter or the River Maun (which continues into the River Idle in Retford).




#### Figure 3.18 Idle 1 in 2 year flood extent

#### 3.5.7 Sediment Loads

Annual suspended sediment loads (tonnes/ year) have been calculated at a number of water quality monitoring sites (see Section 3.6) in the vicinity of flow monitoring sites. Load calculations are determined by multiplying measured suspended sediment concentrations, measured at the routine Environment Agency water quality monitoring sites with correspondent daily mean flows (flow on the day of the water quality sampling and as measured at nearby flow gauges).


There is only a flow gauge in the Torne and so annual sediment loads have been estimated from the nearest water quality monitoring site (Torne at Auckley). Annual suspended sediment loads since 2009 are presented in Figure 3.19. The catchment size at the Auckley water quality monitoring site is 130.6km<sup>2</sup>. Total load is lowest in 2011, which was considered a dry year (see Table 3.1). Calculated loads in 2009 and 2010 were greater than in 2013 even though 2013 experienced more days of flow in the Torne being higher than the EFI (see Table 3.2). This suggests that flows lower than the EFI (though likely above average) delivered a steadier (smaller but more frequent) load in 2009 and 2010 compared to 2013.



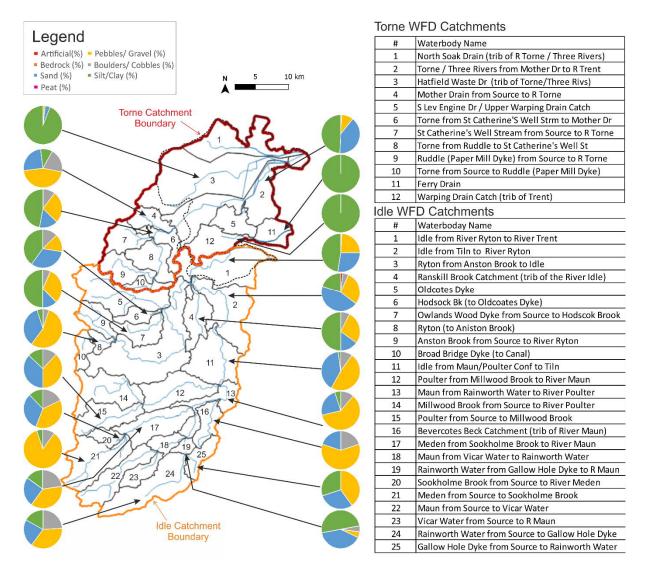
#### Figure 3.19 Annual Suspended Sediment Load Estimates in the Torne at Auckley

Annual suspended sediment loads for various water quality locations in the Idle catchment which have flow gauges near to them (enabling loads to be calculated) are presented in Figure 3.20. No data was collected between 2014 and 2018 and elsewhere data prior to 2019 was not collected at a number of the sites on smaller systems. Nevertheless a few observations have been made:

- Suspended sediment loads (tonnes) from the Meden and Maun appear to be higher and potentially combine to provide most of the loads that at calculated in the Idle downstream (at Mattersey);
- The Poulter system seems to provide a low load of suspended sediment to the Idle downstream (despite it having a similar catchment size to the Meden and Maun at their respective water quality monitoring points);
- Idle itself is relatively flat and is likely to be comprised of sediment transfer and sink sections (rather than sediment sources); and
- Calculated suspended sediment loads from the River Ryton are half of those determined in the Idle catchment. The catchment size of the River Ryton is around half of that in the idle suggesting that suspended sediment loads in both are proportionate to one another.



#### Figure 3.20 Annual Sediment Load Estimates in the Idle catchment


#### 3.5.8 Environment Agency Ecological Monitoring information

#### 3.5.8.1 Channel substrate

Information on channel substrate (% different types) has been gathered during routine Environment Agency ecological (macroinvertebrate, macrophyte and fish) monitoring surveys. This information has been analysed at a waterbody level (with sites in that waterbody grouped together) and is summarised in Figure 3.21. It is noted that the averaging of results may result in certain more seemingly high valuable sites being less apparent or hidden.

The Torne is heavily silted, especially in its lowest lying reaches. A high proportion of pebbles and gravels was recorded in Mother Drain in particular though.

High proportions of boulder, cobbles, pebbles and gravels (typically at least 50% of the substrate) were observed throughout much of the upper waterbodies in the Idle catchment with silt and sand more dominant in the low lying parts of the system too. The prevalence of silt is less marked in the lower (downstream) parts of the Idle catchment, compared to the Torne though.





#### 3.5.8.2 Other information

A number of images and Environment Agency WFD Reasons for Failure (RFF) documents for various waterbodies in both catchments have been provided to us, indicating the nature of the watercourse at various locations. Images are provided in Table 3.9 along with a brief description of the site, from a hydromorphological perspective (where information was available).

#### Table 3.9 Compilation of imagery from ecological monitoring sites and WFD reports and watercourse hydromorphological description

| WFD Waterbody and Reasons<br>for Failure reference              | Imagery (presented from upstream to downstream in each waterbody for those with multiple images)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description (based on imagery and Reason fo                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Idle waterbodies                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                               |
| Anston Brook from Source to<br>River Ryton                      | No imagery provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                               |
| Bevercotes Beck Catchment (trib<br>of River Maun) <sup>22</sup> | With the second seco | Both channels look to have been historically man<br>lateral connectivity, which would benefit flood man<br>wetland areas are absent or depleted and sensitiv<br>fine sediment (and associated pollutant) loads man<br>deposition, and high flow abstraction could exace<br>channel. Homogeneous nature of watercourse re<br>the steeper sections of the beck is reported in the |
| Broad Bridge Dyke (to Canal)                                    | No imagery provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                               |
| Gallow Hole Dyke from Source to<br>Rainworth Water              | No imagery provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                               |
| Hodsock Bk (to Oldcoates Dyke)                                  | No imagery provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                               |
| ldle from Maun/Poulter Conf to<br>Tiln                          | No imagery provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | All channels appear engineered (realigned and d<br>connectivity and sediment loads. Flows in these i<br>lying and level dependent (with levels generally c<br>(turbid) image of the Idle at Misterton, marginal h<br>species and assemblages may be dependent on<br>which could be affected by high flow abstraction.                                                           |
| Idle from River Ryton to River                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                 |

### for Failure descriptions)

anaged, straightened, and deepened, so are likely to have poor nanagement. However, it would also mean that out-of-channel sitive to any further hydrological change. Similarly, in-channel may be excessive due to reduced capacity for floodplain acerbate this and reduce sediment flushing capacity in the reported, resulting in lack of species diversity, Bank erosion in the RFF report.

d deepened) and embanked, which will have impacts on lateral se images appear to be near bankfull though waterbody is low y controlled within a narrow level envelope). In the right hand il habitats appear inundated that would usually be dry. Some on particular inundation regimes (depths and frequencies) on.

<sup>&</sup>lt;sup>22</sup> Environment Agency (2016) Bevercotes Beck Macrophyte/ Phytobenthos Failure

| WFD Waterbody and Reasons<br>for Failure reference | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason fo                                                                                                                                                                                               |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | <image/>                                                                                         |                                                                                                                                                                                                                                           |
|                                                    | Idle @ Misterton (SK76466 96231)                                                                 | Both channels appear engineered (realigned and                                                                                                                                                                                            |
|                                                    | Idle Tiln (SK70299 84241)                                                                        | to new hydrological changes. The Idle at Tiln is ve<br>appear to be managed grass banks (i.e. vegetatio<br>could mean high flow abstraction has relatively lit<br>affected. The Idle at Chain Bridge appears to hav<br>bare silt margin). |
| Idle from Tiln to River Ryton                      | Ide Thir (Or O255 04247)<br>Ide Chain Bridge Lane (SK7135685787)                                 |                                                                                                                                                                                                                                           |

and deepened) so existing degraded habitats may be sensitive s very uniform with a well defined baseflow channel and what ation cut back to mitigate flood debris and blockage risks). This y little impact, because there is little diversity of habitats to be have been photographed at low flow (as shown by the exposed

| WFD Waterbody and Reasons for Failure reference | Imagery (presented from upstream to downstream in each waterbody for those with multiple images)              | Description (based on imagery and Reason f                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 | Maun at Ollerton (Sk65472 67804)                                                                              | Images show an engineered channel (realigned<br>hydrological changes. The Maun at Ollerton is p<br>macrophyte (which appears to Himalayan Balsa<br>mean high flow abstraction has relatively little im<br>affected. The Maun at Whitewater is also physic<br>which appears to be layered according to height<br>bridge, and possibly some trailing or even emerg<br>more terrestrial species higher up the profile. |
|                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Maun from Rainworth Water to<br>River Poulter   | Maun at Whitewater (SK66281 70255)<br>Maun at Whitewater (SK66281 70255)<br>Maun at Whitewater (SK6636770406) |                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Maun from Source to Vicar Water                 |                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Maun from Vicar Water to<br>Rainworth Water     | No imagery provided                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### for Failure descriptions)

ed and deepened) which would be of reduced sensitivity to new s physically very uniform with continuous and single species of Isam but not confirmed from the image available). This could impact, because there is little diversity of habitats to be sically uniform, but at least has some low diversity of species, ght above water level. There is a marginal community at the lergent species around water level in the other image compared

| WFD Waterbody and Reasons<br>for Failure reference | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason fo                                                                                                                                                                                                                                                               |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    |                                                                                                  | The Meden at the Carrs and at Budby looks to be<br>management than other rivers in the catchment,<br>appear to have aquatic and submerged macroph<br>so bed habitats may be vulnerable to reduced fin<br>high flows are abstracted. The Meden at Carrs W<br>above bank side macrophytes opposite concrete |
|                                                    | Meden at the Carrs (SK5675568341)                                                                |                                                                                                                                                                                                                                                                                                           |
|                                                    | Meden at the Carrs Warsop (SK56755 68341)                                                        |                                                                                                                                                                                                                                                                                                           |
| Meden from Sookholme Brook to<br>River Maun        | Meden at Budby (SK61797 70176)                                                                   |                                                                                                                                                                                                                                                                                                           |

#### for Failure descriptions)

be high value habitat and much less impacted by historic nt, so these sites could be more sensitive to deterioration. Both phyte populations. Budby seems to have surface bed gravels, fine sediment transport (less flushing / increased deposition) if Warsop is physically very uniform with managed vegetation ete and little diversity of habitats.

| WFD Waterbody and Reasons for Failure reference       | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason fo                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       |                                                                                                  | The Meden from source to Sookholme brook has<br>and what appear to be natural and high quality h<br>Mill and where there are culverts and concrete be<br>have little impact. Bank erosion is unlikely to be so<br>reaches with a diverse range of habitats may be<br>riparian habitats likely to have some dependency<br>detrimentally affected if they are not wetted as from<br>abstraction may be counter-balanced by increase<br>exist at baseflow should not be significantly affected |
|                                                       | Example of bank erosion (SK49109 61774)                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                       |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Meden from Source to<br>Sookholme Brook <sup>23</sup> | Meden at Pleasley (SK49600 63300)                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### for Failure descriptions)

has a diverse range of habitats including engineered reaches r habitats. Modified reaches such as at Pleasley and Newbound banks are generally uniform so high flow abstraction would e significantly affected by high flow abstraction. More natural be more sensitive to changes in peak flows, with marginal or ney on an inundation regime; sensitive species may be frequently, but the effects of reduced peak flows due to ased flow peaks due to climate change. Riffles and runs that fected by high flow abstraction.

<sup>&</sup>lt;sup>23</sup> Environment Agency (2016) WFD Investigation Meden from source to Sookholme Brook.

| WFD Waterbody and Reasons for Failure reference | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason fo |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                 | Madage dia Naukaund Mill (SK/1621.62286)                                                         |                                             |
|                                                 | Meden d/s Newbound Mill (SK49621 63286)                                                          |                                             |
|                                                 | Barrier to fish migration (SK50542 64224)                                                        |                                             |

| WFD Waterbody and Reasons<br>for Failure reference | Imagery (presented from upstream to downstream in each waterbody for those with multiple images)                                                                                  | Description (based on imagery and Reason fo |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                    | Riffe section                                                                                                                                                                     |                                             |
|                                                    | Meden (SK50578 64363)                                                                                                                                                             |                                             |
|                                                    | Deep water with low flow velocity<br>and high sedimentation                                                                                                                       |                                             |
|                                                    | Meden (SK50720 64756)                                                                                                                                                             |                                             |
|                                                    | Coarse woody debris and<br>overhanging vegetation<br>Riffle and run flow over<br>cobbles and boulders                                                                             |                                             |
|                                                    | Meden (SK50782 64822)           Image: Meden (SK50782 64822)           Image: Meden (SK50782 64822)           Image: Meden (SK50782 64822)           Image: Meden (SK52848 65178) |                                             |

| WFD Waterbody and Reasons for Failure reference | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason fo |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                 |                                                                                                  |                                             |
|                                                 | Meden (SK52708 65136) showing area of cattle poaching                                            |                                             |
|                                                 | Weden (SK52856 65175)                                                                            |                                             |
|                                                 |                                                                                                  |                                             |
|                                                 | Meden at Littlewood (SK53177 65282)                                                              |                                             |

| /FD Waterbody and Reasons<br>or Failure reference | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason f |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                   | Meden at Hammerwater Bridge (SK55587 67509) showing excessive algal growth and siltation         |                                            |
|                                                   | Meden at Hammerwater Bridge (SK55600 67531)                                                      |                                            |
|                                                   | Meden d/s Hammersmith Bridge (SK55606 67570). Accumulated silt evident                           |                                            |

| WFD Waterbody and Reasons<br>for Failure reference | Imagery (presented from upstream to downstream in each waterbody for those with multiple images)                                                                                                               | Description (based on imagery and Reason f                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | <image/>                                                                                                                                                                                                       | Hooton Dyke upstream to Riddings Close appear<br>flow abstraction could be detrimental to water de<br>loads may be associated with waste water disch<br>flows is likely to mean less flushing of pollutants<br>Maltby Dyke and Oldcotes Dyke look to be diver<br>connections will serve important functions. High<br>out of channel habitats. Oldcotes Dyke at Blythe<br>realignment, so may already have poor lateral co |
| Oldcotes Dyke <sup>24</sup>                        | Hooton Dyke with high proportion of Cladophora overlaying silt on the substrate (NGR not provided)Image: Strate of Strate of Strate Hooton (NGR not provided)Image: Strate of Strate Hooton (NGR not provided) |                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### for Failure descriptions)

pears to have a well connected floodplain and wetlands, so high dependent habitats outside of the channel. Elsewhere, high silt scharges and other adjacent land uses, and a reduction in peak nts, higher pollution retention time, and less pollutant dilution. verse, high value habitats where channel – floodplain – wetland gh flow abstractions could be detrimental to both in-channel and he Old Bridge appears to be overdeep due to historic

I connectivity that could be exacerbated by peak flow reductions.

<sup>&</sup>lt;sup>24</sup> Environment Agency (2016) Oldcotes Dyke Catchment (trib of Ryton)

| WFD Waterbody and Reasons for Failure reference | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason fo |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                 | High levels of sediment in suspension<br>giving the water a turbid appearance                    |                                             |
|                                                 | Hooton Dyke downstream of Slade Hooton (NGR not provided)                                        |                                             |
|                                                 |                                                                                                  |                                             |
|                                                 | Maltby Dyke (Maltby invertebrate site/ NGR not provided)                                         |                                             |
|                                                 |                                                                                                  |                                             |
|                                                 | Maltby Dyke (Bullatree Hill invertebrate sampling site/ NGR not provided)                        |                                             |

| range of in-channel flow habitats at baseflow, v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WFD Waterbody and Reasons<br>for Failure reference | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason fo                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Image: State of the state |                                                    | Oldcotes Dyke (Hermeston Hall invertebrate sampling site/ NGR not provided)                      |                                                                                                   |
| Owlands Wood Dyke is an incised channel that<br>range of in-channel flow habitats at baseflow, v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                                                  |                                                                                                   |
| Owlands Wood Dyke from<br>Source to Hodsock Brook Owlands Wood Dyke @ Cornmill Farm (SK57285 83656)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Owlands Wood Dyke from                             |                                                                                                  | Owlands Wood Dyke is an incised channel that a range of in-channel flow habitats at baseflow, whi |

for Failure descriptions)

at appears to have been historically straightened, but has a which high flow abstraction should not impact to a large extent.

| WFD Waterbody and Reasons for Failure reference | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason fo                                                                                                                               |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Poulter from Millwood Brook to<br>River Maun    | <image/> <image/>                                                                                | The Poulter at Crookford appears to have a ford<br>floodplain connectivity. High flow abstraction may<br>appears to be a gauging station.                                 |
| Poulter from Source to Millwood<br>Brook        | <image/>                                                                                         | The Poulter from source to Millwood Brook appe<br>range of aquatic, marginal and riparian species t<br>One of the reaches appears to have bank toe pro<br>affect erosion. |

for Failure descriptions)

rd but is otherwise a shallow channel, which suggests good nay negatively affect out-of-channel habitat inundation. Elkesley

pears mainly natural and high quality habitat, with a diverse s that will have developed according to the existing flow regime. protection, and high flow abstraction is unlikely to significantly

| WFD Waterbody and Reasons for Failure reference    | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason fo                                                             |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                                                    | Poulter at Cuckney (SK56134 71131)                                                               |                                                                                                         |
| Rainworth Water from Gallow<br>Hole Dyke to R Maun | Rainworth Water at A614 (SK64725 66713)                                                          | Uniform reaches are unlikely to be significantly af<br>could be negatively affected by decreased peak f |

for Failure descriptions)

v affected by high flow abstraction, but marginal vegetation ik flows.

| WFD Waterbody and Reasons<br>for Failure reference                       | Imagery (presented from upstream to downstream in each waterbody for those with multiple images)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Description (based on imagery and Reason fo                                                                                         |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Uniform reaches are unlikely to be significantly a<br>diversity could depend on the existing flow depth<br>by decreased peak flows. |
| Rainworth Water from Source to                                           | Rainworth Water at Rainworth (NGR not indicated though Rainworth is upstream of site below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     |
| Gallow Hole Dyke<br>Ranskill Brook Catchment (trib of<br>the River Idle) | Rainworth Water @ Robin Dam Bridge (SK64182 62079)         Image: Constraint of the state o | Ranskill Brook at this location is likely to have str<br>abstraction.                                                               |
| Ryton (to Anston Brook)                                                  | No imagery provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                     |

for Failure descriptions)

affected by high flow abstraction, but marginal vegetation oth and inundation regime, and so could be negatively affected

strong lateral connectivity, which could be depleted by high flow

| WFD Waterbody and Reasons for Failure reference               | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason fo                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ryton from Anston Brook to Idle                               | No imagery provided                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sookholme Brook from Source to<br>River Meden <sup>25</sup>   | No imagery provided                                                                              | WFD investigations indicate a failure for fish in the associated with morphology (barriers) and sedime pressures, such as water quality are considered a                                                                                                                                                                                                                                                        |
| Vicar Water from Source to R<br>Maun                          | No imagery provided                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                               |
| Torne waterbodies                                             |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ferry Drain                                                   | No imagery provided                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               |                                                                                                  | Hatfield Waste Drain is a Heavily Modified Waterb<br>straightented. Gradient is shallow at 1-2m necessi<br>upper section of the system. The lower section em<br>River Trent downstream of Keadby pumping static<br>Realigned and pumped systems tend to have silta<br>High flow abstraction could exacerbate this becau<br>runoff, but then flow abstraction further downstrea<br>or deposit it to floodplains. |
| Hatfield Waste Dr (trib of<br>Torne/Three Rivs) <sup>26</sup> | Fores Drain at Nutwell (SE63300 03100)                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |

<sup>&</sup>lt;sup>25</sup> Environment Agency (2017) GB104028058020 Meden from source to Sookholme Brook OPERATIONAL CATCHMENT: Idle River NGR: SK5054664487

for Failure descriptions)

the upper Meden catchment with the reason for failure being imentation (from agricultural diffuse sources) however 'other' d as likely to be contributing to the failure.

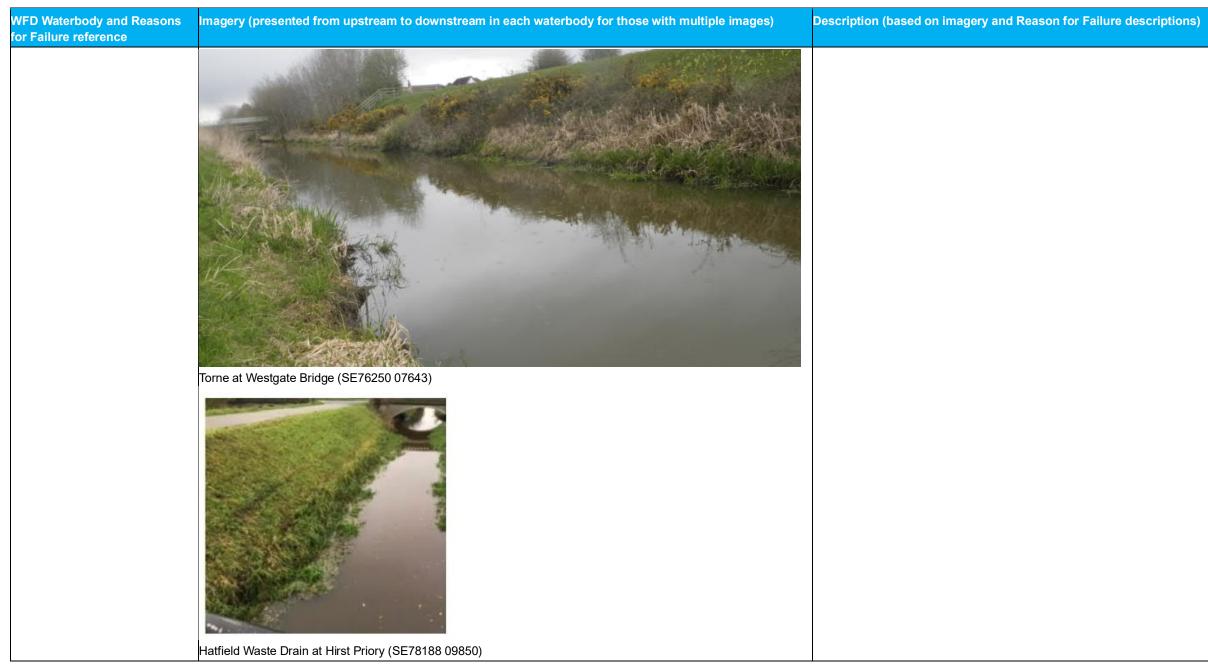
erbody that has been channelised, re-sectioned and essitating pumping at Brick Hill Carr and Goodcop to drain the empties into the Three Rivers complex and then into the tidal ation.

iltation problems due to the lack of gradient and flow velocities. cause sediment could be delivered into the channel by rainfall ream could reduce the stream's capacity to transport sediment

<sup>&</sup>lt;sup>26</sup> Environment Agency (2017) Hatfield Waste Drain Failure in Ammonia

| WFD Waterbody and Reasons for Failure reference              | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason fo                                                                                                   |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Mother Drain from Source to R<br>Torne <sup>27</sup>         | No imagery provided                                                                              | Ecological review indicates species present are a the river                                                                                   |
| North Soak Drain (trib of R Torne<br>/ Three Rivers)         | No imagery provided                                                                              |                                                                                                                                               |
| Ruddle (Paper Mill Dyke) from<br>Source to R Torne           | No imagery provided                                                                              | -                                                                                                                                             |
| S Lev Engine Dr / Upper Warping<br>Drain Catch <sup>28</sup> | No imagery provided                                                                              | The waterbody is a network of artificial drain of mixing, sedimentation is an issue (PSI score affected by this. Potential sewage inputs have |
| St Catherine's Well Stream from<br>Source to R Torne         | No imagery provided                                                                              | -                                                                                                                                             |
| Torne / Three Rivers from Mother                             |                                                                                                  | Highly uniform reaches are unlikely to be significa                                                                                           |
| Dr to R Trent                                                | Torne at Auckley (SE64653 01281)                                                                 |                                                                                                                                               |

for Failure descriptions)


adapted to heavy sedimentation, suggesting of conditions in

ainage ditches, static flows, uniform laminar flow and lack scores), however the biological status has not been naving localised effects on ammonia levels.

ficantly affected by high flow abstraction.

<sup>&</sup>lt;sup>27</sup> Environment Agency (2017) GB104028058440 WATERBODY NAME: Mother Drain from Source to Torne OPERATIONAL CATCHMENT: Isle of Axholme NGR: SE6013200052

<sup>&</sup>lt;sup>28</sup> Environment Agency (2018) GB104028058430 Waterbody Name: South Level Engine Drain catchment (trib of Trent) SE7256600598 (2018) – ammonia failure



| WFD Waterbody and Reasons<br>for Failure reference               | Imagery (presented from upstream to downstream in each waterbody for those with multiple images)        | Description (based on imagery and Reason f                                                                                                                |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | High macrophyte growth in the margins reducing mixing         Torme at Wadworth Carr (NGR not provided) | This waterbody is not designated as a Heavily m<br>in nature. It has been channelised and re-section<br>with little habitat heterogeneity and heavy rates |
| Torne from Ruddle to St<br>Catherine's Well Stream <sup>29</sup> | Slack flow conditions<br>leading to a lack of mixing<br>at the air water interface                      |                                                                                                                                                           |
| Torne from Source to Ruddle<br>(Paper Mill Dyke)                 | No imagery provided                                                                                     |                                                                                                                                                           |

for Failure descriptions)

modified waterbody although it considered to be homogenous ioned into long straight sections. Flow is predominantly slack is of sedimentation.

<sup>&</sup>lt;sup>29</sup> Environment Agency (2017) River Torne from Ruddle to St Catherine's Well Stream dissolved oxygen failure

| WFD Waterbody and Reasons<br>for Failure reference  | Imagery (presented from upstream to downstream in each waterbody for those with multiple images) | Description (based on imagery and Reason fo                                                                                                              |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Torne from St Catherine's Well<br>Strm to Mother Dr | Torne at Rossington (SK62839 99499)                                                              | The Torne at Rossington has a uniform channel the but wetland and floodplain habitats such as reeds Bank erosion is unlikely to significantly reduce wit |
| Warping Drain Catch (trib of<br>Trent)              | No imagery provided                                                                              | -                                                                                                                                                        |

for Failure descriptions)

el that is unlikely to be affected badly by peak flow abstraction, eds could be detrimentally affected if peak flows are reduced. with peak flow abstraction.

#### 3.5.9 Overview

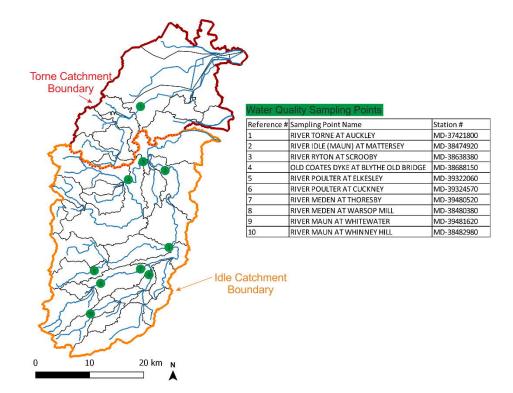
During the 2015 Feasibility Study, it was concluded that the most likely sensitive reaches would be those largely unmodified and those reaches susceptible to a reduction in out of bank flows (i.e. with lateral connectivity remaining in the absence of embankments). It was concluded at that time that further work should concentrate on flow and sediment dynamics.

Additional analyses have been undertaken through Phase 2a, as described above.

Extensive capital and maintenance works throughout the Torne and Idle have been documented. Activities such as dredging result in over wide and deep channels prone to excessive sedimentation. These include the main stem of the River Torne, lower (downstream) end of the Idle, River Ryton and Upper Idle and lower end of the River Meden. These works would likely have detrimentally altered the hydromorphology of the rivers at these points reducing their sensitivity to changes in flow as a result of high flow abstraction (i.e. if siltation levels increased noting that silt levels are already quite deep in the low lying and pumped areas).

1 in 2 year flood modelling was also reviewed and indicated that no out of bank flooding occurred in the central River Idle although was experienced in the lower Idle and upper Idle as well as in the lower part of the Torne catchment. These areas may be sensitive in this regard if the frequency of overtopping was reduced if abstractions were to occur at times of (winter) high flows.

It is noted that modelling of most of the River Idle catchment has not been undertaken with modelling efforts focussed on the main Idle stem itself (downstream of the River Maun which subsequently becomes the River Idle in Retford).

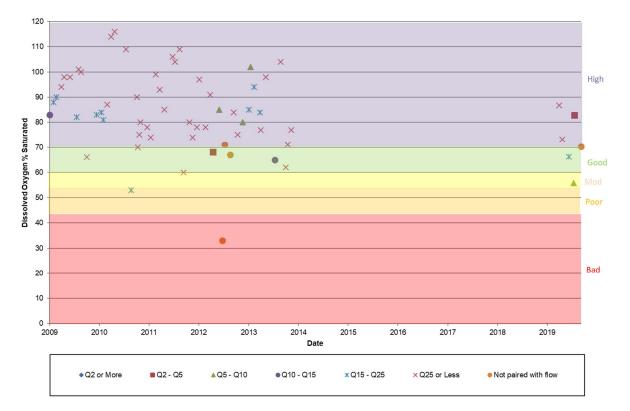

In both the Torne and Idle, silt beds dominate the lower lying parts of both catchments with good ecological habitat (pebbles/ gravel substrates) present in the upper parts of the catchments (in the Idle in particular).

Depending on the next steps in Phase 2b further consideration of deposition and erosion rate changes as a result of abstraction of high flows would be of value.

### 3.6 Water Quality

#### 3.6.1 Monitoring Overview

Water quality has been monitored extensively through the Idle and Torne catchments over past few decades. We have selected a number of monitoring locations where data records are extended and sampling has occurred frequently (typically monthly) and where flow has also been recorded nearby, and reviewed water quality further. The sites are indicated in Figure 3.22 below and our review of the water quality at each follows. Our review examines water quality levels within various high flow bands, as these may be affected if the catchments are opened up to abstraction at high flows (above  $Q_{18}$  in the Idle and  $Q_{15}$  in the Torne).




# Figure 3.22 Water quality monitoring points in the Idle and Torne catchments reviewed in this study

#### 3.6.2 River Torne catchment

#### 3.6.2.1 Torne at Auckley

Dissolved oxygen, total ammonia, orthophosphate and suspended sediments in the Torne at Auckley (see Figure 3.22) are indicated in Figures 3.23 to 3.25 respectively, below. Figure 3.23 indicates that dissolved oxygen levels are generally equivalent to at least Good WFD status concentrations though levels less than Good have been observed at times of high flow, albeit rarely. Total ammonia levels (Figure 3.24) are also generally equivalent to at least Good levels also. However, several exceedances of this level occurred between 2009 and 2012 including when levels were between the  $Q_{10}$  and  $Q_{25}$ . This implies some sensitivity at moderate to high flows.





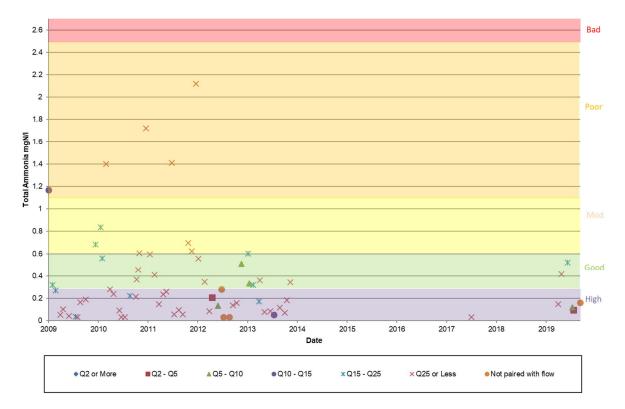



Figure 3.24 Total ammonia concentrations in the Torne at Auckley (flow band on day of sampling from the same location) 2009 - 2019

### AECOM

Orthophosphate concentrations at the Torne at Auckley (Figure 3.25) are equivalent to less than Good status. Levels in 2012 at flows greater than the  $Q_{10}$  were at levels equivalent to moderate status and better than at other times- implying they abstractions at high flows may result in more elevated concentrations.



Figure 3.25 Orthophosphate concentrations in the Torne at Auckley (flow band on day of sampling from the same location) 2009 - 2019

#### 3.6.3 River Idle catchment

#### 3.6.3.1 River Idle at Mattersey

The site lies in the lower stretch of the River Idle, close upstream of Bawtry (beyond which the system becomes level dependent) and the confluence with the River Ryton. Flow gauge Idle at Mattersey located roughly 80m downstream of the water quality site was used for this analysis.

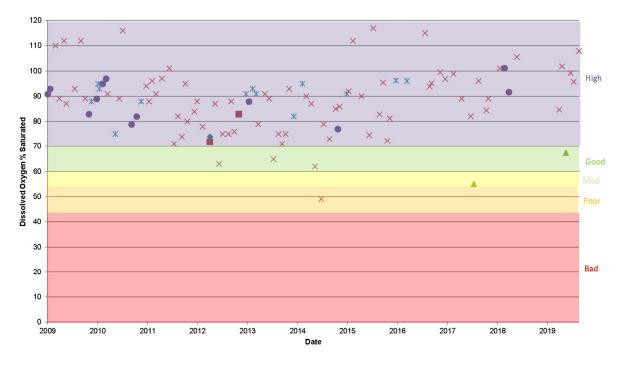

Dissolved oxygen, total ammonia, orthophosphate and suspended sediments in at this site (see Figure 3.22) are indicated in Figures 3.26 to 3.28 respectively, below.

Figure 3.26 indicates that dissolved oxygen levels are generally equivalent to at least Good WFD status. Less than good status have been observed at times of high flow indicating that dissolved oxygen can be sensitive at times of high flow. Reduced dilution, as a result of high flow abstraction, may compound this.

All total ammonia level measurements (Figure 3.27) are generally equivalent to at least Good status levels. Abstraction at times of high flow would likely not increase concentrations (as water of same concentration would be abstracted).

Higher levels were recorded at higher flows suggesting that they may have due to diffuse pollution from agricultural areas (transported by runoff following significant rainfall events). Abstractions at times of high flow would likely have a neutral effect on these concentrations.





Orthophosphate concentrations (Figure 3.28) at the site are generally equivalent to less than Good status. Results at various flow levels are mixed although abstractions at high flows would reduce the dilution of orthophosphate.

Figure 3.26 Dissolved oxygen (% saturation) in the River Idle at Mattersey (flow band on day of sampling from the same location) 2009 - 2019

<sup>◆</sup>Q2 or More ■Q2 - Q5 ▲Q5 - Q10 ●Q10 - Q18 ×Q18 - Q28 ×Q28 or Less ●Not paired with flow

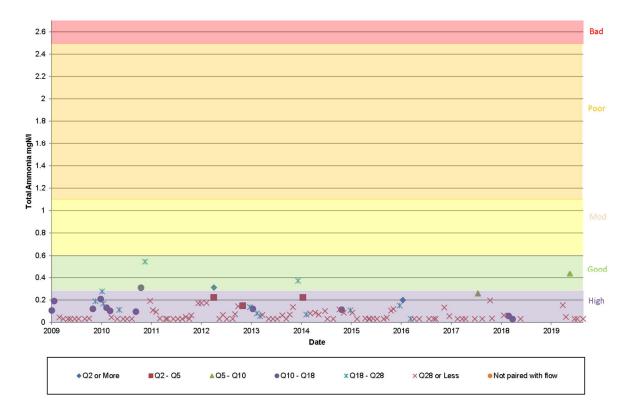



Figure 3.27 Total ammonia concentrations in the River Idle at Mattersey (flow band on day of sampling from the same location) 2009 – 2019

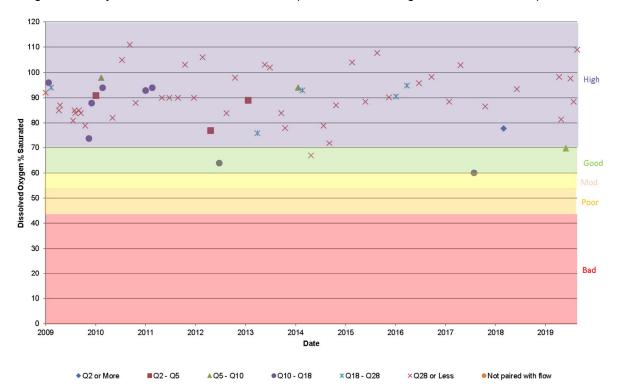


Figure 3.28 Orthophosphate concentrations in the River Idle at Mattersey (flow band on day of sampling from the same location) 2009 – 2019

#### 61

### AECOM

#### 3.6.3.2 River Ryton at Scrooby


The site lies in the lower stretch of the River Ryton, close upstream of Bawtry (beyond which the system becomes level dependent) and the confluence with the River Idle. Flow gauge Ryton at Blythe located roughly 7.12km upstream of the water quality site was used for this analysis.

Dissolved oxygen, total ammonia, orthophosphate and suspended sediments in at this site (see Figure 3.22) are indicated in Figures 3.29 to 3.31 respectively, below.

Figure 3.29 indicates that dissolved oxygen levels are generally equivalent to High WFD status concentrations though levels equivalent to Good status have been observed at times of high flow. This may be linked to intermittent events and suggests potentially sensitivity at times of high flows. Abstractions at times of high flow could compound this.

Total ammonia levels (Figure 3.30) are also generally equivalent to High status levels also. Two values equivalent to Good status and one equivalent to Moderate status are associated with higher flows. With a correspondent drop in dissolved oxygen and increase in orthophosphate these are likely associated with an intermittent event/ diffuse pollution. Abstraction at times of high flows would likely have a neutral effect on ammonia levels.

Orthophosphate concentrations (Figure 3.31) at the site are generally equivalent to less than Good status. Results tend to indicative that concentrations are lower at higher flows suggesting abstractions at high flows may further elevate concentrations (with less flow being available for dilution).



# Figure 3.29 Dissolved oxygen (% saturation) in the River Ryton at Scrooby (flow band on day of sampling the Ryton at Blythe) 2009 - 2019



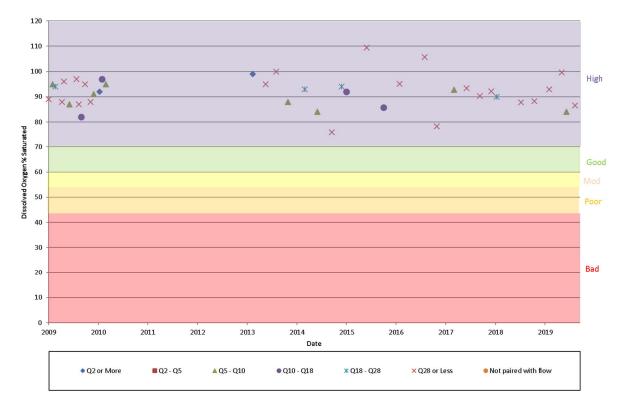
Figure 3.30 Total ammonia concentrations in the River Ryton at Scrooby (flow band on day of sampling from the Ryton at Blythe) 2009 – 2019



Figure 3.31 Orthophosphate concentrations in the River Ryton at Scrooby (flow band on day of sampling the Ryton at Blythe) 2009 - 2019

AECOM

#### 3.6.3.3 Old Coates Dyke at Blythe Old Bridge


The site lies in the lower stretch of Old Coates Dyke, close upstream of its confluence with the River Ryton. Flow gauge Old Coates Dyke at Blythe located roughly 1.2km upstream of the water quality site was used for this analysis.

Dissolved oxygen, total ammonia, orthophosphate and suspended sediments in at this site (see Figure 3.22) are indicated in Figures 3.32 to 3.34 respectively, below.

Figure 3.32 indicates that dissolved oxygen levels are generally equivalent to High WFD status concentrations under varied flow conditions, suggesting abstractions at high flow would have a limited effect.

Total ammonia levels (Figure 3.33) are also generally equivalent to High status with a few equivalent to Good status. Two values were equivalent to Good status and are associated with higher flows. These are likely due to an intermittent event/ diffuse pollution (with most high flows being associated with High status) being captured. Abstraction at times of high flows would likely have a neutral effect on ammonia levels.

Orthophosphate concentrations (Figure 3.34) at the site are generally equivalent to less than Good status. The early 2013 sample, when flow was between the Q10 and Q18 and ammonia levels were elevated also is associated with a lower orthophosphate (indicating the latter was diluted by a runoff event). A reduction in flow could hence result in higher orthophosphate concentrations downstream of an abstraction (noting that levels are less than Good status).





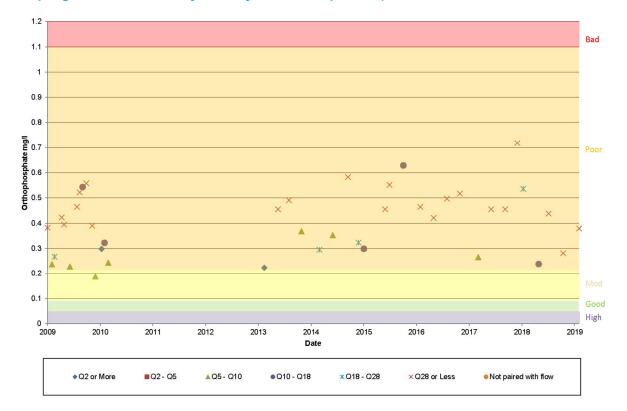




Figure 3.33 Total ammonia concentrations in the Old Coates Dyke at Blyth (flow band on day of sampling from Old Coates Dyke at Blyth – 1.2km upstream) 2009 - 2019





AECOM

#### 3.6.3.4 River Poulter at Elkesley (downstream site)

The site lies in the lower stretch of the River Poulter, close upstream of where it joins the River Idle. Flow gauge Poulter at Twyford Bridge located roughly 100m downstream of the water quality site was used for this analysis.

Dissolved oxygen, total ammonia, orthophosphate and suspended sediments in at this site (see Figure 3.22) are indicated in Figures 3.35 to 3.37 respectively, below.

Figure 3.35 indicates that dissolved oxygen levels are generally equivalent to High WFD status concentrations though levels equivalent to Good status have been observed. An intermittent event was seemingly captured in early 2014 with dissolved oxygen levels dropping and ammonia levels increasing. This suggests the dissolved oxygen may be sensitive to a reduction in flow if abstractions at times of high flow were to occur (upstream of this site).

All total ammonia level measurements (Figure 3.36) are equivalent to High status levels also. This suggests that abstractions at high flows would have no discernible effect.

Orthophosphate concentrations (Figure 3.37) at the site are generally equivalent to less than Good status. As with dissolved oxygen a reduced flow would reduce dilution which may increase orthophosphate concentrations.



Figure 3.35 Dissolved oxygen (% saturation) in the River Poulter at Elkesley (downstream site) (flow band on day of sampling from the same location) 2009 - 2019

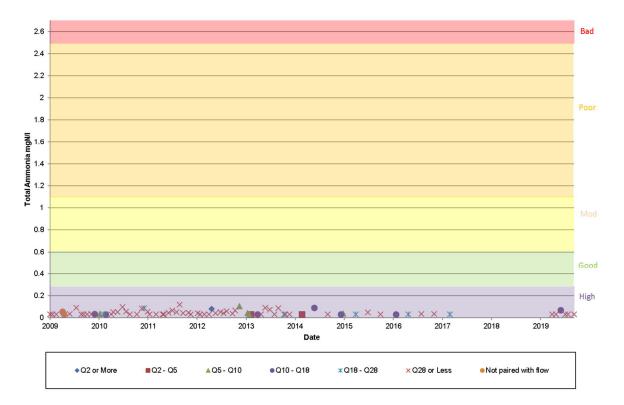



Figure 3.36 Total ammonia concentrations in the River Poulter at Elkesley (downstream site) (flow band on day of sampling from the same location) 2009 – 2019



Figure 3.37 Orthophosphate concentrations in the River Poulter at Elkesley (downstream site) (flow band on day of sampling from the same location) 2009 - 2019



#### 3.6.3.5 River Poulter at Cuckney (upstream site)

The site lies in the upper reach of the River Poulter (located in the upper section at roughly 53.5mAOD of the overall Idle catchment). Flow gauge Poulter at Cuckney located roughly 1.3km downstream of the water quality site was used for this analysis.

Dissolved oxygen, total ammonia, orthophosphate and suspended sediments in at this site (see Figure 3.22) are indicated in Figures 3.38 to 3.40 respectively, below.

Figure 3.38 indicates that dissolved oxygen levels are generally equivalent to High WFD status and risk to these with high flow abstractions is considered to be negligible.

Total ammonia levels (Figure 3.39) are also generally equivalent to High status levels also. A few events were equivalent to Good status though these were at less than the  $Q_{28}$ / flows not impacted by abstractions at high flows. Hence abstractions at high flows unlikely to have a notable effect on total ammonia levels.

Orthophosphate concentrations (Figure 3.40) at the site are generally equivalent to at least Good status though higher concentrations tend to occur at times of higher flow. Fitting a seasonal model to the orthophosphate data shows there is a trend for higher concentrations in the winter months. This suggests the inputs are coming from runoff which explains the higher concentrations at high flows. Abstracting at high flows may therefore exacerbate this.



Figure 3.38 Dissolved oxygen (% saturation) in the River Poulter at Cuckney (upstream site) (flow band on day of sampling from the Poulter at Cuckney) 2009 - 2019

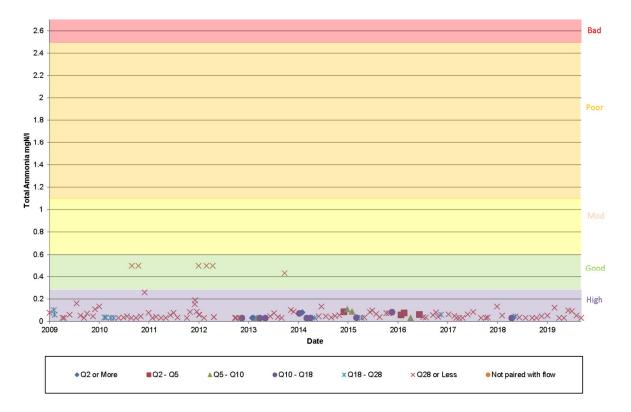



Figure 3.39 Total ammonia concentrations in the River Poulter at Cuckney (upstream site) (flow band on day of sampling from the Poulter at Cuckney) 2009 – 2019

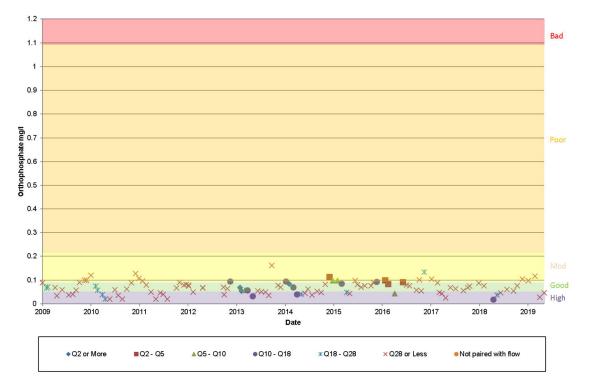



Figure 3.40 Orthophosphate concentrations in the River Poulter at Cuckney (upstream site) (flow band on day of sampling from the Poulter at Cuckney) 2009 - 2019

#### 3.6.3.6 River Meden at Thoresby (downstream site)

The site lies in the lower stretch of the River Meden, close upstream of where it joins the River Maun. Flow gauge Meden at Perlethorpe located roughly 180m upstream of the water quality site was used for this analysis.

Dissolved oxygen, total ammonia, orthophosphate and suspended sediments in at this site (see Figure 3.22) are indicated in Figures 3.41 to 3.43 respectively, below.

Figure 3.41 indicates that dissolved oxygen levels are generally equivalent to High WFD status and risk to these with high flow abstractions is considered to be negligible.

All total ammonia level measurements (Figure 3.42) are generally equivalent to High status levels also. Two measurements at less than High (Good) were at times of high flow. These are likely due to an intermittent event/ diffuse pollution being captured. Abstraction at times of high flows would likely have a neutral effect on ammonia levels.

Orthophosphate concentrations (Figure 3.43) at the site are often equivalent to less than Good status. Results at various flow levels are mixed suggesting that the effect of abstractions at high flows would likely be neutral though.



Figure 3.41 Dissolved oxygen (% saturation) in the River Meden at Thoresby (downstream site) (flow band on day of sampling from the Meden at Perlethorpe) 2009 - 2019

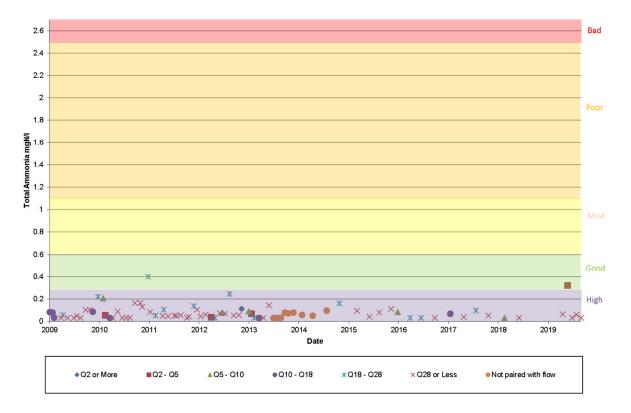



Figure 3.42 Total ammonia concentrations in the River Meden at Thoresby (downstream site) (flow band on day of sampling from the Meden at Perlethorpe) 2009 – 2019



Figure 3.43 Orthophosphate concentrations in the River Meden at Thoresby (downstream site) (flow band on day of sampling from the Meden at Perlethorpe) 2009 - 2019

#### 71



#### 3.6.3.7 River Meden at Warsop Mill (upstream site)

The site lies in the middle length of the River Meden, and in the upland part at roughly 50.1mAOD of the River Idle catchment.

Flow gauge Meden at Church Warsop located roughly 1.3km upstream of the water quality site was used for this analysis. Dissolved oxygen, total ammonia, orthophosphate and suspended sediments in at this site (see Figure 3.22) are indicated in Figures 3.44to 3.46 respectively, below.

Figure 3.44 indicates that dissolved oxygen levels are generally equivalent to High WFD status and risk to these with high flow abstractions is considered to be negligible.

All total ammonia level measurements (Figure 3.45) are equivalent to High status levels also. This suggests that abstractions at high flows would have no discernible effect.

Half of the indicated orthophosphate concentrations (Figure 3.46) at the site are generally equivalent to less than Good status/ while the other half are equivalent to at least Good. Results at various flow levels are mixed suggesting that the effect of abstractions at high flows may be neutral / potentially marginally adverse.

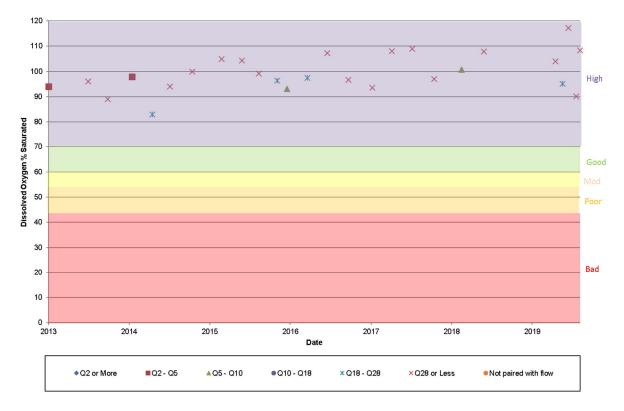



Figure 3.44 Dissolved oxygen (% saturation) in the River Meden at Warsop Mill (upstream site) (flow band on day of sampling from the Meden at Church Warsop) 2009 - 2019

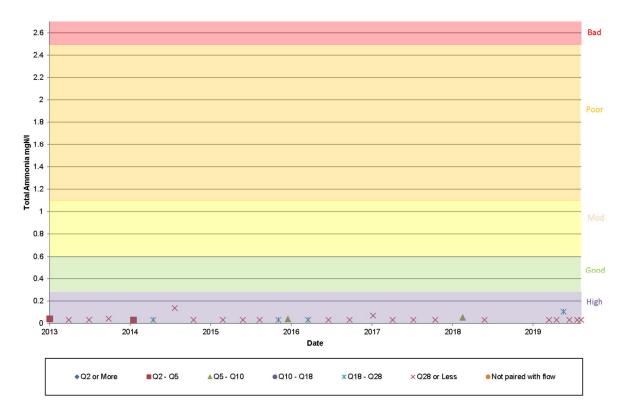



Figure 3.45 Total ammonia concentrations in the River Meden at Warsop Mill (upstream site) (flow band on day of sampling from the Meden at Church Warsop) 2009 – 2019

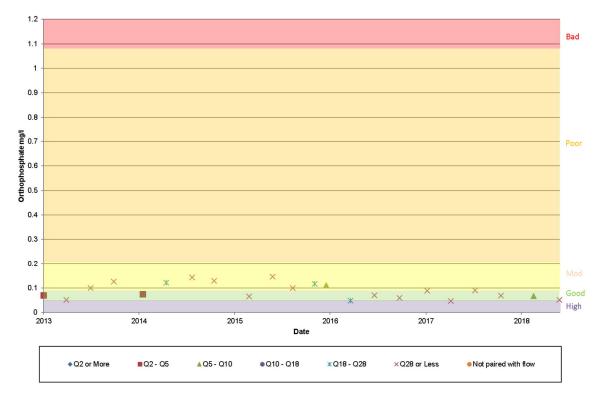


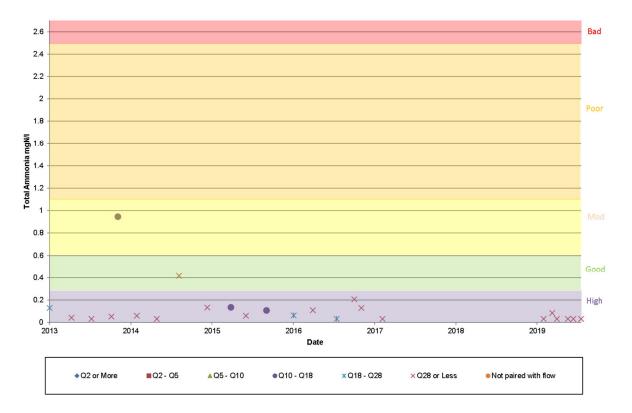

Figure 3.46 Orthophosphate concentrations in the River Meden at Warsop Mill (upstream site) (flow band on day of sampling from the Meden at Church Warsop) 2009 - 2019

73

#### 3.6.3.8 River Maun at Whitewater (downstream site)

The site lies in the middle stretch of the River Maun, close upstream of where it is joined by the River Meden. Flow gauge Maun at Whitewater Bridge located roughly 150m downstream of the water quality site was used for this analysis.

Dissolved oxygen, total ammonia, orthophosphate and suspended sediments in at this site (see Figure 3.22) are indicated in Figures 3.47 to 3.49 respectively, below.


Figure 3.47 indicates that dissolved oxygen levels are equivalent to High WFD status and risk to these with high flow abstractions is considered to be negligible.

Most total ammonia level measurements (Figure 3.48) are generally equivalent to High status levels also. One measurements at less at a Moderate level was observed at a time of high flow and is potentially linked with an intermittent event being captured. Abstraction at times of high flow would likely not increase concentrations (as water of same concentration would be abstracted).

Orthophosphate concentrations (Figure 3.49) at the site are each equivalent to less than Good status. Results at various flow levels are mixed though concentrations reduce with potential intermittent pollution events (runoff related). Abstractions at high flows would reduce the dilution of orthophosphate.



Figure 3.47 Dissolved oxygen (% saturation) in the River Maun at Whitewater (downstream site) (flow band on day of sampling from the same location) 2009 - 2019





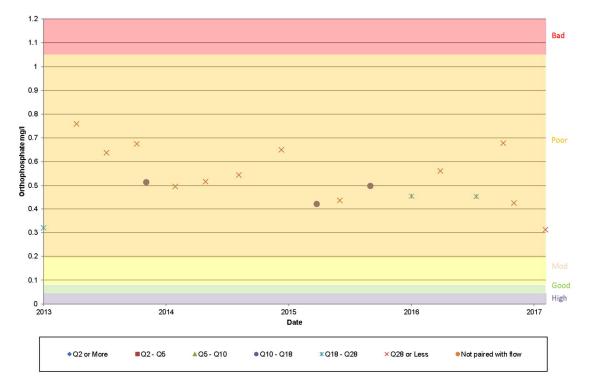



Figure 3.49 Orthophosphate concentrations in the River Maun at Whitewater (downstream site) (flow band on day of sampling from the same location) 2009 - 2019

75



#### 3.6.3.9 River Maun at Whinney Hill (upstream site)

The site lies in the upper reach of the River Maun (located in the upper section at roughly 71.6mAOD of the overall Idle catchment). Flow gauge Maun at Mansfield the Dykes located roughly 750m downstream of the water quality site was used for this analysis.

Dissolved oxygen, total ammonia, orthophosphate and suspended sediments in at this site (see Figure 3.22) are indicated in Figures 3.50 to 3.52 respectively, below.

Figure 3.50 indicates that dissolved oxygen levels are generally equivalent to High WFD status and risk to these with high flow abstractions is considered to be negligible.

All total ammonia level measurements (Figure 3.51) are generally equivalent to at least Good status. Two measurements at less than High (Good) were at times of high flow while another two were at lower flows. The former two appear to be due intermittent diffuse pollution events being captured. Abstraction at times of high flow would likely not increase concentrations (as water of same concentration would be abstracted).

Orthophosphate concentrations (Figure 3.52) at the site were less than Good at all times. Results at various flow levels are mixed although abstractions at high flows would reduce the dilution of orthophosphate.

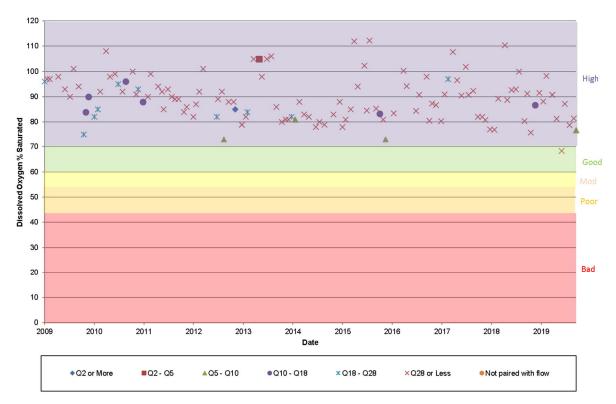



Figure 3.50 Dissolved oxygen (% saturation) in the River Maun at Whinney Hill (upstream site) (flow band on day of sampling from the Maun at Mansfield the Dykes) 2009 - 2019

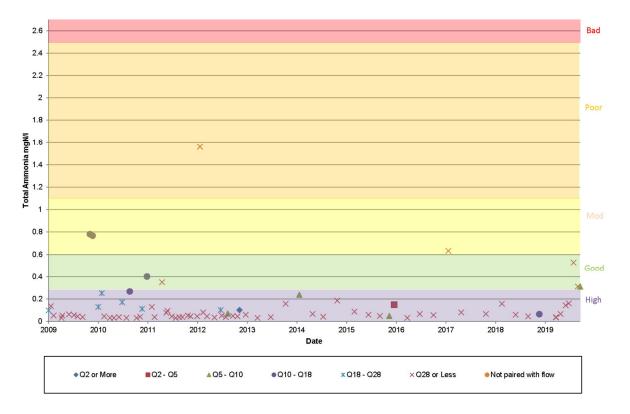



Figure 3.51 Total ammonia concentrations in the River Maun at Whinney Hill (upstream site) (flow band on day of sampling from the Maun at Mansfield the Dykes) 2009 – 2019

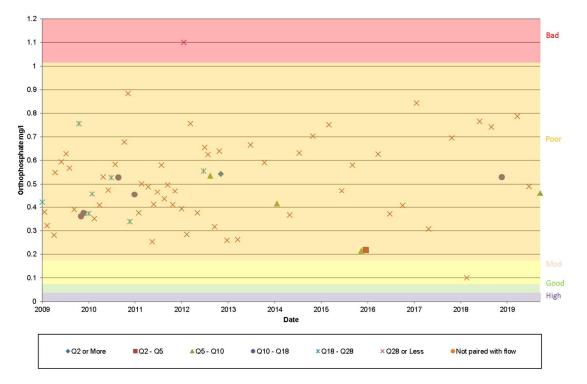



Figure 3.52 Orthophosphate concentrations in the River Maun at Whinney Hill (upstream site) (flow band on day of sampling from the Maun at Mansfield the Dykes) 2009 - 2019

#### 77

#### 3.6.4 Water Framework Directive

The 2016 WFD status for ammonia, phosphate and dissolved oxygen is indicated in Figure 3.53. Dissolved oxygen and ammonia status in waterbodies throughout the Idle is generally at least Good. Dissolved oxygen and ammonia are considered less than Good through much of the Torne, predominantly in the low lying pumped section. Phosphate status is less than Good for much of the Idle and Torne catchments.

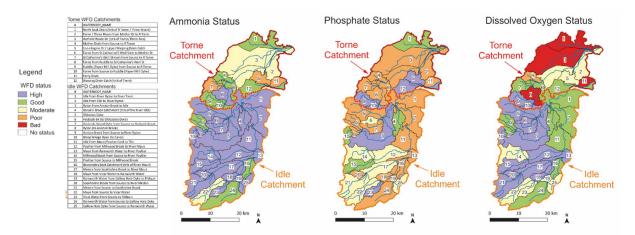



Figure 3.53 WFD waterbodies and physico-chemical status as of 2016 in the Idle and Torne catchments

#### 3.7 Sensitivity Review

#### 3.7.1 Overview and review

A review of the physical environment sensitivity of each WFD waterbody in the Idle and Torne catchments has been undertaken (focussing on the hydromorphology and water quality reviews in particular, see Sections 3.5 and 3.6 respectively). This is presented in Table 3.10 below. The results of the sensitivity review are presented in Figure 3.54.

### Table 3.10 Review of Physical Environment Sensitivity

| WFD Waterbody                                      | Evidence of<br>extensive in<br>channel works | Predominant<br>substrate                              | Review of Provided Imagery and RFF reports (-<br>there was no information)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extent of modification<br>(RHS Review, noting<br>data is limited)        | 2 year flood<br>overtopping into the<br>floodplain? | Presence of<br>Flood<br>Defences | Water quality Review                                                                                                                                          |
|----------------------------------------------------|----------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ldle waterbodies                                   |                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                                                     |                                  |                                                                                                                                                               |
| Anston Brook from Source to<br>River Ryton         | No                                           | No data, pebbles/<br>gravel expected to<br>be present | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data indicates<br>waterbody is<br>significantly or severely<br>modified. | Not known                                           | No                               | Less than Good with regard to phosphate                                                                                                                       |
| Bevercotes Beck Catchment<br>(trib of River Maun)  | No                                           | Pebble/ gravels                                       | Information indicates beck is historically managed,<br>straightened, and deepened, so likely to have poor<br>lateral connectivity and that out-of-channel wetland<br>areas are absent or depleted and sensitive to any<br>further hydrological change. Similarly, in-channel<br>fine sediment (and associated pollutant) loads may<br>be excessive due to reduced capacity for floodplain<br>deposition. Homogeneous nature of watercourse<br>reported, resulting in lack of species diversity, Bank<br>erosion in the steeper sections of the beck is<br>reported in the RFF report.                        | No data                                                                  | Not known                                           | No                               | Less than Good with regard to phosphate                                                                                                                       |
| Broad Bridge Dyke (to Canal)                       | No                                           | No data, pebbles/<br>gravel expected to<br>be present | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data indicates<br>waterbody is<br>significantly or severely<br>modified. | Not known                                           | No                               | At least Good                                                                                                                                                 |
| Gallow Hole Dyke from Source<br>to Rainworth Water | No                                           | Pebble/ gravels                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No data                                                                  | Not known                                           | No                               | Less than Good with regard to phosphate and dissolved oxygen                                                                                                  |
| Hodsock Bk (to Oldcoates Dyke)                     | No                                           | No data, pebbles/<br>gravel expected to<br>be present | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data indicates<br>waterbody is<br>significantly or severely<br>modified. | Not known                                           | No                               | Less than Good with regard to phosphate                                                                                                                       |
| Idle from Maun/Poulter Conf to<br>Tiln             | Yes                                          | Pebble/ gravels                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No data                                                                  | Yes                                                 | Yes                              | Less than Good with regard to phosphate                                                                                                                       |
| Idle from River Ryton to River<br>Trent            | Yes                                          | Silt dominated<br>though pebble/<br>gravels present   | Imagery indicated that the channel appears<br>engineered (realigned and deepened) and<br>embanked, which will have impacts on lateral<br>connectivity and sediment loads. Flows in these<br>images appear to be near bankfull though<br>waterbody is low lying and level dependent (with<br>levels generally controlled within a narrow level<br>envelope). On one image marginal habitats appear<br>inundated that would usually be dry. Some species<br>and assemblages may be dependent on particular<br>inundation regimes (depths and frequencies) which<br>could be affected by high flow abstraction. | Data indicates<br>waterbody is<br>significantly or severely<br>modified. | Yes                                                 | Yes                              | Less than Good with regard to phosphate                                                                                                                       |
| Idle from Tiln to River Ryton                      | No                                           | Silt dominated<br>though pebble/<br>gravels present   | Imagery indicated that the channel appears<br>engineered (realigned and deepened) so existing<br>degraded habitats may be sensitive to new<br>hydrological changes. The Idle at Tiln is very<br>uniform with a well defined baseflow channel and                                                                                                                                                                                                                                                                                                                                                             | No data                                                                  | Yes (but only at<br>downstream end)                 | Yes                              | Less than Good with regard to<br>phosphate. Water quality and flow data<br>available and review indicated potential<br>sensitivity at times of high flow with |

#### Sensitivity Review

| Information indicates waterbody would be of low sensitivity to further abstraction.                                         |
|-----------------------------------------------------------------------------------------------------------------------------|
| Information indicates waterbody would be of low sensitivity to further abstraction.                                         |
| Information indicates waterbody would be of low sensitivity to further abstraction (noting that data is generally lacking). |
| Information indicates waterbody would be of low sensitivity to further abstraction.                                         |
| Information indicates waterbody would be of low sensitivity to further abstraction (noting that data is generally lacking). |
| Available information indicates waterbody may be highly sensitive to effects of high flow abstraction                       |
| Available information indicates waterbody may be highly sensitive to effects of high flow abstraction                       |
| Information indicates the channel may be of moderate sensitivity to further abstraction                                     |

| WFD Waterbody                                 | Evidence of<br>extensive in<br>channel works | Predominant<br>substrate                              | Review of Provided Imagery and RFF reports (-<br>there was no information)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Extent of modification<br>(RHS Review, noting<br>data is limited)       | 2 year flood<br>overtopping into the<br>floodplain? | Presence of<br>Flood<br>Defences | Water quality Review                                                                                                                                                                                                                |
|-----------------------------------------------|----------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               |                                              |                                                       | what appear to be managed grass banks (i.e.<br>vegetation cut back to mitigate flood debris and<br>blockage risks). This could mean high flow<br>abstraction has relatively little impact, because there<br>is little diversity of habitats to be affected. The Idle<br>at Chain Bridge appears to have been<br>photographed at low flow (as shown by the exposed<br>bare silt margin) but there is a tier / berm of<br>marginal macrophytes before the banktop / riparian<br>tree line that could be sensitive to high flow<br>abstraction.                             |                                                                         |                                                     |                                  | regard to dissolved oxygen and orthophosphate.                                                                                                                                                                                      |
| Maun from Rainworth Water to<br>River Poulter | Yes                                          | Pebble/ gravels                                       | Imagery showed an engineered channel (realigned<br>and deepened) which would be of reduced<br>sensitivity to new hydrological changes. The Maun<br>at Ollerton is physically very uniform with continuous<br>and single species of macrophyte. This could mean<br>high flow abstraction has relatively little impact,<br>because there is little diversity of habitats to be<br>affected. The Maun at Whitewater is also physically<br>uniform, but at least has some low diversity of<br>species, which appears to be layered according to<br>height above water level. | No data                                                                 | Not known                                           | Yes                              | Less than Good with regard to<br>phosphate. Water quality and flow data<br>available and review indicated potential<br>sensitivity at times of high flow with<br>regard to orthophosphate.                                          |
| Maun from Source to Vicar<br>Water            | No                                           | No data, pebbles/<br>gravel expected to<br>be present | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Data indicates<br>waterbody is obviously<br>modified.                   | Not known                                           | Yes                              | Less than Good with regard to<br>phosphate and dissolved oxygen.<br>Water quality and flow data available<br>and review indicated potential<br>sensitivity at times of high flow with<br>regard to orthophosphate.                  |
| Maun from Vicar Water to<br>Rainworth Water   | No                                           | No data, pebbles/<br>gravel expected to<br>be present | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Data indicates<br>waterbody is obviously<br>modified.                   | Not known                                           | Yes                              | Less than Good with regard to<br>phosphate. Water quality and flow data<br>available (upstream and downstream<br>waterbodies) and review indicated<br>potential sensitivity at times of high flow<br>with regard to orthophosphate. |
| Meden from Sookholme Brook<br>to River Maun   | No                                           | Pebble/ gravels                                       | Imagery of the Meden indicates that it looks to be<br>high value habitat and much less impacted by<br>historic management than other rivers in the<br>catchment so it could be more sensitive to<br>deterioration. Surface bed gravels were apparent,<br>so bed habitats may be vulnerable to reduced fine<br>sediment transport (less flushing / increased<br>deposition) if high flows are abstracted. One site<br>appeared physically very uniform with managed<br>vegetation above bank side macrophytes opposite<br>concrete and little diversity of habitats.      | No data                                                                 | Not known                                           | Yes                              | Less than Good with regard to<br>phosphate. Review with flow data<br>indicated shouldn't be too sensitive to<br>reductions in high flows.                                                                                           |
| Meden from Source to<br>Sookholme Brook       | No                                           | Pebble/ gravels                                       | Imagery indicates that Meden from source to<br>Sookholme brook has a diverse range of habitats<br>including engineered reaches and what appear to                                                                                                                                                                                                                                                                                                                                                                                                                        | RHS information for<br>three sites indicated<br>pristine channel at one | Not known                                           | Yes                              | Less than Good with regard to phosphate. Review with flow data                                                                                                                                                                      |

|                               | Sensitivity Review                                                                                    |
|-------------------------------|-------------------------------------------------------------------------------------------------------|
|                               |                                                                                                       |
|                               | Information indicates the channel may be of moderate sensitivity to further abstraction               |
| able<br>ith                   | Data generally lacking to ascertain potential sensitivity                                             |
| w data<br>eam<br>d<br>gh flow | Data generally lacking to ascertain potential sensitivity                                             |
| a<br>ve to                    | Available information indicates waterbody may be highly sensitive to effects of high flow abstraction |
| a                             | Available information indicates waterbody may be highly sensitive to effects of high flow abstraction |

| WFD Waterbody                                      | Evidence of<br>extensive in<br>channel works | Predominant<br>substrate                              | Review of Provided Imagery and RFF reports (-<br>there was no information)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Extent of modification<br>(RHS Review, noting<br>data is limited)                                                                       | 2 year flood<br>overtopping into the<br>floodplain? | Presence of<br>Flood<br>Defences | Water quality Review                                                                                                                                                                                              |
|----------------------------------------------------|----------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    |                                              |                                                       | be natural and high quality habitats. Modified<br>reaches such as at Pleasley and Newbound Mill and<br>where there are culverts and concrete banks are<br>generally uniform so high flow abstraction would<br>have little impact. More natural reaches, with a<br>diverse range of habitats, are also apparent and<br>may be more sensitive to changes in peak flows,<br>with marginal or riparian habitats likely to have<br>some dependency on an inundation regime.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and semi-natural/<br>predominantly<br>unmodified at the other<br>two                                                                    |                                                     |                                  | indicated would probably not be sensitive to reductions in high flows.                                                                                                                                            |
| Millwood Brook from Source to<br>River Poulter     | No                                           | No data, pebbles/<br>gravel expected to<br>be present | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No data                                                                                                                                 | Not known                                           | No                               | Less than Good with regard to<br>phosphate and dissolved oxygen                                                                                                                                                   |
| Oldcotes Dyke                                      | No                                           | No data, pebbles/<br>gravel expected to<br>be present | Hooton Dyke upstream to Riddings Close appears<br>to have a well connected floodplain and wetlands,<br>so high flow abstraction could be detrimental to<br>water dependent habitats outside of the channel.<br>Elsewhere, high silt loads may be associated with<br>waste water discharges and other adjacent land<br>uses, and a reduction in peak flows is likely to mean<br>less flushing of pollutants, higher pollution retention<br>time, and less pollutant dilution.<br>Maltby Dyke and Oldcotes Dyke look to be diverse,<br>high value habitats where channel – floodplain –<br>wetland connections will serve important functions.<br>High flow abstractions could be detrimental to both<br>in-channel and out of channel habitats. Oldcotes<br>Dyke at Blythe Old Bridge appears to be overdeep<br>due to historic realignment, so may already have<br>poor lateral connectivity that could be exacerbated<br>by peak flow reductions. | RHS monitoring of one<br>site on Maltby Dyke<br>(upland location)<br>indicated a semi-natural<br>or predominantly<br>unmodified channel | Not known                                           | Yes                              | Less than Good with regard to<br>phosphate (review with available flow<br>data indicated this may worsen)                                                                                                         |
| Owlands Wood Dyke from<br>Source to Hodsock Brook  | No                                           | Pebble/ gravels                                       | Owlands Wood Dyke is an incised channel that<br>appears to have been historically straightened, but<br>has a range of in-channel flow habitats at baseflow,<br>which high flow abstraction should not impact to a<br>large extent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No data                                                                                                                                 | Not known                                           | Yes                              | Less than Good with regard to phosphate                                                                                                                                                                           |
| Poulter from Millwood Brook to<br>River Maun       | No                                           | No data, pebbles/<br>gravel expected to<br>be present | Imagery provided indicated a shallow channel,<br>which suggests good floodplain connectivity. High<br>flow abstraction may negatively affect out-of-<br>channel habitat inundation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data indicates<br>waterbody is obviously<br>modified.                                                                                   | Not known                                           | Yes                              | Less than Good with regard to<br>phosphate. Water quality and flow data<br>available and review indicated potentia<br>sensitivity at times of high flow with<br>regard to dissolved oxygen and<br>orthophosphate. |
| Poulter from Source to Millwood<br>Brook           | No                                           | Pebble/ gravels                                       | The Poulter from source to Millwood Brook appears<br>mainly natural and high quality habitat, with a<br>diverse range of aquatic, marginal and riparian<br>species that will have developed according to the<br>existing flow regime.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Data indicates<br>waterbody is<br>significantly or severely<br>modified.                                                                | Not known                                           | No                               | At least Good. Water quality and flow<br>data available and review indicated<br>potential sensitivity at times of high flow<br>with regard to orthophosphate.                                                     |
| Rainworth Water from Gallow<br>Hole Dyke to R Maun | No                                           | Silt                                                  | Uniform reaches are unlikely to be significantly affected by high flow abstraction, but marginal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No data                                                                                                                                 | Not known                                           | No                               | Less than Good with regard to phosphate and dissolved oxygen                                                                                                                                                      |

|                           | Sensitivity Review                                                                                                           |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------|
| ws.                       |                                                                                                                              |
| 1                         | Data generally lacking to ascertain potential sensitivity                                                                    |
| flow                      | Information indicates the channel may be of moderate sensitivity to further abstraction                                      |
|                           | Information indicates the channel may be of low to moderate sensitivity to further abstraction (noting data is lacking)      |
| w data<br>otential<br>ith | Information indicates the channel may be of moderate<br>sensitivity to further abstraction (noting data is<br>lacking)       |
| flow<br>ted<br>gh flow    | Available information indicates waterbody (or parts of<br>it) may be highly sensitive to effects of high flow<br>abstraction |
| 1                         | Information indicates waterbody would be of low sensitivity to further abstraction.                                          |

| WFD Waterbody                                        | Evidence of<br>extensive in<br>channel works | Predominant<br>substrate                              | Review of Provided Imagery and RFF reports (-<br>there was no information)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extent of modification<br>(RHS Review, noting<br>data is limited)        | 2 year flood<br>overtopping into the<br>floodplain? | Presence of<br>Flood<br>Defences                                               | Water quality Review                                                                                                                                                                  | Se                |
|------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                      |                                              |                                                       | vegetation could be negatively affected by decreased peak flows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |                                                     |                                                                                |                                                                                                                                                                                       |                   |
| Rainworth Water from Source to<br>Gallow Hole Dyke   | No                                           | Pebble/ gravels                                       | Uniform reaches are unlikely to be significantly<br>affected by high flow abstraction, but marginal<br>vegetation diversity could depend on the existing<br>flow depth and inundation regime, and so could be<br>negatively affected by decreased peak flows.                                                                                                                                                                                                                                                                                                                                                                                                | No data                                                                  | Not known                                           | No                                                                             | Less than Good with regard to phosphate                                                                                                                                               | Inf<br>mc         |
| Ranskill Brook Catchment (trib<br>of the River Idle) | No                                           | Silt/ clay but<br>pebbles/ gravel<br>present          | Single image indicated potential for strong lateral connectivity, which could be depleted by high flow abstraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Data indicates<br>waterbody is<br>significantly or severely<br>modified. | Not known                                           | No                                                                             | At least Good                                                                                                                                                                         | Inf<br>mo         |
| Ryton (to Anston Brook)                              | No                                           | Pebble/ gravels                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No data                                                                  | Not known                                           | Yes                                                                            | Less than Good with regard to phosphate                                                                                                                                               | Da                |
| Ryton from Anston Brook to Idle                      | Yes                                          | No data, pebbles/<br>gravel expected to<br>be present | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RHS information for one<br>site indicated pristine<br>channel            | Not known                                           | No                                                                             | At least Good. Water quality and flow<br>data available and review indicated<br>potential sensitivity at times of high flow<br>with regard to dissolved oxygen and<br>orthophosphate. | Ava<br>hig        |
| Sookholme Brook from Source<br>to River Meden        | No                                           | Pebble/ gravels                                       | WFD investigations indicate a failure for fish in the<br>upper Meden catchment with the reason for failure<br>being associated with morphology (barriers) and<br>sedimentation (from agricultural diffuse sources)<br>however 'other' pressures, such as water quality are<br>considered as likely to be contributing to the failure.                                                                                                                                                                                                                                                                                                                        | No data                                                                  | Not known                                           | No                                                                             | Less than Good with regard to phosphate                                                                                                                                               | Ava<br>hig<br>(nc |
| Vicar Water from Source to R<br>Maun                 | No                                           | No data, pebbles/<br>gravel expected to<br>be present | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No data                                                                  | Not known                                           | No                                                                             | Less than Good with regard to dissolved oxygen                                                                                                                                        | Da                |
| Torne waterbodies                                    |                                              | 1.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                        | 1                                                   |                                                                                |                                                                                                                                                                                       |                   |
| Ferry Drain                                          | No but<br>considered likely                  | Silt                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No data                                                                  | Not known                                           | No (though<br>due to<br>demaining/<br>still present<br>but IDB<br>maintained?) | Less than good                                                                                                                                                                        | Info<br>ser       |
| Hatfield Waste Dr (trib of<br>Torne/Three Rivs)      | No but<br>considered likely                  | Silt                                                  | Hatfield Waste Drain is a Heavily Modified<br>Waterbody that has been channelised, re-sectioned<br>and straightented. Gradient is shallow at 1-2m<br>necessitating pumping at Brick Hill Carr and<br>Goodcop to drain the upper section of the system.<br>The lower section empties into the Three Rivers<br>complex and then into the tidal River Trent<br>downstream of Keadby pumping station.<br>Realigned and pumped systems tend to have<br>siltation problems due to the lack of gradient and<br>flow velocities. High flow abstraction could<br>exacerbate this because sediment could be<br>delivered into the channel by rainfall runoff, but then | Data indicates<br>waterbody is severely<br>modified.                     | Yes (downstream end<br>mainly)                      | Yes                                                                            | Less than good                                                                                                                                                                        | Ava               |

|                                                | Sensitivity Review                                                                                                                                                     |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                                                                                                                                                        |
| to                                             | Information indicates the channel may be of low to moderate sensitivity to further abstraction                                                                         |
|                                                | Information indicates the channel may be of low to<br>moderate sensitivity to further abstraction (noting data<br>is contrasting and perhaps reflects different areas) |
| to                                             | Data generally lacking to ascertain potential sensitivity                                                                                                              |
| and flow<br>dicated<br>of high flow<br>gen and | Available information indicates waterbody may be highly sensitive to effects of high flow abstraction                                                                  |
| to                                             | Available information indicates waterbody may be<br>highly sensitive to effects of high flow abstraction<br>(noting information is generally lacking in this reach)    |
| to                                             | Data generally lacking to ascertain potential sensitivity                                                                                                              |
|                                                |                                                                                                                                                                        |
|                                                | Information indicates waterbody would be of low sensitivity to further abstraction.                                                                                    |
|                                                | Available information indicates waterbody may be<br>moderately sensitive to effects of high flow abstraction<br>(with regard to floodplain inundation)                 |

|                                                      | Evidence of<br>extensive in<br>channel works | Predominant<br>substrate                                   | Review of Provided Imagery and RFF reports (-<br>there was no information)                                                                                                                                                                                                                                             | Extent of modification<br>(RHS Review, noting<br>data is limited) | 2 year flood<br>overtopping into the<br>floodplain? | Presence of<br>Flood<br>Defences                               | Water quality Review                                                                                                                                                                                              |
|------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      |                                              |                                                            | flow abstraction further downstream could reduce<br>the stream's capacity to transport sediment or<br>deposit it to floodplains.                                                                                                                                                                                       |                                                                   |                                                     |                                                                |                                                                                                                                                                                                                   |
| Mother Drain from Source to R<br>Torne               | Not known                                    | Pebbles/ gravel                                            | Ecological review indicates species present are<br>adapted to heavy sedimentation, suggesting of<br>conditions in the river                                                                                                                                                                                            | No data                                                           | Not known                                           | No                                                             | Less than good with regard to dissolved oxygen and phosphate                                                                                                                                                      |
| North Soak Drain (trib of R<br>Torne / Three Rivers) | No but<br>considered likely                  | No data, silt<br>expected                                  | -                                                                                                                                                                                                                                                                                                                      | No data                                                           | Yes                                                 | Yes                                                            | Less than good with regard to dissolved oxygen                                                                                                                                                                    |
| Ruddle (Paper Mill Dyke) from<br>Source to R Torne   | Not known                                    | No data, pebbles<br>gravels expected to<br>be present      | -                                                                                                                                                                                                                                                                                                                      | Data indicates<br>waterbody is severely<br>modified.              | Not known                                           | No                                                             | At least Good                                                                                                                                                                                                     |
| S Lev Engine Dr / Upper<br>Warping Drain Catch       | No but<br>considered likely                  | No data, silt<br>expected                                  | The waterbody is a network of artificial drainage<br>ditches, static flows, uniform laminar flow and lack<br>of mixing, sedimentation is an issue (PSI scores),<br>however the biological status has not been affected<br>by this. Potential sewage inputs having localised<br>effects on ammonia levels.              | No data                                                           | Not known                                           | Yes                                                            | Less than good with regard to<br>dissolved oxygen and ammonia                                                                                                                                                     |
| St Catherine's Well Stream from<br>Source to R Torne | Not known                                    | No data, pebbles<br>gravels expected to<br>be present      | -                                                                                                                                                                                                                                                                                                                      | No data                                                           | Not known                                           | No                                                             | Less than good with regard to phosphate and ammonia                                                                                                                                                               |
| Torne / Three Rivers from<br>Mother Dr to R Trent    | Yes                                          | Silt                                                       | Highly uniform reaches are unlikely to be significantly affected by high flow abstraction.                                                                                                                                                                                                                             | Data indicates<br>waterbody is severely<br>modified.              | Yes (downstream end only)                           | Yes                                                            | Less than good                                                                                                                                                                                                    |
| Torne from Ruddle to St<br>Catherine's Well St       | Yes                                          | Silt though<br>substantive pebbles/<br>gravel also present | This waterbody is not designated as a Heavily<br>modified waterbody although it considered to be<br>homogenous in nature. It has been channelised and<br>re-sectioned into long straight sections. Flow is<br>predominantly slack with little habitat heterogeneity<br>and heavy rates of sedimentation.               | No data                                                           | No                                                  | Yes                                                            | Less than good with regard to dissolved oxygen and phosphate                                                                                                                                                      |
| Torne from Source to Ruddle<br>(Paper Mill Dyke)     | Yes                                          | No data, pebbles<br>gravels expected to<br>be present      | -                                                                                                                                                                                                                                                                                                                      | No data                                                           | No                                                  | Yes                                                            | At least Good                                                                                                                                                                                                     |
| Torne from St Catherine's Well<br>Strm to Mother Dr  | Yes                                          | No data, pebbles<br>gravels expected to<br>be present      | The Torne at Rossington has a uniform channel that<br>is unlikely to be affected badly by peak flow<br>abstraction, but wetland and floodplain habitats<br>such as reeds could be detrimentally affected if<br>peak flows are reduced. Bank erosion is unlikely to<br>significantly reduce with peak flow abstraction. | Data indicates<br>waterbody is severely<br>modified.              | No                                                  | Yes                                                            | Less than good with regard to<br>phosphate. Water quality and flow data<br>available and review indicated potentia<br>sensitivity at times of high flow with<br>regard to dissolved oxygen and<br>orthophosphate. |
| Warping Drain Catch (trib of                         | No but<br>considered likely                  | No data, pebbles<br>gravels expected to<br>be present      | -                                                                                                                                                                                                                                                                                                                      | No data                                                           | Not known                                           | No (though<br>due to<br>demaining/<br>still present<br>but IDB | At least Good                                                                                                                                                                                                     |

|                         | Sensitivity Review                                                                                                                                     |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                                                        |
|                         | Information indicates the channel may be of low to moderate sensitivity to further abstraction                                                         |
|                         | Available information indicates waterbody may be<br>moderately sensitive to effects of high flow abstraction<br>(with regard to floodplain inundation) |
|                         | Information indicates waterbody would be of low sensitivity to further abstraction.                                                                    |
|                         | Information indicates waterbody would be of low sensitivity to further abstraction.                                                                    |
|                         | Data generally lacking to ascertain potential sensitivity                                                                                              |
|                         | Available information indicates waterbody may be<br>moderately sensitive to effects of high flow abstraction<br>(with regard to floodplain inundation) |
|                         | Information indicates waterbody would be of low sensitivity to further abstraction.                                                                    |
|                         | Data generally lacking to ascertain potential sensitivity                                                                                              |
| v data<br>tential<br>th | Information indicates the channel may be of low to moderate sensitivity to further abstraction                                                         |
|                         | Information indicates waterbody would be of low sensitivity to further abstraction.                                                                    |



#### Legend Available information indicates waterbody would be of low sensitivity to further abstraction Available information indicates waterbody may be of low to moderate sensitivity to further abstraction Available information indicates waterbody may be of moderate sensitivity to further abstraction Available information indicates waterbody may be highly sensitive to further abstraction Data generally lacking to ascertain potential sensitivity **Torne Catchment** Torne WFD Catchments 3 Boundary # WaterbodyName 2 1 North Soak Drain (trib of R Torne / Three Rivers) Tome / Three Rivers from Mother Dr to R Trent Hatfield Waste Dr (trib of Tome/Three Rivs) Mother Drain from Source to R Torne 4 5 5 S Lev Engine Dr / Upper Warping Drain Catch 11 6 Torne from St Catherine'S Well Stream from Source to R Torne 7 St Catherine's Well Stream from Source to R Torne 6 12 8 Torne from Ruddle to St Catherine's Well St 8 9 Ruddle (Paper Mill Dyke) from Source to R Torne 10 Torne from Source to Ruddle (Paper Mill Dyke) q 11 Ferry Drain 12 Warping Drain Catch (trib of Trent) 0 Idle WFD Catchments 2 # Waterbody Name 1 Idle from River Ryton to River Trent **Idle Catchment** 6 2 Idle from Tiln to River Ryton 3 Ryton from Anston Brook to Idle Boundary 11 7 Owlands Wood Dyke from Source to Hodscol 8 Ryton (to Aniston Brook) 9 Anston Brook from Source to River Ryton 10 Broad Bridge Dyke (to Canal) 11 Idle from Maun/Poulter Conf to Tiln 2 Poulter from Millwood Brook to River Maun 12 13 14 13 Maun from Rainworth Water to River Poulter 14 Millwood Brook from Source to River Poulter 16 To Poulter from Source to Milwood Brook Bevercotes Beck Catchment (trib of River Maun) Meden from Sookholme Brook to River Maun 17 18 18 Maun from Vicar Water to Rainworth Water 19 Rainworth Water from Gallow Hole Dyke to R Maun 19 25 20 Sookholme Brook from Source to River M 21 Meden from Source to Sookholme Brook Sookholme Brook from Source to River Meden 24 22 23 2 Maun from Source to Vicar Water 0 5 10 km Ν 23 Vicar Water from Source to R M aun 24 Rainworth Water from Source to Gallow Hole Dyke 25 Gallow Hole Dyke from Source to Rainworth Water

#### Figure 3.54 Physical Environment Sensitivity Review Summary

### 4. Environmental Features

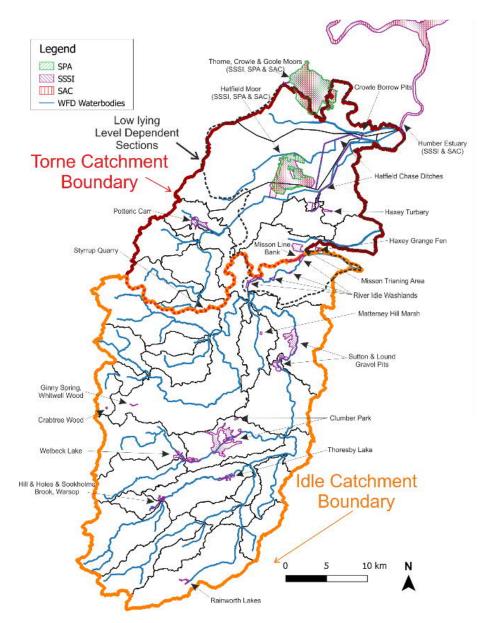
### 4.1 Background

The Environmental Feature baseline has been developed and expanded from the Feasibility Study undertaken in 2015. This section of the report has been divided into the following sub-sections:

- Designated Sites;
- Protected and Invasive Non- Native Species;
- Water Framework Directive;
- Fish;
- Macroinvertebrates;
- Macrophytes and Phytobenthos; and
- Diatoms.

#### 4.2 Designated Sites

#### 4.2.1 Approach


Records of statutory sites for nature conservation, including Special Areas for Conservation (SACs), Special Protection Areas (SPA's), Sites of Special Scientific Interest (SSSI), and Local Nature Reserves (LNRs) within the Idle and Torne catchments were initially obtained from publicly available sources. The results from the initial screening highlighting water dependant sites were brought forward into this assessment.

The next stage of this process was to further investigate the nature conservation features of interest within each of the sites. This process was undertaken to try and identify sites where their 'water dependency' was reliant on watercourses within either the Idle or Torne catchments. It also allowed sites to be identified which specifically highlight winter flooding as an important component of their designation and therefore, may be very sensitive to changes in winter flows. This process also allowed further sites to be scoped out.

The data used in this assessment was collated from https://designatedsites.naturalengland.org.uk/.

#### 4.2.2 Internationally and Nationally Designated Sites etc

Four internationally designated sites were brought forward from the phase 1 study for further analysis. These were Hatfield Moor SAC, Thorne Moor SAC, Thorne and Hatfield Moor SPA and the Humber Estuary SAC. A total of 20 nationally designated site were brought forward from the phase 1 study for further analysis. The location of the nationally and internationally designated sites is indicated on Figure 4.1.



#### Figure 4.1 National and International Designated Sites in and downstream of the Idle and Torne

A high level qualitative review of the potential effects on these sites/ their sensitivity if abstractions at high flows were to occur is presented in Table 4.1.

### Table 4.1 International and national Sites and sensitivity appraisal

| Name                                                | Designation     | Features of Interest                                                                                                                                                                                                                                                                              | Appraisal of effects of high flow abstraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Waterbody and Physical Environment<br>Sensitivity                                                                                                                              | Screened in or out |
|-----------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Hatfield Moor (see<br>Thorne and Hatfield<br>Moors) | SAC and<br>SSSI | Remnant raised and blanket mire, breeding<br>birds including nightjar, important invertebrate<br>assemblages,                                                                                                                                                                                     | The site is reliant on groundwater/ direct rainfall rather than surface waters,<br>and so is not considered sensitive to surface water abstractions at times of<br>high flow.                                                                                                                                                                                                                                                                                                                                                                               | Hatfield Waste Drain (trib of Torne/ Three Rivers) -<br>Moderately Sensitive                                                                                                   | Screened out       |
| Humber Estuary                                      | SAC and<br>SSSI | Aggregations of wide range of non-breeding<br>birds, breeding wetland birds, Sea Lamprey<br>(Petromyzon marinus), River Lamprey<br>(Lampetra fluviatilis), Grey Seal (Halichoerus<br>grypus), sand dune, saltmarsh and<br>muddy/sandy shores, standing waters,<br>estuary, saline coastal lagoons | Reductions in freshwater inflows to Humber Estuary likely to be small, given wider contributions e.g. from the Trent.                                                                                                                                                                                                                                                                                                                                                                                                                                       | Downstream of catchments                                                                                                                                                       | Screened out       |
| Thorne Moor                                         | SAC             | Remnant raised and blanket mire, breeding<br>birds including nightjar, important invertebrate<br>assemblages,                                                                                                                                                                                     | The site is reliant on groundwater/ direct rainfall rather than surface waters, and so is not considered sensitive to surface water abstractions at times of high flow.                                                                                                                                                                                                                                                                                                                                                                                     | North Soak Drain (trib of R Torne / Three Rivers) -<br>Moderately Sensitive                                                                                                    | Screened out       |
| Thorne & Hatfield<br>Moors                          | SPA             | Remnant raised and blanket mire, breeding<br>birds including nightjar, important invertebrate<br>assemblages,                                                                                                                                                                                     | The sites are reliant on groundwater/ direct rainfall rather than surface waters, and so is not considered sensitive to surface water abstractions at times of high flow.                                                                                                                                                                                                                                                                                                                                                                                   | North Soak Drain (trib of R Torne / Three Rivers) -<br>Moderately Sensitive                                                                                                    | Screened out       |
| Crabtree Wood                                       | SSSI            | Fen marsh and swamp                                                                                                                                                                                                                                                                               | Site lies in the upland part of the catchment. Abstractions at times of high flow not expected to have an impact at this location.                                                                                                                                                                                                                                                                                                                                                                                                                          | Broad Bridge Dyke (to Canal) – Low sensitivity                                                                                                                                 | Screened out       |
| Crowle Borrow Pits                                  |                 |                                                                                                                                                                                                                                                                                                   | SSSI lies either side of the embankment of a disused railway line and include<br>a variety of habitats including alder carr, scrub, fen and open water in which<br>several locally uncommon plant species occur. Several small ponds exist<br>within the fen and scrub and contain aquatic and marginal species.<br>Reduction in floodplain inundation may impact upon this site. Environment<br>Agency has advised that they believe that these may not be water                                                                                           | North Soak Drain (trib of R Torne / Three Rivers)<br>and Hatfield Waste Drain (trib of R Torne / Three<br>Rivers) - both Moderately Sensitive                                  | <u>Screened in</u> |
|                                                     | SSSI            | Fen, marsh, swamp woodland                                                                                                                                                                                                                                                                        | dependent, however, as they are not aware of a WLMP for the site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                | O and an a d in    |
| Clumber Park                                        | SSSI            | Standing open waters (OW), heath woodland                                                                                                                                                                                                                                                         | Environment Agency have advised that no formal WLMP for the site however<br>there are habitats along the lake fringes and also notable colonies of water<br>starwort in the lake which will be susceptible to lack of water but not excess<br>water.<br>Connectivity to river of waterbodies in the SSSI not known. If surface water<br>reliant then impact of high flow abstraction may potentially be greater.                                                                                                                                            | Poulter from Millwood Brook to River Maun –<br>Moderately Sensitive                                                                                                            | <u>Screened in</u> |
| Hatfield Chase<br>Ditches                           | SSSI            | Standing OW and canals, water voles                                                                                                                                                                                                                                                               | Physical environment review determined that reach not considered to be<br>sensitive, other than with regard to a reduction in floodplain inundation at<br>times of high flow.<br>Site has a WLMP and levels in the ditch are controlled within these levels. A<br>reduction in high flows may make management of these levels easier and a<br>reduced inundation of the floodplain not considered to detrimentally impact<br>upon the site.                                                                                                                 | Torne / Three Rivers from Mother Drain to R Trent<br>and Hatfield Waste Drain (trib of Torne/ Three<br>Rivers (with regard to floodplain inundation) -<br>Moderately Sensitive | Screened out       |
| Haxey Grange Fen<br>SSSI                            | SSSI            | Fen marsh and swamp                                                                                                                                                                                                                                                                               | Site is reasonably distant from the Idle (200m) and citation indicates it is dependent on water table (groundwater) rather than surface water inundation.                                                                                                                                                                                                                                                                                                                                                                                                   | Idle from River Ryton to River Trent- Highly sensitive                                                                                                                         | Screened out       |
| laxey Turbary                                       | SSSI            | Relic wet bog/open wet heathland                                                                                                                                                                                                                                                                  | Site is reasonably distant from the Hatfield Chase Ditch (400m) and citation indicates it is a relict bog implying it is groundwater dependent. As such no effect predicted on this site.                                                                                                                                                                                                                                                                                                                                                                   | Torne / Three Rivers from Mother Drain to R Trent                                                                                                                              | Screened out       |
| Mattersey Hill<br>Marsh                             | SSSI            | Broad leaved woodland and bog                                                                                                                                                                                                                                                                     | Site around 300m from Ranskill Brook and so likely more reliant on groundwater/ direct rainfall. As such no effects predicted.                                                                                                                                                                                                                                                                                                                                                                                                                              | Ranskill Brook Catchment (trib of the River Idle)-<br>low to moderate sensitivity                                                                                              | Screened out       |
| Misson Line Bank                                    | SSSI            | Standing OW and canals, fen marsh and swamp woodland                                                                                                                                                                                                                                              | SSSI contains fine examples of wetland plant communities of unusual diversity and species richness developed in association with a series of old borrow pits.<br>Environment Agency have advised that they have not been involved in or aware of any Natural England remedies or actions for this site and that it is open water (borrow pits), marsh and fen communities. They also don't think it is linked to the Idle which along with its designation suggests it is groundwater dependent. As such high abstraction not considered to have an effect. | Warping Drain Catchment (trib of Trent) – low sensitivity                                                                                                                      | Screened out       |

| Name                                              | Designation | Features of Interest                                                               | Appraisal of effects of high flow abstraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Waterbody and Physical Environment<br>Sensitivity                                                                                                          | Screened in or out                                                                                                                           |
|---------------------------------------------------|-------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Misson Training<br>Area                           | SSSI        | Fen marsh and swamp, woodland, grassland                                           | SSSI supports a diverse range of semi-natural habitats, including standing<br>open water, tall-herb fen, unimproved neutral and acidic grassland, dry oak<br>woodland and nationally restricted wet woodland types.<br>Environment Agency have advised that they have not been involved in or<br>aware of any Natural England remedies or actions for this site and that it is<br>fen communities, open water and wet woodland.                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hatfield Waste Drain (trib of Torne/ Three Rivers) -<br>Moderately Sensitive                                                                               | Screened out                                                                                                                                 |
| Rainworth Lakes                                   | SSSI        | Fen marsh swamp, standing open water and canals                                    | Sites lies in the upland part of the catchment. Abstractions at times of high flow not expected to have a major impact at this location.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rainworth Water from Source to Gallow Hole<br>Dyke- low sensitivity                                                                                        | Screened out                                                                                                                                 |
| Potteric Carr                                     | SSSI        | Variety of breeding bird, swamp, fen and marsh habitats,                           | The SSSI developed as the result of mining subsidence beginning in the early 1905's (but occurring particularly between 1960–67), which caused the flooding and severe waterlogging of former agricultural land and woodland. A mosaic of open water, reed bed, wet grassland and carr habitats was thus created which now represents the largest and most diverse wetland of its type in the county IDB reportedly have an IDB though this has not been reviewed. Given low sensitivity of the reach to high flow abstractions site has been screened out however.                                                                                                                                                                                                                                                                                               | Mother Drain from Source to R Torne- low sensitivity                                                                                                       | Screened out                                                                                                                                 |
| River Idle<br>Washlands                           | SSSI        | Wet grassland plant communities, large numbers of wintering and passage waterfowl. | The SSSI contained the remaining washland grasslands along the River Idle floodplain. Characteristically the grassland swards are dominated by marsh foxtail in a community which contains such wet meadow herbs as la smock and great burnet. In wetter areas the vegetation is dominated by stands of reed sweet-grass which has also colonised the internal drains although, locally, a more varied wetland plant community occurs which includes such plant species as meadow rue.<br>The SSSI has a WLMP which implies it is sensitive to water level variation in the Idle. Similarly a reduction in floodplain inundation, as a result of additional high flow abstraction, could impact upon this site.                                                                                                                                                   | Idle from River Ryton to River Trent- Highly sensitive                                                                                                     | <u>Screened in</u>                                                                                                                           |
| Styrrup Quarry                                    | SSSI        | Earth heritage                                                                     | Site lies in the upland part of the catchment. Abstractions at times of high flow not expected to have an impact at this location.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Torne from Source to Ruddle (Paper Mill Dyke) – data lacking to assess sensitivity                                                                         | Screened out                                                                                                                                 |
| Thoresby Lake                                     | SSSI        | Standing OW and canals, fen marsh and swamp woodland                               | The site contains fine examples of dry acid grassland, acid-loam grassland,<br>marsh and reedswamp plant communities which, together with an area of<br>open water comprise one of the best mixed habitat assemblages on base-<br>poor soils in Nottinghamshire.<br>Lake is online (hydrologically) though likely and expected that levels in it<br>would be partially controlled by a downstream structure. Likely that level<br>controlled nature would buffer effects in the lake of high flow abstraction<br>(noting that it would likely be around weir crest level when such abstractions<br>would occur). Though a site visit is recommended to confirm outfall<br>arrangements.                                                                                                                                                                           | Meden from Sookholme Brook to River Maun -<br>highly sensitive                                                                                             | Screened out although is<br>recommended that the<br>downstream dam is visited to<br>confirm its importance to<br>control levels in the lake. |
| Welbeck Lake                                      | SSSI        | Standing OW and canals, fen marsh and swamp woodland                               | The SSSI comprises a complex of habitats centred on the Great Lake and<br>Carburton Dams, Welbeck and is notable for its breeding bird community,<br>which includes a heronry, and for its wintering wildfowl.<br>Lakes are online (hydrologically)though likely and expected that levels in it<br>would be partially controlled by a downstream structure. Likely that level<br>controlled nature would buffer effects in the lake of high flow abstraction<br>(noting that it would likely be around weir crest level when such abstractions<br>would occur and likely to be more sensitive at times of low flow). A site visit is<br>recommended to confirm structural arrangements and their hydrological<br>effects.<br>The Environment Agency have indicated that there are no management<br>actions or remedies at the site in which they are involved in. | Millwood Brook from Source to River Poulter –<br>data lacking to assess sensitivity<br>Poulter from Millwood Brook to River Maun –<br>Moderately Sensitive | Screened out although is<br>recommended that the site is<br>visited to confirm the<br>importance of structures.                              |
| Ginny<br>Spring,Whitwell<br>Wood                  | SSSI        | Fen marsh and swamp                                                                | Site lies in the upland part of the catchment. Abstractions at times of high flow not expected to have an impact at this location.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ryton from Anston Brook to Idle- highly sensitive                                                                                                          | Screened out                                                                                                                                 |
| Hills and Holes and<br>Sookholme Brook,<br>Warsop | SSSI        | Grassland, rivers and streams, fen, marsh and swamp                                | Site does not have a formal WLMP however the brook is designated as a calcareous stream with plant species not commonly found within the East Midlands. These will affected by drying out in limited flow conditions (drought) rather than at times of high flows so site is screened out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sookholme Brook from Source to River Meden –<br>highly sensitive                                                                                           | Screened out                                                                                                                                 |

| Name                            | Designation | Features of Interest                                                                                                                                                                                                         | Appraisal of effects of high flow abstraction                                                                                                                                 | Waterbody and Physical Environment<br>Sensitivity                         | Screened in or out |
|---------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------|
| Sutton and Lound<br>Gravel Pits |             | Aggregations of non-breeding birds - Gadwall,<br>Anas Strepera, ,Assemblages of breeding birds<br>- Lowland open waters and their margins,<br>Variety of passage bird species (150) (habitats<br>standing waters and canals) |                                                                                                                                                                               | Idle from Tiln to River Ryton – moderate sensitivity                      | Screened out       |
|                                 | SSSI        |                                                                                                                                                                                                                              |                                                                                                                                                                               |                                                                           |                    |
| Thorne, Crowle and Goole Moors  | SSSI        | Remnant raised and blanket mire, breeding<br>birds, including nightjar, and important<br>invertebrate assemblages                                                                                                            | The site is reliant on groundwater/ direct rainfall rather than surface waters,<br>and so is not considered sensitive to surface water abstractions at times of<br>high flow. | North Soak Drain (trib of r Thorne / Three Rivers) - moderate sensitivity | Screened out       |

Designation

LNR LNR

SSSI

SSSI

SSSI

SSSI

SSSI

SSSI

SSSI

SSSI

SSSI

SSSI LNR

SSSI

SSSI

NNR LNR

SAC

SSSI

LNR

LNR

SSSI

SSSI

SSSI

LNR

LNR

LNR

SSSI

LNR

SSSI

LNR

LNR SSSI

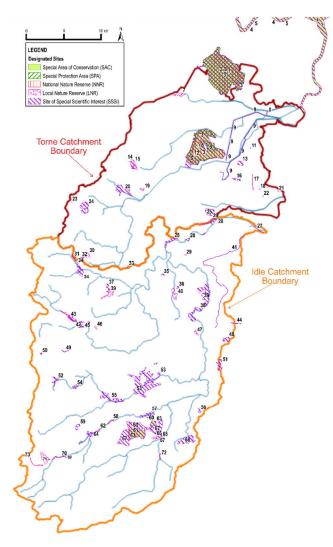
SSSI

LNR LNR

SSSI

LNR

LNR


LNR LNR

LNR

SSSI

SSSI

LNR



| abel | Name                           | Designation | Label | Name                                       |
|------|--------------------------------|-------------|-------|--------------------------------------------|
| 1    | Thorne, Crowle and Goole Moors | SSSI        | 47    | Woodsetts Pond                             |
| 2    | Thorne Moor                    | SAC         | 48    | Retford Cemetery                           |
| 3    | Humberhead Peatlands           | NNR         | 49    | Castle Hill Wood                           |
| 4    | Humber Estuary                 | SSSI        | 50    | Ginny Spring, Whitwell Wood                |
| 5    | Humber Estuary                 | SAC         | 51    | Crabtree Wood                              |
| 6    | Thorne & Hatfield Moors        | SPA         | 52    | Gamston & Eaton Woods & Roadside Verge     |
| 7    | Buntings Wood, Thorne          | LNR         | 53    | Hollinhill and Markland Grips              |
| 8    | Crowle Borrow Pits             | SSSI        | 54    | Clumber Park                               |
| 9    | Hatfield Chase Ditches         | SSSI        | 55    | Creswell Crags                             |
| 10   | Hatfield Moor                  | SAC         | 56    | Welbeck Lake                               |
| 11   | Belshaw                        | SSSI        | 57    | Bevercotes Park                            |
| 12   | Hatfield Moors                 | SSSI        | 58    | Thoresby Lake                              |
| 13   | Epworth Turbary                | SSSI        | 59    | The Bottoms                                |
| 14   | Sand all Beat                  | SSSI        | 60    | Lord Stubbins Wood                         |
| 15   | Sand all B eat                 | LNR         | 61    | Birklands and Bilhaugh                     |
| 16   | Haxey Turbary                  | SSSI        | 62    | Sherwood Forest                            |
| 17   | Axholme Line                   | LNR         | 63    | The Carrs                                  |
| 18   | Rush Furlong                   | SSSI        | 64    | Birklands & Bilhaugh                       |
| 19   | Hatchell Wood                  | LNR         | 65    | Hills and Holes and Sookholme Brook, Warse |
| 20   | Potteric Carr                  | SSSI        | 66    | Sherwood Heath                             |
| 21   | Owston Ferry Castle            | LNR         | 67    | Cockglode and Rotary Wood                  |
| 22   | Hewson's Field                 | SSSI        | 68    | Birklands West and Ollerton Corner         |
| 23   | New Edlington Brickpit         | SSSI        | 69    | Wellow Park                                |
| 24   | Edlington Wood                 | SSSI        | 70    | Pleasley Vale Railway                      |
| 25   | Misson Training Area           | SSSI        | 71    | Pleasley Vale                              |
| 6    | Haxey Grange Fen               | SSSI        | 72    | Pleasley                                   |
| 27   | Misson Line Bank               | SSSI        | 73    | Rufford Country Park                       |
| 28   | Mother Drain, Misterton        | SSSI        | 74    | Rowthorne Trail                            |
| 29   | River Idle Washlands           | SSSI        | 75    | Teversal to Pleasley Railway               |
| 30   | Barrow Hills Sandpit           | SSSI        | 76    | Vicar Water Nature Reserve                 |
| 31   | Maltby Commons                 | LNR         | 77    | Clipstone Heath                            |
| 32   | Wood Lee Common                | SSSI        | 78    | Ravensdale                                 |
| 33   | Maltby Low Common              | SSSI        | 79    | Maun Valley Park                           |
| 34   | Styrrup Quarry                 | SSSI        | 80    | Teversal Pastures                          |
| 35   | Roche Abbey Woodlands          | SSSI        | 81    | Sherwood Forest Golf Course                |
| 36   | Scrooby Top Quarry             | SSSI        | 82    | Teversal/Pleasley Network                  |
| 37   | Mattersey Hill Marsh           | SSSI        | 83    | Oak Tree Heath                             |
| 38   | Dyscarr Wood                   | SSSI        | 84    | Strawberry Hill Heaths                     |
| 39   | Sutton and Lound Gravel Pits   | SSSI        | 85    | Quarry Lane                                |
| 40   | Langold Country Park           | LNR         | 86    | The Hermitage                              |
| 41   | Daneshill                      | LNR         | 87    | Brierley Forest Park                       |
| 42   | Chesterfield Canal             | SSSI        | 88    | Oakham                                     |
| 43   | Anston Stones Wood             | SSSI        | 89    | Rainworth Water                            |
| 14   | Anston Stones Wood             | LNR         | 90    | Rainworth Heath                            |
| 45   | Clarborough Tunnel             | SSSI        | 91    | Rainworth Lakes                            |
| 46   | Lindrick Golf Course           | SSSI        | 92    | Southwell Trail                            |

Figure 4.2 Designated Sites in and downstream of the Idle and Torne catchments



#### 4.2.3 Local Designated Sites

A number of other locally designated sites are present throughout the catchment and are indicated in Figure 4.2. Although the effect on each site has not been appraised their presence in a reach can indicate potential sensitivity (with their absence relatively indicating a lower sensitivity).

### 4.3 **Protected and Invasive Non-Native Species**

#### 4.3.1 Approach

The available protected and notable species records were screened to identify water dependant species (species that require water or associated riverine habitats for all or a significant part of their lifecycle). The data used in this assessment is detailed below. The available data was restricted to records post 2000, to help characterise the recent (rather than historic) conditions of the catchments and included the following:

- otter, crayfish and water vole data (Nottinghamshire Biological and Geological Record Centre (NBGRC));
- otter, crayfish and water vole records from the Idle and Thorne catchments (Doncaster Local Records Centre (DLRC)); and
- notable and protected species records from within Local Wildlife Sites (LWS) in Doncaster.

The relevant protected and notable water dependant species records are provided below.

Fishery protected and invasive species are discussed in Section 4.4.

#### 4.3.2 Protected Species

The desk study returned the following protected species records:

- water vole (*Arvicola amphibious*). There are approximately 1,000 records across both the Idle and Torne catchments;
- otter (Lutra Lutra), nine records within the Torne with four in the Idle catchment;
- white clawed crayfish (*Austropotamobius pallipes*), there are localised records at two locations in the Idle catchment.

The proposed high flow abstraction is only likely to reduce spate flows during the winter period and these changes are unlikely to directly affect these species. However, there could be indirect impacts (such as impacts on their food source), which are not currently understood. Therefore, potential effects on these species should still be considered in more detail in the next stage of the assessment.

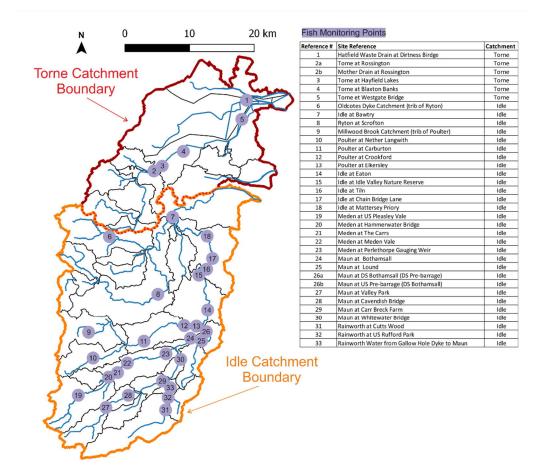
In addition, species listed on the Doncaster LBAP were returned by DLRC, including various-leaved water-Starwort (*Callitriche* platycarpa). Further information is provided in Section 4.6 (macrophytes and phytobenthos section).

#### 4.3.3 Invasive Non-Native Species

Review of the macrophyte WFD monitoring data also demonstrated that invasive non-native species (INNS) of macrophytes (*Elodea nutalii, Elodea canadensis, Impatiens glandulifera*) are present in several watercourses within the Idle and Torne catchments. These are presented in Table 4.2 below. There were no additional INNS records within the DLRC available data.



| Species                                        | Waterbody                                                            | Site                                   | National Grid<br>Reference |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------|
| Nuttall's waterweed<br><i>(Elodea nutalii)</i> | Idle from River Ryton to River Trent<br>(GB104028058110)             | Misterton                              | SK-76466-<br>96231         |
|                                                | Maun from Rainworth Water to River<br>Poulter (GB104028058080)       | Ollerton MTR Site                      | SK-65472-<br>67804         |
|                                                | Meden from Sookholme Brook to River<br>Maun (GB104028058060)         | The Carrs Warsop<br>(Welbeck) MTR Site | SK-58312-<br>69695         |
|                                                | Meden from Source to Sookholme Brook<br>(GB104028058020)             | Littlewood                             | SK-53177-<br>65282         |
|                                                | Torne / Three Rivers from Mother Dr to R<br>Trent (GB104028064340)   | Hammerwater Bridge MTR<br>Site         | SK-55600-<br>67531         |
|                                                | Hatfield Waste Dr (trib of Torne/Three<br>Rivs) (GB104028064330)     | Goodcop Farm                           | SE-73550-<br>08350         |
|                                                | Torne from St Catherine's Well Strm to<br>Mother Dr (GB104028058410) | Torne Bridge                           | SK-61944-<br>98961         |
|                                                | Warping Drain Catch (trib of Trent)<br>(GB104028058240)              | Owston Ferry                           | SK-79900-<br>98900         |
| Himalayan balsam<br>( <i>Impatiens</i>         | Idle from River Ryton to River Trent<br>(GB104028058110)             | Bawtry                                 | SK-65602-<br>92740         |
| glandulifera)                                  | Maun from Rainworth Water to River<br>Poulter (GB104028058080)       | Ollerton MTR Site                      | SK-65472-<br>67804         |
|                                                | Meden from Sookholme Brook to River<br>Maun (GB104028058060)         | The Carrs Warsop<br>(Welbeck) MTR Site | SK-58312-<br>69695         |
|                                                | Meden from Source to Sookholme Brook<br>(GB104028058020)             | Littlewood                             | SK-53177-<br>65282         |
|                                                | Sookholme Brook from Source to River<br>Meden (GB104028058050)       | Spring Lane                            | SK-54980-<br>67190         |
|                                                | Owlands Wood Dyke from Source to<br>Hodscok Brook (GB104028058170)   | Water Lane                             | SK-59625-<br>84584         |
| Canadian pondwee<br>d (Elodea<br>canadensis)   | Maun from Rainworth Water to River<br>Poulter (GB104028058080)       | Ollerton MTR Site                      | SK-65472-<br>67804         |


#### Table 4.2: Invasive non-native species records within the study area (from WFD monitoring data)

Abstracting during high flows might change flow conditions and lead to a localised spread of the Nutall's waterweed and Canadian pondweed. It should also be considered that reducing spate flows might limit the downstream spread of those species, which could constitute a beneficial impact from the abstraction.

#### 4.4 Fish

#### 4.4.1 Data

Since 1982, a combined total of 52 individual monitoring points have been surveyed by the Environment Agency across both catchments, providing a spatially and temporally rich dataset (Figure 4.3). Due to the size of the dataset, the data was filtered to include only the past ten years of data (01/01/2010 - 31/12/2019) as this will provide an accurate recent assessment of the resident fish populations.



# Figure 4.3 Locations of the Environment Agency fish monitoring points within the Idle and Torne catchment

In addition, detailed Environment Agency fish monitoring reports were analysed. They included an assessment of fish habitat quality and described the main pressures on fish communities, such as the presence of barriers to migration. This data was used in order to identify the presence of spawning habitat that may be impacted by increased sedimentation of gravel habitats due to high winter flow abstraction, and the presence of migratory fish species, for which flow reductions could limit passage through fish barriers already present in the catchment.

#### 4.4.2 Water Framework Status

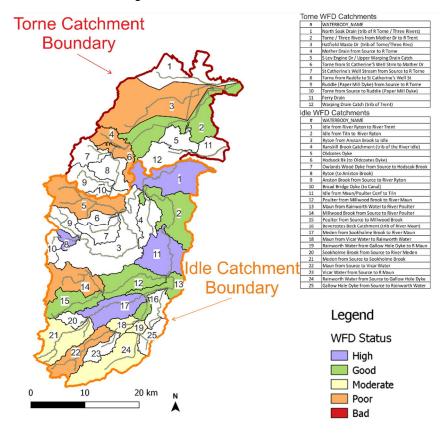
Within the Idle and Torne catchments, 37 water bodies have been identified by the Environment Agency for ecological assessment under the Water Framework Directive (WFD). Of these, 17 waterbodies are routinely monitored for fish populations with 11 and six waterbodies assessed within the Idle and Torne catchments respectively (Table 4.3 and Figure 4.4).

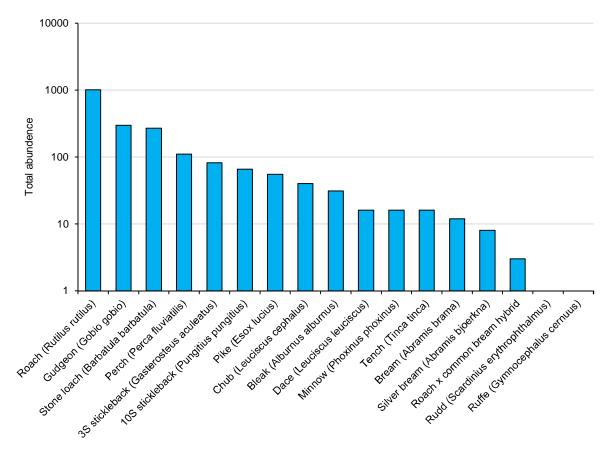
| Catchment | Waterbody name                       | Waterbody ID   | WFD status (2016) |
|-----------|--------------------------------------|----------------|-------------------|
| ldle      | Idle from Maun/Poulter to Tiln       | GB104028058091 | High              |
| ldle      | Idle from Ryton to Trent             | GB104028058110 | High              |
| Idle      | Idle from Tiln to Ryton              | GB104028058092 | Good              |
| ldle      | Maun from Rainworth Water to Poulter | GB104028058080 | Good              |
| ldle      | Maun from Source to Vicar Water      | GB104028052960 | Poor              |

#### Table 4.3 WFD waterbodies within the Idle & Torne catchments and their 2016 WFD Fish status

| Catchment | Waterbody name Water                                        |                | WFD status (2016) |
|-----------|-------------------------------------------------------------|----------------|-------------------|
| Idle      | Maun from Vicar Water to Rainworth Water                    | GB104028058040 | Moderate          |
| Idle      | Meden from Sookholme Brook to Maun                          | GB104028058060 | High              |
| Idle      | Meden from Source to Sookholme Brook                        | GB104028058020 | Moderate          |
| Idle      | Poulter from Millwood Brook to Maun                         | GB104028058140 | Good              |
| Idle      | Poulter from Source to Millwood Brook                       | GB104028058130 | Good              |
| Idle      | Rainworth Water from Source to Gallow Hole Dyke             | GB104028052940 | Moderate          |
| Torne     | Hatfield Waste Drain Catchment (trib of Torne/Three Rivers) | GB104028064330 | Poor              |
| Torne     | Mother Drain from Source to Torne                           | GB104028058440 | Poor              |
| Torne     | St Catherine's Well Stream from Source to Torne             | GB104028058420 | N/A               |
| Torne     | Torne from St Catherine's Well Stream to Mother Drain       | GB104028058410 | Poor              |
| Torne     | Torne/Three Rivers from Mother Drain to Trent               | GB104028064340 | Good              |
| Torne     | Warping Drain Catchment (trib of Trent)                     | GB104028058240 | N/A               |

The WFD fish status for each of these water bodies is calculated by assessing multiple monitoring points along its course. Three of the four waterbodies in the Torne are failing to achieve Good status. The downstream Idle catchment waterbodies are reported to be achieving Good or High status while most of the upper waterbodies are failing to achieve Good status.





Figure 4.4 Fish WFD waterbodies and status as of 2016 in the Idle and Torne catchments

#### 4.4.3 River Torne catchment

#### 4.4.3.1 Fishery Baseline

The baseline assessment of the River Torne catchment has shown that since 2010, seven routine monitoring sites have been surveyed to assess the fish populations. These surveys have identified 20 different fish species with roach (*Rutilus rutilus*; n = 1007), gudgeon (*Gobio gobio*; n = 297), stone loach (*Barbatula barbatula*; n = 271) and bullhead (*Cottus gobio*; n = 208) being the most abundant (Figure 4.5). It should be noted that these abundances do not include the 'observed abundances' as these estimations are grouped into logarithmic bins and represent a potentially large source of error). The fish population is dominated by a predominately cyprinid assemblage. Of the cyprinids, many are benthivorous (i.e. tench (*Tinca tinca*) and bream (*Abramis brama*)) which are associated with slow flows and fine sediment environments.

It is noted that no fish monitoring information is available from a number of waterbodies in the Torne catchment. This is discussed further in Section 4.9.



#### Figure 4.5 River Torne fish assemblage not including protected species (2010-2019)

#### 4.4.3.2 **Protected and invasive species**

The following three protected species were recorded bullhead (n = 208), European eel (*Anguilla anguilla*; n = 32) and barbel (*barbus barbus*; n = 15) and no invasive species were recorded.

- Bullhead are protected under Annex II of the Habitats Directive (designation as qualifying feature within SACs).
- European eels are a critically endangered species protected under Appendix II of the Bonn Convention (migratory species that require international agreements for their conservation and management), a Section 41 (S41) species under the Natural Environment and Rural Communities (NERC) Act 2006, an Appendix II species under the Convention on

AECOM

International Trade in Endangered Species (CITES) and a UK Biodiversity Action Plan (BAP) priority fish species. Additionally, Eels are protected by the Eels (England and Wales) Regulations (2009) which aims to act to halt and reverse the decline in the European eel stocks.

• Barbel are protected under Annex V of the Habitats Directive (exploitation may be subject to management) and a schedule 4 species under The Conservation of Habitats and Species Regulations 2010.

The protected species in the Torne catchment were recorded at six monitoring sites on five WFD waterbodies (Table 4.4). Of these, the European eel was the most ubiquitous having been identified at each of the six monitoring sites, followed by bullhead and barbel with 4 and 1 identifications at monitoring sites respectively.

#### Table 4.4 Spatial distribution of the protected and invasive species identified during the desktop study within the Torne catchment

| Site information                                                               | Barbel       | Bullhead     | European eel |
|--------------------------------------------------------------------------------|--------------|--------------|--------------|
| Hatfield Waste Drain Catchment (trib of Torne/Three Rivers) – (GB104028064330) |              |              |              |
| Dirtness Bridge                                                                |              |              | $\checkmark$ |
| Mother Drain from Source to Torne – (GB104028058440)                           |              |              |              |
| Rossington                                                                     |              | $\checkmark$ | $\checkmark$ |
| St Catherine's Well Stream from Source to Torne –<br>(GB104028058420)          |              |              |              |
| Below Sprotborough Weir                                                        | $\checkmark$ |              | $\checkmark$ |
| Torne from St Catherine's Well Stream to Mother Drain – (GB104028058410)       |              |              |              |
| Rossington                                                                     |              | $\checkmark$ | $\checkmark$ |
| Torne/Three Rivers from Mother Drain to Trent –<br>(GB104028064340)            |              |              |              |
| Blaxton Banks                                                                  |              | $\checkmark$ | $\checkmark$ |
| Hayfield Lakes                                                                 |              | $\checkmark$ | $\checkmark$ |

#### 4.4.3.3 Migratory species and barriers to migration

The catadromous European eel was the only migratory fish species that was identified within the Torne catchment. Their distribution is relatively wide spread within the catchment, but no individuals were recorded above Sprotbrough weir on the River Don, indicating that this weir is a potential barrier to their migration. Additional barriers to fish movement (weirs and impoundments) have been identified in the catchment by the Environment Agency. Both the River Torne at Westgate Bridge (GB104028064340) and at Rossington (GB104028058410) have been identified as barriers to fish migration, causing a deterioration in WFD status and thus a Reason For Failure (RFF).

#### 4.4.3.4 Impacts on fish populations and the Torne catchment

Multiple RFF's have been identified in the Torne catchment which are impacting the fish population. The Torne catchment appears to be suffering from high ammonia and sedimentation levels, these have been identified as RFF's at GB104028058430 (South Level Engine Drain catchment (trib of Trent)), GB104028058400 (River Torne from Ruddle to St Catherine's Well Stream) and GB104028064330 (Hatfield Waste Drain). It is believed that the high ammonia levels are the result of pollution (point source, sewage discharge and diffuse agricultural) and the natural peaty soils in the catchment. Whereas, sedimentation is believed to be the result of poor agricultural practises catchment wide.

The River Torne at Westgate Bridge (GB104028064340) WFD status has decreased due to low flows and sediment deposition. Whereas the River Torne at Rossington (GB104028058410) have been

identified as poor water quality (specifically dissolved oxygen) and channel modification reducing habitat heterogeneity along its course. Abstraction at high flows at these locations has the potential to have a detrimental impact of fish populations.

Abstractions at times of high flow are not expected to result in impacts upon migration of species, as these generally occur during lower flows. Where siltation is expected to increase, or effects are not quantified, there may be impacts to fish (e.g. with good habitat or spawning grounds/ gravels potentially becoming smothered). Changes in macrophytes (see Section 4.6) may also have an effect on fish, e.g. if they are reduced there could be a loss in habitat or refuge.

#### 4.4.4 River Idle catchment

#### 4.4.4.1 Fishery Baseline

The baseline assessment of the River Idle catchment has shown that since 2010, 25 routine monitoring sites have been surveyed to assess the fish populations. These surveys have identified 25 different fish species with minnow (*Phoxinus phoxinus*; n = 16,624), stone loach (n = 2,568), gudgeon (n = 1,502), roach (n = 1,216) and bullhead (n = 1,046) being the most abundant (Figure 4.6). It should be noted that as before, the 'observed abundances' were not included in these abundances. The fish population is dominated by a predominately cyprinid assemblage which is expected given morphology of the Idle catchment. High numbers of the rheophilic species brown trout (*Salmo trutta*) and dace (*Leuciscus leuciscus*) where identified within the catchment suggesting that the water quality and the natural flow regime is higher than that in the Torne catchment. Interestingly, the presence of flounder (*Platichthys flesus*) at downstream monitoring sites displays their proximity to the brackish waters.

Three barrier to passage have been identified by the Environment Agency. Abstraction at times of high flow would be unlikely to cause further detriment to passage at these.

As for the Torne, there are a few waterbodies in the Idle catchment, in which no fish monitoring information is available. This is discussed further in Section 4.9.

100000 10000 Fotal abundence 1000 100 10 35 510 Kelladd Castle C white the lost babasile bat and a solution of the lost babasile bat and the basis of the babasile basis of the basis of the basis of the babasile basis of the b AUNS STEREBOOK PUBLIC P Ruffe Common Black Contracts And Conder Pair (1995) (1996) NINGON (PROVING PROVING) Chip Laddsus apralia Silver tream and the arts blettral Rubh Scalin Santronthamus) Gulgeon Gobio gobio Roach Rullis nullis Parch (Para Invisition) Beat Mourus abunus) CaP Copins apol 1

#### Figure 4.6 River Idle fish assemblage not including protected species (2010-2019)

#### 4.4.4.2 Protected and invasive species

Of these species, the following five protected species were recorded bullhead, European eel (n = 916), brown trout (n = 170), barbel (n = 15) and spined loach (*Cobitis taenia*; n = 5) and the invasive non-native species, feral goldfish (*Carassius auratus*; n = 1).

- Brown trout are a BAP UK priority species that are protected under the NERC Act 2006.
- Spined loach are a BAP UK priority species and a Section 41 (S41) species under the NERC Act 2006 that are additionally protected under Annex II of the Habitats Directive and Appendix III of the Bern Convention (regulation of the exploitation of species).
- The legislative status of the remaining three species are outlined in section 4.4.3.

There is also one historic record of Atlantic salmon recorded at Bawtry in 2003. However, no additional records have been recorded since. Several catchments in the River idle have a salmonid classification though it is considered this may be due to the presence and importance of brown trout (West Stcokwith pumping station is not believed to have a fish pass that would enable upstream salmon migration).

The single record of the invasive non-native species goldfish is likely the result of a discard from a pet owner and is unlikely to have survived.

The protected species in the Idle catchment were recorded in 23 monitoring sites and ten WFD waterbodies (Table 4.5). Of these, the bullhead was the most spatial abundant having been identified at 17 monitoring sites, followed by European eel, barbel, brown trout and spined loach with 14, 10, seven and four identifications at monitoring sites respectfully.



# Table 4.5 The spatial distribution of the protected and invasive species identified during the desktop study within the Idle catchment

| Site information                                               |              | Brown        | Bull-        | European     | Spined       | Feral        |
|----------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                                                | -bel         | trout        | head         | eel          | loach        | goldfish     |
| ldle from Maun/Poulter to Tiln –<br>(GB104028058091)           |              |              |              |              |              |              |
| Eaton                                                          | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| Idle Valley Nature Reserve                                     | $\checkmark$ |              |              |              |              |              |
| Tiln                                                           |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| Idle from Ryton to Trent – (GB104028058110)                    |              |              |              |              |              |              |
| Bawtry                                                         | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| Idle from Tiln to Ryton – (GB104028058092)                     |              |              |              |              |              |              |
| Chain Bridge Lane                                              | $\checkmark$ |              | $\checkmark$ | $\checkmark$ |              |              |
| Mattersey Priory                                               | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| Maun from Rainworth Water to Poulter –<br>(GB104028058080)     |              |              |              |              |              |              |
| Bothamsall                                                     | $\checkmark$ |              | $\checkmark$ | $\checkmark$ |              |              |
| DS Bothamsall (DS Pre-barrage)                                 | $\checkmark$ |              | $\checkmark$ |              |              |              |
| Lound                                                          |              |              |              | $\checkmark$ |              |              |
| US Pre-barrage (DS Bothamsall)                                 | $\checkmark$ |              |              |              |              |              |
| Whitewater Bridge                                              |              |              |              | $\checkmark$ |              |              |
| Maun from Source to Vicar Water –<br>(GB104028052960)          |              |              |              |              |              |              |
| Cavendish Bridge                                               |              |              | $\checkmark$ |              |              |              |
| Maun Valley Park                                               |              |              | $\checkmark$ |              |              |              |
| Maun from Vicar Water to Rainworth Water<br>– (GB104028058040) |              |              |              |              |              |              |
| Carr Breck Farm                                                |              |              |              | $\checkmark$ |              |              |
| Meden from Sookholme Brook to Maun –<br>(GB104028058060)       |              |              |              |              |              |              |
| Meden Vale                                                     |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| Perlethorpe Gauging Weir                                       | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ |
| The Carrs                                                      |              | $\checkmark$ | $\checkmark$ |              |              |              |
| Meden from Source to Sookholme Brook –<br>(GB104028058020)     |              |              |              |              |              |              |
| Hammerwater Bridge                                             |              | $\checkmark$ | $\checkmark$ |              |              |              |
| US Pleasley Vale                                               |              | $\checkmark$ | $\checkmark$ |              |              |              |
| Poulter from Millwood Brook to Maun –<br>(GB104028058140)      |              |              |              |              |              |              |
| Carburton                                                      |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| Crookford                                                      |              |              | $\checkmark$ | $\checkmark$ |              |              |
| Elkersley                                                      | $\checkmark$ |              | $\checkmark$ | $\checkmark$ |              |              |
| Poulter from Source to Millwood Brook –<br>(GB104028058130)    |              |              |              |              |              |              |
| Nether Langwith                                                |              | $\checkmark$ | $\checkmark$ |              |              |              |

AECOM

#### 4.4.4.3 Migratory species and barriers to migration

The catadromous European eel and the anadromous brown trout were the only migratory fish species identified within the Idle catchment. The distribution of European eel wide spread within the catchment, whereas the brown trout are limited to the upper reaches of the Idle. The large spatial distribution of these species (in particular eels) suggest that potential barriers to their migration are passable but they could still be limiting their migratory range and thus overall success. Additionally, it must be noted that any future increase in abstraction could cause the currently passable structures to become impassable to fish passage. However, this impact will likely be negligible when abstracting during high flows when fish are less likely to be migrating and if they are passage issues/conditions unlike to vary from the existing situation.

On the Idle, three barriers to fish migration have been identified as RFF's due to causing ecological discontinuity, these are:

- GB104028058092 (Idle from Tiln to Ryton) at Mattersey Priory physical modifications: both weir and flood protection structures in channel;
- GB104028058440 (Mother Drain from Source to Torne) physical modification: weir structure in channel;
- GB104028058020 (Meden from source to Sookholme Brook) physical modification: weir structure in channel of heritage value.

#### 4.4.4.4 Impacts on fish populations and the Idle catchment

Additional fish RFF's have been identified in the Idle catchment which are impacting fish populations.

- GB104028058092 (Idle from Tiln to Ryton) groundwater abstraction reducing the natural flow regime (not stated in the RFF whether this was reducing the quantity or variability though former is presumed).
- GB104028058440 (Mother Drain from Source to Torne), high ammonia levels from industrial point sources, high sedimentation levels from agricultural and rural land management and dissolved oxygen (source unknown).
- GB104028058020 (Meden from source to Sookholme Brook) high levels of sedimentation, source unknown and point source pollution from the urban transport and the water industry.

The Idle catchment has shown multiple RFF's to achieve overall good status resulting from catchment wide agriculture and rural land management increasing phosphorus level which are impacting other biological metrics, such as macrophytes. High phosphorus levels cause increased macrophyte abundance which can create daily changes in dissolved oxygen (DO) due to an increase in their overall photosynthetic cycle whereby increases and decreases are seen during day and night-time respectively. This sag in DO during the night can indirectly impact fish by creating areas of inhabitability or result in mortality if their movements are restricted. Increasing abstraction at high flows at the sites mentioned above, has the potential to have a detrimental impact on fish populations.

#### 4.5 Macroinvertebrates

#### 4.5.1 Screening

Macroinvertebrate communities are widely recognised as indicators of environmental quality, since they are largely static, and therefore reflect environmental conditions at a site-specific level and respond relatively rapidly to change.

During the first Phase of the study<sup>30</sup>, WFD water bodies within the Idle and Torne catchments were screened in if they were at Good or High status for the macroinvertebrate quality element (based on

<sup>&</sup>lt;sup>30</sup> AECOM (2015) - High Flow Abstraction for Multiple Environmental Benefits in the Idle and Torne Catchments – A Feasibility Study - Phase 1 Report

2013 WFD classification). Water bodies that were less than Good for macroinvertebrates were screened out of the assessment.

Although WFD macroinvertebrate status is calculated based on the tolerance of the macroinvertebrate community to a range of environmental variables including pollution as well as flow velocity, the screening approach based on the macroinvertebrate status being at least Good was considered to be reasonable. This is because it is able to identify flow sensitive river reaches.

A total of 18 water bodies were screened into the study during Phase 1 (for macroinvertebrates and macrophytes/ phytobenthos). These are shown in Table 4.6 below.

| Table 4.6 WFD water bodies graded as High or Good (at least once) based on the WFD |  |
|------------------------------------------------------------------------------------|--|
| assessment of the macroinvertebrate community between 2010 and 2015                |  |
|                                                                                    |  |

| Water body     | Water Body                                             |
|----------------|--------------------------------------------------------|
| identification |                                                        |
| GB104028058220 | Ranskill Brook Catchment (tributary of the River Idle) |
| GB104028058130 | Poulter from Source to Millwood Brook                  |
| GB104028058110 | Idle from River Ryton to River Trent                   |
| GB104028058100 | Ryton from Anston Brook to Idle                        |
| GB104028058050 | Sookholme Brook from Source to River Meden             |
| GB104028058190 | Hodsock Brook (to Old Coates Dyke)                     |
| GB104028052980 | Gallow Hole Dyke from Source to Rainworth Water        |
| GB104028058092 | Idle from Tiln to River Ryton                          |
| GB104028058080 | Maun from Rainworth Water to River Poulter             |
| GB104028058060 | Meden from Sookholme Brook to River Maun               |
| GB104028058091 | Idle from Maun/Poulter Confluence to Tiln              |
| GB104028058020 | Meden from Source to Sookholme Brook                   |
| GB104028058170 | Owlands Wood Dyke from Source to Hodscok Brook         |
| GB104028058240 | Warping Drain Catch (tributary of Trent)               |
| GB104028058440 | Mother Drain from Source to River Torne                |
| GB104028064340 | Torne / Three Rivers from Mother Drain to River Trent  |
| GB104028064330 | Hatfield Waste Dr (tributary of Torne/Three Rivers)    |
| GB104028058410 | Torne from St Catherine's Well Stream to Mother Drain  |

An additional seven WFD water bodies that were not screened into the assessment during the first phase of the study have since been identified as being of at least Good status for macroinvertebrates, (based on the 2016 classification). These have now been screened into the assessment are shown in Table 4.7 below.

# Table 4.7 Additional WFD water bodies graded as High or Good based on the WFD assessment of the macroinvertebrate community in 2016

| Water body identification | Water Body                                        |
|---------------------------|---------------------------------------------------|
| GB104028058162            | Ryton (to Anston Brook)                           |
| GB104028058140            | Poulter from Millwood Brook to River Maun         |
| GB104028058040            | Maun from Vicar Water to Rainworth Water          |
| GB104028064350            | North Soak Drain (trib of R Torne / Three Rivers) |
| GB104028058430            | S Lev Engine Dr / Upper Warping Drain Catch       |
| GB104028058380            | Ruddle (Paper Mill Dyke) from Source to R Torne   |
| GB104028058370            | Torne from Source to Ruddle (Paper Mill Dyke)     |

Investigation walkover reports from 2010 to 2019 were also reviewed for general comments on the state of the water bodies and observations on factors that may be affecting the biological state. These reports were compiled for WFD waterbodies where failures to achieve Good status for the biological elements were identified between 2009 and 2019.

Screened in waterbodies were also investigated for macrophytes and phytobenthos (see Section 4.6).

#### 4.5.2 Data

WFD macroinvertebrate monitoring data was available between 2010 and 2019 for all of the 25 water bodies screened into the assessment.

The monitoring data was generally sparse, with usually a single monitoring site for each waterbody. Exceptions to this include the River 'Idle from River Ryton to River Trent' (GB104028058110), the River 'Meden from Sookholme Brook to River Maun' (GB104028058060) and 'Sookholme Brook from Source to River Meden' (GB104028058050) waterbodies.

#### 4.5.3 Analysis

Sensitivity of the macroinvertebrate communities to flow reduction was assessed using LIFE (Loticinvertebrate Index for Flow Evaluation)<sup>31</sup> scores at a species level. LIFE scores provide an assessment of the impact of variable flows on benthic macroinvertebrate communities. Where more than one sample per year was available, annual mean LIFE scores were calculated. As LIFE scores for a community generally vary from 5.5 to 8.5, categories for the LIFE scores index were defined as follows (where High indicates communities adapted to fast flowing conditions): Low = below 6.5; Moderate = 6.6 to 7.5; and High = above 7.6.

Sensitivity of the macroinvertebrate communities to fine sediments was also assessed using Proportion of Sediment-sensitive Invertebrates (PSI) scores<sup>32</sup>, at a species level. The PSI index provides an assessment of the extent to which the river bed is composed of, or covered by, fine sediments. PSI scores were interpreted using the following thresholds and terminology: 81-100 = Minimally sedimented; 61-80 = Slightly sedimented; 41-60 = Moderately sedimented; 21-40 = Sedimented; and 0-20 = Heavily sedimented.

In addition to the interpretation scales described above, the River Invertebrate Classification Tool (RICT) was used to contextualise the scores. It deploys the RIVPACS (River Invertebrate Prediction And Classification System) model to predict site specific reference values (based on various physical parameters of the sample sites, including altitude, gradient, distance from source and substrate present and alkalinity) against which the scores can be evaluated. The model generates expected values for each metric so that observed/expected ratios can be derived (referred to as Environmental Quality Index (EQI)), which are then are then multiplied by a correcting factor to generate Environmental Quality Ratios (EQR). EQRs are then used for WFD classifications (High, Good, Moderate, Poor, Bad).

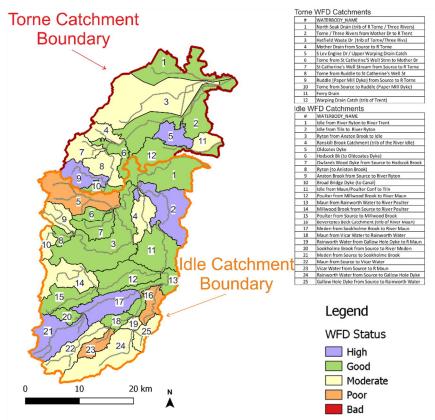
For LIFE scores, an EQI of 0.94 was used as a threshold for demonstrating impacts of low flows, following discussions with the Environment Agency, although similar thresholds of 0.93 are also given in the literature<sup>33</sup>.

<sup>&</sup>lt;sup>31</sup> Extence C., Balbi D. and Chadd R. (1999) River flow indexing using british benthic macroinvertebrates: a framework for setting hydroecological objectives. Regul. Rivers: Res. Mgmt. 15: 543–574

<sup>&</sup>lt;sup>32</sup> Extence C., Chadd R., England J., Dunbar M.J., Wood P.J., Taylor E.D. (2013) The assessment of fine sediment accumulation in rivers using macro-invertebrate community response. River Res. Applic. 29: 17-55.

<sup>&</sup>lt;sup>33</sup> Clarke R.T., Armitage P.D., Hornby D., Scarlett P. & Davy-Bowker J. (2003), Investigation of the relationship between the LIFE index and RIVPACS - Putting LIFE into RIVPACS. Environment Agency.

For PSI scores, following previous discussions with the Environment Agency an EQI of 0.70 has been used as a threshold for demonstrating the impact of fine sediments, although a threshold of 0.90 is also cited in the literature<sup>34</sup>.


Other biotic indices, such as ASPT (Average Score Per Taxon), NTAXA (Number of taxa) and BMWP (Biological Monitoring Working Party) scores were also used in order to assess sensitivity of macroinvertebrate communities to pollution, which may be exacerbated through flow reductions. For ASPT and NTAXA the ratio between the value derived from a sample and the excepted value for a given water body in natural conditions, known as the Environmental Quality Index (EQI), was calculated. Where more than one sample per year was available, annual mean EQIs were calculated and assigned an ecological status class (ASPT EQI>0.97 = High, EQI > 0.86 = Good, EQI > 0.72 = Moderate, EQI > 0.53 = Poor, EQI < 0.53 = Bad; and NTAXA EQI>0.8 = High, EQI > 0.68 = Good, EQI > 0.56 = Moderate, EQI > 0.47 = Poor, EQI < 0.47 = Bad).

#### 4.5.4 Water Framework Status

The 2016 (Cycle 2) WFD Macroinvertebrate status for both catchments is indicated in Figure 4.7.

Seven of the 12 Torne waterbodies (with Warping Drain) were reported as at least Good status in 2016. The other five were reported to be Moderate status.

Fourteen of the 25 Idle waterbodies were reported as at least Good status in 2016. The other eight were reported to be Moderate status.



# Figure 4.7 Macroinvertebrate WFD waterbodies and status as of 2016 (Cycle 2) in the Idle and Torne catchments

<sup>34</sup> JNCC (2014), Common Standards Monitoring Guidance for Rivers

#### 4.5.5 River Torne catchment

The nine River Torne WFD waterbodies screened in for detailed assessment have been considered further. A summary of the WFD macroinvertebrate data for these water bodies is presented in Table 4.8 below.

Table 4.8 Macroinvertebrate data summary for the WFD waterbodies in the River Torne catchment

| Waterbody name (ID)                                                        | Data summary                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Torne / Three Rivers<br>from Mother Dr to R<br>Trent<br>(GB104028064340)   | Auckley - data from 2010 to 2019 show moderate to high (ASPT 3.69 to 4.68 and NTAXA 13 to 26) quality, and communities adapted to slow flows and heavy sedimentation. EQIs for LIFE and PSI scores show an impact from flows and fine sediment                                                       |
|                                                                            | Rossington Bridge - data from 2013 and 2015 show good to high (ASPT 4.09 to 5.04<br>and NTAXA 19 to 26) quality, and communities adapted to slow flows and heavy<br>sedimentation. EQIs for LIFE and PSI scores show an impact from flows and fine<br>sediment                                       |
|                                                                            | Hirst Priory, Anglers CP - data from 2010 to 2019 show moderate to good (ASPT 4.09 to 5.04 and NTAXA 19 to 26) quality, and communities adapted to slow flows                                                                                                                                        |
| Hatfield Waste Dr (trib<br>of Torne/Three Rivs)<br>(GB104028064330)        | Hirst Priory Above Golf Course - data from 2011 to 2019 show moderate to good<br>(ASPT 3.58 to 4.67 and NTAXA 11 to 28) quality, and communities adapted to slow<br>flows and heavy sedimentation. EQIs for LIFE and PSI scores show no impact from<br>flows but an impact from fine sediment        |
|                                                                            | Diggin Dyke at Holmewood Farm - data from 2016 show moderate to good (ASPT 3.55 to 3.73 and NTAXA 11 to 15) quality, and communities adapted to slow flows.<br>The EQI for the LIFE score shows an impact from flows. No PSI data available at this site.                                            |
|                                                                            | Fores Drain Nutwell - data from 2016 show poor to bad (ASPT 3.58 to 4.17 and NTAXA 12 to 18) quality, and communities adapted to slow flows and heavy sediment. The EQIs for LIFE and PSI scores show an impact from flows and sedimentation                                                         |
|                                                                            | Hirst Priory (North Level Engine Drain) - data from 2016 show poor to high (APST 5.55 to 5.67 and NTAXA 11 to 21) quality, and communities adapted to slow flows.<br>The EQI for the LIFE score shows no impact from flows.                                                                          |
|                                                                            | Confluence Hatfield Waste Drain - data from 2016 show poor to moderate (APST 3.63 to 3.64 and NTAXA 15 to 16) quality, and communities adapted to slow flows.<br>The EQI for the LIFE score show some impacts from flows. PSI scores not available                                                   |
| Mother Drain from<br>Source to R Torne<br>(GB104028058440)                 | Rossington Bridge - data from 2013 and 2017 show moderate to high quality (NTAXA 24 to 26, ASPT 4.42 to 4.54), with communities adapted to slow to moderate flow velocities and heavily sedimented conditions. Analyses of the EQIs indicate communities impacted by flow pressure and sedimentation |
| Torne from St<br>Catherine's Well Strm<br>to Mother Dr<br>(GB104028058410) | Torne Bridge - data from 2010 and 2015 show good quality (NTAXA 17 to 28, ASPT 4.76 to 5.07), with communities adapted to slow to moderate flow velocities.                                                                                                                                          |

| Waterbody name (ID)                                                     | Data summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Warping Drain Catch<br>(trib of Trent)<br>(GB104028058240)              | Owston Ferry (SK7990098900) - data from 2013 to 2015 show moderate to good (ASPT 34.63 to 4.89 and NTAXA 13 to 22) quality, and communities adapted to slow flows. EQIs do not show evidence of flow pressures. No PSI data available for this site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| North Soak Drain (trib of R<br>Torne / Three<br>Rivers)(GB104028064350) | Keadby (SE 83562 12130) - data from 2013 and 2016 generally show moderate quality (ASPT 3.64 to 4.20 and NTAXA 14 to 18). Communities recorded are adapted to slow flows (LIFE 5.93 – 6.40) and heavily sedimented conditions (PSI 18.8) where data available. The EQIs for LIFE and PSI scores show an impact from flows and sedimentation.<br>Crowle Station (SE 78099 11037) - data from 2011 to 2018 generally show moderate to high quality (ASPT 3.42 to 4.68 and NTAXA 12 to 21). Communities recorded are adapted to slow flows (LIFE 5.1 – 6.0) and heavily sedimented conditions (PSI 1.9 – 5.7). The EQIs for LIFE and PSI scores generally do not show an impact from flows and sedimentation.                                                                                                                                                                                                                                                                                                                                                                                 |
| S Lev Engine Dr / Upper<br>Warping Drain Catch<br>(GB104028058430)      | Tunnel Pits (SE 74093 03939) - data from 2013 and 2014 generally show high quality (ASPT $4.5 - 4.7$ and NTAXA 19 to 23), above expected values for this type of watercourse. Communities recorded are adapted to slow flows (LIFE $5.0 - 6.0$ ) and heavily sedimented conditions (PSI $10.3 - 23.1$ ) where data available. The EQIs for LIFE and PSI scores show some impacts from flows and sedimentation pressures on various occasions, indicating that the watercourse is already impacted by flow abstractions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ruddle (Paper Mill Dyke)<br>from Source to R Torne<br>(GB104028058380)  | Tickhill (SK 58400 92780) - data from 2011 and 2015 show very variable quality, in terms of what would expected values for this type of watercourse and ranging from Bad to High quality (ASPT $4.3 - 5.6$ and NTAXA $11 - 20$ ). In 2015 communities recorded were adapted to high flow velocities (LIFE $8.0 - 8.2$ ) and slightly sedimented conditions (PSI $64.5 - 75.0$ ). The EQIs for LIFE and PSI scores for this year do not indicate impacts from flows and sedimentation pressures. However, in 2011, no LIFE scores or PSI scores were generated .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Torne from Source to<br>Ruddle (Paper Mill Dyke)<br>(GB104028058370)    | Low Common (SK 60393 92390) - data from 2011, 2013 and 2015 generally show variable quality, ranging from Poor to High quality against expected values for this watercourse (ASPT $3.9 - 4.8$ and NTAXA 10 to 16). Communities recorded are adapted to moderate to high flow velocities (LIFE $6.3 - 7.6$ ) and sedimented to heavily sedimented conditions (PSI $7.0 - 33.3$ ). The EQIs for LIFE scores show no impacts from flow pressures but do indicate that the communities are impacted by sedimentation pressures.<br>Goole Bridge (SK 60712 93256) - data from 2011, 2013 and 2015 generally show variable quality, ranging from moderate to good quality (ASPT $3.9 - 4.3$ and NTAXA 12 to 18) against expected values for this watercourse. Communities recorded are adapted to slow to moderate flow velocities (LIFE $6.0 - 7.4$ ) and moderately sedimented to heavily sedimented conditions (PSI $12.5 - 50.0$ ). The EQIs for LIFE scores indicate impacts of flow and sedimentation pressures, indicating that the watercourse is already impacted by flow abstractions. |

Analysis of the species LIFE scores demonstrated that monitoring sites on two WFD water bodies are likely to support macroinvertebrate species and communities adapted to fast flows (LIFE scores > 7.5) on at least one of the sample sites for which data were available

- Ruddle (Paper Mill Dyke) from Source to R Torne (GB104028058380); and
- Torne from Source to Ruddle (Paper Mill Dyke) (GB104028058370)

Data from the Ruddle (Paper Mill Dyke) from Source to R Torne (GB104028058380) waterbody, the data from the single sample site available indicated communities adapted to high flow velocities and

AECOM

relatively sedimented conditions. They also showed that the communities are not currently impacted by flow or sedimentation pressures. Based on the available data, this waterbody is therefore considered as being sensitive to potential flow pressures.

Of the two sample sites on the Torne from Source to Ruddle (Paper Mill Dyke) (GB104028058370) waterbody, only one site, Low Common, indicate species adapted to moderate to fast flows. An analysis of the species LIFE scores EQIs indicated that the communities were not impacted by flow pressures. However, the data from the site indicated communities that are adapted to sedimented to heavily sedimented conditions, and also suggest that the watercourse is already impacted by sedimentation pressures. At Goole Bridge, the other sample site for which data were available on this waterbody, the samples were characterised by species adapted to slow to moderate flows and sedimented conditions, and the data indicates that at this location, the communities are already impacted by flow and sedimentation pressures.

The analyses of the LIFE and PSI scores for samples on the other waterbodies within this catchment indicated that they support macroinvertebrate communities generally adapted to slow to moderate flow velocities and heavy sedimentation. Analyses of the EQIs for both LIFE scores and PSI scores generally indicates that macroinvertebrate communities are likely to currently be impacted by flow pressures and fine sediments (EQIs > thresholds used to evaluate impact).

This is true for most monitoring sites for which baseline data was available, with the exception of Crowle Station (North Soak Drain (trib of R Torne / Three Rivers)(GB104028064350), 'Ferry Drain Owston' ('Warping Drain Catch (trib of Trent) (GB104028058240)') and 'Hirst Priory Above Golf Course' ('Hatfield Waste Dr (trib of Torne/Three Rivs') (GB104028064330)), for which macroinvertebrate communities do not appear to be impacted by flow pressures.

However, the ASPT indices indicated that all sites are generally of 'Good' to 'High' quality (on at least one occasion during the sampling period), indicating macroinvertebrate communities likely to be sensitive to changes in water quality. In terms of NTAXA, several of the waterbodies, notably the 'Torne / Three Rivers from Mother Dr to R Trent (GB104028064340)' (at 'Hirst Priory Anglers CP') and 'Hatfield Waste Dr (trib of Torne/Three Rivs) (GB104028064330)' (at 'Diggin Dyke at Holmewood Farm', 'Fores Drain Nutwell' and 'Hirst Priory North Level Engine Drain') indicate poor to moderate quality. As ASPT was Good to High at these sites, may indicate communities impacted by flows and / or fine sediments.

#### 4.5.6 River Idle catchment

Sixteen of the WFD waterbodies screened in for detailed assessment were located in the River Idle catchment. A summary of the WFD macroinvertebrate data for these water bodies is presented in Table 4.9 below.

| Waterbody<br>name (ID)                                      | Data summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Idle from River Ryton<br>to River Trent<br>(GB104028058110) | <ul> <li>Bawtry - data show moderate to high (NTAXA 15 to 31 and ASPT 3.95 to 5.13) quality, and communities adapted to slow flows and heavy sedimentation. EQIs for LIFE and PSI scores show impact from flows and fine sediment.</li> <li>Misterton - data show moderate to high (NTAXA 13 to 32 and ASPT 3.85 to 5.33) quality, and communities adapted to slow flows and heavy sedimentation. EQIs for LIFE and PSI scores show impact from flows and fine sediment.</li> </ul> |
| Idle from Tiln to<br>River Ryton<br>(GB104028058092)        | Mattersey - data show good to high (NTAXA 19 to 27 and ASPT 4.75 to 5.19) quality, and communities adapted to moderate flows and heavy sedimentation. EQIs for LIFE and PSI scores show no impact from flows or fine sediment.                                                                                                                                                                                                                                                      |

# Table 4.9 Macroinvertebrate data summary for the WFD waterbodies in the River Idle catchment

AECOM

| Waterbody<br>name (ID)                                                      | Data summary                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                             | <b>Chain Bridge Road</b> - data show good to high (NTAXA 24 to 35 and ASPT 4.88 to 5.34) quality, and communities adapted to moderate flows and heavy sedimentation. EQIs for LIFE and PSI scores show no impact from flows or fine sediment.                                                     |
| Ryton from Anston<br>Brook to Idle<br>(GB104028058100)                      | <b>Scrooby</b> - data for 2013-2014 show good to high quality (NTAXA 18 to 32, ASPT 4.83 to 5.28), with communities adapted to moderate to fast flows. PSI scores not available and data insufficient to calculate EQIs.                                                                          |
|                                                                             | <b>Red Bridge Hodsock</b> - data for 2013-2014 show good to high quality (NTAXA 15 to 27, ASPT 4.42 to 5.11), with communities adapted to moderate to fast flows. PSI scores not available and data insufficient to calculate EQIs.                                                               |
|                                                                             | <b>Ranby</b> - data for 2013-2014 show moderate to high quality (NTAXA 18 to 24, ASPT 4.29 to 5.00), with communities adapted to moderate flow velocities. PSI scores not available and data insufficient to calculate EQIs.                                                                      |
|                                                                             | <b>High Hoe Road</b> - data for 2013-2014 show good to high quality (NTAXA 19 to 27, ASPT 4.77 to 5.19), with communities adapted to moderate flow velocities. PSI scores not available and data insufficient to calculate EQIs.                                                                  |
| Ranskill Brook<br>Catchment (trib of<br>the River Idle)<br>(GB104028058220) | <b>Daneshill Road</b> - data from 2013 and 2015 show moderate to high (ASPT 4.43 to 5.14 and NTAXA 14 to 28) quality, and communities adapted to slow flows and sedimented to heavily sedimented conditions.                                                                                      |
|                                                                             | <b>B6045</b> - data from 2010 to 2018 show moderate to good (ASPT 3.78 to 4.71 and NTAXA 16 to 29) quality, and communities adapted to slow to moderate flows and sedimentation. EQIs for LIFE and PSI scores show an impact from flows and fine sediment                                         |
| Hodsock Bk (to Old<br>Coates Dyke)<br>(GB104028058190)                      | A60 Costhorpe - data indicative of moderate to good quality (ASPT 4.53 to 5.1, NTAXA 17 to 20), with communities adapted to fast flows                                                                                                                                                            |
| Owlands Wood Dyke<br>from Source to<br>Hodscok Brook<br>(GB104028058170)    | <b>Cornmill Farm</b> - data from 2013 and 2014 showed high quality (ASPT 4.9 to 5.1 and NTAXA 10 to 21) and communities adapted to fast flows. EQIs for LIFE and PSI scores show no impact from flows and or sedimentation.                                                                       |
| ldle from<br>Maun/Poulter Conf<br>to Tiln                                   | <b>Gamston -</b> data from 2013 and 2015 show high quality (NTAXA 26 to 29, ASPT 5.28 to 5.35), with communities adapted to moderate flow velocities and sedimented conditions.                                                                                                                   |
| (GB104028058091)                                                            | <b>Bolham Lane</b> - data from 2013 and 2015 show good to high quality (NTAXA 22 to 23, ASPT 4.87 to 4.91), with communities adapted to moderate flow velocities and sedimented conditions.                                                                                                       |
| Maun from<br>Rainworth Water to<br>River Poulter<br>(GB104028058080)        | Whitewater - data from 2010 to 2019 show moderate to high (NTAXA 14 to 25 and ASPT 4.07 to 4.96) quality, and communities adapted to moderate flow velocities and sedimentation. EQIS for LIFE and PSI scores show communities impacted by flow pressures and potential impact from fine sediment |
|                                                                             | <b>Markham Moor</b> - data from 2013 to 2014 show good to high (NTAXA 22 to 26 and ASPT 4.79 to 5.04) quality, and communities adapted to slow flows and sedimentation. EQIS for LIFE and PSI scores show potential impact from flows and fine sediment                                           |
|                                                                             | West Drayton - data for 2014 show good quality (NTAXA 19 to 23, ASPT 5.32 to 5.96), with communities adapted to moderate flows and sedimented conditions, with however no evidence of flow or sedimentation pressure.                                                                             |

AECOM

| Waterbody                                                                 | Data summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| name (ID)<br>Poulter from Source<br>to Millwood Brook<br>(GB104028058130) | <b>Nether Langwith -</b> data from 2010 to 2019 show good to high (NTAXA 19 to 27 and ASPT 4.74 to 5.96) quality, and communities adapted to fast flows and slight sediment. EQIs for LIFE and PSI scores show no impact from flows or fine sediment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                           | <b>Cuckney</b> - data from 2010 to 2019 show moderate to good (NTAXA 16 to 25 and ASPT 3.64 to 4.96) quality, and communities adapted to moderate flows and sedimentation. EQIs for LIFE and PSI scores show an impact from flows and it is likely that there is an impact from fine sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Meden from<br>Sookholme Brook to<br>River Maun<br>(GB104028058060)        | <b>Warsop Mill</b> - data for 2013-2014 show good to high quality (NTAXA 20 to 24, ASPT 5.04 to 5.3), with communities adapted to fast flows and unsedimented conditions. LIFE scores and PSI EQIs do not show flow or sedimentation pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (96104028038060)                                                          | <b>Thoresby</b> - data for 2012-2013 show good to high quality (NTAXA 24 to 27, ASPT 4.96 to 5.04), with communities adapted to moderate flows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sookholme Brook<br>from Source to River<br>Meden<br>(GB104028058050)      | <b>Sookholme</b> - data from 2012 and 2014 show good to high quality (NTAXA 21 to 24, ASPT 50.5 to 5.29), with communities adapted to moderate flow velocities and sedimented conditions, with however no evidence of potential flow pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (00104020030030)                                                          | Shire Brook Confluence Sookholme Brook - data from 2014 shows high quality (ASPT / NATXA), with communities adapted to moderate flow velocities and sedimented conditions, with evidence of potential flow and sediment pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Meden from Source<br>to Sookholme Brook<br>(GB104028058020)               | <b>Pleasley</b> - data from 2013-2014 show good to high (NTAXA 17 to 22 and ASPT 4.53 to 5.45) quality,<br>and communities that are adapted to moderate to fast flows and slight sedimentation. EQIs for LIFE<br>and PSI scores show no impact from flows or fine sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                           | <b>Littlewood</b> - data from 2010 to 2018 show good to high (NTAXA 17 to 23 and ASPT 5.27 to 5.95) quality, and communities that are adapted to fast flows and slight sedimentation. EQIs for LIFE and PSI scores show no impact from flows or fine sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Gallow Hole Dyke<br>from Source to<br>Rainworth Water<br>(GB104028052980) | <b>Rufford Park</b> - data from 2010 and 2014 show moderate to good quality (NTAXA 12 to 22, ASPT 3.7 to 4.45), with communities adapted to moderate flow velocities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ryton (to Aniston<br>Brook)<br>(GB104028058162)                           | Aston Grange Footbridge (SK 5365082270) - data from 2013 and 2014 generally show good to high quality (ASPT $4.8 - 5.3$ and NTAXA 16 to 24) and are in line with what would be expected for watercourse of this type. Communities recorded are adapted to moderate to high flow velocities (LIFE $7.3 - 7.8$ ) and moderately sedimented to sedimented conditions (PSI 27.0 - 58.0). The EQIs for LIFE scores do not indicate impacts of flow pressures, while EQIs for sedimentation pressures indicate impacts from sedimentation.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Poulter from<br>Millwood Brook to<br>River Maun<br>(GB104028058140)       | Normanton Bridge (SK 64864 75745) – data from 2010 show moderate to good quality (ASPT 4.4 to 4.6 and NTAXA 23 to 24) in terms of what would be expected for a watercourse of this type. Communities recorded were adapted to high flow velocities in 2010 (LIFE 8.0), but low flow velocities in 2015 (LIFE 6.0). EQIs indicate flow impacts in 2015 but not in 2010. Communities also indicative of sedimented to highly sedimented conditions (PSI 6.1 – 25.0) and generally indicate impacts from sedimentation. Elksey (SK 69965 7245) - data from 2010 to 2019 show good to high quality (ASPT 3.9 – 5.6 and NTAXA 8 to 32) compared to what would be expected for this type of watercourse, with the exception of one survey in 2019. Communities recorded are generally adapted to low to moderate flow velocities (LIFE 6.2 – 7.1) and sedimented to heavily sedimented conditions (PSI 6.7 – 60.0), with evidence of flow and sedimentation pressures. |

| Waterbody<br>name (ID)                                             | Data summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    | Crookford (SK 67177 75202) - data from 2010 to 2019 show moderate to high quality (ASPT 4.1 $-5.6$ and NTAXA 14 to 17) compared to what would be expected for this type of watercourse, with higher quality recorded in most recent surveys (since 2015). Communities recorded are generally adapted to moderate to high flow velocities (LIFE 6.7 $-7.8$ ) and moderately sedimented to heavily sedimented conditions (PSI 16.7 $-57.1$ ), with evidence of flow and sedimentation pressures frequently recorded. Carburton (SK 60678 72745) - data from 2010 and 2015 show moderate quality (ASPT 3.9 $-4.1$ and NTAXA 17 to 23) compared to what would be expected for this type of watercourse. Communities recorded are generally adapted to low flow velocities (LIFE 5.8 $-6.0$ ) and heavily sedimented conditions (PSI 4.4 $-6.3$ ), with evidence of flow and sedimented conditions (PSI 4.4 $-6.3$ ), with evidence of flow and sedimented conditions (PSI 4.4 $-6.3$ ), with evidence of flow and sedimented conditions (PSI 4.4 $-6.3$ ). |
| Maun from Vicar<br>Water to Rainworth<br>Water<br>(GB104028058040) | Edwinstowe (SK 62701 66465) - data from 2012, 2013 and 2014 generally show moderate to good quality (ASPT 4.7 $-$ 5.4 and NTAXA 14 to 19). Communities recorded are generally adapted to moderate to high flow velocities (LIFE 7.0 $-$ 8.3) and slightly sedimented to moderately sedimented conditions (PSI 27.0 $-$ 58.0). The EQIs for LIFE and PSIs scores generally do not indicate impacts of flow or sediments pressures, except on 1 and 2 occasions of the 6 sampling occasions (respectively).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Analysis of the species LIFE scores demonstrated that monitoring sites on the following WFD waterbodies are likely to support macroinvertebrate species and communities adapted to fast flows (LIFE scores > 7.5).

- Meden from Source to Sookholme Brook (GB104028058020);
- Meden from Sookholme Brook to River Maun (GB104028058060);
- Poulter from Source to Millwood Brook (GB104028058130) at 'Nether Langwith';
- Owlands Wood Dyke from Source to Hodscok Brook (GB104028058170) at 'Cornmill Farm';
- Hodsock Brook (to Old Coates Dyke) (GB104028058190);
- Ryton (to Aniston Brook) (GB104028058162);
- Poulter from Millwood Brook to River Maun (GB104028058140);and
- Maun from Vicar Water to Rainworth Water (GB104028058040).

Apart from Maun from Vicar Water to Rainworth Water (GB104028058040), Poulter from Millwood Brook to River Maun (GB104028058140)and 'Hodsock Brook (to Old Coates Dyke)' (GB104028058190), (for which data was insufficient to calculate LIFE score EQIs, analysis of the species LIFE scores) EQIs indicated that none of these sites are impacted by flow pressures.

Analysis of the PSI scores for these water bodies also indicates that the majority are 'slightly sedimented' to 'moderately sedimented', with no clear evidence of impacts from sedimentation (EQIs > 0.70 threshold for these sites). However, the Poulter from Millwood Brook to River Maun (GB104028058140);and Maun from Vicar Water to Rainworth Water (GB104028058040) recorded communities more typical of sedimented sites, and also indicated that the sites were also subject to sedimentation impacts.

The majority of the results indicate that the watercoursesare generally of 'Good' to 'High' WFD class in terms of ASPT and NTAXA, indicating macroinvertebrate communities likely to be sensitive of changes in water quality.

These watercourses are therefore likely to be the most sensitive to potential impacts (i.e. changes in flows, water quality and increased sedimentation) from high flow abstraction.

However, for the 'Poulter from Source to Millwood Brook' (GB104028058130) and 'Owlands Wood Dyke from Source to Hodscok Brook' (GB104028058170), data for other monitoring sites ('Cuckney' and 'Owlands Wood Dyke Confl. Oldcotes Dyke' respectively) indicate potential flow pressures (EQIs



below threshold of 0.94), and also sedimentation issues for the River Poulter at 'Cuckney'). For both water bodies, the most sensitive sites appear to be in the most upstream stretches.

Review of the species present within these watercourses demonstrated the presence of several species of caddisfly, mayfly and stonefly that require fast flowing, well oxygenated waters with clean stony substrate (pebbles, cobbles). These include the caddisfly species *Silo nigricornis*, *Silo pallipes*, *Goera Pilosa*, *Rhyacophila dorsalis and Brachycentrus subnubilus*, the mayfly species *Seratella ignita* and *Heptagenia sulphurea* and stonefly species *Leuctra hippopus* and *Isoperla grammatica*.

For two other water bodies ('Idle from Tiln to River Ryton' (GB104028058092) and 'Ranskill Brook Catchment (trib of the River Idle)' (GB104028058220)), although the LIFE scores are indicative of communities and species adapted to slower flows, analyses of the LIFE scores EQIs show no evidence of flow pressure on macroinvertebrate communities (EQIs > 0.94 threshold). These water bodies however seem to be impacted by excess in fine sediments, as shown by the PSI scores EQIs (< threshold), but they are usually of 'Good' to 'High' WFD class in terms of ASPT and NTAXA, indicating macroinvertebrate communities likely to be sensitive of changes in water quality.

Three water bodies ('Idle from River Ryton to River Trent (GB104028058110)', 'Maun from Rainworth Water to River Poulter (GB104028058080)' and 'Sookholme Brook from Source to River Meden (GB104028058050)') however appear to support macroinvertebrate communities adapted to slower flowing conditions and 'sedimented' to 'heavily sedimented' conditions. EQIs for samples on these waterbodies demonstrate communities currently impacted by flow pressure and excess fine sediments. Nevertheless, analyses of the ASPT and NTAXA indices show that they support communities likely to be sensitive to changes in water quality.

For Gallow Hole Dyke from Source to Rainworth Water (GB104028052980), the Idle from Maun/Poulter Conf to Tiln (GB104028058091) and Ryton from Anston Brook to Idle (GB104028058100) data was insufficient to assess flow and sedimentation sensitivity.

#### 4.5.7 Potential effects of abstractions at time of high flow

Potential reduction in flow velocities and potential habitat degradation through increased sedimentation in the long term could lead to the loss of macroinvertebrate species such as those listed above, which require fast flows and clean stony substrate. This could eventually lead to changes in the structure and composition of the macroinvertebrate communities.

Therefore, watercourses within the River Idle catchment, such as the River Maun, the River Ryton, the River Meden, the upper reach of the River Poulter and potentially the upper reach of Owlands Wood Dyke appear to be at a greater risk of impacts from high flow abstraction, which could lead to changes in flow conditions and impact the caddisfly, mayfly and stonefly species listed above.

In terms of increased sedimentation, the River Poulter and the River Maun appear to be at a greater risk, with the potential loss of species such as the caddisfly, mayfly and stonefly species listed above.

Most of the watercourses from the River Torne catchment are likely to be less sensitive, as they are currently impacted by flow pressures and / or increased sedimentation. However, the data do indicate that Ruddle and an upstream section of the River Torne (from its source to the confluence with the Ruddle) is more sensitive to flow pressures. In addition, with regards to increased sedimentation risk, the River Ruddle appears to be most sensitive.

Once more detailed reviews of potential changes in the physical environment are assessed during Phase 2b we anticipate that the potential effects on macroinvertebrates can be assessed in further detail (noting that each species has specific micro-habitat preferences so responses may vary and be difficult to predict for individual species).

## 4.6 Macrophytes and Phytobenthos

#### 4.6.1 Screening

Sensitive WFD waterbodies were screened in Phase 1 with regard to macrophytes and phytobenthos were screened on the basis of invertebrate classifications, as outlined in Section 4.5.1. In total 18 waterbodies were screened in during Phase 1 plus an additional 7 during this Phase of the study, as presented in Section 4.5.1.

#### 4.6.2 Data

Some WFD macrophyte monitoring data through 2010 – 2019 was available for 24 of the 25 water bodies screened as having > Good macroinvertebrate status. Data was not available for the River 'Idle from Tiln to River Ryton' (GB104028058092).

The monitoring data was sparse, with usually a single monitoring site for each waterbody, with the exception of the River 'Idle from River Ryton to River Trent' (GB104028058110), the River 'Meden from Sookholme Brook to River Maun' (GB104028058060) and 'Sookholme Brook from Source to River Meden' (GB104028058050).

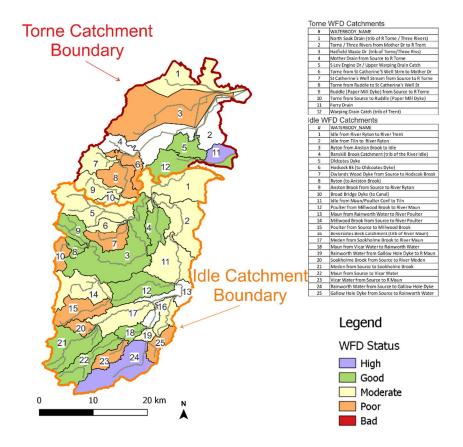
#### 4.6.3 Screening and Analysis

WFD macrophyte data was reviewed to update the sensitivity assessment carried out during the first phase of the study. The most recent data available (2015 - 2019) was provided by the Environment Agency for the 18 water bodies screened in for assessment in the Idle and Torne catchments.

An initial review for flow sensitive communities was carried out, based on two biotic indices: mean flow rank (MFR) and the river macrophyte hydraulic index (RMHI). MFR is a biotic index based on macrophyte community tolerance to flow conditions. Scores of 2 or below represent plant communities that have a preference for slower flows, with scores greater than 2 being recorded from plant communities with higher flow preferences. The MFR scoring system has now been superseded by the RMHI, but it is still included in the Environment Agency analysis.

The RMHI biotic index comprises part of the LEAFPACS suite of indices used to assess WFD monitoring data and describes plant community preferences for flow conditions based on a scale of 1 to 10. Scores of 10 indicate a plant community with a preference for very slow or non-existent flows while scores of 1 reflect plant communities with a preference for very fast powerful flows.

RMHI scores of 1 are reserved for very high energy systems such as seen in mountain headwaters. The Torne and Idle catchments are lowland systems with very little altitudinal gradient change across the catchment to boost velocity and flow levels.


Only sites or water bodies with MFR scores greater than 2 and / or RMHI scores less than 7 (approximately equivalent to MFR score 2) were selected for a more detailed assessment of species and communities sensitivity. For those sites or water bodies, a detailed review of the data was undertaken to identify the key species that might be affected by high flow abstraction.

#### 4.6.4 Water Framework Status

The 2016 (Cycle 2) WFD Macrophyte and Phytobenthos status for both catchments is indicated in Figure 4.8.

Three of the 12 Torne waterbodies were reported as at least Good status in 2016. The other nine were reported to be Moderate or Poor status or not assessed for macrophytes.

Nine of the 25 Idle waterbodies were reported as at least Good status in 2016. The other 15 were reported to be Moderate or Poor status or not assessed for macrophytes.



# Figure 4.8 Macrophyte and Phytobenthos WFD waterbodies and status as of 2016 (Cycle 2) in the Idle and Torne catchments

#### 4.6.5 River Torne Catchment

Review of the MFR and RMHI indices showed that monitoring sites on the nine waterbodies screened in within the River Torne catchment support macrophyte species and communities unlikely to be flow sensitive. However, the data was generally very limited for these waterbodies. A summary of the WFD macrophyte data is presented in Table 4.10 below.

| Waterbody name (ID)                                                  | Data summary                                                                                                                                                                                    |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Torne / Three Rivers from Mother<br>Dr to R Trent (GB104028064340)   | Very limited data (1 sample only from 2013), suggesting species and communities unlikely to be flow sensitive (MFR score 1.5, RMHI score 8). 9 true aquatic species.                            |  |
| Hatfield Waste Dr (trib of<br>Torne/Three Rivs)<br>(GB104028064330)  | Very limited data (1 sample only from 2013), suggesting species and communities unlikely to be flow sensitive (MFR score 1.6, RHMI score 8.12). 14 true aquatic species.                        |  |
| Mother Drain from Source to R<br>Torne (GB104028058440)              | Limited data (2 samples from 2012 and 2014), suggesting species and communities unlikely to be flow sensitive (MFR scores 1.75 to 1.77, RHMI scores 7.88 to 7.92). 8 to 9 true aquatic species. |  |
| Torne from St Catherine's Well Strm<br>to Mother Dr (GB104028058240) | Very limited data (1 sample only from 2013), suggesting species and communities unlikely to be flow sensitive (MFR score 1.3, RMHI score 8.1). 9 true aquatic species.                          |  |
| Warping Drain Catch (trib of Trent)<br>(GB104028058240)              | Very limited data (1 sample only from 2012), suggesting species and communities unlikely to be flow sensitive (MFR score 1.29, RMHI score 7.99). 8 true aquatic species.                        |  |

# Table 4.10 Macrophyte data summary data for the WFD waterbodies in the River Torne catchment

AECOM

| Waterbody name (ID)                                                    | Data summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| North Soak Drain (trib of R Torne /<br>Three Rivers)(GB104028064350)   | Limited data (2 samples from 2013 and 2016), suggesting species and communities unlikely to be flow sensitive (MFR scores 1.10 to 1.38, RHMI scores 8.17 to 8.37). $6 - 9$ true aquatic species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| S Lev Engine Dr / Upper Warping<br>Drain Catch (GB104028058430)        | Limited data (2 samples for 2013 and 2014), suggesting species and communities unlikely to be flow sensitive (MFR score 1.50 to 1.67, RMHI score 7.69 to 7.82). 5 true aquatic species recorded, including water starwort (Callitriche sp. and Callitriche stagnalis), relatively flow sensitive.                                                                                                                                                                                                                                                                                                                                                                        |
| Ruddle (Paper Mill Dyke) from<br>Source to R Torne<br>(GB104028058380) | Limited data (2 samples for 2013 and 2015), suggesting species and communities likely<br>to be flow sensitive based on the RMHI score from 2015 only (6.78), with 2013 RMHI<br>score indicating that the community is less sensitive (7.38). MFR scores (1.67 to 1.80)<br>are not indicative of a flow sensitive community, however, as the RMHI supersedes<br>MFR, these scores are considered less important and overall the communities are<br>considered to be potentially flow sensitive, 5 - 6 true aquatic species, including<br><i>Fissidens</i> sp. (bryophytes) and floating sweet grass ( <i>Glyceria fluitans</i> agg.), considered<br>to be flow sensitive. |
| Torne from Source to Ruddle<br>(Paper Mill Dyke)<br>(GB104028058370)   | Limited data (2 samples for 2013 and 2015). While the MFR score from 2013 (2) indicates that the community is flow sensitive, the 2015 MFR score (1.82) and RMHI scores from both surveys (7.85 to 7.95) suggest species and communities are unlikely to be flow sensitive. 5 – 9 true aquatic species recorded. The MFR score for 2013 (2.0) would be indicative of a flow sensitive community, however, as the RMHI supersedes MFR, this score are considered less important and overall the communities are considered not to be potentially flow sensitive.                                                                                                          |

#### 4.6.6 **River Idle Catchment**

WFD monitoring macrophyte data was available for fifteen of the sixteen WFD waterbodies in the River Idle catchment that have been screened. A summary of the WFD macrophyte data is presented in Table 4.11 below.

| Waterbody name (ID)                                                   | Data summary                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Idle from River Ryton to River Trent<br>(GB104028058110)              | Data (8 samples between 2010 and 2018) indicate species and communities unlikely to be flow sensitive (MFR scores 1.33 to 1.79, RHMI scores 8.05 to 8.46). 9 to 14 true aquatic species.                                                                                                                                  |
| Idle from Tiln to River Ryton<br>(GB104028058092)                     | No data                                                                                                                                                                                                                                                                                                                   |
| Ryton from Anston Brook to Idle<br>(GB104028058100)                   | Limited data (2 samples in 2011 and 2014), indicate potentially flow sensitive species and communities (MFR scores 1.86 to 2.36, RMHI scores 2.42 to 7.28). 9 to 13 true aquatic species, including high cover in water crowfort ( <i>Ranunculus sp.</i> ) and presence of water starwort ( <i>Callitriche truncata</i> ) |
| Ranskill Brook Catchment (trib of<br>the River Idle) (GB104028058220) | Very limited data (1 sample for 2013), suggesting potentially flow sensitive species and communities (MFR score 2.00, RMHI score 7.09). 8 true aquatic species, including bryophyte species that might be sensitive to reduced flows ( <i>Amblystegium riparium</i> ) and water starwort ( <i>Callitriche</i> sp.)        |
| Hodsock Bk (to Old Coates Dyke)<br>(GB104028058190)                   | Data (4 samples for 2010 and 2014), suggesting potentially flow sensitive species and communities (MFR scores 2.00 and RMHI scores 6.79 to 6.84). 5 to 6 true aquatic species, including low cover of bryophytes species adapted to fast flows                                                                            |

### Table 4.11 Macrophyte data summary data for the WFD waterbodies in the River Idle catchment

AECOM

| Waterbody name (ID)                                                    | Data summary                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owlands Wood Dyke from Source<br>to Hodscok Brook<br>(GB104028058170)  | Limited data (2 samples from 2013 and 2014), suggesting species and communities unlikely to be flow sensitive (MFR scores 1.50 to 1.70, RHMI scores 7.84 to 7.96). 5 to 8 true aquatic species.                                                                                                                                                                                                                 |
| ldle from Maun/Poulter Conf to Tiln<br>(GB104028058091)                | Very limited data (1 sample for 2013), suggesting species and communities unlikely to be flow sensitive (MFR score 1.87, RHMI score 7.6). 14 true aquatic species).                                                                                                                                                                                                                                             |
| Maun from Rainworth Water to<br>River Poulter (GB104028058080)         | Limited data (3 samples from 2012 to 2014), suggesting potentially flow sensitive species and communities (MFR scores 2.00 to 2.1, RMHI scores 7.1 to 7.51).<br>9 true aquatic species, including water starwort ( <i>Callitriche truncata</i> ) and water crowfoot ( <i>Ranunculus (Batrachian) spp., Ranunculus penicillatus subsp. pseudofluitans</i> and <i>Ranunculus fluitans</i> ) species in high cover |
| Poulter from Source to Millwood<br>Brook (GB104028058130)              | Data (6 samples between 2010 and 2018) indicate potentially flow sensitive species and communities (MFR score 2.22 to 2.38, RMHI score 6.7 to 7.09). 8 to 11 true aquatic species, including high covers of water crowfoot ( <i>Ranunculus (Batrachian) spp.</i> )                                                                                                                                              |
| Meden from Sookholme Brook to<br>River Maun (GB104028058060)           | Limited data (2 samples from 2011) indicate potentially flow sensitive species and communities (MFR scores 2.11 to 2.67, RMHI scores 7.0 to 7.09).<br>6 to 9 true aquatic species, including high cover of water starwort ( <i>Callitriche</i> sp.) and water crowfoot ( <i>Ranunculus penicillatus subsp. pseudofluitans</i> and <i>Ranunculus sp.</i> ) species at The Carrs Mtr site                         |
| Sookholme Brook from Source to<br>River Meden (GB104028058050)         | Limited data (3 samples from 2011 and 2014), suggesting potentially flow sensitive species and communities at Sookholme Moor and Spring Lane (MFR scores 2.00 and 2.25, RMHI scores 7.24 and 7.46). 3 to 6 true aquatic species, with however high starwort ( <i>Callitriche sp.</i> ) cover at Spring Lane. Other sites (Daneshill Road and Sookholme Moor) appear less sensitive                              |
| Meden from Source to Sookholme<br>Brook (GB104028058020)               | Limited data (3 samples from 2012 and 2014), indicate potentially flow sensitive species and communities (MFR scores 2.00, RMHI scores 7.2 to 7.41)<br>6 to 8 true aquatic species, including water starwort ( <i>Callitriche stagnalis, Callitriche obstusangula</i> ) and water crowfoot ( <i>Ranunculus sceleratus</i> ) species however in low cover of the channel                                         |
| Gallow Hole Dyke from Source to<br>Rainworth Water<br>(GB104028052980) | Limited data (2 samples from 2011 and 2014) indicate potentially flow sensitive species<br>and communities (MFR score 1.6 to 2.00, RMHI score 7.6 to 7.92).<br>4 to 5 true aquatic species, including water starwort ( <i>Callitriche stagnalis</i> ). High algal<br>cover ( <i>Enteromorpha sp., Cladophora sp.</i> )                                                                                          |
| Ryton (to Aniston Brook)<br>(GB104028058162)                           | Limited data (2 samples from 2013 and 2014) indicate potentially flow sensitive species and communities (MFR score 6.74 to 6.61, RMHI scores 2.0 on both occasions). 8 true aquatic species recorded, including liverworts ( <i>Pellia endiviifolia</i> ) and bryophytes ( <i>Fissidens</i> sp.), considered as being flow sensitive.                                                                           |
| Poulter from Millwood Brook to<br>River Maun (GB104028058140)          | Limited data (2 samples for 2011 and 2015), suggesting species and communities unlikely to be flow sensitive (MFR score 1.2 0 to 1.54, RHMI score 7.81 to 8.03). $6 - 10$ true aquatic species. High cover of algae ( <i>Cladophora, Enteromorpha</i> spp.) recorded.                                                                                                                                           |
| Maun from Vicar Water to<br>Rainworth Water<br>(GB104028058040)        | Limited data (2 samples for 2012 and 2014), indicate potentially flow sensitive species and communities (MFR score 2.74 to 1.83, RMHI score 6.79 to 7.09) 7 - 8 true aquatic species including bryophytes ( <i>Fissidens</i> sp. and <i>Fontinalis antipyretica</i> ) and water starwort ( <i>Callitriche truncata</i> ) that are considered to be flow sensitive.                                              |

Analyses of the MFR and RMHI indices showed that monitoring sites on nine of the WFD water bodies are likely to support macrophyte communities and species adapted to fast flowing conditions (RMHI <7, MFR >2). These are as follows:

- Ranskill Brook Catchment (trib of the River Idle) (GB104028058220) 'High' for macrophytes;
- Meden from Sookholme Brook to River Maun (Meden from Sookholme Brook to River Maun) – 'Good' for macrophytes;
- Poulter from Source to Millwood Brook (GB104028058130) 'Good' for macrophytes;
- Ryton from Anston Brook to Idle (GB104028058100) 'Good' for macrophytes;
- Maun from Rainworth Water to River Poulter (GB104028058080) 'Moderate' for macrophytes
- Meden from Source to Sookholme Brook (GB104028058020) 'Moderate' for macrophytes;

- Hodsock Bk (to Old Coates Dyke) (GB104028058190) 'Moderate' for macrophytes;
- Gallow Hole Dyke from Source to Rainworth Water (GB104028052980) 'Poor' for macrophytes; and
- Sookholme Brook from Source to River Meden (GB104028058050) no WFD status for macrophytes.
- Ruddle (Paper Mill Dyke) from Source to R Torne (GB104028058380) 'Good' status for macrophytes
- Ryton (to Aniston Brook) (GB104028058162) 'Good' status for macrophytes
- Maun from Vicar Water to Rainworth Water (GB104028058040) 'Good' status for macrophytes

The seven remaining water bodies ('Idle from River Ryton to River Trent' (GB104028058110), 'Owlands Wood Dyke from Source to Hodscok Brook' (GB104028058170) and 'Idle from Maun/Poulter Conf to Tiln' (GB104028058091), Poulter from Millwood Brook to River Maun (GB104028058140), Torne from Source to Ruddle (Paper Mill Dyke) (GB104028058370), North Soak Drain (trib of R Torne / Three Rivers)(GB104028064350) S Lev Engine Dr / Upper Warping Drain Catch (GB104028058430)) appear to support species and communities adapted to slower flowing conditions.

Detailed review of the macrophyte data for the 12 WFD water bodies identified above, which support macrophyte species and communities adapted to faster flows demonstrated that monitoring sites on the following watercourses are the ones supporting the most diverse macrophyte communities (with number of true aquatic species (i.e. not helophytes) between 7 and 11):

- the River Maun ('Maun from Rainworth Water to River Poulter' (GB104028058080));
- the River Meden ('Meden from Sookholme Brook to River Maun' (GB104028058050) and 'Meden from Source to Sookholme Brook' (GB104028058020)); and
- the River Poulter ('Poulter from Source to Millwood Brook' (GB104028058130))

In particular, they support several species of water starwort (*Callitriche* sp.) and water crowfoot (*Ranunculus* sp.), which are usually adapted to fast flowing and oxygenated waters, with clean gravel beds. Other species adapted to fast flows generally included several bryophyte species, such as *Fissidens crassipes, Fontinalis antipyretica* or *Amblystegium tenax*. Notably, high percentage cover of the channel by water crowfoot and water starwort was recorded in:

- the 'Maun from Rainworth Water to River Poulter' (GB104028058080) at 'Ollerton Mtr site': *Ranunculus fluitans, Ranunculus penicillatus subsp. penicillatus* and *Callitriche truncata*;
- the 'Meden from Source to Sookholme Brook' (GB104028058020) at 'The Carrs Warsop': *Ranunculus sp.* and *Ranunculus penicillatus subsp. pseudofluitans*;
- the 'Poulter from Source to Millwood Brook (GB104028058130)' at 'Nether Langwith': *Ranunculus (Batrachian) spp.* and *Ranunculus penicillatus subsp. pseudofluitans.*

Other WFD water bodies such as 'Ranskill Brook Catchment (trib of the River Idle)' (GB104028058220), the 'Ryton from Anston Brook to Idle' (GB104028058100) and 'Sookholme Brook from Source to River Meden (GB104028058050)' the 'Maun from Vicar Water to Rainworth Water' (GB104028058040) also support water starwort or water crowfoot species, such as *Callitriche obtusangula, Callitriche stagnalis, Callitriche truncata* and *Glyceria fluitans agg.*, but in low cover.

Therefore, communities on these water bodies might be less typical of fast flows and oxygenated rivers, however, this would need to be confirmed by collecting further data.

Review of the data also showed that water bodies such as 'Gallow Hole Dyke from Source to Rainworth Water' (GB104028052980), 'Poulter from Millwood Brook to River Maun' (GB104028058140) and 'Hodsock Bk (to Old Coates Dyke)' (GB104028058190) generally have high algal cover (*Enteromorpha sp., Cladophera sp.*), which could indicate issues such as flows and excessive nutrients.

#### 4.6.7 Potential effects of abstractions at time of high flow

It is important to bear in mind that high flow abstraction is only likely to reduce spate flows during the winter period, a season when macrophytes generally die back and are largely dormant, hence having a potentially less pronounced impact on macrophyte communities and species than if summer flows were abstracted.

The potential impacts on macrophyte communities and species of abstracting during high (spate) flows are more likely to be through increased sedimentation in the long term (i.e. if spate flows are reduced, they might not be flushing sediments), which could impact on macrophyte habitats and species that require clean gravel beds for example.

*Ranunculus fluitans* communities generally occur in large rivers with moderate-to-fast flows and variable flow regime. They are considered vulnerable to impacts at a catchment scale, especially those modifying the flow regime. Diffuse pollution is also likely to be an issue, resulting in invasion by species such as *Potamogeton pectinatus* and *Elodea spp.* 

*Ranunculus penicillatus ssp. pseudofluitans-Callitriche obtusangula* communities are typical of small, lowland rivers, with stable flows are stable and substrates dominated by sand, gravels and pebbles. Such communities are at risk from human impacts including flow regulation, abstraction, and introduced species.

In general, the physical habitat preferred by Callitricho-Batrachion communities is clean substrate and swift to moderate flow. Except for the channel margins (and localised deposits associated with macrophytes) the substrate should be predominantly free of silt<sup>35</sup>.

These could lead to a decrease in abundances and distribution of species of water crowfoot and water starwort, such as Ranunculus fluitans, Ranunculus penicillatus subsp. penicillatus, Ranunculus sceleratus and Ranunculus (Batrachian) spp., Callitriche stagnalis, Callitriche obstusangula and Callitriche truncata, especially in reaches where they are dominant and extend across the channel.

Therefore, large watercourses within the River Idle catchment, the River Maun, the River Meden and the River Poulter appear to be at a greater risk of impacts from high flow abstraction, which could lead to changes in the macrophyte communities of those watercourses.

Watercourses from the River Torne catchment are likely to be less sensitive, as they are currently impacted by flow pressures and / or increased sedimentation.

### 4.7 Diatoms

#### 4.7.1 Data and Analysis

WFD diatom data was collected by the Environment Agency from nine locations between 2005 and 2015. Diatoms are a less reliable indicator of high alkalinities (occurring in both catchments) than macrophytes and so the latter has increasingly been favoured for WFD classifications by the

<sup>&</sup>lt;sup>35</sup> Hatton-Ellis TW & Grieve N (2003). Ecology of Watercourses Characterised by Ranunculion fluitantis and Callitricho-Batrachion Vegetation. Conserving Natura 2000 Rivers Ecology Series No. 11. English Nature, Peterborough.

Environment Agency. This explains why diatom sampling in both catchments has reduced in recent years.

Neverthless available data has been used to assess the nutrient status of the Idle and Torne catchment, using DARLEQ2 (Diatom for Assessing River and Lake Ecological Quality) and is based on a biotic metric called the trophic diatom index (TDI)<sup>36</sup>. DARLEQ2 forms one element of WFD assessment for ecological quality in "macrophytes and phytobenthos" analysis, which are evaluated separately and then combined to produce an overall classification for ecological quality, using the worst of either sub-element. TDI4 is the most recent version of the metric and is based on diatom community sensitivity to eutrophication, specifically sensitivity to phosphorous concentrations, where each taxon is assigned a score of 1 (nutrient sensitive) to 5 (nutrient tolerant).

From assessing the community assemblage and computing the overall TDI4 score (0 – 100: very low to very high nutrients), an Ecological Quality Ratio (EQR) can be calculated. Although TDI4 is primarily used to understand and identify nutrient enrichment of water bodies, other factors such as invertebrate grazing and hydromorphology can also influence the diatom assemblage and should be considered in tandem with trophic status. Ideally, two samples per year should be collected, one in the spring (March to May) and one in the autumn (September to November), although one sample in the summer (June to September) is also suitable if seasonal sampling is not possible. The resulting EQR (where 0 is Bad ecological status and 1 is High ecological status) is calculated based on a predicted reference value, which enables WFD classification of High, Good, Moderate, Poor or Bad.

Diatom assemblage data was only available for four of the sample sites. Four of the survey data points (two at Bawtry, one at Bolham Lane and one at Rossington Bridge) only report a TDI3 score, an earlier version of the TDI metric which uses different nutrient sensitivity scores for some taxa. Furthermore, on four occasions, diatom samples were collected during the spring period, without a corresponding summer or autumn sample. TDI scores calculated from surveying only once in spring/autumn, or which report TDI3 scores, should be interpreted with caution.

EQR data was also only available for two sites (A614 at Rainworth Water and Poulter and Nether Langwith), which both fell within the Idle catchment, therefore assigning a TDI class was only possible for the Idle at these sites. A summary of diatom data is presented in Table 4.12 below.

| Site Name               | Catchment | NGR          | Date       | TDI4 | Taxa<br>Data | TDI3 | EQR  | TDI4<br>Class |
|-------------------------|-----------|--------------|------------|------|--------------|------|------|---------------|
| A614 at Rainworth Water | ldle      | SK6472566713 | 30/04/2014 | 81   | Y            |      | 0.35 | Poor          |
| A614 at Rainworth Water | ldle      | SK6472566713 | 25/09/2014 | 79   | Y            |      | 0.37 | Poor          |
| Bawtry                  | Idle      | SK6560092700 | 06/07/2005 | 67   | Ν            | 62   |      |               |
| Bawtry                  | Idle      | SK6560092700 | 17/04/2007 | 65   | Ν            | 66   |      |               |
| Bawtry                  | Idle      | SK6560092700 | 08/10/2007 | 65   | Ν            | 71   |      |               |
| Bawtry                  | Idle      | SK6560292740 | 12/04/2010 | 63   | N            | 65   |      |               |
| Bawtry                  | Idle      | SK6560292740 | 25/10/2010 | 62   | N            | 63   |      |               |
| Bawtry                  | Idle      | SK6560292740 | 02/05/2013 |      | N            | 59   |      |               |
| Bawtry                  | Idle      | SK6560292740 | 16/10/2013 |      | N            | 62   |      |               |
| Bolham Lane             | Idle      | SK7050082450 | 28/06/2005 | 64   | Ν            | 68   |      |               |

#### Table 4.12 Summary of Environment Agency Diatom data from 2005 - 2019

<sup>&</sup>lt;sup>36</sup> Water Framework Directive - United Kingdom Advisory Group (UK-TAG), 2008. UK-TAG Lake Assessment Methods -Macrophytes and Phytobenthos: Phytobenthos - Diatom Assessment of Lake Ecological Quality (DARLEQ). SNIFFER, Edinburgh

| Site Name                  | Catchment | NGR          | Date       | TDI4 | Taxa      | TDI3 | EQR  | TDI4<br>Class |
|----------------------------|-----------|--------------|------------|------|-----------|------|------|---------------|
| Bolham Lane                | Idle      | SK7050082450 | 16/08/2006 | 70   | Data<br>N | 61   |      | Class         |
| Bolham Lane                |           | SK7044082582 | 27/04/2015 |      |           | 70   |      |               |
| Goole Bridge Tickhill      | Torne     | SK6060093200 | 08/04/2008 | 56   | N         | 19   |      |               |
| Goole Bridge Tickhill      | Torne     | SK6060093200 | 24/09/2008 | 72   | N         | 71   |      |               |
| Misterton                  | Idle      | SK7660096200 | 01/07/2005 | 69   | N         | 65   |      |               |
| Misterton                  | Idle      | SK7660096200 | 20/07/2006 | 72   | N         | 72   |      |               |
| Misterton                  | Idle      | SK7660096200 | 17/04/2007 | 68   | N         | 70   |      |               |
| Misterton                  | Idle      | SK7660096200 | 08/10/2007 | 68   | N         | 75   |      |               |
| Misterton                  | Idle      | SK7646696231 | 27/04/2015 | 60   | Y         |      |      |               |
| Poulter at Nether Langwith | ldle      | SK5303470407 | 06/05/2010 | 64   | N         |      | 1.16 | High          |
| Poulter at Nether Langwith | Idle      | SK5303470407 | 07/10/2010 | 68   | Ν         |      | 1.04 | High          |
| Poulter at Nether Langwith | Idle      | SK5303470407 | 24/04/2013 | 44   | N         |      | 1    | High          |
| Poulter at Nether Langwith | Idle      | SK5303470407 | 05/05/2015 | 49   | Y         |      | 1    | High          |
| Rossington Bridge          | Torne     | SK6280099600 | 11/05/2007 | 73   | N         | 75   |      |               |
| Rossington Bridge          | Torne     | SK6280099600 | 24/10/2007 | 73   | N         | 75   |      |               |
| Rossington Bridge          | Torne     | SK6290799638 | 20/04/2015 |      | N         | 69   |      |               |
| Tiln Mtr Site              | ldle      | SK7030084200 | 28/06/2005 | 67   | Ν         | 62   |      |               |
| Tiln Mtr Site              | ldle      | SK7030084200 | 16/08/2006 | 65   | Ν         | 63   |      |               |
| Torne Bridge               | Torne     | SK6194498961 | 12/04/2010 | 65   | N         | 71   |      |               |
| Torne Bridge               | Torne     | SK6194498961 | 25/10/2010 | 67   | Ν         | 67   |      |               |

Source: Environment Agency at https://data.gov.uk/dataset/94a92f06-4c2c-49c2-a64e-267332713c17/freshwater-and-marinebiological-surveys-for-diatoms-england

#### 4.7.2 River Torne Catchment

#### 4.7.2.1 Diatom assemblage data

No diatom assemblage data was available for sites in the Torne catchment, and so assessment beyond the TDI metric scores was not possible.

#### 4.7.2.2 TDI4

Three sites (Goole Bridge Tickhill, Rossington Bridge and Torne Bridge) in the Torne catchment were sampled for diatoms between 2007 and 2015. All three sites were sampled seasonally, with TDI4 scores ranging from 56 to 73 in the spring, and 67 to 73 in the autumn. Rossington bridge had one additional diatom survey in the summer of 2015, however, TDI4 data was not available. The TDI3 score for this survey was 69, lower than the previous TDI3 scores of 75 recorded in the seasonal surveys in 2007.

#### 4.7.2.3 EQR and water body classification

No EQR data was available for the Torne catchment, therefore an EQR classification could not be calculated. Desk study was completed for the WFD classifications based on macrophyte and phytobenthos for the water bodies at each sample site. Goole Bridge Tickhill was classified as Poor in 2015 and Moderate 2016, while Torne Bridge was classified as Poor from 2015 – 2017. Given that the assemblage is already primarily nutrient-tolerant, it is unlikely that future hydromorphological changes



will impact the diatom assemblages, however, further data from a range of seasons and locations in the Torne catchment is required to confirm this.

#### 4.7.2.4 Summary for River Torne catchment

Given the paucity of data from the River Torne catchment, it is not possible to fully assess the impact that changes to the hydromorphology will bring to the diatom assemblage. Existing data suggests that the River Torne catchment exhibits poor to moderate ecological quality, and it is therefore unlikely that additional changes to nutrient enrichment as a result of flow abstraction will significantly alter the diatom community, however further seasonal surveys across a longer temporal study period would be required to assess this.

#### 4.7.3 River Idle Catchment

#### 4.7.3.1 Diatom assemblage data

Four sites (A416 at Rainworth Water, Bolham Lane, Misterton and Poulter at Nether Langwith) had diatom assemblage data available and are presented in Figure 4.9. Species diversity can also be assessed by the Shannon-Wiener diversity index (H'), which considers both number of species and spread of abundance between species; a higher H' value indicates a higher level of species diversity, as demonstrated in Figure 4.10.

| A416 at Rainworth Water (Spring)  | 70% | A416 at Rainworth Water (Autum | 61% |
|-----------------------------------|-----|--------------------------------|-----|
| Amphora pediculus                 |     | Navicula tripunctata           |     |
| Navicula lanceolata               |     | Amphora pediculus              |     |
| Navicula gregaria                 |     | Navicula - small forms         |     |
| Psammothidium lauenburgianum 📒    |     | Craticula subminuscula         |     |
| Rhoicosphenia abbreviata          |     | Nitzschia inconspicua          |     |
| Bolham Lane                       | 68% | Misterton                      | 47% |
| Amphora pediculus                 |     | Navicula gregaria              |     |
| Nitzschia inconspicua             |     | Achnanthidium minutissimum typ |     |
| Achnanthidium minutissimum type   |     | Navicula atomus var. permitis  | 1   |
| Navicula atomus var. permitis 🛛 📒 |     | Planothidium lanceolatum       |     |
| Navicula gregaria                 |     | Nitzschia paleacea             |     |
| Poulter at Nether Langwith        | 51% |                                |     |
| Achnanthidium minutissimum        |     |                                |     |
| Fragilaria vaucheriae             |     |                                |     |
| Nitzschia paleacea                |     |                                |     |
| Amphora pediculus                 |     |                                |     |
| Stephanodiscus                    |     |                                |     |

Figure 4.9 The five most abundant diatom taxa and their contribution to total abundance in the Idle catchment (2014 – 2015)



Figure 4.10 Species richness (N) and Shannon-Weiner diversity indices (H') for diatom assemblage data in the Idle catchment 2014-2015

#### 4.7.3.2 A416 at Rainworth Water

A total of forty-five taxa were identified in the spring and 28 were identified in the autumn, with high abundance of nutrient-tolerant species including *Amphora pediculus* and *Navicula tripunctata*. Shannon-Weiner analysis produced a H' of 1.96 in the spring and 1.95 in the autumn, suggesting seasonal changes in nutrient enrichment on diversity is minimal.

#### 4.7.3.3 Bolham Lane

A total of thirty-five taxa were identified in the spring with no corresponding survey in the autumn. The assemblage was dominated by *Amphora pediculus, Nitzschia inconspicua* and other nutrient-tolerant species. Shannon-Weiner analysis produced a H' of 1.8, the lowest of the sites analysed in the Idle catchment. Lower diversity and dominance of *A. pediculus* suggests nutrient enrichment in this area is likely inorganic. Given that this sample was analysed from the spring, and that phosphorous concentrations are generally higher in lowland rivers during the summer/autumn, a change to the hydromorphological regime is unlikely to impact the diatom assemblage, although further seasonal surveys and information are required to confirm this. Misterton

A total of fifty-one taxa were identified in the spring, with no corresponding survey in the autumn. The assemblage was dominated by *Navicula gregaria*, with high abundance of other nutrient-tolerant species *Planothidium lanceolatum* and *Nitzschia palaecea*. High abundance of *Achnanthidium minutissimum type*, which has a lower nutrient sensitivity score of 2, suggests variable levels of nutrient enrichment. This is confirmed by the Shannon-Weiner analysis which produced a H' of 2.5, which suggests Misterton exhibits the highest species diversity of the sites analysed in the Idle catchment. This is possibly due to high abundance of motile species *Navicula gregaria* which is able to utilise nutrient resources in the water column that are unavailable to those living in a fixed/thicker biofilm. Therefore, changes to the hydromorphological regime may compromise this diversity. Having said this, as phosphorous concentrations tend to be higher in the summer/autumn particularly in lowland rivers, and as motile species are more commonly epiphytic rather than epilithic, additional seasonal surveys and further information about the substrate type (whether the sample was collected from macrophyte of rock substrate) would be required to confirm this.

#### 4.7.3.4 Poulter at Nether Langwith

A total of forty-seven taxa were identified in the summer. The assemblage was dominated by *Achnanthidium minutissimum type* and *Fragilaria vaucheriae* which show relatively high sensitivity to

nutrient loading. Moderate abundances of nutrient-tolerant species such as *Nitzschia palaecea* and *Amphora pediculus* suggests variable levels of nutrient enrichment. This is confirmed by the Shannon-Weiner diversity index H' of 2.3, similar to Misterton. Changes to the hydromorphological regime that would alter the nutrient enrichment cycling in the Idle Catchment at Misterton would therefore likely affect the diatom community assemblage, where species which are nutrient generalists (rather than nutrient specialists) and are sensitive to eutrophication and would likely decrease. Further seasonal surveys across a larger temporal study period are required to confirm this.

#### 4.7.3.5 TDI4

Six sites (A614 at Rainworth Water, Bawtry, Bolham Lane, Misterton, Poulter at Nether Langwith and Tiln Mtr Site) in the Idle catchment were sampled for diatoms between 2005 and 2015. Four of the sites were sampled seasonally (A614 at Rainworth Water, Bawtry, Misterton and Poulter at Nether Langwith) with one sample in spring and one in the autumn within the same year. Two sites (Bolham Lane and Tiln Mitr site) were only sampled during the summer. Additionally, four data points (one during 2013 at Poulter at Nether Langwith, and three during 2015 at Bolham Lane, Misterton and Poulter at Nether Langwith) were collected in the spring, without a corresponding autumn sample.

TDI4 scores ranged from 44 to 79 in the spring, and 62 to 81 in the autumn. TDI4 scores in the summer ranged from 64 to 72. The 2013 seasonal surveys at Bawtry did not have TDI4 data available, however the TDI3 scores were lower than the TDI3 scores recorded in the seasonal surveys in 2007 and 2010. Furthermore, TDI4 data was not available for the 2015 spring survey at Bolham, with no comparative spring sampling occurring at this site. Diatom DNA analysis was also undertaken on the 2015 A416 at Rainworth Water sample, which provided at TDI4 score of 69, although this methodology is not currently accepted for routine monitoring and assessment.

#### 4.7.3.6 EQR and water body classification

EQR data was available for two sites in the Idle catchment. Samples taken at A416 at Rainworth Water indicated Poor ecological quality in 2014, with EQR scores from 0.35 to 0.37. Samples analysed from Poulter at Nether Langwith indicated high ecological quality between 2010 and 2015, however, samples in 2013 and 2015 occurred in the spring, without a corresponding summer/autumn survey. EQR scores for Poulter at Nether Langwith ranged from 1 - 1.16.

#### 4.7.3.7 Summary for River Idle catchment

Overall, the available diatom data suggests that the impact of nutrient enrichment is highly variable across the Idle catchment, suggesting further hydromorphological changes could further impact ecological quality, particularly in more ecologically sensitive rivers such as the River Poulter. Desk study of WFD classifications based on macrophytes and phytobenthos for other sites along Rainworth Water confirm an ecological quality classification of Poor to Moderate from 2013 – 2016, while other sites along the River Poulter are classed as Poor to High. Additional survey data spanning a range of years and seasons at a larger range of sites is required to fully assess the impact of hydromorphological changes on a catchment scale. In particular, the impact of flow on the nutrient enrichment cycle (e.g. concentration of phosphorous in the summer) must be evaluated to assess the potential sensitivity of nutrient-generalist species to flow abstraction. It is recommended that monthly or seasonal water quality and diatom surveys are undertaken for at least one year (ideally three years) to establish baseline conditions.

#### 4.8 Water Framework Directive

#### 4.8.1 **Overall Designations**

A summary map of the overall 2016 WFD status is provided in Figure 4.11.

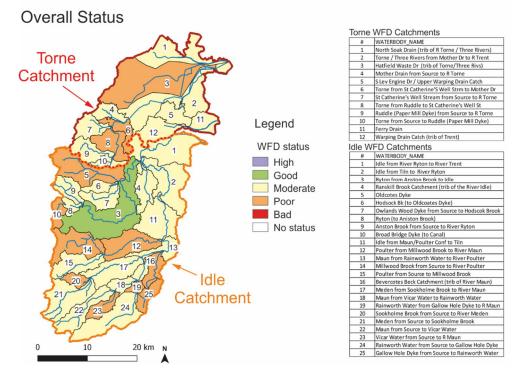



Figure 4.11 WFD Overall Status (2016) for Idle and Torne waterbodies

#### 4.9 Data Gaps

#### 4.9.1 Overview

Through our review some data gaps have been determined and our discussed below. Potentially some of these could be filled as part of Phase 2b, although project timing may make this unfeasible.

#### 4.9.2 Protected Species and Invasive Species

Some of the key ecological data gaps are provided below:

- Up-to-date biological species records from the relevant biological records centres; and
- Up-to-date Local Wildlife Site citations and further details on the conservation value of the Local Nature Reserves.

#### 4.9.3 Fisheries

Although the Environment Agency dataset is vast, there are numerous WFD waterbodies which are yet to be assessed for fish. The reason for this is it is not feasible to assess every waterbody and the Environment Agency have had to prioritise those which have a fisheries interest. To allow for a greater understanding of the fish assemblage within the Idle and Torne catchments, it is recommended that these are surveyed (Table 4.13).



| Catchment | Waterbody name                                           | Waterbody ID   |
|-----------|----------------------------------------------------------|----------------|
| Torne     | Ferry Drain Catchment (trib of Trent)                    | GB104028058241 |
| Torne     | North Soak Drain Catchment (trib of Torne/Three Rivers)  | GB104028064350 |
| Torne     | Ruddle (Paper Mill Dyke) from Source to Torne            | GB104028058380 |
| Torne     | S Lev Engine Drain Catchment (trib of Trent)             | GB104028058430 |
| Torne     | Torne from Ruddle to St Catherine's Well Stream          | GB104028058400 |
| Torne     | Torne from Source to Ruddle (Paper Mill Dyke)            | GB104028058370 |
| Idle      | Anston Brook from Source to Ryton                        | GB104028058210 |
| Idle      | Bevercotes Beck Catchment (trib of Maun)                 | GB104028058070 |
| Idle      | Broad Bridge Dyke Catchment (trib of Chesterfield Canal) | GB104028058161 |
| Idle      | Gallow Hole Dyke Catchment (trib of Rainworth Water)     | GB104028052980 |
| Idle      | Hodsock Bk (to Old Coates Dyke)                          | GB104028058190 |
| Idle      | Owlands Wood Dyke from Source to Hodscok Brook           | GB104028058170 |
| ldle      | Rainworth Water from Gallow Hole Dyke to Maun            | GB104028052970 |
| ldle      | Ranskill Brook Catchment (trib of Idle)                  | GB104028058220 |
| Idle      | Ryton from Chesterfield Canal to Anston Brook            | GB104028058162 |
| ldle      | Sookholme Brook Catchment (trib of Meden)                | GB104028058050 |
| ldle      | Vicar Water from Source to Maun                          | GB104028052950 |

# Table 4.13 The outstanding Idle and Torne WFD waterbodies which are yet to have fish surveys completed and a subsequent WFD fish status assigned

#### 4.9.4 Macroinvertebrates

Macroinvertebrate data was available for the 18 water bodies screened in the assessment. Data was not available for 2010 – 2019 for Hodsock Bk (to Old Coates Dyke) (GB104028058190). However, for six water bodies, the data was relatively sparse, with data being available from only one monitoring site.

For other water bodies, data pre-2015 was available. Additional post-2015 data was only available for the following water bodies:

- Idle from River Ryton to River Trent (GB104028058110);
- Idle from Tiln to River Ryton (GB104028058092)
- Ranskill Brook Catchment (trib of the River Idle) (GB104028058220)
- Owlands Wood Dyke from Source to Hodscok Brook (GB104028058170)
- Maun from Rainworth Water to River Poulter (GB104028058080)
- Poulter from Source to Millwood Brook (GB104028058130)
- Meden from Source to Sookholme Brook (GB104028058020)
- Torne / Three Rivers from Mother Dr to R Trent (GB104028064340)
- Hatfield Waste Dr (trib of Torne/Three Rivs) (GB104028064330)
- Warping Drain Catch (trib of Trent) (GB104028058240

#### 4.9.5 Macrophytes

Additional macrophyte WFD monitoring data from 2015 – 2019 was only available for a limited number of WFD water bodies and sites, as follows:

• Idle from River Ryton to River Trent (GB104028058110);



- Maun from Rainworth Water to River Poulter (GB104028058080);
- Poulter from Source to Millwood Brook (GB104028058130); and
- Meden from Source to Sookholme Brook (GB104028058020).

For other water bodies, no additional data was available and therefore, the baseline will remain the same as presented in the report for the Phase 1 of the study.

### 4.10 Environmental Features Summary

#### 4.10.1 Overview and review

A review of the sensitivity environmental features of each WFD waterbody in the Idle and Torne catchments has been undertaken. This is presented in Table 4.14 below.

Through our review it is recommended that the following waterbodies are examined through Phase 2b (due to potential effects on designated sites and/ or macroinvertebrates/ macrophytes / fish):

- Idle from River Ryton to River Trent
- Meden from Sookholme Brook to River Maun
- Millwood Brook from Source to River Poulter
- Poulter from Millwood Brook to River Maun
- Sookholme Brook from Source to River Meden
- Mother Drain from Source to R Torne
- Hatfield Waste Drain
- Torne / Three Rivers from Mother Dr to R Trent

In addition further studies on the Meden from Source to Sookholme Brook may be of value (though potentially less of a priority).

Diatom monitoring is recommended through the Idle catchment while data for Hodsock Brook is also notably lacking.

### Table 4.14 Review of Sensitivity of Environmental Features

| WFD Waterbody                                                 | Physical Environment Sensitivity<br>Review (see Section 3.8)                                                                         | Nationally Designated Sites<br>Warrant Further Attention? | Density of other<br>important sites (e.g.<br>LWS) / initial review                    | Macroinvertebrates                                                                                                          | Macrophytes                                                                                                                                                                                                    | Fish                                                                                                                                                                                                                               | Next Steps Review                                                                  |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| dle waterbodies                                               |                                                                                                                                      |                                                           |                                                                                       |                                                                                                                             |                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                                                    |
| Anston Brook from<br>Source to River Ryton                    | Information indicates waterbody<br>would be of low sensitivity to further<br>abstraction.                                            | No                                                        | Yes                                                                                   | Screened out                                                                                                                | Screened out (based on<br>macroinvertebrate status),<br>however Good WFD status for<br>macrophytes in 2016.                                                                                                    | Potentially effects by increased siltation. No other significant effects predicted however.                                                                                                                                        | No further studies<br>recommended                                                  |
| Bevercotes Beck<br>Catchment (trib of River<br><i>I</i> laun) | Information indicates waterbody<br>would be of low sensitivity to further<br>abstraction.                                            | No                                                        | One site. Upland area so<br>potentially limited effects?                              | Screened out                                                                                                                | Screened out                                                                                                                                                                                                   | Potentially effects by increased siltation. No other significant effects predicted however.                                                                                                                                        | No further studies<br>recommended                                                  |
| Broad Bridge Dyke (to<br>Canal)                               | Information indicates waterbody<br>would be of low sensitivity to further<br>abstraction (noting that data is<br>generally lacking). | No                                                        | No                                                                                    | Screened out                                                                                                                | Screened out                                                                                                                                                                                                   | Potentially effects by increased siltation. No other significant effects predicted however.                                                                                                                                        | No further studies<br>recommended                                                  |
| Gallow Hole Dyke from<br>Source to Rainworth<br>Vater         | Information indicates waterbody<br>would be of low sensitivity to further<br>abstraction.                                            | No                                                        | No                                                                                    | Screened in though insufficient<br>data to assess flow and<br>sedimentation sensitivity                                     | Screened in. Data indicates<br>presence of species that may<br>be sensitive to flow changes.<br>Smaller watercourse though, so<br>effects likely to be less<br>significant than if in a larger<br>watercourse. | Potentially effects by increased<br>siltation. Macrophytes not<br>considered to be significantly<br>affected given timing of<br>abstractions, so no knock on<br>effect on fish.                                                    | No further studies<br>recommended (with finite<br>resources focussed<br>elsewhere) |
| łodsock Bk (to Oldcoates<br>)yke)                             | Information indicates waterbody<br>would be of low sensitivity to further<br>abstraction (noting that data is<br>generally lacking). | No                                                        | Sites present though<br>seemingly distant from<br>river itself                        | Screened in and considered to be<br>most sensitive to sedimentation/<br>flow changes                                        | Screened in. Data indicates<br>presence of species that may<br>be sensitive to flow changes.<br>Smaller watercourse though, so<br>effects likely to be less<br>significant than if in a larger<br>watercourse. | Potentially effects by increased<br>siltation. Macrophytes not<br>considered to be significantly<br>affected given timing of<br>abstractions, so no knock on<br>effect on fish.                                                    | No further studies<br>recommended (with finite<br>resources focussed<br>elsewhere) |
| dle from Maun/ Poulter<br>Conf to Tiln                        | Available information indicates<br>waterbody may be highly sensitive<br>to effects of high flow abstraction                          | No                                                        | No                                                                                    | Screened in though insufficient<br>data to assess flow and<br>sedimentation sensitivity.                                    | Screened in. Limited data<br>indicates not sensitive to flow<br>changes.                                                                                                                                       | Limited impacts. Potential for floodplain habitat at times of high flows to be reduced.                                                                                                                                            | No further studies<br>recommended (with finite<br>resources focussed<br>elsewhere) |
| dle from River Ryton to<br>River Trent                        | Available information indicates<br>waterbody may be highly sensitive<br>to effects of high flow abstraction                          | Yes- River Idle Washlands<br>SSSI                         | Sites present, potential<br>effects similar to those<br>identified for National sites | Screened in. Community adapted<br>to slow to moderate velocities and<br>heavy sedimentation. Sensitive to<br>water quality. | Screened in. Data indicates not sensitive to flow changes however.                                                                                                                                             | No effects predicted.                                                                                                                                                                                                              | Further investigations recommended                                                 |
| dle from Tiln to River<br>Ryton                               | Information indicates the channel<br>may be of moderate sensitivity to<br>further abstraction                                        | No                                                        | Sites not in sensitive area                                                           | Screened in. Community adapted<br>to slow to moderate velocities and<br>heavy sedimentation. Sensitive to<br>water quality. | Screened in although<br>insufficient data to complete a<br>review.                                                                                                                                             | Potentially effects by increased<br>siltation. Macrophytes not<br>considered to be significantly<br>affected given timing of<br>abstractions, so no knock on<br>effect on fish. Additional effects<br>if macrophytes are affected. | No further studies<br>recommended (with finite<br>resources focussed<br>elsewhere) |
| <i>l</i> laun from Rainworth<br>Vater to River Poulter        | Information indicates the channel<br>may be of moderate sensitivity to<br>further abstraction                                        | No                                                        | At upstream end though<br>potentially not influenced<br>by river                      | Screened in. Community adapted<br>to slow to moderate velocities and<br>heavy sedimentation. Sensitive to<br>water quality. | Screened out                                                                                                                                                                                                   | and floodplain habitat at times<br>of high flows to be reduced                                                                                                                                                                     | No further studies<br>recommended (with finite<br>resources focussed<br>elsewhere) |

| WFD Waterbody                                    | Physical Environment Sensitivity<br>Review (see Section 3.8)                                                                     | Nationally Designated Sites<br>Warrant Further Attention? | Density of other<br>important sites (e.g.<br>LWS) / initial review | Macroinvertebrates                                                                   | Macrophytes                                                                                                                                                                                                                                    | Fish                                                                                                                                      | Next Steps Review                                                                  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Maun from Source to<br>/icar Water               | Data generally lacking to ascertain potential sensitivity                                                                        | No                                                        | Yes, several                                                       | Screened out                                                                         | Screened out (based on<br>macroinvertebrate status),<br>however Good WFD status for<br>macrophytes in 2016.                                                                                                                                    | Hydromorphological effects<br>unknown- may be associated<br>effects on fish.                                                              | No further studies<br>recommended                                                  |
| /aun from Vicar Water to<br>Rainworth Water      | Data generally lacking to ascertain<br>potential sensitivity                                                                     | No                                                        | At upstream end though<br>potentially not influenced<br>by river   | Screened in and considered to be<br>most sensitive to sedimentation/<br>flow changes | Screened in. Review indicates species that may be sensitive to flow changes.                                                                                                                                                                   | Hydromorphological effects<br>unknown- may be associated<br>effects on fish.                                                              | Further investigations recommended                                                 |
| Meden from Sookholme<br>Brook to River Maun      | Available information indicates<br>waterbody may be highly sensitive<br>to effects of high flow abstraction                      | No                                                        | Yes, several                                                       | Screened in and considered to be<br>most sensitive to sedimentation/<br>flow changes | Screened in. Data indicates<br>presence of species that may<br>be sensitive to flow changes.<br>Larger watercourse than others<br>considered sensitive, which may<br>compound any effects.                                                     | Potential siltation, reduced<br>floodplain connection and<br>knock on effects on<br>macrophytes (each of which<br>may impact upon fish)   | Further investigations<br>recommended                                              |
| leden from Source to<br>Sookholme Brook          | Available information indicates<br>waterbody may be highly sensitive<br>to effects of high flow abstraction                      | No                                                        | Yes, several                                                       | Screened in and considered to be<br>most sensitive to sedimentation/<br>flow changes | Screened in. Data indicates<br>presence of species that may<br>be sensitive to flow changes.<br>Smaller watercourse though (as<br>from source), so effects likely to<br>be less significant than if in a<br>larger watercourse/<br>downstream. | Potential for increased siltation<br>and floodplain habitat at times<br>of high flows to be reduced<br>(both potentially affecting fish). | Further investigations<br>recommended (Tier 2)                                     |
| fillwood Brook from<br>ource to River Poulter    | Data generally lacking to ascertain potential sensitivity                                                                        | No                                                        | Yes, several                                                       | Screened out                                                                         | Screened out (based on<br>macroinvertebrate status),<br>however Good WFD status for<br>macrophytes in 2016.                                                                                                                                    | Hydromorphological effects<br>unknown- may be associated<br>effects on fish.                                                              | No further studies<br>recommended                                                  |
| Didcotes Dyke                                    | Information indicates the channel<br>may be of moderate sensitivity to<br>further abstraction                                    | No                                                        | Sites present                                                      | Screened out                                                                         | Screened out (based on<br>macroinvertebrate status),<br>however Good WFD status for<br>macrophytes in 2016.                                                                                                                                    | Hydromorphological effects<br>unknown- may be associated<br>effects on fish.                                                              | No further studies<br>recommended (with finite<br>resources focussed<br>elsewhere) |
| Wands Wood Dyke<br>om Source to Hodscok<br>brook | Information indicates the channel<br>may be of low to moderate<br>sensitivity to further abstraction<br>(noting data is lacking) | No                                                        | No                                                                 | Screened in and considered to be<br>most sensitive to sedimentation/<br>flow changes | Screened in. Limited data<br>indicates not sensitive to flow<br>changes.                                                                                                                                                                       | and floodplain habitat at times<br>of high flows to be reduced                                                                            | No further studies<br>recommended (with finite<br>resources focussed<br>elsewhere) |
| oulter from Millwood<br>brook to River Maun      | Information indicates the channel<br>may be of moderate sensitivity to<br>further abstraction (noting data is<br>lacking)        | Yes - Clumber Park SSSI                                   | Yes, several                                                       | Screened in and considered to be<br>most sensitive to sedimentation/<br>flow changes | Screened in. Review indicates species that macrophytes not sensitive to flow changes.                                                                                                                                                          | Hydromorphological effects<br>unknown- may be associated<br>effects on fish.                                                              | Further investigations recommended                                                 |
| oulter from Source to<br>fillwood Brook          | Available information indicates<br>waterbody (or parts of it) may be<br>highly sensitive to effects of high<br>flow abstraction  | No                                                        | No                                                                 | Screened in and considered to be<br>most sensitive to sedimentation/<br>flow changes | Screened in. Data indicates<br>presence of species that may<br>be sensitive to flow changes.<br>Smaller watercourse though (as<br>from source), so effects likely to<br>be less significant than if in a<br>larger watercourse/<br>downstream. | Potential for increased siltation<br>and floodplain habitat at times<br>of high flows to be reduced<br>(both potentially affecting fish). | Further investigations<br>recommended                                              |

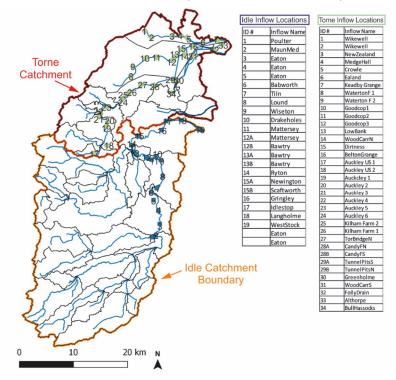
| WFD Waterbody                                          | Physical Environment Sensitivity<br>Review (see Section 3.8)                                                                                                                 | Nationally Designated Sites<br>Warrant Further Attention? | Density of other<br>important sites (e.g.<br>LWS) / initial review | Macroinvertebrates                                                                                                          | Macrophytes                                                                                                                                                                                                                          | Fish                                                                                                                                                                            | Next Steps Review                              |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Rainworth Water from<br>Gallow Hole Dyke to R<br>⁄Iaun | Information indicates waterbody<br>would be of low sensitivity to further<br>abstraction.                                                                                    | No                                                        | One                                                                | Screened out                                                                                                                | Screened out                                                                                                                                                                                                                         | Hydromorphological effects<br>unknown- may be associated<br>effects on fish.                                                                                                    | No further studies<br>recommended              |
| Rainworth Water from<br>Source to Gallow Hole<br>Dyke  | Information indicates the channel<br>may be of low to moderate<br>sensitivity to further abstraction                                                                         | No                                                        | Yes, several at its<br>upstream end                                | Screened out                                                                                                                | Screened out (based on<br>macroinvertebrate status),<br>however Good WFD status for<br>macrophytes and phyto benthos<br>in 2016.                                                                                                     | Potential for increased siltation<br>and floodplain habitat at times<br>of high flows to be reduced<br>(both potentially affecting fish).                                       | No further studies<br>recommended              |
| anskill Brook Catchment<br>rib of the River Idle)      | Information indicates the channel<br>may be of low to moderate<br>sensitivity to further abstraction<br>(noting data is contrasting and<br>perhaps reflects different areas) | No                                                        | Yes                                                                | Screened in and considered to be sensitive to water quality changes.                                                        | Screened in. Very limited data<br>indicates may be sensitive to<br>flow changes.                                                                                                                                                     | Connection with floodplain at<br>times of high flow unknown<br>(and associated effect on fish<br>habitat similarly unknown).                                                    | No further studies<br>recommended              |
| yton (to Anston Brook)                                 | Data generally lacking to ascertain potential sensitivity                                                                                                                    | No                                                        | No                                                                 | Screened in and considered to be<br>most sensitive to sedimentation/<br>flow changes                                        | Screened in – review indicates<br>waterbody and macrophytes<br>may be flow sensitive. Smaller<br>watercourse though (as from<br>source), so effects likely to be<br>less significant than if in a larger<br>watercourse/ downstream. | Potential for increased siltation<br>and floodplain habitat at times<br>of high flows to be reduced<br>(both potentially affecting fish).                                       | Further investigations<br>recommended (Tier 2) |
| yton from Anston Brook<br>Idle                         | Available information indicates<br>waterbody may be highly sensitive<br>to effects of high flow abstraction                                                                  | No                                                        | Sites at upstream end                                              | Screened in though insufficient<br>data to assess flow and<br>sedimentation sensitivity                                     | Screened in. Limited data<br>indicates presence of species<br>that may be sensitive to flow<br>changes. Larger watercourse<br>than others considered<br>sensitive, which may compound<br>any effects.                                | Hydromorphological effects<br>unknown- may be associated<br>effects on fish. Potential effect<br>on macrophytes which may in<br>turn affect fish.                               | Further investigations<br>recommended          |
| pokholme Brook from<br>purce to River Meden            | Available information indicates<br>waterbody may be highly sensitive<br>to effects of high flow abstraction<br>(noting information is generally<br>lacking in this reach)    | No                                                        | No                                                                 | Screened in. Community adapted<br>to slow to moderate velocities and<br>heavy sedimentation. Sensitive to<br>water quality. | Screened in. Data indicates<br>presence of species that may<br>be sensitive to flow changes.<br>Smaller watercourse though, so<br>effects likely to be less<br>significant than if in a larger<br>watercourse.                       | Potentially effects by increased<br>siltation. Macrophytes not<br>considered to be significantly<br>affected given timing of<br>abstractions, so no knock on<br>effect on fish. | Further investigations<br>recommended (Tier 2) |
| icar Water from Source<br>R Maun                       | Data generally lacking to ascertain potential sensitivity                                                                                                                    | No                                                        | Yes, several                                                       | Screened out                                                                                                                | Screened out                                                                                                                                                                                                                         | Hydromorphological effects<br>unknown- may be associated<br>effects on fish.                                                                                                    | No further studies<br>recommended              |
| orne waterbodies                                       | 1                                                                                                                                                                            |                                                           |                                                                    |                                                                                                                             | _                                                                                                                                                                                                                                    |                                                                                                                                                                                 | 1                                              |
| erry Drain                                             | Information indicates waterbody<br>would be of low sensitivity to further<br>abstraction.                                                                                    | No                                                        | None                                                               | Screened out                                                                                                                | Screened out (based on<br>macroinvertebrate status),<br>however Good WFD status for<br>macrophytes and phyto benthos<br>in 2016.                                                                                                     | No significant effects predicted                                                                                                                                                | No further studies<br>recommended              |
| latfield Waste Dr (trib of<br>orne/Three Rivs)         | Available information indicates<br>waterbody may be moderately<br>sensitive to effects of high flow                                                                          | Crowle Borrow Pits SSSI (see<br>also North Soak Drain)    | High but not additional to<br>National sites already<br>considered | Screened in. Community adapted to slow to moderate velocities and                                                           | Screened in. Limited data indicates not sensitive to flow changes however.                                                                                                                                                           | No significant effects predicted                                                                                                                                                | Further investigations recommended (Tier 2/    |

| WFD Waterbody                                           | Physical Environment Sensitivity<br>Review (see Section 3.8)                                                                                                 | Nationally Designated Sites<br>Warrant Further Attention?  | Density of other<br>important sites (e.g.<br>LWS) / initial review                                   | Macroinvertebrates                                                                                                                                      | Macrophytes                                                                      | Fish                                                                                                                   | Next Steps Review                                                                                                                 |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                         | abstraction (with regard to<br>floodplain inundation)                                                                                                        |                                                            |                                                                                                      | heavy sedimentation. Sensitive to water quality.                                                                                                        |                                                                                  |                                                                                                                        | focussed on Nationally<br>designated site)                                                                                        |
| Mother Drain from Source<br>to R Torne                  | Information indicates the channel<br>may be of low to moderate<br>sensitivity to further abstraction                                                         | No                                                         | Site considered under<br>National sites                                                              | Screened in. Community adapted<br>to slow to moderate velocities and<br>heavy sedimentation. Sensitive to<br>water quality.                             | Screened in. Limited data<br>indicates not sensitive to flow<br>changes however. | Hydromorphological effects<br>unknown- may be associated<br>effects on fish.                                           | No further studies<br>recommended                                                                                                 |
| North Soak Drain (trib of<br>R Torne / Three Rivers)    | Available information indicates<br>waterbody may be moderately<br>sensitive to effects of high flow<br>abstraction (with regard to<br>floodplain inundation) | Crowle Borrow Pits SSSI (see<br>also Hatfield Waste Drain) | Low                                                                                                  | Screened in. Waterbody not considered sensitive to flow or sedimentation.                                                                               | Screened in though data indicates not flow sensitive                             | No significant effects predicted<br>other than potential reduction<br>in downstream floodplain<br>connection (habitat) | Further investigations<br>recommended (Tier 2/<br>focussed on Nationally<br>designated site)                                      |
| Ruddle (Paper Mill Dyke)<br>from Source to R Torne      | Information indicates waterbody<br>would be of low sensitivity to further<br>abstraction.                                                                    | No                                                         | Upland sites unlikely to be<br>impacted                                                              | Screened in and considered to be<br>sensitive to sedimentation/ flow<br>changes                                                                         | Screened in though data<br>indicates flow sensitive                              | No significant effects predicted                                                                                       | No further studies<br>recommended (given low<br>physical environment<br>sensitivity/ with finite resources<br>focussed elsewhere) |
| S Lev Engine Dr / Upper<br>Warping Drain Catch          | Information indicates waterbody<br>would be of low sensitivity to further<br>abstraction.                                                                    | No                                                         | Site not close to the river/<br>other site already<br>screened out                                   | Screened in. Waterbody not<br>considered sensitive to flow or<br>sedimentation.                                                                         | Screened in though data<br>indicates relatively flow<br>sensitive                | No significant effects predicted<br>though data is lacking with<br>regard to certain<br>considerations.                | No further studies<br>recommended                                                                                                 |
| St Catherine's Well<br>Stream from Source to R<br>Torne | Data generally lacking to ascertain<br>potential sensitivity                                                                                                 | No                                                         | Upland sites unlikely to be<br>impacted                                                              | Screened out                                                                                                                                            | Screened out                                                                     | Hydromorphological effects<br>unknown- may be associated<br>effects on fish.                                           | No further studies<br>recommended                                                                                                 |
| Torne / Three Rivers from<br>Mother Dr to R Trent       | Available information indicates<br>waterbody may be moderately<br>sensitive to effects of high flow<br>abstraction (with regard to<br>floodplain inundation) | No                                                         | High but not additional to<br>National sites already<br>considered or sites likely<br>to be impacted | Screened in. Community adapted<br>to slow to moderate velocities and<br>heavy sedimentation. Sensitive to<br>water quality.                             | Screened in. Limited data<br>indicates not sensitive to flow<br>changes however. | No significant effects predicted<br>other than potential reduction<br>in downstream floodplain<br>connection (habitat) | No further studies<br>recommended                                                                                                 |
| Torne from Ruddle to St<br>Catherine's Well St          | Information indicates waterbody<br>would be of low sensitivity to further<br>abstraction.                                                                    | No                                                         | None                                                                                                 | Screened out                                                                                                                                            | Screened out                                                                     | No significant effects predicted                                                                                       | No further studies<br>recommended                                                                                                 |
| Torne from Source to<br>Ruddle (Paper Mill Dyke)        | Data generally lacking to ascertain potential sensitivity                                                                                                    | No                                                         | None                                                                                                 | Screened in and considered to be<br>sensitive to sedimentation/ flow<br>changes (at one of two sites/ the<br>other indicated river is not<br>sensitive) | Screened in though data<br>indicates not flow sensitive                          | No significant effects predicted                                                                                       | No further studies<br>recommended (with finite<br>resources focussed<br>elsewhere)                                                |
| Torne from St Catherine's<br>Well Strm to Mother Dr     | Information indicates the channel<br>may be of low to moderate<br>sensitivity to further abstraction                                                         | No                                                         | None                                                                                                 | Screened in. Community adapted<br>to slow to moderate velocities and<br>heavy sedimentation. Sensitive to<br>water quality.                             | Screened in. Limited data<br>indicates not sensitive to flow<br>changes however. | No significant effects predicted                                                                                       | No further studies<br>recommended                                                                                                 |
| Warping Drain Catch (trib<br>of Trent)                  | Information indicates waterbody<br>would be of low sensitivity to further<br>abstraction.                                                                    | No                                                         | Site not close to the river/<br>unlikely to be impacted                                              | Screened in. Community adapted<br>to slow to moderate velocities and<br>heavy sedimentation. Sensitive to<br>water quality.                             | Screened in. Limited data<br>indicates not sensitive to flow<br>changes however. | No significant effects predicted                                                                                       | No further studies<br>recommended                                                                                                 |

Idle and Torne High Flow Study

## 5. Model Reviews

### 5.1 Background


Our review of the Idle and Torne hydraulic models and of the East Midlands Yorkshire Sherwood Sandstone groundwater model, with regard to their potential use in Phase 2b, are presented in his section.

### 5.2 Hydraulic Models

Reviews of the latest Environment Agency River Idle and Torne strategic scale linked 1D/2D hydraulic FMP-TUFLOW flood models have been undertaken. These are included in Appendix A.

The reviews have been undertaken using a modified version of our standard review proforma which we have employed previously on numerous Environment Agency projects. This proforma includes a traffic light comments system and will be adapted to include key criteria necessary for modelling the impacts of high flow abstraction on floodplain connectivity, and in-stream hydraulic parameters required for geomorphological and eco-hydrological assessment.

A summary of the model inflows is provided in Figure 5.1 below. This indicates that the Torne model covers a reasonable amount of that catchment although the Idle model is limited to the main stem of the Idle itself (downstream of the River Maun/ from Retford). This limited extent reduces the value of the Idle model as a tool if other parts of the catchment require further investigations.



#### Figure 5.1 Hydraulic Model Inflows (Idle and Torne)

In addition, the Idle review found the following:

Glass-walling during the 50% AEP /1 in 2 year flow event. Glasswalling in the 1D domain results in increased depth and flow within the 1D channel and the 2D domain. This produces increased depths and inaccurate representation of floodplain flow paths and flood extents. Glasswalling within the 2D domain occurs during the 20% AEP event, so this may not be an issue during smaller flow events. Glasswalling within the 1D domain occurs during the 2% AEP event, so again may be less of an issue at lesser flows (which are focus of the current)

AECOM

study). This may not be an issue at lower flows (such as high flows where abstraction may occur);

- Significant oscillation of flows across the 1D/2D link files and fluctuations in flow and stage
  occurred during the reviewed model runs, which would impact results. Changes in the model
  structure and setup, such as introduction of FLC values at the 1D/2D boundaries and the
  reduction of 1D and 2D timesteps may help to improve model stability.
- There are a number of uncertainties regarding dimensions of the 1D reservoir units within the model. Whilst there is survey data, the polygons used to generate the reservoir units are not provided, thus any overlap between surveyed sections and reservoir units cannot be identified. Without the shapefiles used to generate the reservoir units within Flood Modeller, dimensions cannot be checked for accuracy or possible double counting of floodplain volume.
- Discrepancies occur between 1D spill widths and associated bank lengths, where 1D spills have been used to model out of bank flow from the channel. 1D spill widths should match the chainage between nodes they are attached to.
- The downstream boundary conditions do not run for the whole simulation; the model run time is 200 hours, and the downstream boundary runs for 140 hours. The boundary should be extended to run for the whole simulation as, under the current setup, a single level is applied for the final 60 hours.
- Abstractions and logical rules have been used to represent pumps rather than pump units. Correctly implemented the use of abstraction units will not impact results, however it means pump curves were not discretely simulated.
- The 1D and 2D model timesteps will have to be lowered if the grid size is reduced. Reducing the grid size will also improve the representation of the 1D channel, 2D channels and floodplain flow paths. There are 2D inflows within the model connected by pumps to the 1D domain, and as such a reduction of the grid size will improve the linkage between the 1D and 2D domains even when flows are in bank within the 1D domain.
- Whilst the save interval specified within the model does not impact results, file sizes are
  prohibitively large. Increasing the model output save interval would allow generation of
  easily manageable ,model outputs.

The Torne review found the following:

- The model was previously run with the same timestep for the 1D and 2D domains. The 1D model timestep should be ½ or ¼ of the 2D model timestep. Reducing the 1D timestep will aid both 1D model convergence and reduce flow oscillations across the 1D/2D boundaries. The 1D timestep would also have to be reduced further in line with any reduction in grid size.
- Reducing the grid size will improve model representation of smaller channels within the 2D domain. However, stability issues within the 2D model may occur as result, as variations in topography will be represented in greater detail. The current pumping arrangement, where the pumps are linked to the 2D domain, will be improved with a reduced grid size, as the pumps could be represented with a single cell covering the drainage channel, rather than a 15m grid cell.
- There is poor convergence throughout the model, which is exacerbated by long chainages between 1D model nodes and the relatively large timestep. Without the survey for the full model domain, schematisation of structures within the full 1D model cannot be verified, and neither can structure dimensions or bank levels.
- Flow transfer between the 1D and 2D model domains operates poorly, as highlighted by the high Form Loss Coefficient values within the HX link files and the use of Boundary Viscosity values. Reduction in timestep and grid size is likely to improve flow transfer between domains, however the model may still struggle when out of bank flow occurs.
- Glasswalling occurs upstream of model node DGND\_23073, located to the west of Armthorpe. The 2D domain needs to be extended to prevent this. However, glasswalling only occurs during events greater than the 3.33% AEP (1 in 33 year flood) event and therefore will not impact model performance during lower order events.

AECOM

- Discrepancies occur between the 1D and 2D cross-section widths throughout the model, which should be corrected for future model runs. Either the 2D sections should be updated to match the 1D sections, or the 1D cross-sections should be extended via LiDAR to tie in with the channel extent within the 2D domain.
- Abstractions and logical rules have been used to represent pumps, rather than specific FMP pump units. If implemented correctly, the use of abstraction units will not impact model results. However, as a result of the current model setup, discrete representation of pump curves is not utilised.
- There are a number of missing structures within the model with no explanation for their exclusion; these structures should be added to the model, however further survey would then be required to capture structure dimensions. Missing structures, that were not included in the supplied survey data, could impact results even at low flows.
- Spill units are not present at all structures within the 1D model. These should be added either in 1D or spills to the 2D with a smaller grid size.

The above indicates a number of issues that would need to improved were the models to be used for this project. In addition a 1D in channel part of the model would provide limited in channel information, e.g. with averaged velocities across the channel cross section.

Given the above it is recommended that the hydraulic models are not developed further during or used in Phase 2b of the project.

### 5.3 East Midlands Yorkshire Sherwood Sandstone Groundwater Model Review

#### 5.3.1 Overview

The Environment Agency developed a groundwater model encompassing the Idle and Torne study area, the 'East Midlands Yorkshire Sherwood Sandstone Groundwater Model'. The model is a time variant distributed model with a uniform model grid with cell size of 200m and 4 layers. Aquifer properties and recharge are distributed across the model grid with abstractions and discharges assigned to the appropriate grid cell. The model runs from 1963 to 2004 with a 'warm up' period from 1839 to simulate the slow changes in the Sherwood Sandstone.

Further details can be found in the model report (noting that the figures in Section 5.3 are also obtained and sourced from this report)<sup>37</sup>:

The following sections review the calibration of the model based on information contained within the model report. Figures have been reproduced where appropriate.

Flow gauges available in the Idle and Torne catchments to calibrate river flows are shown in Figure 5.2.

<sup>&</sup>lt;sup>37</sup> M.G Shepley, & R Soley, East Midlands Yorkshire Sherwood Sandstone Groundwater Modelling Project Task 3. April 2009

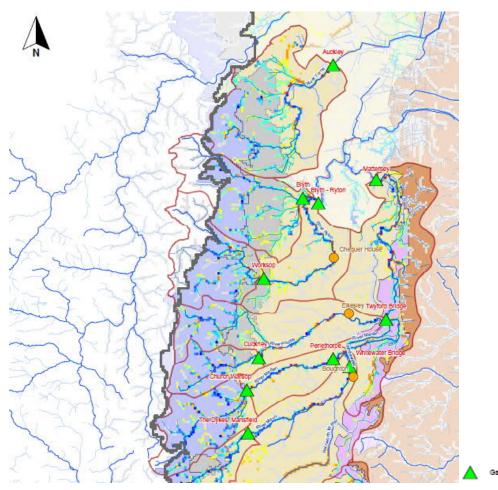
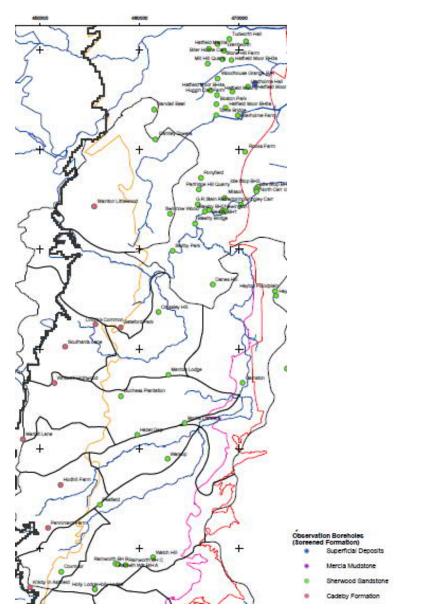




Figure 5.2 River flow gauges utilised in the groundwater model

Groundwater monitoring boreholes in the study area contained within the groundwater model are shown in Figure 5.3. The boreholes of interest are the unconfined Cadeby and Sherwood Sandstone Formations which provide baseflow to the rivers in the study area.



#### Figure 5.3 Groundwater monitoring boreholes utilised in the groundwater model

The model produces output for stream flows and groundwater levels on a monthly basis and are compared with monthly averaged gauge flows (the average of a month's daily gauge data). Groundwater observed data are generally collected once a month.

#### 5.3.2 Torne Catchment

#### 5.3.2.1 Torne

The bottom of the Torne catchment is represented at the Auckley gauge (Figure 5.4). The River Torne at Auckley is moderately-well calibrated when comparing simulated flows to gauged flows; overall seasonality is represented but in most years flow recessions and low flows are under-estimated by model, the recession curve falls more rapidly than observed and to a lower flow volume. Some components of flow are missing where in some years gauged flow rises but simulated flows do not show a response or any response is subdued.

400 Gauged Flow Averages for 1997-2004 Simulated Surplus = -27.75% Smulated Surplus = -18.5MI/d Simulated Flow Upstream SW Discharges -SW Abstractions 300 Flow (MIVd) 200 East Midlands - Yorkshire Sandstone Groundwater Modelling Project Jan-95 Jan-90 dar -00 Figure 6.1a Comparison of Gauged River Flow within the River Tome Catchment (Auckley Gauge) and Modelled Stream Flow at Row 254 Column 119 Layer 1 October 2009 16540-8134b.cdt lowac Entec

#### Figure 5.4 River Torne flows at Auckley

The flow duration curve based on data from 1997-2004, shows how simulated flow is too low at all percentiles, however the gauge is noted to over-estimate flows by approximately 10%. The rate of change in flow in reasonably good at high and middle flows (Figure 5.5).

The model summary statistics for flows at Auckley between 1997-2004 are given in Table 5.1.

#### Table 5.1 Auckley river flow statistics

| Gauge   |      | Simulated Mean<br>Flow (MI/d) | Surplus/deficit (-) | Observations                                                                                                                 |
|---------|------|-------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|
| Auckley | 66.5 | 48.1                          | -18.4               | Under predicts flows exiting<br>Torne catchment Timing and<br>relative size of high flow events<br>comparable to gauged flow |

<sup>&</sup>lt;sup>38</sup> 1 cumec or 1 m<sup>3</sup>/s is equivalent to 86.4 MI/d. MI/d used more commonly with regard to Water Resources studies.

240 Gauged Flow Simulated Flow 220 200 180 160 140 Flow (MVd) 120 100 80 60 40 20 East Midlands - Yorkshire Sandstone Groundwater Modelling Project 0 0.9 8.0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Percentile Figure 6.2a Flow Duration Curve, Tome Catchment - Gauged at Auckley (1997-2004 Inclusive) May 2009 16540-S 154a. odr lowac Entec

#### Figure 5.5 Flow Duration Curve for River Torne at Auckley

Groundwater level calibration has been compared at Sandall Beat (Figure 5.6) and Cantley Towers (Figure 5.7) in the Sherwood Sandstone aquifer. Simulated groundwater levels are lower than observed in both boreholes with the long term temporal pattern reasonably well represented. Lower groundwater levels will lead to lower simulated baseflows in rivers, hence the flow calibration under estimates flow.

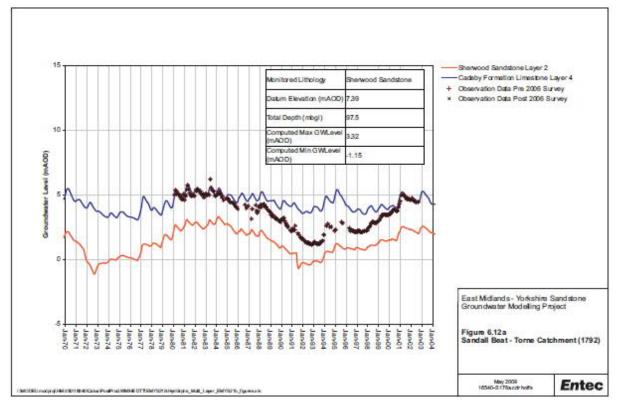



Figure 5.6 Groundwater Levels in Sherwood Sandstone at Sandall Beat

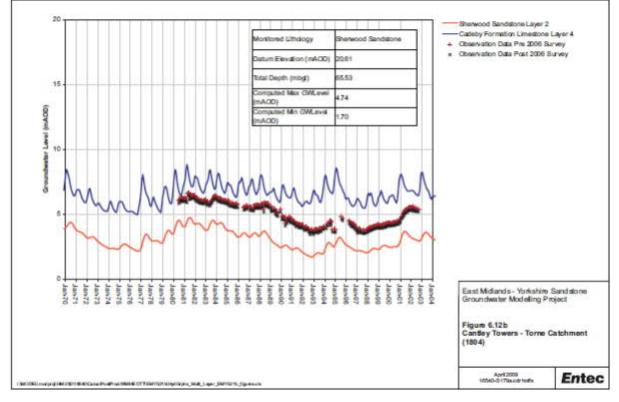
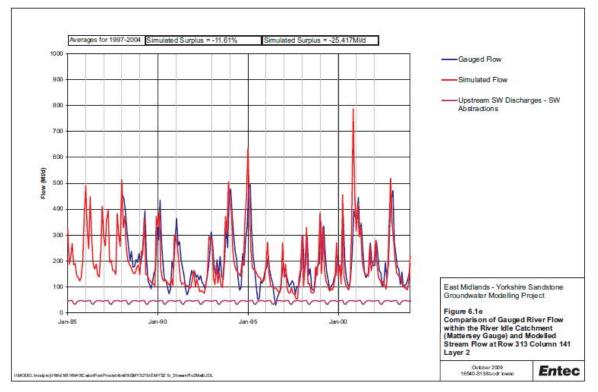



Figure 5.7 Groundwater Levels in Sherwood Sandstone at Cantley Towers

#### 5.3.3 Idle catchment

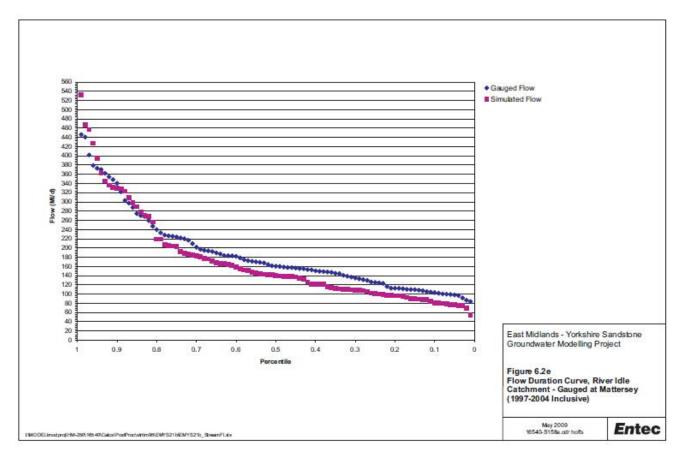
#### 5.3.3.1 Idle


The bottom of the River Idle is represented at the Mattersey flow gauge.

The River Idle at Mattersey is well calibrated particularly at higher flows, though the peaks are not well simulated in very wet years. Moderately high flows tend to be better predicted by the model as well as the rate of recession from peak to trough/ high to low flows, and low flows in many years. The lowest flows show a sudden fall below a typical low which is not represented by the model (Figure 5.8).

The model summary statistics for flows at Mattersey between 1997-2004 are given in Table 5.2.

| Gauge     |       | Simulated Mean<br>Flow (Ml/d) | Surplus/deficit (-<br>) | Observations                                                                                                                                                               |
|-----------|-------|-------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mattersey | 207.9 | 182.5                         | -25.4                   | Simulation closely follows gauge flows in<br>hydrograph and flow duration curve for the<br>later time series. Early to mid-90s<br>simulated summer low flows are too high. |


 Table 5.2 Mattersey river flow statistics (1997 – 2004)



#### Figure 5.8 River Idle flows at Mattersey

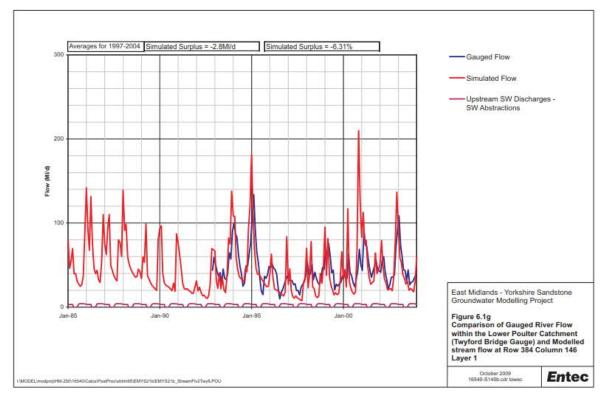
This can be seen in the flow duration curves based on data from 1997-2004 (Figure 5.9). The River Idle at Mattersey is a good calibration particularly at higher flows with a good representation of the rate of change across the flow percentiles.





#### Figure 5.9 Flow Duration Curve for River Idle at Mattersey

Therefore the model simulates the flow for the total Idle catchment reasonably well.


#### 5.3.3.2 Other tributaries

The River Idle is formed of several inflowing streams which also are gauged. Model performance in the following main tributaries are discussed further below:

- The Poulter (upper and lower);
- The Meden; and
- The Maun.

#### 5.3.3.3 Poulter

The lower Poulter catchment (Twyford Bridge gauge) shown in Figure 5.10 is not well calibrated with too much flow at high flows and too little and middle and low flows.



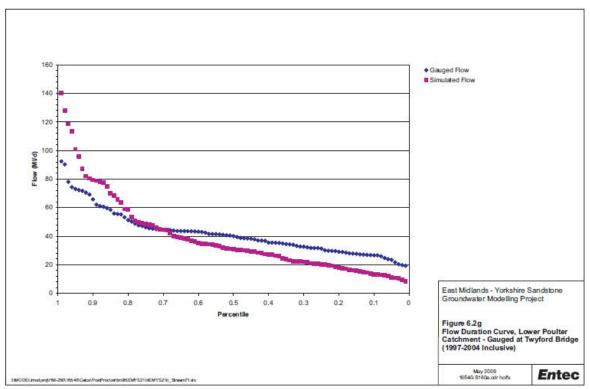
#### Figure 5.10 River Poulter flows at Twyford Bridge

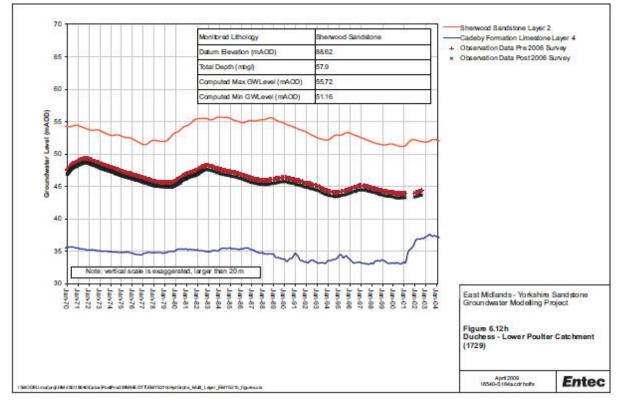
The model summary statistics for flows at Twyford Bridge between 1997-2004 are given in Table 5.3.

| Gauge             | Mean Gauge<br>Flow (Ml/d) | Simulated<br>Mean Flow<br>(Ml/d) | Surplus/deficit (-) | Observations                                                                                                                               |
|-------------------|---------------------------|----------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Twyford<br>Bridge | 45.0                      | 42.2                             | -2.8                | Partially inherited from the Upper<br>Poulter catchment, simulated flows<br>show increased peak flows and<br>under predicted summer flows. |

Table 5.3 Twyford Bridge river flow statistics

The stepped high flows calibration in the upper Poulter has followed through to the flow duration curve for the lower Poulter, based on data from 1997-2004 (Figure 5.11), which has become more extreme as flow volume increases. Meanwhile the gauged flow duration curve is flatter, leading to a deterioration in the calibration.

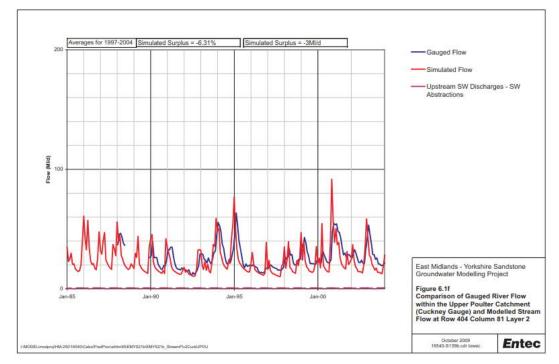




Figure 5.11 Flow Duration Curve for River Poulter at Twyford Bridge

Whitwell Lane groundwater monitoring borehole is located in the Lower Poulter catchment and monitors the Cadeby Formation aquifer. Simulated levels are too low and have much larger fluctuations than observed (Figure 5.12).



Figure 5.12 Groundwater Levels in Cadeby Formation at Whitwell Lane



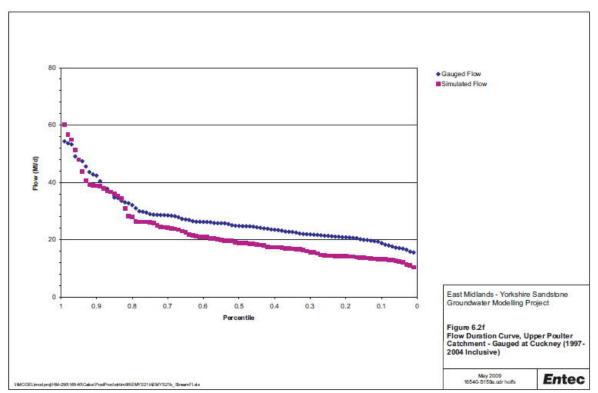



Duchess groundwater monitoring borehole is located in the Lower Poulter catchment and monitors the Sherwood Sandstone aquifer. Simulates levels are too high while the seasonal pattern is well represented Figure 5.13).

Figure 5.13 Groundwater Levels in Sherwood Sandstone at Duchess

The River Poulter flows are moderately-well calibrated in its upper reaches (Cuckney gauge) at higher flows, though over-estimates the high flows. The rate of recession from high flow to low flow is generally too steep compared to the observed, and low flows are not as low as observed (Figure 5.14).




#### Figure 5.14 River Poulter flows at Cuckney

The model summary statistics for flows at Cuckney between 1997-2004 are given in Table 5.4.

|  | Table 5.4 Cuckne | y river flow statistics |
|--|------------------|-------------------------|
|--|------------------|-------------------------|

| Gauge   | Mean Gauge<br>Flow (Ml/d) | Simulated Mean<br>Flow (MI/d) | Surplus/deficit (-) | Observations                                                                        |
|---------|---------------------------|-------------------------------|---------------------|-------------------------------------------------------------------------------------|
| Cuckney | 26.1                      | 23.1                          |                     | Modelled flows are too early and portray a more flashy response than gauged record. |

The flow duration curve based on data from 1997-2004 (Figure 5.15), is steeper and flatter (stepped) than observed at high flows between  $Q_5$  and  $Q_{20}$ , while middle and lower flows represent the observed curve reasonably well but under estimate the flow volume.



#### Figure 5.15 Flow Duration Curve for River Poulter at Cuckney

Marlpit Lane groundwater monitoring borehole is located in the Upper Poulter catchment, and monitors the Cadeby Formation. Groundwater levels fluctuate more than observed and levels are too low in most years (Figure 5.16), resulting in lower than observed baseflow to rivers.

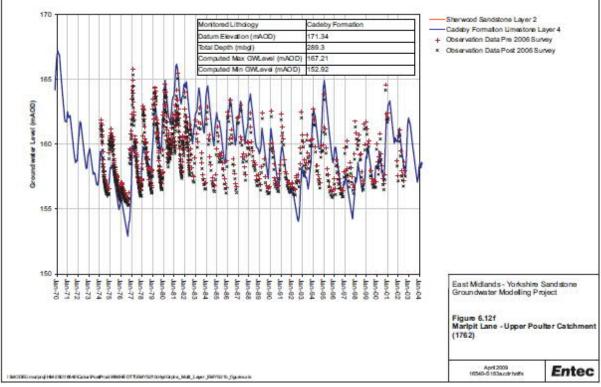
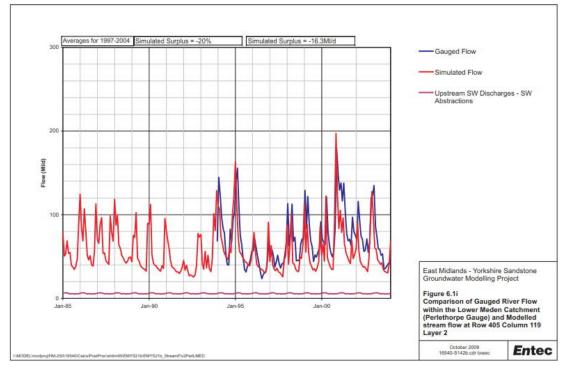




Figure 5.16 Groundwater Levels in Cadeby Formation at Marlpit Lane

#### 5.3.3.4 Meden

The River Meden is another tributary of the River Idle (via the River Maun discussed next). The River Meden catchment is located south of the Poulter catchment.

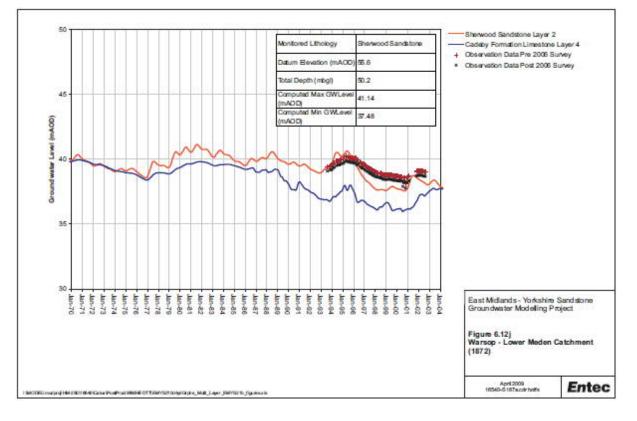
The Lower Meden is gauged at Perlethorpe (Figure 5.17). The model generally simulates the seasonality well with typical winter high flows peaks reasonably well calibrated although duration of peaks often under represented. Low flows appear to be too low too.



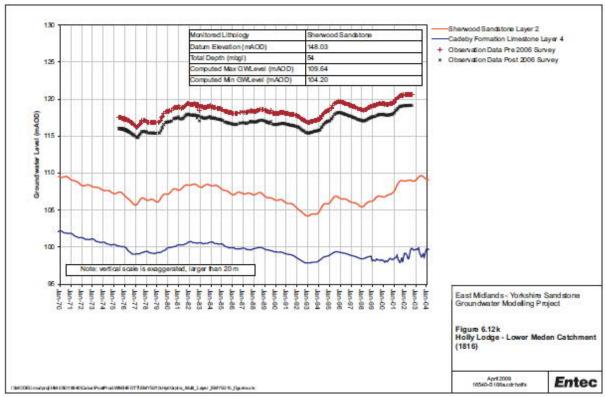
#### Figure 5.17 River Meden flows at Perlethorpe

The model summary statistics for flows at Perlethorpe between 1997-2004 are given in Table 5.5.

| Gauge       | Mean Gauge<br>Flow (Ml/d) | Simulated Mean<br>Flow (Ml/d) | Surplus/<br>deficit (-) | Observations                                                                                                                                                                     |
|-------------|---------------------------|-------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Perlethorpe | 71.7                      | 55.4                          | -16.3                   | Behaviour of the catchment is<br>captured in the [hydrograph] and flow<br>duration curves are comparable.<br>Flows are consistently under predicted<br>by approximately 10 Ml/d. |


#### Table 5.5 Perlethorpe river flow statistics

The flow duration curve based on data from 1997-2004 (Figure 5.18) confirms this understanding (i.e. the overall shape of the curve is similar to the observed but insufficient flow being estimated).

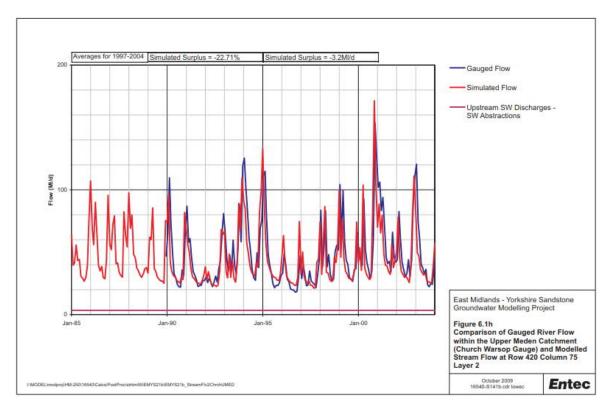

160 Gauged Flow Simulated Flow 140 120 100 Flow (MIVd) 80 60 40 20 East Midlands - Yorkshire Sandstone Groundwater Modelling Project 0 0.9 8.0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 n Percentile Figure 6.2i Flow Duration Curve, Lower Meden Catchment - Gauged at Perlethorpe (1997-2004 inclusive) Entec May 2009 16540-S162a.odr holfs WEWSZINEWSZIN B

#### Figure 5.18 Flow Duration Curve for River Meden at Perlethorpe

Warsop groundwater monitoring borehole is located in the Lower Meden catchment and monitors the Sherwood Sandstone aquifer. Simulated levels are approximately the correct elevation while the seasonal pattern fluctuates over a larger range than observed (Figure 5.19).



AECOM




#### Figure 5.19 Groundwater Levels in Sherwood Sandstone at Warsop

Holly Lodge groundwater monitoring borehole is also located in the Lower Meden catchment and monitors the Sherwood Sandstone aquifer. Simulated levels significantly lower than observed elevation while the seasonal pattern is reasonably accurate (Figure 5.20).

Figure 5.20 Groundwater Levels in Sherwood Sandstone at Holly Lodge

The upper Meden has gauged flows recorded at Church Warsop. Compared to the downstream site, flows appear to be better calibrated temporally (see Figure 5.21) and across the flow duration curve (with regard to magnitude, see Figure 5.22) based on data from 1997-2004.



#### Figure 5.21 River Meden flows at Church Warsop

The model summary statistics for flows at Church Worksop between 1997-2004 are given in Table 5.5.

| Gauge             | Mean Gauge<br>Flow (Ml/d) | Simulated Mean<br>Flow (Ml/d) | Surplus/ deficit (-<br>) | Observations                                                                                                                              |
|-------------------|---------------------------|-------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Church<br>Worksop | 48.3                      | 45.1                          |                          | Simulation closely follows the<br>catchment hydrograph and flow<br>duration curves. Simulated summer<br>flows in the mid-90s are too low. |

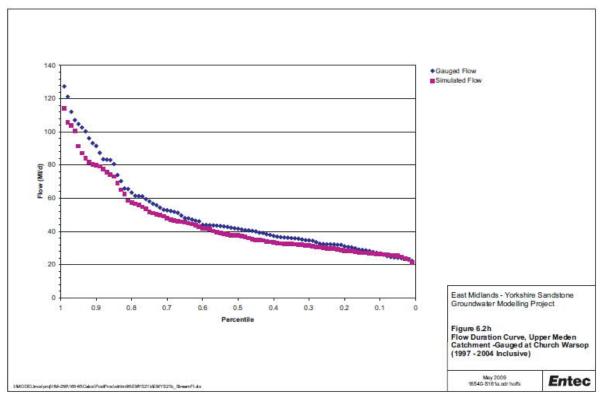



Figure 5.22 Flow Duration Curve for River Meden at Church Warsop

Penniment Farm groundwater monitoring borehole is located in the Upper Meden catchment, and monitors the Cadeby Formation. Groundwater levels fluctuate more than observed and levels are too low (Figure 5.23), resulting in lower than observed baseflow to rivers.

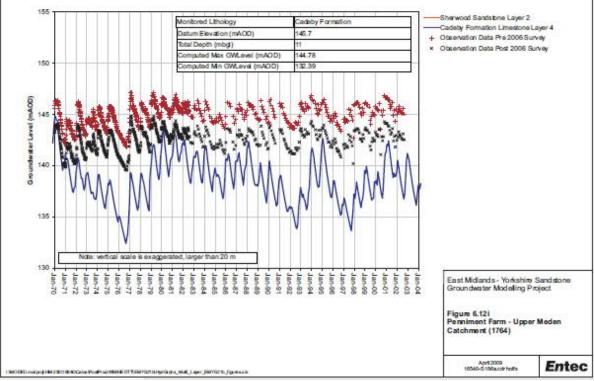
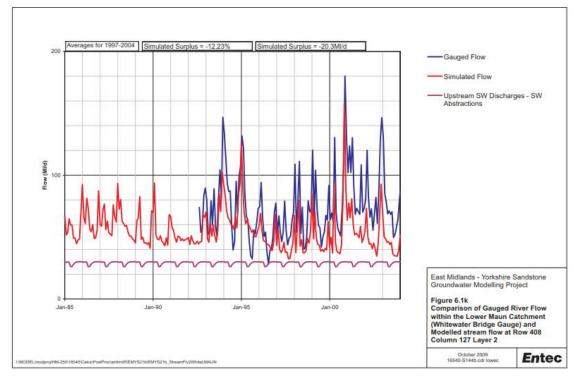




Figure 5.23 Groundwater Levels in Cadeby Formation at Penniment Farm

#### 5.3.3.5 Maun

The River Maun is another tributary of the River Idle. It is generally to the south of the Meden catchment, though continues in a northward direction once that river joins it.

Flow in the lower Maun is recorded at Whitewater Bridge (Figure 5.24). Modelled flows represent seasonal variations poorly and flow is under estimated in most years.



#### Figure 5.24 River Maun flows at Whitewater

The model summary statistics for flows at Whitewater Bridge between 1997-2004 are given in Table 5.6.

| Gauge                | Mean Gauge<br>Flow (Ml/d) | Simulated Mean<br>Flow (Ml/d) | Surplus/<br>deficit (-) | Observations                                                                                                                                                                                                                                                                             |  |
|----------------------|---------------------------|-------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Whitewater<br>Bridge | 74.9                      | 54.6                          | -20.3                   | As the Upper Maun catchment flow is<br>under predicted, the loss is superimposed<br>in this downstream catchment. If the<br>difference between the Upper Maun<br>simulated and gauged flow duration<br>curves are added to the Lower Maun<br>curves, there is a good fit to gauged flow. |  |

Table 5.6 Whitewater Bridge river flow statistics

The flow duration curve based on data from 1997 to 2004 (Figure 5.25) shows a similar pattern to the gauged flow across the percentiles from high flows to  $Q_{65}$ , but with a flatter curve for mid and lower flows than observed. However overall the flow volume is under estimated across the curve.

160 Gauged Flow Simulated Flow 140 120 100 (MVd) 80 Flow 60 40 20 East Midlands - Yorkshire Sandstone Groundwater Modelling Project 0 0.9 8.0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Percentile Figure 6.2k Flow Duration Curve, Lower Maun Catchment - Gauged at Whitewater Bridge (1997-2004 Inclusive) May 2009 16540-S164a.odr holfs Entec nod proj/HM-250,165.40/Calco/PoodProc/sittim@/EM/521b/EM/Y521b\_Bream/FLsts

#### Figure 5.25 Flow Duration Curve for River Maun at Whitewater

Watch Hill groundwater monitoring borehole is located in the Lower Maun catchment, and monitors the Sherwood Sandstone (Figure 5.26). Groundwater levels in a similar patter to the observed levels but the simulated levels show a more prominent declining trend. Simulated levels are lower than observed, resulting in lower than observed baseflow to rivers.

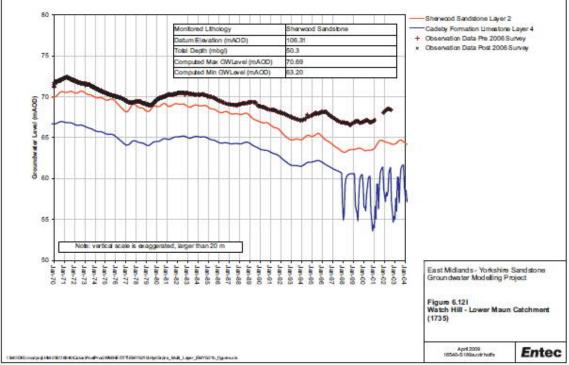
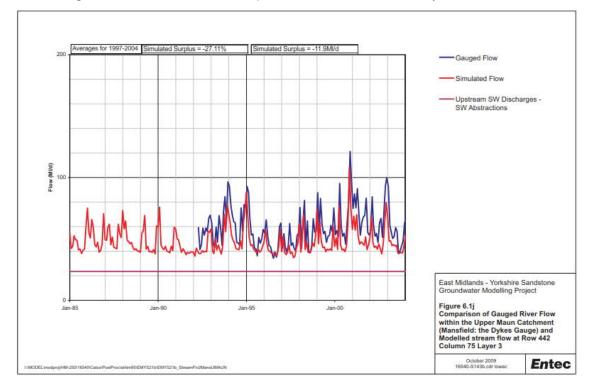
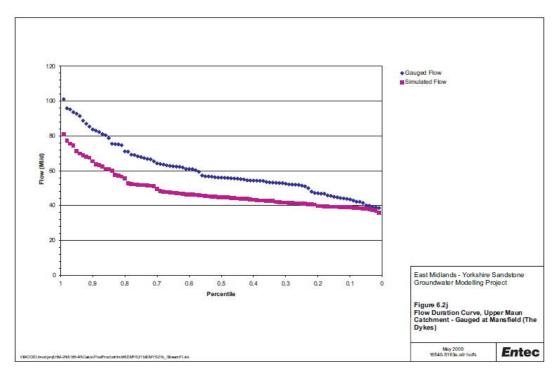




Figure 5.26 Groundwater Levels in Sherwood Sandstone at Watch Hill





The upper Maun flows are recorded at Mansfield gauge (Figure 5.27). The model under estimates flows at high and low flows while the temporal variations are reasonably well calibrated.


#### Figure 5.27 River Maun flows at Mansfield

The model summary statistics for flows at Mansfield between 1997-2004 are given in Table 5.7.

| Gauge     | Mean Gauge<br>Flow (Ml/d) | Simulated Mean<br>Flow (Ml/d) | Surplus/deficit (-) | Observations                                                                                                                                                                                                                                 |
|-----------|---------------------------|-------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mansfield | 59.7                      | 48.1                          | -11.9               | The overall flow is under predicted<br>across the majority of the flow duration<br>curve. Uncertainty exists with respect to<br>net surface water anthropogenic<br>in/output which are a large component<br>of total flow in this catchment. |

Table 5.7 Mansfield river flow statistics

The flow duration curve based on data from 1997 to 2004 (Figure 5.28), shows that the rate of change from high flows to  $Q_{70}$  is reasonably well simulated but under estimating flow. The curve is flatter than observed from mid to low flows.



#### Figure 5.28 Flow Duration Curve for River Maun at Mansfield

#### 5.3.4 Conclusions

The model does not simulate enough flow in each of the rivers in the Idle and Torne catchments, including at high flows which are the focus of this project. The pattern of flow is generally well represented suggesting that while there is not enough flow being simulated, the catchment flow processes are generally represented in most areas. The Upper Meden and Idle to Mattersey are the best calibrated catchments.

Given this, and that surface water abstractions are mooted, we recommend that groundwater model is not used through Phase 2b of the project.

### 6. Phase 2a Summary and Phase 2b Recommendations

### 6.1 Summary of 2a

Through a more detailed review of the potential effects of abstractions at time of high flow (above the EFI in both catchments/ the EFI for the Torne is equivalent to the  $Q_{15}$  while the EFI for the Idle is equivalent to the  $Q_{18}$ ) on the physical environment. During Phase 2a AECOM (we) have in turn refined our assessment of the potential effects on the physical environment in the Idle and Torne catchments (focussing on hydrology, water quality and hydromorphology). Potential effects are on the following receptors, amongst others; nationally designated sites, fish, macroinvertebrates and/ or macrophytes.

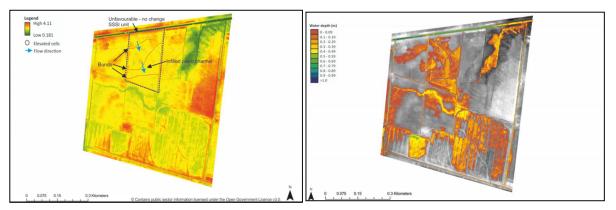
There are 37 WFD waterbodies, in total, across both catchments. Through our review on the sensitivity of the receptors described above and accounting for potential changes in the physical environment as result of additional high flow abstractions, we recommend that the following are examined more closely during Phase 2b of the project:

- Idle from River Ryton to River Trent (including River Idle Washlands SSSI);
- Maun from Vicar Water to Rainworth Water;
- Meden from Sookholme Brook to River Maun;
- Poulter from Source to Millwood Brook;
- Poulter from Millwood Brook to River Maun (including Clumber Park SSSI); and
- Ryton from Anston Brook to Idle.

Future studies on the following may also be useful (which may be considered to be moderate sensitivity to changes):

- Hatfield Waste Dr (trib of Torne/Three Rivs) and North Soak Drain (trib of Torne/ Three Rivs) (focussed on Crowle Borrow Pits SSSI);
- Meden from Source to Sookholme Brook;
- Ryton (to Anston Brook); and
- Sookholme Brook.

In addition we have undertaken reviews of the Environment Agency River Idle and Torne strategic scale linked 1D/2D hydraulic FMP-TUFLOW flood models and the East Midlands Yorkshire Sherwood Sandstone groundwater models. Our reviews have found that these are not well suited for extended use in Phase 2b of this project.


### 6.2 Phase 2b recommendations

The existing Environment Agency River Idle and Torne strategic scale linked 1D/2D hydraulic FMP-TUFLOW models are not considered suitable for use in this project for the purposes of exploring potential in channel and inundation floodplain effects as a result of high flow abstraction.

However, we can investigate the potential effects through constructing CAESAR-LisFlood models of discrete reaches/ areas. The tool can be used to determine flow conditions at which out of bank flows and inundation of riparian floodplain areas occurs and examine in channel effects (such as changes in velocities/ shear stresses). Similarly potential differences, as a result of changes in flow as a result of high flow abstraction can be used, can be investigated through scenario analysis using the CAESAR-LisFlood model.

An example of some of the outputs from previous study<sup>39</sup> of ours in which the approach was tested, are provided below (Figure 6.1).

<sup>&</sup>lt;sup>39</sup> AECOM (2017) Modelling management decisions on WLMP sites. On behalf of the Environment Agency



# Figure 6.1 Restoration scenario and CAESAR Lis-Flood modelled water depth values for the Hatfield Moors (Isle of Axholme) model

During 2016 AECOM undertake an evaluation of the model for environmental purposes such as those described above (in channel hydromorpological and floodplain inundation effects). The study found that the relative merits of the modelling approach included:

- The model is constructed using freely available LiDAR data, available for most of the UK, and hydrological data that is often available or estimates can be derived;
- The model is able to simulate the environmental effects of a range of relevant management actions (including many that will help those who manage designated sites);
- The models can be constructed relatively quickly;
- Representation of structures such as weirs and embankments are well represented in CAESAR-LisFlood. Culverts can be simulated well up until the point where the structures surcharge during extreme flooding;
- The tool is best applied at simpler fluvial systems, such as river floodplain systems with few drainage ditches and distributaries;
- Up to eight inflows can be included within the model so that a reasonably complicated system can be simulated. A connected groundwater/ surface water system can be simulated by spreading the inflows throughout the study area;
- It can be used to appraise the effects of management decisions and actions at sites including on the ecology that is found there.

The study has found that the relative dismerits of the approach include:

- Large areas (>0.5 km<sup>2</sup>) are not simulated easily (with model runs times being slow).
- Large areas can be investigated by splitting them into smaller discrete models whilst the study areas of hydrologically complex sites could be focussed on areas of greater interest (e.g. area surrounding a weir that may be decommissioned); and
- The effects of water management structures such as sluices and pumping stations is simulated better through other models, such as FMP-TUFLOW.

The model requires flow and topographical data.

One of the five waterbodies identified as highly sensitive and recommended for further investigations is situated in the level dependent area of the River Torne. As such it may be harder to simulate conditions at this site using the CAESAR Lis-Flood model. As such we would recommend that it is undertaken in the other 4 waterbodies (subject to there being sufficient resources to do so). Suitable hydrological information for the modelling of parts of these waterbodies is available.

The relative dismerits of the approach can be accounted for through the design of our model and suitable selection and agreement on reaches within a waterbodies that could be simulated. It is expected that the Environment Agency officers may be best placed to where such areas may be (e.g. through local knowledge of particularly sensitive areas).

AECOM

Such modelling would benefit from a site visit while multiple sites could be visited within the same day to reduce assuming they are easily accessible and in the vicinity of one another. Subject to access being available, we would also be able important designated sites during our site visits and examine presence and importance of in channel structures (e.g. sluices at the end of designated lake systems).

Walkovers (fluvial audits or similar) of the waterbodies identified, or parts of them, would also be beneficial to Phase 2b. Previously the Environment Agency indicated that they may be able to undertake this.

A number of data gaps have been flagged in Section 4.9 of this report, though many of these relate to general gaps that may not be filled during Phase 2b.

# Appendix A Hydraulic Model Audits

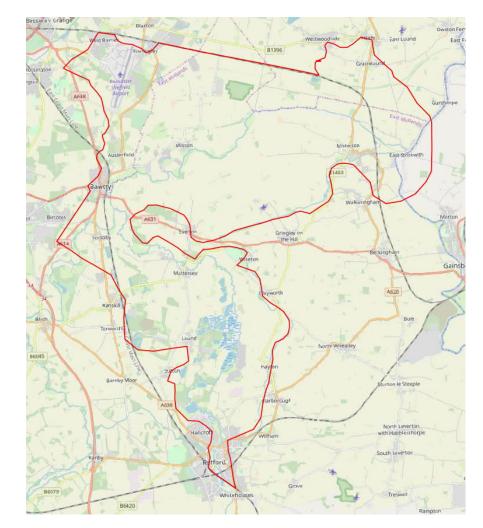
| A.1 | River Idle Model Review |
|-----|-------------------------|
|     |                         |

| RED   | Unacceptable: Remedial action required              |
|-------|-----------------------------------------------------|
| AMBER | Useful: Improvements recommended                    |
| GREEN | Satisfactory: Compliant with best-practice guidance |

#### **Explanation:**

- Comments in the 'Action' column are colour coded to indicate how important it is that the proposed changes are addressed.
- Any elements not applicable to the audited model are marked with "N/A".
- Any improvements made based on the recommended actions should be logged in the 'Issue addressed comment (if applicable)' column.

| 1. Model Overview                                      | 159 |
|--------------------------------------------------------|-----|
| 2. Survey Review                                       | 161 |
| 3. In-Channel Representation                           | 163 |
| 4. 1D Out-of-Bank Representation                       | 166 |
| 5. 2D Out-of-Bank Representation                       | 169 |
| 6. Model Boundaries                                    | 173 |
| 7. Calibration, Verification, and Sensitivity Analysis | 175 |
| 8. Model Run Parameters & Performance                  | 176 |
| 9. Audit Trail                                         | 178 |
| 10. Concluding Remarks                                 | 179 |
| 11. Model audit signoff                                | 180 |
| 12. Figures                                            | 181 |


### 1. Model Overview

### **1.1 Model extent & description**

The River Idle model produced by Capita covers the River Idle from the A1 at Twyford Junction (NGR 469966, 375243) to its confluence with the River Trent (NGR 478991, 394654) at West Stockwith pumping station. The model also included several drains within the 2D domain, and the 2D extent is shown below. The model was built as part of the Water and Environment Management Framework

Lot 1 – Modelling, Mapping and Data Services, to assess fluvial flood risk and West Stockwith Pumping Station, and other catchment management options, for the Isle of Axholme,

The model is a linked 1D-2D Flood Modeller Pro – TUFLOW model.



### **1.2 Model originator and date created**

The model was built by Capita in January 2019.

1.3 Software used

TUFLOW version: 2018-03-AB-iDP-w64 Flood Modeller version: 4.4.0.5162

**1.4 Model version reviewed** 

IDLE\_1000F\_190 and IDLE\_0002F\_189

| 1.5 AEP design events provi | ded | for | review |
|-----------------------------|-----|-----|--------|
|-----------------------------|-----|-----|--------|

IDLE\_1000F\_190 and IDLE\_0002F\_189

**1.6 Model files reviewed** 

IDLE\_1000F\_190.dat IDLE\_0002F\_189.dat

**1.7 Guidance used to inform the review** 

List any guidance documents used to inform the review. For example:

Fluvial Design Guide – Chapter 7 Hydraulic analysis and design (FDG2, 2009) Flood modeller online manual (CH2M HILL, 2015)

TUFLOW manual (version 2016-03)

CES Manning's Roughness Advisor

AECOM

| 2. Survey Review                                   | 2. Survey Review |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                               |                                            |  |
|----------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|
| Check                                              | Pass/<br>Fail?   | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Action (if required)                                                                                                                                                                                                                                                                          | Issue addressed<br>comment (if applicable) |  |
| Has topographic survey<br>been provided?           | Pass             | WEM_Lot1_Package1<br>_Report_IDLE_FINALv<br>1 reporting outlines 4<br>sets of survey dated<br>2002 to 2012. Survey<br>provided is dated as<br>2015.<br>X-PH-IOA-01-32 1<br>(Lower Reach) covers<br>IDLW_0d to<br>IDLW_18118bu.<br>X-PH-IOA-33-54 2<br>(Middle Reach) covers<br>IDLW_18118bu to<br>IDUP_38522sp.<br>X-PH-IOA-55-59 3<br>(Upper Reach) covers<br>IDUP_49194.<br>Unknown where<br>sections upstream of<br>IDUP_49194 are from.<br>Survey can be found<br>at:<br>\\Ukmcr1fp002\ukmcr1<br>fp002-<br>v1ie\Proposal\3512\EA<br>Idle and Torne 2019\4.<br>Analysis\Hydromorph\I<br>dle Survey | The survey provided<br>differs from the survey<br>outlined in the<br>reporting. However, as<br>the 2015 survey data<br>matches the model<br>geometry, it is<br>assumed this survey<br>has been used in the<br>model build.                                                                    |                                            |  |
| Is the topographic survey<br>of an acceptable age? | Pass             | Survey referenced in<br>the reporting<br>summarised below,<br>oldest of which is from<br>2000. Eaton to Retford<br>Survey from 2000, A1<br>down to North of<br>Retford survey and<br>Bawrty to West<br>Stockwith survey from<br>2002.                                                                                                                                                                                                                                                                                                                                                                 | All survey referenced<br>in the reporting is more<br>than 18 years old.<br>Difficult to undertake<br>checks to ascertain<br>areas that might need<br>to be updated without<br>original survey.<br>The survey provided<br>differs from the survey<br>outlined in the<br>reporting. However, as |                                            |  |

|                                                                                                                        |      | However, survey<br>provided is dated as<br>2015, which would be<br>of an acceptable age.                                                                                  | the 2015 survey data<br>matches the model<br>geometry, it is<br>assumed this survey<br>has been used in the<br>model build. |  |
|------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| Does the survey comply<br>with current EA National<br>Survey Specification?                                            | Pass | Survey provided<br>complies with EA<br>National Survey<br>Specification.                                                                                                  |                                                                                                                             |  |
| Does the cross-section<br>spacing of the survey<br>provided seem<br>reasonable?                                        | Pass | Cross-section survey<br>spacing seems<br>reasonable.                                                                                                                      |                                                                                                                             |  |
| Does the survey include<br>information on channel<br>structures (including trash<br>screens) and channel<br>roughness? | Fail | Survey provided but<br>contains no<br>information on channel<br>roughness.                                                                                                |                                                                                                                             |  |
| Has LiDAR of appropriate resolution been provided?                                                                     | Pass | Model 2D domain<br>predominantly covered<br>by 1m LiDAR, with<br>missing areas filled in<br>with 2m LiDAR.<br>However, 1m LiDAR<br>flown in 2011 and 2m<br>LiDAR in 2008. | The use of newer or<br>composite LiDAR<br>could improve model<br>accuracy.                                                  |  |

AECOM

| 3. In-Channel Representation                                                                    |                |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                            |  |
|-------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|
| 3.1 Cross-section schematisation                                                                |                |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                            |  |
| Check                                                                                           | Pass/<br>Fail? | Comment                                                                                                                                                                                                                                                                                                                     | Action (if required)                                                                                                               | Issue addressed<br>comment (if applicable) |  |
| Is georeferencing<br>information (e.g. a gxy or<br>ixy) available?                              | Pass           | GXY file supplied.<br>Some sections<br>between IDUP_45100<br>and IDUP_43451 not<br>fully georeferenced.                                                                                                                                                                                                                     | Fill in missing<br>georeferencing data for<br>all sections and<br>structures.                                                      |                                            |  |
| Is the node naming<br>convention logical and<br>include chainage<br>information?                | Pass           | Naming logical and<br>based on chainage.<br>However, 1D cross-<br>sections do not always<br>contain a comment<br>referencing the<br>surveyed section that<br>they are based on.                                                                                                                                             |                                                                                                                                    |                                            |  |
| Does the model chainage<br>seem reasonable for the<br>channel length/sinuosity?                 | Pass           | Generally appropriate<br>throughout model –<br>some instances where<br>sinuosity not captured.<br>See comment below.                                                                                                                                                                                                        |                                                                                                                                    |                                            |  |
| Does the model chainage<br>match with the cross-<br>section survey?                             | Pass           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                            |  |
| Is the cross-section<br>spacing appropriate; i.e. is<br>it erratic or reasonably<br>consistent? | Pass           | Cross-section spacing<br>generally appropriate,<br>although 200m+<br>intervals are present<br>between three<br>sections:<br>IDUP_45100<br>IDUP_47560<br>IDUP_38494ds.<br>All three sections are<br>located within rural<br>areas, however there is<br>a meander between<br>IDUP_38494ds and<br>IDUP_38318.<br>See Figure 1. | Interpolated sections<br>could be used where<br>chainages are large<br>and where channel<br>meanders between<br>surveyed sections. |                                            |  |
| Does the channel width<br>match the cross-section<br>survey?                                    | Pass           | Survey not provided.                                                                                                                                                                                                                                                                                                        |                                                                                                                                    |                                            |  |
| Have hard or softbed<br>levels been used in the<br>model?                                       | Pass           | Hard bed levels have been used.                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                            |  |

| Have cross-sections been<br>deactivated appropriately;<br>i.e. near the highest<br>elevation points in the<br>cross-section survey? | Pass     | Good correlation<br>between 1D cross-<br>section widths and 2D<br>channel extent<br>throughout model,<br>except for sections<br>IDLW_135999 and<br>IDLW_6868.<br>See Figure 1.                                                                                     | Cross-sections<br>IDLW_135999 and<br>IDLW_6868 should be<br>updated to ensure a<br>match between the 1D<br>and 2D domains. |  |
|-------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Have top of bank markers been used correctly?                                                                                       | Pass     |                                                                                                                                                                                                                                                                    |                                                                                                                            |  |
| Have panel markers been<br>used appropriately? Is<br>channel conveyance<br>smooth?                                                  | Pass     | Panel markers used<br>throughout. There is a<br>Jump in conveyance at<br>IDUP_41785bu<br>IDUP_41658bu.                                                                                                                                                             | Embankment markers<br>should be added at<br>bridge units to ensure<br>smooth conveyance.                                   |  |
| 3.2 Channel roughn                                                                                                                  | ess      |                                                                                                                                                                                                                                                                    |                                                                                                                            |  |
| Do the roughness values<br>seem to fall within an<br>appropriate range?                                                             | Pass     | Roughness values<br>between 0.03 and<br>0.05.                                                                                                                                                                                                                      |                                                                                                                            |  |
| Do the roughness values<br>show reasonable<br>consistency? If not, have<br>changes been justified?                                  | Pass     |                                                                                                                                                                                                                                                                    |                                                                                                                            |  |
| Has evidence been<br>provided to justify variation<br>in Manning's roughness<br>values?                                             | Fail     | Roughness taken from<br>survey, however no<br>information on channel<br>roughness is included<br>with the survey<br>provided. Reporting<br>states roughness<br>values have been<br>checked and amended<br>in line with Chow et all<br>but no evidence<br>provided. | Provide evidence of<br>how roughness values<br>were adjusted in line<br>with Chow should be<br>provided.                   |  |
| 3.3 Structure repres                                                                                                                | sentatio | n                                                                                                                                                                                                                                                                  |                                                                                                                            |  |
| Has a list of modelled<br>structures been provided,<br>and any exclusions<br>justified?                                             | Fail     |                                                                                                                                                                                                                                                                    | Provide list of<br>structures included<br>within model as part of<br>supporting<br>documentation                           |  |
| Do there appear to be any<br>key structures not<br>modelled?                                                                        | Pass     | All key structures appear to be modelled.                                                                                                                                                                                                                          |                                                                                                                            |  |
| Does a sample check of the structure dimensions                                                                                     | Pass     |                                                                                                                                                                                                                                                                    |                                                                                                                            |  |

| match with the survey drawings?                                                                                                                              |      |                                                                                                                                                                                                              |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Have bridge and culvert<br>units been used<br>appropriately; i.e. culvert<br>schematised for bridges<br>where the length:width<br>ratio is greater than 2:1? | Pass |                                                                                                                                                                                                              |      |
| Are spills over bridge and culvert parapets included?                                                                                                        | Pass |                                                                                                                                                                                                              |      |
| Have inlet and exit losses<br>been represented with<br>appropriate units?                                                                                    | N/A  | No culverts present<br>within model extent.                                                                                                                                                                  |      |
| Do head losses across<br>structures appear<br>reasonable for a high-<br>magnitude event?                                                                     | Pass |                                                                                                                                                                                                              |      |
| Are appropriate losses for<br>changes in culvert<br>geometry and direction<br>included?                                                                      | N/A  | No culverts present within model extent.                                                                                                                                                                     |      |
| Do structure coefficients<br>and modular limits appear<br>reasonable?                                                                                        | Pass | Modular limits at Spills,<br>Sluice units and orifice<br>units all default values.                                                                                                                           |      |
| If applicable, are any control rules appropriate?                                                                                                            | Pass | West Stockwith Gate<br>Operation rules<br>provided by EA and<br>incorporated. Gates<br>represented by sluice<br>units Gate_A_us and<br>Gate_B_us.<br>Sluice gates NCD_A,<br>MISSUS_A and<br>MISSION A closed |      |
|                                                                                                                                                              |      | throughout simulation.                                                                                                                                                                                       | <br> |

Are there a sufficient

channel into the

reservoirs?

number of spills from the

Fail

| 4. 1D Out-of-Bank Representation                                                                |                |                                                                                                                                              |                                                                                                                                                          |                                            |
|-------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 4.1 Extended cross                                                                              | -sectio        | าร                                                                                                                                           |                                                                                                                                                          |                                            |
| Check                                                                                           | Pass/<br>Fail? | Comment                                                                                                                                      | Action (if required)                                                                                                                                     | Issue addressed<br>comment (if applicable) |
| Is the discretisation of<br>extended cross-sections<br>too sparse or too detailed?              | Pass           |                                                                                                                                              |                                                                                                                                                          |                                            |
| Have extended cross-<br>sections been used where<br>depth of flooding is<br>excessive?          | Fail           | Glass-walling occurs at<br>IDUP_43714bu during<br>the 2% AEP event and<br>at IDUP_45993bu<br>during the 1% AEP<br>event.                     | Extend cross-sections<br>so that glass-walling<br>does not occur.<br>This may not be an<br>issue at lower return<br>periods (focus of<br>current study). |                                            |
| Do extended cross-<br>sections intersect with one<br>another?                                   | Pass           |                                                                                                                                              |                                                                                                                                                          |                                            |
| Are the extended cross-<br>sections approximately<br>perpendicular to flow?                     | Pass           |                                                                                                                                              |                                                                                                                                                          |                                            |
| Is the cross-section<br>spacing appropriate; i.e. is<br>it erratic or reasonably<br>consistent? | Pass           |                                                                                                                                              |                                                                                                                                                          |                                            |
| Have the sections been<br>sufficiently extended to<br>avoid glass-walling?                      | Fail           | As above, glass-<br>walling occurs at<br>IDUP_43714bu and<br>IDUP_45993bu                                                                    | As above, extend<br>cross-sections so that<br>glass-walling does not<br>occur.                                                                           |                                            |
| Have defences and any<br>scheme options been<br>appropriately<br>represented?                   | N/A            | Figure 2-2 in the<br>WEM_Lot1_Package1<br>_Report_IDLE_FINALv<br>1 reporting suggests all<br>defences are within the<br>linked 1D/2D domain. |                                                                                                                                                          |                                            |
| 4.2 Floodplain rese                                                                             | rvoirs         |                                                                                                                                              |                                                                                                                                                          |                                            |
| Do 1D reservoirs glass-<br>wall?                                                                | Fail           | Reservoirs do not<br>glass-wall in the 1D<br>domain, but there is<br>glass-walling between<br>the 1D reservoir and<br>2D boundary.           | See below comment.                                                                                                                                       |                                            |

Spill units connected to Spill lengths

connecting 1D sections

to reservoirs should

match the chainage

surveyed sections

adjacent to reservoir

units, however spills

### 4.

|                         |      | lengths differ from      | between associated       |  |
|-------------------------|------|--------------------------|--------------------------|--|
|                         |      | bank lengths between     | sections, to ensure      |  |
|                         |      | the surveyed sections.   | realistic representation |  |
|                         |      | E.g. chainage between    | of over bank flows. The  |  |
|                         |      | IDUP_43219 to            | spills should be         |  |
|                         |      | IDUP_43129 is 90m,       | remodelled accordingly   |  |
|                         |      | and the length of the    | where necessary.         |  |
|                         |      | spill unit attached to   |                          |  |
|                         |      | SP_43219 spill is        |                          |  |
|                         |      | 192m. Similarly,         |                          |  |
|                         |      | The chainage between     |                          |  |
|                         |      | IDUP_43129 and           |                          |  |
|                         |      | IDUP_43034u is 96m,      |                          |  |
|                         |      | whereas the              |                          |  |
|                         |      | SP_43129 spill unit      |                          |  |
|                         |      | length is 140m.          |                          |  |
|                         |      | This disparity also      |                          |  |
|                         |      | occurs at reservoir      |                          |  |
|                         |      | RE_42600a.               |                          |  |
| Have reservoirs been    | Pass | Channel gradient is not  |                          |  |
| used where there is a   |      | steep where reservoirs   |                          |  |
| steep channel gradient? |      | have been used.          |                          |  |
| Do reservoir boundaries | Fail | RE_43129a reservoir      | The area modelled in     |  |
| appear to be consistent |      | area well defined by     | 1D through the           |  |
| with ground topography? |      | East Cost Main Line      | RE_42479a reservoir      |  |
|                         |      | and the Sheffield to     | unit should be           |  |
|                         |      | Lincoln Line.            | modelled as part of the  |  |
|                         |      | The RE_42600a            | 2D domain or             |  |
|                         |      | reservoir area is also   | connected to the 2D      |  |
|                         |      | well defined by the      | domain through a spill   |  |
|                         |      | East Coast Mainline      | unit and SX connection   |  |
|                         |      | and Victoria Road.       | to ensure that the       |  |
|                         |      | The RE_42479a            | transfer of flow and     |  |
|                         |      | reservoir is used to     | interaction between      |  |
|                         |      | model the right bank     | different areas of the   |  |
|                         |      | floodplain between the   | floodplain is fully      |  |
|                         |      | Sheffield to Lincoln     | captured. Whilst this    |  |
|                         |      | Line and Albert Road.    | will impact the          |  |
|                         |      | However, there is        | modelling results, it    |  |
|                         |      | interaction between      | has no impact on flows   |  |
|                         |      | this area of floodplain  | below the 2% AEP         |  |
|                         |      | and the floodplain       | event (which are the     |  |
|                         |      | further downstream.      | focus of current study). |  |
|                         |      | No interaction can       |                          |  |
|                         |      | occur as the reservoir   |                          |  |
|                         |      | unit is not connected to |                          |  |
|                         |      | the 2D domain,           |                          |  |
|                         |      | therefore glass-walling  |                          |  |
|                         |      | against the 1D domain    |                          |  |
|                         |      | boundary occurs. The     |                          |  |
|                         |      | glass-walling at the 1D  |                          |  |
|                         |      | domain boundary first    |                          |  |

|                                                                                                                                             |     | occurs during the 2%<br>AEP event.<br>See Figure 2.                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------|--|
| Does there appear to be<br>any overlap between<br>extended cross-sections<br>and reservoirs (which<br>would result in double-<br>counting)? | N/A | Cannot check without<br>shapefile used to<br>generate reservoir unit. |  |

AECOM

| 5.1 2D domain sch                                                             | ematisa        | tion                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                 |                                            |
|-------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Check                                                                         | Pass/<br>Fail? | Comment                                                                                                                                                                                                                                                 | Action (if required)                                                                                                                                                                                                                                                                            | Issue addressed<br>comment (if applicable) |
| Is the number of domains appropriate?                                         | Pass           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                 |                                            |
| Is the 2D horizontal cell<br>size suitable for the study<br>objectives?       | Fail           | Grid size of 20m<br>throughout 2D domain<br>cannot effectively<br>capture smaller<br>watercourses/drains.<br>Furthermore, in some<br>locations the banks are<br>represented by a<br>single HX cell. See<br>below comment<br>regarding 1D/2D<br>spacing. | Reduction in grid size<br>would improve model<br>accuracy; especially in<br>relation to small<br>watercourses/drains<br>within the 2D domain.<br>Reducing grid size<br>would also adversely<br>affect model run times.                                                                          |                                            |
| Is the grid orientation suitable?                                             | Pass           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                 |                                            |
| Is the domain extent<br>sufficient so that glass-<br>walling doesn't occur?   | Fail           | Glass walling occurs<br>adjacent to the left<br>bank at node<br>IDUP_42168.<br>Glasswalling occurs<br>during the 20% AEP<br>event and above.<br>See Figure 3.                                                                                           | 2D domain should be<br>extended in this area<br>to prevent glasswalling<br>noting that a 20% AEP<br>event is significantly<br>larger than the flow<br>threshold above which<br>abstractions may occur<br>(Q18) (18% of flows<br>above the value of<br>Q18, rather than a 1 in<br>18year event). |                                            |
| Is the connectivity to the<br>1D domain (e.g. HX or SX<br>links) appropriate? | Fail           | Appropriate throughout<br>the model except for at<br>RE_42479a where an<br>SX connection to the<br>2D domain should be<br>included.                                                                                                                     | See comments on<br>reservoirs representing<br>floodplain and Figure<br>2.                                                                                                                                                                                                                       |                                            |
| Is the spacing between<br>1D-2D connection<br>appropriate?                    | Fail           | In several locations just<br>one active HX cell links<br>the 1D domain to 2D<br>domain. Separate HX<br>cells to represent each<br>bank are not activated,<br>due to the coarse grid<br>resolution.                                                      | See grid cell size<br>comment above.                                                                                                                                                                                                                                                            |                                            |

| T |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
| 1 |  |  |

|                                                                                                                                                                |      | Coarse grid resolution<br>also precludes<br>deactivation of the 1D<br>channel area at<br>several locations. HX<br>cells representing the<br>right and left banks are<br>therefore adjoining<br>which can reduce<br>accuracy of 1D/2D link.<br>Examples include, but<br>not limited to,<br>watercourse reaches at<br>nodes IDUP_41905i.<br>IDUP_40994,<br>IDUP_40566i1,<br>IDUP_35284,<br>IDLW_23259.<br>See Figure 4. |                                                                                                                                                                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Is the 1D-2D connectivity at structures suitable?                                                                                                              | N/A  | Spills at all structures modelled in 1D.                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |  |
| Has the channel area<br>been deactivated so that<br>double-counting does not<br>occur?                                                                         | Pass | Channel deactivated<br>throughout model,<br>however cross-<br>sections<br>IDLW_135999 and<br>IDLW_6868 both<br>extend into the 2D<br>domain.<br>Shapefiles used to<br>generate reservoir unit<br>geometry not supplied,<br>consequently it is not<br>possible to check if<br>double counting of<br>storage volume occurs<br>where reservoir units<br>used to represent<br>floodplain.<br>See Figures 1 and 2.         | Channel should be<br>updated so 1D and 2D<br>cross-section widths<br>match.<br>Supply data used to<br>generate reservoir unit<br>geometry.                                |  |
| Has the floodplain been<br>adequately represented<br>between the 1D and 2D<br>domains; i.e. extended<br>cross-sections not<br>extending into the 2D<br>domain? | Pass | There is generally a<br>good match 1D and 2D<br>cross-sections,<br>however<br>IDLW_13599 and<br>IDLW_6868 both<br>include sections of the<br>floodplain also present<br>within the 2D domain.                                                                                                                                                                                                                         | Channel geometry<br>should be updated so<br>1D and 2D cross-<br>section widths match.<br>Truncate sections<br>IDLW_13599 and<br>IDLW_6868 to match<br>deactivated channel |  |

Coarse grid resolution

|                                                                                                                                                  |         |                                                                                                                                                                                    | extent within the 2D model.                                                                                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Is LiDAR used to<br>represent the 2D<br>topography; i.e. has a zpt<br>layer been used of<br>indeterminate age?                                   | Pass    | Model 2D domain<br>predominantly covered<br>by 1m LiDAR, with<br>missing areas filled in<br>with 2m LiDAR.<br>However, 1m LiDAR<br>flown in 2011 and 2m<br>LiDAR in 2008.          |                                                                                                                                                                  |  |
| Have floodplain features<br>and obstructions been<br>represented<br>appropriately?                                                               | Pass    | Zshape and Zline have<br>been used to represent<br>floodplain features<br>including drainage<br>channels and<br>defences.                                                          |                                                                                                                                                                  |  |
| Have buildings been<br>represented in the 2D<br>domain appropriately?                                                                            | Pass    | Building's represented<br>through increased<br>Manning's value (0.5).<br>this is relatively high in<br>comparison to<br>specifications used in<br>other AECOM built<br>WEM models. |                                                                                                                                                                  |  |
| 5.2 Top-of-bank sch                                                                                                                              | nematis | ation                                                                                                                                                                              |                                                                                                                                                                  |  |
| Have top-of-bank<br>elevations been<br>schematised in the model<br>at the 1D-2D boundary?                                                        | Pass    | Zpoint GIS features<br>read into model as part<br>of 2d_bc input using<br>the 'ZP' flag. 1D and<br>2D bank levels<br>correspond.                                                   |                                                                                                                                                                  |  |
| Is there any evidence that<br>the best available data<br>(e.g. AIMS or topographic<br>survey) has been used to<br>define the bank top<br>crests? | N/A     | Levels stated as being<br>taken from survey, but<br>as no survey provided<br>this cannot be verified.                                                                              |                                                                                                                                                                  |  |
| Is there any evidence that<br>checks have been<br>undertaken between the<br>bank top levels and<br>LiDAR?                                        | Fail    | No evidence provided.                                                                                                                                                              | Comparison between<br>surveyed bank levels<br>and LiDAR should be<br>undertaken to establish<br>locations where bank<br>levels are being<br>over/underestimated. |  |
| 5.3 Out-of-bank rou                                                                                                                              | ighness |                                                                                                                                                                                    |                                                                                                                                                                  |  |
| Are the 2D roughness<br>values within a suitable<br>range?                                                                                       | Fail    | Manning's value of 0.5<br>used for roughness<br>patches throughout<br>model domain.                                                                                                | 0.5 roughness is<br>excessive. Alternative<br>methods of improving<br>stability around 1D/2D<br>boundaries should be                                             |  |

|                                                                                              |      |                                                                | considered, such as<br>specification of Form<br>Loss Coefficient value<br>within HX boundaries. |  |
|----------------------------------------------------------------------------------------------|------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Have any sensitivity tests<br>been undertaken involving<br>altering floodplain<br>roughness? | Pass | Undertaken but<br>reporting does not<br>state if satisfactory. |                                                                                                 |  |

| 6. Model Bounda                                                                                            | 6. Model Boundaries |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |                                            |
|------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------|
| 6.1 Inflow boundari                                                                                        | es                  |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |                                            |
| Check                                                                                                      | Pass/<br>Fail?      | Comment                                                                                                                                                                                                                                                                                                                                                                 | Action (if required)                                                                               | Issue addressed<br>comment (if applicable) |
| Have appropriate inflow<br>boundary types been<br>used?                                                    | Pass                | FEH boundaries used<br>throughout and<br>pumping station<br>catchments applied<br>directly at pumping<br>station location.                                                                                                                                                                                                                                              |                                                                                                    |                                            |
| Does inflow boundary<br>distribution seem<br>reasonable; e.g. lateral<br>inflows distributed<br>logically? | Pass                |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |                                            |
| Do initial conditions within<br>the 1D domain seem<br>appropriate?                                         | Pass                | All 1D initial conditions<br>are within channel for<br>the defended<br>scenarios, however the<br>same initial conditions<br>would be out of bank<br>for the undefended<br>scenario model. Initial<br>conditions were<br>reduced to in bank for<br>the undefended<br>scenario, thus the<br>defended and<br>undefended scenarios<br>have differing initial<br>conditions. | The lower, undefended<br>initial conditions should<br>be used within the<br>model for future runs. |                                            |
| If applicable, are any<br>sweetening flows<br>appropriate, and been<br>removed from the model?             | N/A                 | No sweetening flows.                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |                                            |
| Do the upstream &<br>downstream inflows<br>correspond to the<br>FEH/Hydrology report, if<br>available?     | N/A                 | Hydrology not included in reporting.                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |                                            |
| Are any inflows located close to structure justified?                                                      | Fail                | Missus_INF located at<br>Missus_A sluice. No<br>justification provided.                                                                                                                                                                                                                                                                                                 |                                                                                                    |                                            |
| If applicable, are any<br>pump/abstraction units<br>appropriate?                                           | Pass                | Drain pumps<br>connected to the 2D<br>domain via SX<br>connection. Rules                                                                                                                                                                                                                                                                                                |                                                                                                    |                                            |

applied via abstraction

#### AECOM

|                                                                                                 | 1      |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         |  |
|-------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Has an appropriate storm                                                                        | Fail   | units match those in<br>report appendix.<br>West Stockwith pump<br>rules applied via 8<br>Abstraction units.<br>Rules similar for each<br>abstraction unit with<br>activation levels<br>changing. Pumping<br>rates derived from <u>this</u><br><u>sheet</u> . FMP Pump units<br>not used to represent<br>pumps, which would<br>allow discrete<br>specification of pump<br>characteristics.        | Other critical durations                                                                                                                                                                                                                                                                |  |
| duration been used, and<br>any other storm durations<br>assessed?                               |        | inflows. No evidence<br>that other durations<br>were tested or<br>explanation which 42.5<br>hours was used.                                                                                                                                                                                                                                                                                       | could be tested.<br>This is only necessary<br>for assessing flood<br>flows, and thus may<br>not be required for this<br>study.                                                                                                                                                          |  |
| 6.2 Downstream bo                                                                               | undary | ı                                                                                                                                                                                                                                                                                                                                                                                                 | 1. · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                |  |
| Is the location and<br>schematisation of the<br>downstream boundary<br>appropriate?             | Fail   | Boundary based on the<br>Tidal Trent Model<br>levels at West<br>Stockwith. The HTBDY<br>unit was specified for a<br>duration of 140 hours,<br>however the model<br>simulation was 200<br>hours in length,<br>meaning the last 60<br>hours of simulation<br>time featured constant<br>level (the final value<br>within the tidal curve)<br>applied as the<br>downstream boundary.<br>See Figure 5. | Downstream boundary<br>needs to be extended<br>to cover the entire<br>length of the<br>simulation.<br>Pumping<br>rules/rates are<br>influenced by<br>tidal levels<br>and, as such,<br>this could<br>impact all<br>results within<br>the influence<br>of the West<br>Stockwith<br>pumps. |  |
| Is there any evidence that<br>the sensitivity to<br>downstream conditions<br>has been assessed? | Pass   | Model Report indicates<br>that sensitivity testing<br>of downstream<br>boundary conditions<br>was undertaken as                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         |  |

part of modelling

exercise.

| 7. Calibration, Ve                                                                                                                          | erificat       | ion, and Sensit                                                                                                                                                                | ivity Analysis       |                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|
| 7.1 Calibration and                                                                                                                         | verifica       | ation                                                                                                                                                                          |                      |                                         |
| Check                                                                                                                                       | Pass/<br>Fail? | Comment                                                                                                                                                                        | Action (if required) | Issue addressed comment (if applicable) |
| Has the selection of<br>events been appropriately<br>justified?                                                                             | Pass           | Three events selected<br>(November 2012,<br>January 2008,<br>December 2012) but<br>no justification<br>provided within Model<br>Report.                                        |                      |                                         |
| Does the best available<br>data appear to have been<br>used?                                                                                | Pass           | Reporting states that<br>available pump records<br>and gauge record<br>datasets, were<br>incomplete and/or<br>unreliable.                                                      |                      |                                         |
| Is there any evidence of<br>the model replicating<br>historical events<br>satisfactorily?                                                   | Pass           | Within 150mm<br>tolerance at all but one<br>gauge, the North Carr<br>Farm gauge (Model<br>node: IDLW_8831).<br>Gauge discrepancy<br>attributed to manual<br>override of pumps. |                      |                                         |
| Has calibration knowledge<br>been transferred to design<br>events?                                                                          | Pass           |                                                                                                                                                                                |                      |                                         |
| 7.2 Sensitivity anal                                                                                                                        | ysis           |                                                                                                                                                                                |                      |                                         |
| Has sensitivity analysis<br>been undertaken to test<br>model sensitivity to e.g.<br>roughness, the<br>downstream boundary,<br>flow changes. | Pass           | Roughness and downstream boundary.                                                                                                                                             |                      |                                         |
| Has model uncertainty been quantified?                                                                                                      | Pass           |                                                                                                                                                                                |                      |                                         |
| Have the major model<br>assumptions been<br>detailed?                                                                                       | Pass           | Report states a cell<br>size of 10m has been<br>used, however 20m<br>has been used.                                                                                            |                      |                                         |

| 8.1 Model run para                                                                                     | neters         |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                                           |
|--------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Check                                                                                                  | Pass/<br>Fail? | Comment                                                                                                                                                                                                                                           | Action (if required)                                                                                                                                                                                                               | Issue addressed<br>comment (if applicable |
| What is the time step? Is it appropriate?                                                              | Pass           | 2D timestep for 20m<br>grid size: 10 seconds<br>1D timestep for 20m<br>grid size: 5 seconds.                                                                                                                                                      | Specification of a 2D<br>timestep of ¼ of the 2D<br>grid size (5 seconds)<br>and a 1D timestep of<br>half this revised 2D<br>timestep could aid<br>model convergence<br>and stability across<br>1D/2D boundaries.                  |                                           |
| Have any simulation<br>parameters been edited?<br>If so, are they within<br>acceptable limits?         | Fail           | All default run<br>parameters used within<br>Flood Modeller.<br>However, the output<br>save interval has been<br>specified as 5 seconds<br>which produces very<br>large results files.<br>These take<br>considerable time to<br>open and process. | Output save interval<br>should be increased<br>(e.g. to 300 seconds)<br>as this will have no<br>impact on the model<br>performance and allow<br>results to be easily<br>managed.                                                   |                                           |
| If applicable, have any<br>changes in simulation<br>parameters for different<br>events been justified? | N/A            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                                           |
| Are run times reasonable?                                                                              | Pass           | Run time 18 hours for<br>0.1% AEP event.                                                                                                                                                                                                          | Note – halving the grid<br>size (see earlier<br>comments) would<br>approx. double the run<br>time but would still be<br>acceptable. Increase of<br>the output save interval<br>(see above comment)<br>may reduce model run<br>time |                                           |
| 8.2 Performance                                                                                        |                |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                                           |
| Is model convergence<br>good?                                                                          | Fail           | Poor convergence<br>throughout model for<br>0.1% AEP event. Most<br>notably at:<br>IDLW_18118<br>IDLW_19924<br>IDUP_43333<br>See Figure 6.                                                                                                        | The bridges at<br>IDLW_18118 and<br>IDLW_19924 should be<br>replaced with Orifice<br>units to aid<br>convergence.<br>Poor convergence is<br>prevalent throughout<br>all simulations, as is a<br>degree of noise                    |                                           |

|                                                              |      |                                                                                                                                                                               | (f) ( ); f                                                                                                                                                     |  |
|--------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                              |      | Poor convergence is<br>also present<br>throughout the 50%<br>AEP simulation.<br>Notably at<br>IDLW_dsby_U. (the<br>downstream<br>boundary).                                   | (fluctuations of<br>flow/stage within the<br>1D domain). This could<br>likely impact results<br>and the sources of<br>poor convergence<br>should be addressed. |  |
|                                                              |      | In addition, oscillation<br>of flows occurred<br>between the 1D and<br>2D domains at several<br>locations throughout<br>the model, notably at<br>IDLW_18586.<br>See Figure 7. | See previous<br>comments regarding<br>using FLC values on<br>HX lines.                                                                                         |  |
| Are there any negative depths?                               | Fail | No model log provided.                                                                                                                                                        |                                                                                                                                                                |  |
| Is mass balance<br>reasonable (target ± 1%)?                 | Fail | No model log provided.                                                                                                                                                        |                                                                                                                                                                |  |
| Are there any warnings or<br>errors within the 1D<br>domain? | Fail |                                                                                                                                                                               |                                                                                                                                                                |  |
| Are there any warnings or<br>errors within the 2D<br>domain? | Fail | No model log provided.                                                                                                                                                        |                                                                                                                                                                |  |

| 9. Audit Trail                                                    |                |                  |                      |                                            |
|-------------------------------------------------------------------|----------------|------------------|----------------------|--------------------------------------------|
| Check                                                             | Pass/<br>Fail? | Comment          | Action (if required) | Issue addressed<br>comment (if applicable) |
| Has a model report/interim<br>handover report been<br>provided?   | Pass           | Report provided. |                      |                                            |
| Has a model log been provided?                                    | Pass           | Log provided     |                      |                                            |
| Is the file naming and structure clear and logical?               | Pass           | Yes              |                      |                                            |
| Have check files been provided?                                   | Pass           | Yes              |                      |                                            |
| Have sufficient comments<br>been provided within the<br>1D model? | Pass           | Yes              |                      |                                            |

AECO

#### **10. Concluding Remarks**

#### 10.1 Suitability of modelling approach

A linked Flood Modeller-TUFLOW was suitable for use in the original study, however changes may be required in order to utilise the model for the high flow study. The grid size should be reduced along with other recommendations below.

**10.2 Key findings and recommendations** 

For the purpose of the High Flow study, the Idle model will need to be run with inflows below the 50% AEP event. However, as the 50% AEP event is the lowest AEP provided, the performance of the model during this event has been assessed.

Whilst there are a number of issues within the model which need to be updated, those that apply specially to the 50% AEP event are glass-walling and fluctuations in flow at the 1D/2D domain boundary. Figures 8 and 9 demonstrate how much out of bank flow occurs, even at lower order events, and fluctuations which occur across the domain boundary. Both of these factors are likely impact model results. Whilst glass-walling occurs even at the 50% AEP event, this can be rectified by extending the cross-sections based upon LIDAR or by interpolating from wider cross-section upstream and downstream.

Figure 10 shows the Flood Modeller 1D convergence plot. There is poor convergence throughout the simulation, however oscillations in water level are not as large as those shown in Figure 7. The model may not include enough detail to accurately represent flows below the 50% AEP event; this is especially true of channels within the 2D domain, where shallow flows are unlikely to be captured by the coarse grid size.

In addition to the above, a number of performance issues with the model should be addressed before it is used for the High Flow Study.

Instances of glasswalling occur at the edge of the 2D domain and at the RE\_42479a reservoir boundary, which need to be addressed. Glasswalling in the 1D domain results in increased depth and flow within the 1D channel and the 2D domain. This produces increased depths and inaccurate representation of floodplain flow paths and flood extents. Glasswalling within the 2D domain occurs during the 20% AEP event, so this may not be an issue during smaller flow events. Glasswalling within the 1D domain occurs during the 2% AEP event, so again may be less of an issue at lesser flows (which are focus of the current study).

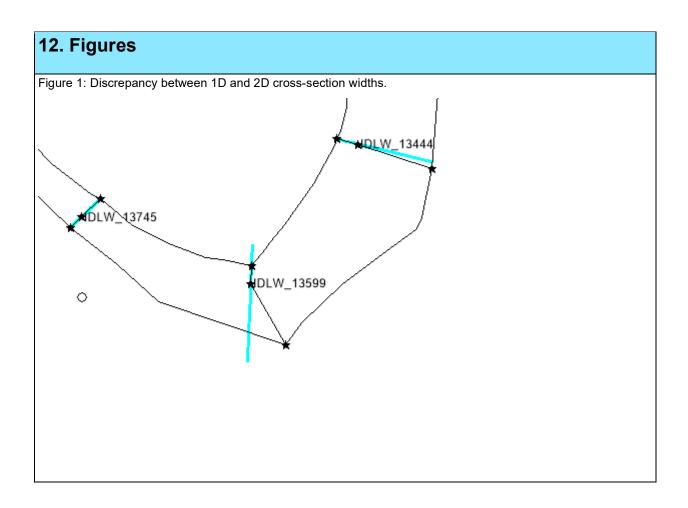
Significant oscillation of flows across the 1D/2D link files and fluctuations in flow and stage occurred during the reviewed model runs, which would impact results. Changes in the model structure and setup, such as introduction of FLC values at the 1D/2D boundaries and the reduction of 1D and 2D timesteps may help to improve model stability.

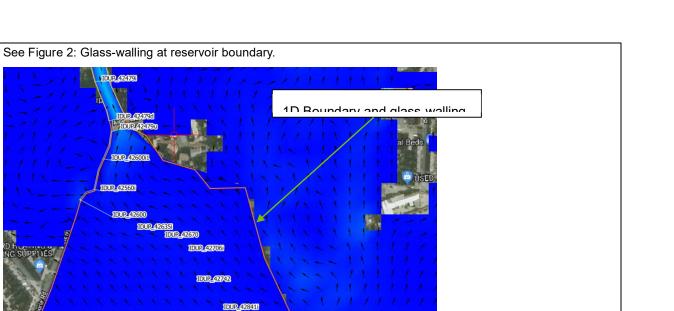
There are a number of uncertainties regarding dimensions of the 1D reservoir units within the model. Whilst there is survey data, the polygons used to generate the reservoir units are not provided, thus any overlap between surveyed sections and reservoir units cannot be identified. Without the shapefiles used to generate the reservoir units within Flood Modeller, dimensions cannot be checked for accuracy or possible double counting of floodplain volume.

Discrepancies occur between 1D spill widths and associated bank lengths, where 1D spills have been used to model out of bank flow from the channel. 1D spill widths should match the chainage between nodes they are attached to.

The 1D and 2D model timesteps will have to be lowered if the grid size is reduced. Reducing the grid size will also improve the representation of the 1D channel, 2D channels and floodplain flow paths. There are 2D inflows within

AECOM


the model connected by pumps to the 1D domain, and as such a reduction of the grid size will improve the linkage between the 1D and 2D domains even when flows are in bank within the 1D domain.


The downstream boundary conditions do not run for the whole simulation; the model run time is 200 hours, and the downstream boundary runs for 140 hours. The boundary should be extended to run for the whole simulation as, under the current setup, a single level is applied for the final 60 hours.

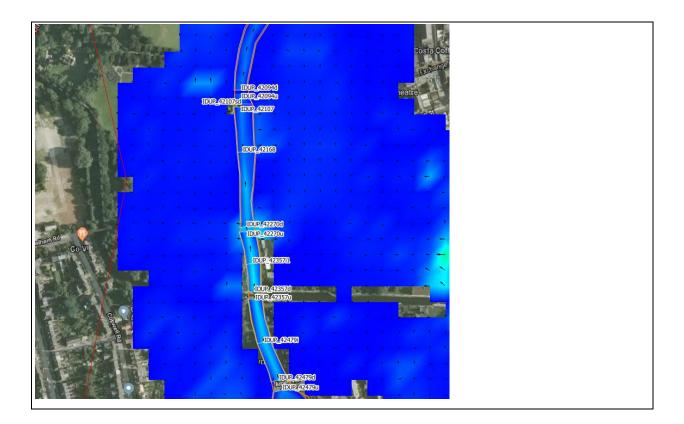
Abstractions and logical rules have been used to represent pumps rather than pump units. Correctly implemented the use of abstraction units will not impact results, however it means pump curves were not discretely simulated.

Whilst the save interval specified within the model does not impact results, file sizes are prohibitively large. Increasing the model output save interval would allow generation of easily manageable, model outputs.

| 11. Model audit signoff           |                 |  |  |
|-----------------------------------|-----------------|--|--|
| Model audit signed off by         | Sam Burrows     |  |  |
| Model audit approved for issue by | Richard Karooni |  |  |

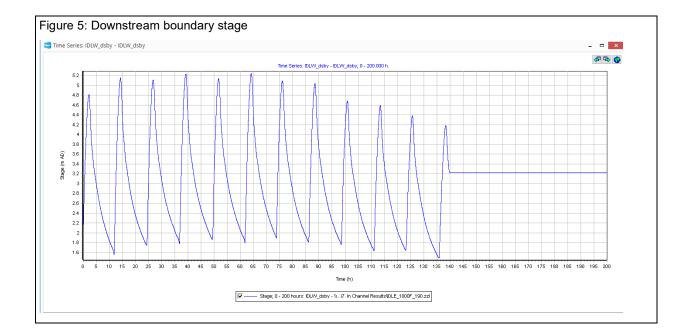


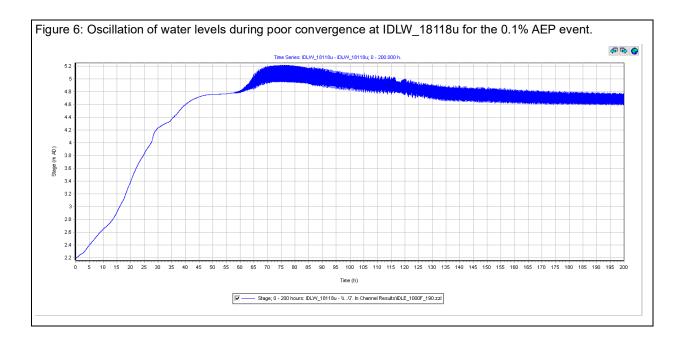


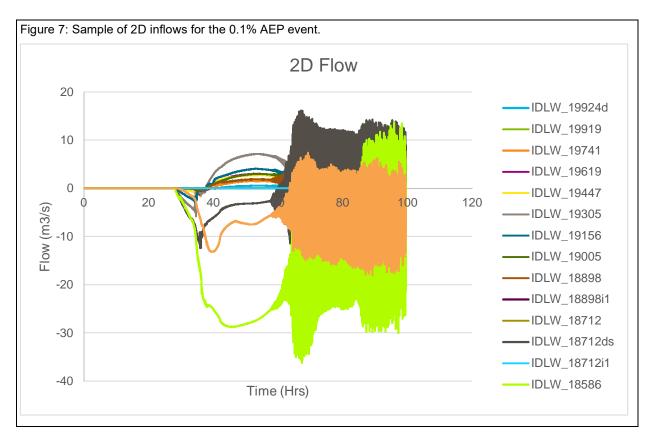

1DU2\_427911 1DU2

1DUP\_429201

IDUP\_430821


Figure 3: Glass-walling.


Ultimate Paving



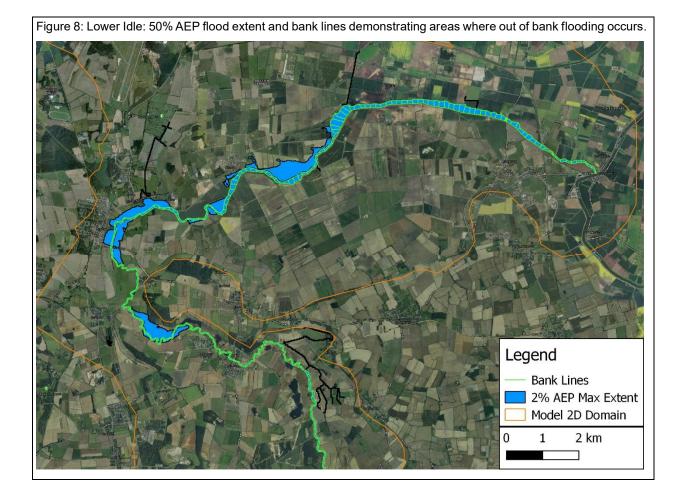
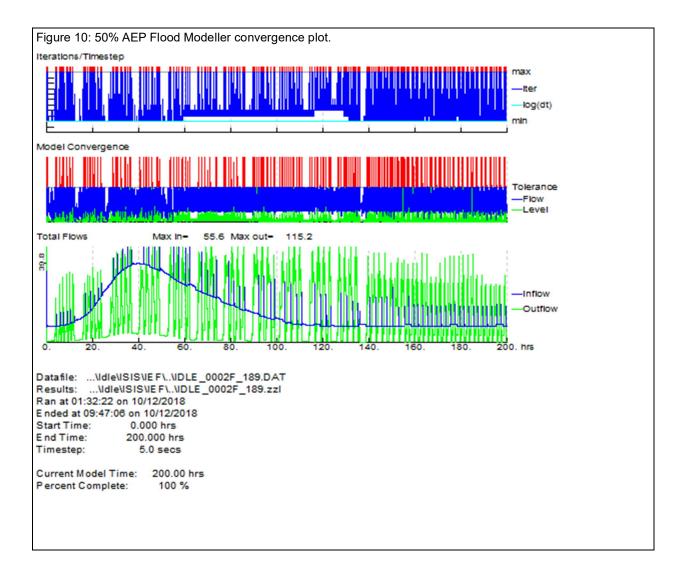


Carr Hill Primary Sc Jurassic Toys IDUP\_40994 milla UP 41107 24117

Figure 4: Example of both one HX cell representing both banks and no inactive cell between active HX cells.










Legend Bank Lines 2% AEP Max Extent ] Model 2D Domain 1 2 km 0 

Figure 9: Upper Idle: 50% AEP flood extent and bank lines demonstrating areas where out of bank flooding occurs.

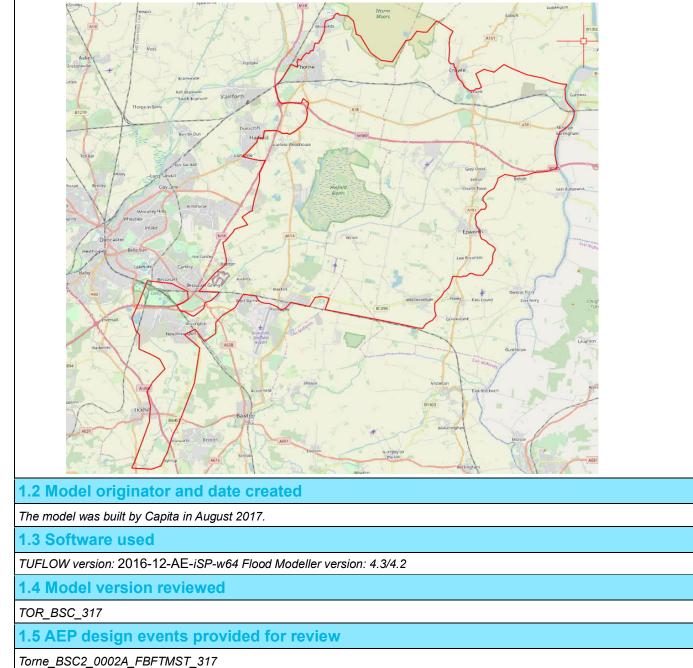


#### A.2 River Torne Model Review

| RED   | Unacceptable: Remedial action required              |
|-------|-----------------------------------------------------|
| AMBER | Useful: Improvements recommended                    |
| GREEN | Satisfactory: Compliant with best-practice guidance |

#### **Explanation:**

- Comments in the 'Action' column are colour coded to indicate how important it is that the proposed changes are addressed.
- Any elements not applicable to the audited model are marked with "N/A".
- Any improvements made based on the recommended actions should be logged in the 'Issue addressed comment (if applicable)' column.


| 1. Model Overview                                      | 159 |
|--------------------------------------------------------|-----|
| 2. Survey Review                                       | 161 |
| 3. In-Channel Representation                           | 163 |
| 4. 1D Out-of-Bank Representation                       | 166 |
| 5. 2D Out-of-Bank Representation                       | 169 |
| 6. Model Boundaries                                    | 173 |
| 7. Calibration, Verification, and Sensitivity Analysis | 175 |
| 8. Model Run Parameters & Performance                  | 176 |
| 9. Audit Trail                                         | 178 |
| 10. Concluding Remarks                                 | 179 |
| 11. Model audit signoff                                | 180 |
| 12. Figures                                            | 181 |

#### 1. Model Overview

#### **1.1 Model extent & description**

The River Torne model produced by Capita covers the River Torne from the A60 at Styrrup Lane (NGR 458864, 390574) to its confluence with the River Trent at Keadby (NGR 483526, 411310). The model also includes several drains within the 2D domain, and the 2D extent is shown below. The model was built as part of the Water and Environment Management Framework Lot 1 – Modelling, Mapping and Data Services, to assess fluvial flood risk and Keadby Pumping Station, as well as other catchment management options for the Isle of Axholme,

The model is a linked 1D-2D Flood Modeller Pro – TUFLOW model.



191

Torne\_BSC2\_1000A\_FBFTMST\_317

**1.6 Model files reviewed** 

TOR\_BSC\_317.dat TOR\_38hr\_1000yr\_draft\_inflows\_ftp\_v3.IED TOR\_BSC2\_GravityOutfallsClosed\_312.ied TOR\_dsbdy\_FBF\_TMST\_001.ied TOR\_Winter\_Pumps\_316.IED TOR\_38hr\_2yr\_draft\_inflows\_ftp\_v2 TOR\_~s1~\_s2~\_~e1~\_~e2~\_317.tcf TOR\_317.tbc TOR\_317.tgc bc\_dbase\_TOR\_306.csv

**1.7 Guidance used to inform the review** 

List any guidance documents used to inform the review. For example:

Fluvial Design Guide – Chapter 7 Hydraulic analysis and design (FDG2, 2009) Flood modeller online manual (CH2M HILL, 2015) TUFLOW manual (version 2016-03) CES Manning's Roughness Advisor

| Check                                    | Pass/ | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Action (if required)                                                                                                                                                                                                                                                                                                                            | Issue addressed         |
|------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                          | Fail? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                 | comment (if applicable) |
| Has topographic survey<br>been provided? | Fail  | The 2013 Maltby Land<br>Survey was provided<br>in PDF form. Only<br>cross-sections were<br>included in the PDF,<br>with no long sections<br>or overview map.<br>WEM_Lot_1_Package<br>1_Report_Torne_FINA<br>L_Nov_2017,<br>Appendix C is attached<br>as Figure 1. This does<br>not list the 2013 Maltby<br>survey, however a<br>2014 Maltby survey<br>covering North Soak<br>Drain and South Soak<br>Drain is referenced.<br>The 2013 Maltby<br>survey provided<br>appears to cover the<br>main River Torne. Only<br>the 1D model<br>structures include a<br>comment outlining<br>which survey section<br>they relate to no<br>comment is given for<br>open channel sections.<br>The 2013 Maltby Lane<br>Survey appears to<br>cover from model node<br>TORN_7501 to<br>TORN_2848. The<br>footbridge at survey<br>section 5.001 within<br>the 2013 Maltby Land<br>Survey is not included<br>within the 1D model.<br>2013 survey1D cross-<br>sections match survey<br>sections. | Provision of survey<br>would allow for the<br>model to be checked<br>against survey and for<br>evaluation of the<br>quality of the survey.<br>Only one reach of the<br>model is covered by<br>the survey provided,<br>whilst this section does<br>match the survey, the<br>above comment still<br>applies for the<br>remainder of the<br>model. |                         |
|                                          |       | Survey data is saved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                 |                         |
|                                          |       | here:<br>\\Ukmcr1fp002\ukmcr1<br>fp002-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                         |

|                                                                                                                        |      | Idle and Torne 2019\3.<br>Data\From EA\06-01-<br>20                                                                                                                                                                                                                                                       |                                                                                                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Is the topographic survey<br>of an acceptable age?                                                                     | Pass | Whilst survey not<br>provided so cannot<br>checked, the survey<br>referenced in the<br>reporting (Appendix C)<br>is all of a suitable age,<br>ranging from 2012 to<br>2016. The 2015 South<br>Staffs survey is<br>flagged as being poor<br>quality.<br>2013 Maltby survey<br>provided of suitable<br>age. | Area covered by South<br>Staffs survey could be<br>a location where<br>resurvey is required,<br>however the area<br>covered by the South<br>Staff survey is<br>unknown. |  |
| Does the survey comply<br>with current EA National<br>Survey Specification?                                            | Pass | The survey provided<br>does comply with EA<br>survey specifications,<br>However this survey<br>only covers one reach<br>of the model.                                                                                                                                                                     |                                                                                                                                                                         |  |
| Does the cross-section<br>spacing of the survey<br>provided seem<br>reasonable?                                        | Pass | Cross-section spacing<br>for reach of Torne<br>where survey provided<br>is acceptable.<br>No survey provided for<br>remainder of model.                                                                                                                                                                   |                                                                                                                                                                         |  |
| Does the survey include<br>information on channel<br>structures (including trash<br>screens) and channel<br>roughness? | Fail | No roughness<br>information provided<br>within survey data.                                                                                                                                                                                                                                               |                                                                                                                                                                         |  |
| Has LiDAR of appropriate resolution been provided?                                                                     | Pass | Model 2D domain<br>covered by 1m and 2m<br>LiDAR. However, 1m<br>LiDAR flown in 2011<br>and 2m LiDAR in<br>2008. Query in model<br>log as to why 2015<br>LiDAR hasn't been<br>used.                                                                                                                       | New composite LiDAR<br>is available; updating<br>the LiDAR would give<br>more accurate results<br>but may also cause<br>modelling instabilities.                        |  |

| 3.1 Cross-section s                                                                             | chema          | tisation                                                                                                                                                                                           |                                                                                  |                                            |
|-------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------|
| Check                                                                                           | Pass/<br>Fail? | Comment                                                                                                                                                                                            | Action (if required)                                                             | Issue addressed<br>comment (if applicable) |
| Is georeferencing<br>information (e.g. a gxy or<br>ixy) available?                              | Pass           | GXY file supplied.<br>However, some<br>sections are not fully<br>georeferenced.                                                                                                                    | Fill in missing<br>georeference data.                                            |                                            |
| Is the node naming<br>convention logical and<br>include chainage<br>information?                | Pass           | Naming logical and<br>based on chainage.<br>As survey not provided<br>cannot be compared to<br>survey.                                                                                             |                                                                                  |                                            |
| Does the model chainage<br>seem reasonable for the<br>channel length/sinuosity?                 | Fail           | Whilst watercourses<br>are predominantly<br>straight, but several<br>chainages in excess of<br>300m (up to 659m)<br>where sinuosity not<br>captured.                                               | Interpolates should be<br>added to reduce<br>chainages and capture<br>sinuosity. |                                            |
| Does the model chainage<br>match with the cross-<br>section survey?                             | Pass           | See Figure 2.<br>Cross-section<br>chainage within the<br>model matches the<br>survey for reach of<br>Torne where survey<br>provided.<br>No survey provided for<br>remainder of the 1D<br>model.    |                                                                                  |                                            |
| Is the cross-section<br>spacing appropriate; i.e. is<br>it erratic or reasonably<br>consistent? | Fail           | Three Rivers<br>chainages around<br>25m, upstream on the<br>Torne chainages in<br>excess of 300m.<br>Chainages largest at:<br>RT-14517: 659m<br>RT-15064: 547m<br>RT-10196: 523m.<br>See Figure 2. | See above comment.                                                               |                                            |
| Does the channel width<br>match the cross-section<br>survey?                                    | Pass           | Cross-section width<br>within the 1D model<br>matches the survey for<br>reach of Torne where<br>survey is provided.                                                                                |                                                                                  |                                            |

|                                                                                                                                     |      | No survey provided for remainder of 1D model.                                                                                                                                                              |                                                                                                                                                                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Have hard or soft bed<br>levels been used in the<br>model?                                                                          | Pass | Hard bed has been<br>used where survey has<br>been provided.                                                                                                                                               |                                                                                                                                                                                                               |  |
| Have cross-sections been<br>deactivated appropriately;<br>i.e. near the highest<br>elevation points in the<br>cross-section survey? | Fail | Cross-sections not<br>always deactivated at<br>highest point in the<br>cross-section.<br>Discrepancies<br>apparent between the<br>1D and 2D cross-<br>section widths<br>throughout model.<br>See Figure 3. | Cross-sections should<br>be deactivated at high<br>points within the cross-<br>section. 1D/2D cross-<br>sections widths should<br>match – 2D width<br>should be updated to<br>match 1D with or vice<br>versa. |  |
| Have top of bank markers been used correctly?                                                                                       | Pass | Bank markers not used<br>consistently throughout<br>the model.                                                                                                                                             | Banks marks could be<br>added throughout<br>model; however, these<br>do not impact results.                                                                                                                   |  |
| Have panel markers been<br>used appropriately? Is<br>channel conveyance<br>smooth?                                                  | Pass | Panel markers appear<br>to be used throughout<br>on River Sections,<br>however jumps in<br>conveyance occur at<br>Bridge Units.                                                                            | Add embankment<br>markers at bridge<br>units.                                                                                                                                                                 |  |
| 3.2 Channel roughn                                                                                                                  | ess  |                                                                                                                                                                                                            |                                                                                                                                                                                                               |  |
| Do the roughness values<br>seem to fall within an<br>appropriate range?                                                             | Pass | Roughness values<br>between 0.03 and<br>0.05.                                                                                                                                                              |                                                                                                                                                                                                               |  |
| Do the roughness values<br>show reasonable<br>consistency? If not, have<br>changes been justified?                                  | Pass |                                                                                                                                                                                                            |                                                                                                                                                                                                               |  |
| Has evidence been<br>provided to justify variation<br>in Manning's roughness<br>values?                                             | Pass | No roughness values<br>were present in survey<br>provided which covers<br>a reach of the Torne.                                                                                                            |                                                                                                                                                                                                               |  |
|                                                                                                                                     |      | Reporting states<br>roughness values<br>taken from survey,<br>however survey data<br>covering the whole<br>model was not<br>provided, so this<br>cannot be verified.                                       |                                                                                                                                                                                                               |  |

| 3.3 Structure representation                                                                                                                                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Has a list of modelled<br>structures been provided,<br>and any exclusions<br>justified?                                                                      | Fail | Provide structure list.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |  |
| Do there appear to be any<br>key structures not<br>modelled?                                                                                                 | Fail | Features that appear<br>to not have been<br>modelled:<br>Rail crossing at<br>4010_01615,<br>Footbridge at<br>4010_02862,<br>Footbridge<br>downstream of RT-<br>33089,<br>Bridge and Flood<br>Relief culvert at RT-<br>24160 are situated<br>within the area<br>represented by<br>reservoir unit and the<br>area may need to be<br>included in the 2D<br>domain to capture<br>structures,<br>Footbridge upstream of<br>RT-06439i1,<br>Bridge at NSD_073.<br>See Figure 4. | No justification for<br>exclusion of structures,<br>and as such they<br>should be added in.<br>New survey may be<br>required to capture<br>missed structures.                                                    |  |
| Does a sample check of<br>the structure dimensions<br>match with the survey<br>drawings?                                                                     | N/A  | No survey provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                  |  |
| Have bridge and culvert<br>units been used<br>appropriately; i.e. culvert<br>schematised for bridges<br>where the length:width<br>ratio is greater than 2:1? | Pass |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  |  |
| Are spills over bridge and culvert parapets included?                                                                                                        | Fail | Spill units not present<br>at all bridge<br>units/orifice units and<br>no connections to the<br>2D domain to enable<br>spill are provided.                                                                                                                                                                                                                                                                                                                               | Spills not included at<br>all bridges/orifice units.<br>If bridge surcharges<br>during 0.1% AEP event<br>then spill should be<br>added. As no survey<br>available, levels may<br>have to be taken from<br>LiDAR. |  |

| Have inlet and exit losses<br>been represented with<br>appropriate units?<br>Do head losses across<br>structures appear<br>reasonable for a high- | Pass<br>Pass |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| magnitude event?                                                                                                                                  |              |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                            |  |
| Are appropriate losses for<br>changes in culvert<br>geometry and direction<br>included?                                                           | Pass         |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                            |  |
| Do structure coefficients<br>and modular limits appear<br>reasonable?                                                                             | Pass         | Modular limits of all<br>orifice units, sluice<br>units and weir units<br>appropriate.<br>Modular limits of spill<br>units vary: from 0.9<br>(default) to 0.5<br>(SENG3290) with no<br>justification of variation<br>provided.<br>Weir coefficients at<br>spill units vary from 1.7<br>to 0.5 with no<br>justification of variation<br>provided.<br>Weir coefficients are<br>appropriate. | Without<br>survey/photographs of<br>study area, there is<br>limited to scope to<br>update the structure<br>coefficients as the<br>model has been<br>previously calibrated. |  |
| If applicable, are any control rules appropriate?                                                                                                 | Pass         | Keadby sluice gravity<br>outfalls closed<br>throughout simulation.                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                            |  |



| 4. 1D Out-of-Bank Representation                                                                |                |                                                                                                                                                                                                         |                      |                                            |
|-------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|
| 4.1 Extended cross                                                                              | -sectior       | າຣ                                                                                                                                                                                                      |                      |                                            |
| Check                                                                                           | Pass/<br>Fail? | Comment                                                                                                                                                                                                 | Action (if required) | Issue addressed<br>comment (if applicable) |
| Is the discretisation of<br>extended cross-sections<br>too sparse or too detailed?              | N/A            | Extended cross-section<br>have not been used to<br>represent floodplains<br>anywhere within the<br>1D model. 1D cross-<br>sections have only<br>been used to represent<br>the channel in this<br>model. |                      |                                            |
| Have extended cross-<br>sections been used where<br>depth of flooding is<br>excessive?          | N/A            |                                                                                                                                                                                                         |                      |                                            |
| Do extended cross-<br>sections intersect with one another?                                      | N/A            |                                                                                                                                                                                                         |                      |                                            |
| Are the extended cross-<br>sections approximately<br>perpendicular to flow?                     | N/A            |                                                                                                                                                                                                         |                      |                                            |
| Is the cross-section<br>spacing appropriate; i.e. is<br>it erratic or reasonably<br>consistent? | N/A            |                                                                                                                                                                                                         |                      |                                            |
| Have the sections been<br>sufficiently extended to<br>avoid glass-walling?                      | N/A            |                                                                                                                                                                                                         |                      |                                            |
| Have defences and any<br>scheme options been<br>appropriately<br>represented?                   | N/A            |                                                                                                                                                                                                         |                      |                                            |
| 4.2 Floodplain rese                                                                             | rvoirs         |                                                                                                                                                                                                         |                      |                                            |
| Do 1D reservoirs glass-<br>wall?                                                                | Pass           |                                                                                                                                                                                                         |                      |                                            |
| Are there a sufficient<br>number of spills from the<br>channel into the<br>reservoirs?          | Pass           |                                                                                                                                                                                                         |                      |                                            |
| Have reservoirs been<br>used where there is a<br>steep channel gradient?                        | Pass           | Channel gradient flat<br>where 1D reservoir<br>units connected.                                                                                                                                         |                      |                                            |

| Do reservoir boundaries<br>appear to be consistent<br>with ground topography?                                                               | N/A  | Shapefiles used to generate reservoir units not available. |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------|--|
| Does there appear to be<br>any overlap between<br>extended cross-sections<br>and reservoirs (which<br>would result in double-<br>counting)? | Pass |                                                            |  |



| 5. 2D Out-of-Ban                                                                       | k Rep          | resentation                                                                                                                                                |                                                                                                                                                                                                                        |                                            |
|----------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 5.1 2D domain sche                                                                     | ematisa        | tion                                                                                                                                                       |                                                                                                                                                                                                                        |                                            |
| Check                                                                                  | Pass/<br>Fail? | Comment                                                                                                                                                    | Action (if required)                                                                                                                                                                                                   | Issue addressed<br>comment (if applicable) |
| Is the number of domains appropriate?                                                  | Pass           |                                                                                                                                                            |                                                                                                                                                                                                                        |                                            |
| Is the 2D horizontal cell<br>size suitable for the study<br>objectives?                | Pass           | 15m grid sized used,<br>however in several<br>locations there is no<br>inactive cell between<br>left and right bank HX<br>cells.                           | Reduction in grid size<br>would improve model<br>accuracy; especially in<br>relation to small<br>watercourses/drains<br>within the 2D domain.<br>Reducing grid size<br>would also adversely<br>affect model run times. |                                            |
| Is the grid orientation suitable?                                                      | Pass           |                                                                                                                                                            |                                                                                                                                                                                                                        |                                            |
| Is the domain extent<br>sufficient so that glass-<br>walling doesn't occur?            | Fail           | Glass-walling occurs<br>upstream of<br>DGND_23073, west of<br>Arm Thorpe.<br>Glass-walling first<br>occurs during the<br>3.33% AEP event.<br>See Figure 5. | Expand 2D code layer<br>around this area to<br>prevent glass-walling<br>(g noting that a 20%<br>AEP event is<br>significantly larger than<br>the flow threshold<br>above which<br>abstractions may occur<br>(Q15).     |                                            |
| Is the connectivity to the<br>1D domain (e.g. HX or SX<br>links) appropriate?          | Pass           |                                                                                                                                                            |                                                                                                                                                                                                                        |                                            |
| Is the spacing between<br>1D-2D connection<br>appropriate?                             | Pass           | In several locations<br>there is no inactive cell<br>between HX cells. This<br>could reduce model<br>accuracy under flood<br>conditions.                   | A reduction in grid size<br>would improve the<br>spacing between 2D<br>connections, however<br>this will impact<br>runtimes and possibly<br>effect model stability.                                                    |                                            |
| Is the 1D-2D connectivity at structures suitable?                                      | Pass           |                                                                                                                                                            |                                                                                                                                                                                                                        |                                            |
| Has the channel area<br>been deactivated so that<br>double-counting does not<br>occur? | Fail           | Channel deactivated<br>throughout model,<br>however there are<br>discrepancies between<br>the 1D and 2D cross-<br>section widths<br>throughout the model.  | Whilst the code layer<br>removing the 1D<br>channel area from the<br>2D domain is snapped<br>to HX link lines<br>throughout, there is<br>discrepancy between<br>1D and 2D cross-                                       |                                            |

| Has the floodplain been                                                                                                             | Fail | See Figure 3.<br>Discrepancies between                                                                                                                                                                              | section widths. The 1D<br>cross-section widths or<br>the 2D cross-section<br>widths should be<br>updated to ensure<br>correlation between<br>the 1D channel and the<br>channel extent within<br>the 2D domain.<br>The 1D cross-section |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| adequately represented<br>between the 1D and 2D<br>domains; i.e. extended<br>cross-sections not<br>extending into the 2D<br>domain? |      | the 1D and 2D cross-<br>section widths<br>throughout the model.<br>See Figure 3.                                                                                                                                    | widths or the 2D cross-<br>section widths should<br>be updated to ensure<br>correlation between<br>the 1D channel and the<br>channel extent within<br>the 2D domain.                                                                   |  |  |
| Is LiDAR used to<br>represent the 2D<br>topography; i.e. has a zpt<br>layer been used of<br>indeterminate age?                      | Pass | Model 2D domain<br>covered by 1m and 2m<br>LiDAR. However, 1m<br>LiDAR was flown in<br>2011 and the 2m<br>LiDAR was flown in<br>2008. Query in model<br>log as to why available<br>2015 LiDAR data was<br>not used. | Update model LiDAR<br>data with more recent<br>composite LiDAR DTM<br>dataset.                                                                                                                                                         |  |  |
| Have floodplain features<br>and obstructions been<br>represented<br>appropriately?                                                  | Pass | Zshape and Zline<br>features have been<br>used to represent<br>floodplain topography,<br>including drainage<br>channels and<br>defences. Zshape<br>features have also<br>been used as LiDAR<br>patches.             |                                                                                                                                                                                                                                        |  |  |
| Have buildings been<br>represented in the 2D<br>domain appropriately?                                                               | Pass | Building's represented<br>through increased<br>Manning's (0.5) which<br>is higher than typical<br>value of 0.3.                                                                                                     |                                                                                                                                                                                                                                        |  |  |
| 5.2 Top-of-bank schematisation                                                                                                      |      |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                        |  |  |
| Have top-of-bank<br>elevations been<br>schematised in the model<br>at the 1D-2D boundary?                                           | Pass | Zpoints read in through<br>2d_bc input using ZP<br>flag. 1D and 2D bank<br>levels appear to match.                                                                                                                  |                                                                                                                                                                                                                                        |  |  |
| Is there any evidence that<br>the best available data<br>(e.g. AIMS or topographic<br>survey) has been used to                      | N/A  | Levels taken from<br>survey but as no<br>survey provided this<br>cannot be verified.                                                                                                                                |                                                                                                                                                                                                                                        |  |  |

| define the bank top crests?                                                                               |        |                                                                  |                                                                                                                                                                  |  |
|-----------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Is there any evidence that<br>checks have been<br>undertaken between the<br>bank top levels and<br>LiDAR? | Fail   | No evidence provided.                                            | Comparison between<br>surveyed bank levels<br>and LiDAR should be<br>undertaken to establish<br>locations where bank<br>levels are being<br>over/underestimated. |  |
| 5.3 Out-of-bank rou                                                                                       | ghness | i                                                                |                                                                                                                                                                  |  |
| Are the 2D roughness values within a suitable range?                                                      | Pass   |                                                                  |                                                                                                                                                                  |  |
| Have any sensitivity tests<br>been undertaken involving<br>altering floodplain<br>roughness?              | Pass   | Model was found to be<br>insensitive to changes<br>in roughness. |                                                                                                                                                                  |  |

| 6. Model Bounda                                                                                            | aries          |                                                                                                                                                                                                                                                                        |                      |                                            |
|------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|
| 6.1 Inflow boundari                                                                                        | es             |                                                                                                                                                                                                                                                                        |                      |                                            |
| Check                                                                                                      | Pass/<br>Fail? | Comment                                                                                                                                                                                                                                                                | Action (if required) | Issue addressed<br>comment (if applicable) |
| Have appropriate inflow<br>boundary types been<br>used?                                                    | Pass           | FEH boundaries for all<br>inflows. Inflows based<br>upon pumping station<br>catchment applied to<br>the 2D domain directly<br>at the Pump Station<br>location. Inflows not<br>based upon pumping<br>station applied to the<br>1D domain as a Flood<br>Modeller inflow. |                      |                                            |
| Does inflow boundary<br>distribution seem<br>reasonable; e.g. lateral<br>inflows distributed<br>logically? | Pass           | Lateral inflows applied<br>where drains meet<br>watercourse. 2D<br>inflows applied directly<br>at pumping station<br>location.                                                                                                                                         |                      |                                            |
| Do initial conditions within<br>the 1D domain seem<br>appropriate?                                         | Pass           | All 1D initial conditions appear in bank.                                                                                                                                                                                                                              |                      |                                            |
| If applicable, are any<br>sweetening flows<br>appropriate, and been<br>removed from the model?             | Pass           |                                                                                                                                                                                                                                                                        |                      |                                            |
| Do the upstream &<br>downstream inflows<br>correspond to the<br>FEH/Hydrology report, if<br>available?     | N/A            | Hydrology not included<br>in reporting.                                                                                                                                                                                                                                |                      |                                            |
| Are any inflows located close to structure justified?                                                      | Pass           | None located close to structures.                                                                                                                                                                                                                                      |                      |                                            |
| If applicable, are any<br>pump/abstraction units<br>appropriate?                                           | Pass           | Drain pumps<br>connected to the 2D<br>domain via SX<br>connection. Rules<br>applied via Abstraction<br>units match those in<br>report appendix.<br>Keadby pumps applied<br>via 6 Abstraction units,<br>rules appear to match<br>those in the report.                   |                      |                                            |

| Has an appropriate storm<br>duration been used, and<br>any other storm durations<br>assessed?   | Fail   | 38 hours used for all<br>inflows, no evidence<br>that other durations<br>were tested.                                      | More critical durations<br>could be tested.<br>This is only<br>necessary for<br>assessing<br>flood flows,<br>and thus may<br>not be<br>required for<br>this study. |  |
|-------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6.2 Downstream bo                                                                               | undary |                                                                                                                            |                                                                                                                                                                    |  |
| Is the location and<br>schematisation of the<br>downstream boundary<br>appropriate?             | Pass   | Downstream boundary<br>taken from River Trent<br>model.                                                                    |                                                                                                                                                                    |  |
| Is there any evidence that<br>the sensitivity to<br>downstream conditions<br>has been assessed? | Pass   | Model reports states<br>that the model was not<br>found to not be overly<br>sensitive to<br>downstream boundary<br>levels. |                                                                                                                                                                    |  |

| 7. Calibration, Verification, and Sensitivity Analysis                                                                                      |                |                                                                                                                                                                                                                             |                                                                                                                                                                          |                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 7.1 Calibration and verification                                                                                                            |                |                                                                                                                                                                                                                             |                                                                                                                                                                          |                                            |
| Check                                                                                                                                       | Pass/<br>Fail? | Comment                                                                                                                                                                                                                     | Action (if required)                                                                                                                                                     | Issue addressed<br>comment (if applicable) |
| Has the selection of events been appropriately justified?                                                                                   | Pass           | Three events selected<br>(November 2000,<br>January 2008,<br>December 2012) but<br>no justification<br>provided.                                                                                                            |                                                                                                                                                                          |                                            |
| Does the best available<br>data appear to have been<br>used?                                                                                | Pass           | Reporting states that<br>datasets, both pump<br>records and gauge<br>records, were<br>incomplete/unreliable<br>for all events. However,<br>this is still the best data<br>available.                                        |                                                                                                                                                                          |                                            |
| Is there any evidence of<br>the model replicating<br>historical events<br>satisfactorily?                                                   | Pass           | Reporting states that a<br>good fit was "achieved<br>at key locations" in the<br>model but not<br>throughout.                                                                                                               |                                                                                                                                                                          |                                            |
| Has calibration knowledge<br>been transferred to design<br>events?                                                                          | Pass           | Reporting states that<br>an "iterative process"<br>was used to adjust<br>pumping rates and<br>hydrology to achieve<br>calibration fit, however<br>no evidence that these<br>changes were carried<br>forward to design runs. | Information detailing if<br>steps taken in<br>calibration were taken<br>forward to design runs<br>would be beneficial.<br>Assumption is changes<br>were carried forward. |                                            |
| 7.2 Sensitivity analysis                                                                                                                    |                |                                                                                                                                                                                                                             |                                                                                                                                                                          |                                            |
| Has sensitivity analysis<br>been undertaken to test<br>model sensitivity to e.g.<br>roughness, the<br>downstream boundary,<br>flow changes. | Pass           | Roughness,<br>downstream boundary<br>and inflows tested.                                                                                                                                                                    |                                                                                                                                                                          |                                            |
| Has model uncertainty been quantified?                                                                                                      | Pass           |                                                                                                                                                                                                                             |                                                                                                                                                                          |                                            |
| Have the major model<br>assumptions been<br>detailed?                                                                                       | Pass           | Documented in<br>reporting, notable<br>include: FLC at HX<br>lines of 0.3 or higher,<br>boundary viscosity<br>factor of 2.                                                                                                  |                                                                                                                                                                          |                                            |

CAPITA AECOM



| 8.1 Model run parar                                                                                    | neters         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                                            |
|--------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Check                                                                                                  | Pass/<br>Fail? | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Action (if required)                                                                                                                                                  | Issue addressed<br>comment (if applicable) |
| What is the time step? Is it appropriate?                                                              | Fail           | 2D timestep for 15m<br>grid size: 5s<br>1D timestep for 15m<br>grid size: 5s.                                                                                                                                                                                                                                                                                                                                                                                                  | 2D timestep should be<br>1/2 or 1/4 of the 2D grid<br>size and 1D timestep<br>should be half of the<br>2D grid size.                                                  |                                            |
| Have any simulation<br>parameters been edited?<br>If so, are they within<br>acceptable limits?         | Pass           | Htol set to 0.005<br>Minitr set to 3.<br>Maxitr set to 013.<br>Spill threshold has<br>been increased from<br>default to 0.0001<br>Tuflow Boundary<br>Viscosity Factor has<br>been increased to 2.<br>TUFLOW FLC at HX<br>lines set to 0.3 or<br>higher.<br>Despite the increased<br>Boundary Viscosity<br>factor and FLC values,<br>there are still<br>fluctuations in flow<br>across the 2D domain,<br>most notably between<br>SSD_076 and<br>SD_133. See Figures<br>6 and 7. | Check model<br>schematisation where<br>fluctuations in flow<br>occur. Manning's<br>patches can be used to<br>slow the transition of<br>flow between model<br>domains. |                                            |
| If applicable, have any<br>changes in simulation<br>parameters for different<br>events been justified? | Pass           | Stability used as justification for all model changes.                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                       |                                            |
| Are run times reasonable?                                                                              | Pass           | Run time 28 hours for 0.1% AEP event.                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |                                            |
| 8.2 Pe                                                                                                 | erforma        | ince                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                       |                                            |
| ls model convergence<br>good?                                                                          | Fail           | Poor convergence<br>throughout simulation.<br>RT-24052L: Poor<br>convergence<br>throughout, oscillations<br>of flow but not stage is                                                                                                                                                                                                                                                                                                                                           | RT-24052L spill<br>coefficients could be<br>looked at.<br>Orifice unit<br>4010_00588ou<br>modular limit could be                                                      |                                            |

## CAPITA | AECOM

| Are there any negative depths?                               | Pass | Poor convergence<br>occurs at units<br>4010_00588 and<br>4019_01071 during<br>multiple timesteps.                                                                                                                                                                                                 | convergence. Orifice<br>unit<br>4019_01071 modular<br>limit could be lowered<br>to aid convergence<br>and spill added.                                                                                                                           |  |
|--------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Is mass balance<br>reasonable (target ± 1%)?                 | Pass |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                  |  |
| Are there any warnings or<br>errors within the 1D<br>domain? | Fail | Notable messages<br>include:<br>No rules are currently<br>valid for RULES unit<br>associated with label<br>Backflow at culvert<br>inlets/outlets.<br>Backflow occurs at:<br>WHSD_c20991<br>WHSD_c20991d<br>HFWDa_c5037<br>HFWDa_c5037d<br>HFWDc_c5037d<br>HFWDc_c5037d<br>NSD_042Cus<br>NSD_042C3 | At various stages in<br>the simulation, no<br>operating rules are<br>valid at all active<br>Keadby Pumps and at<br>TBridge_PU. Scenario<br>where no rules are<br>applicable should be<br>checked and any<br>possible impact on<br>results noted. |  |
| Are there any warnings or<br>errors within the 2D<br>domain? | Pass | Warnings present but<br>none likely to impact<br>results.                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |  |



| 9. Audit Trail                                                    |                |                  |                      |                                            |
|-------------------------------------------------------------------|----------------|------------------|----------------------|--------------------------------------------|
| Check                                                             | Pass/<br>Fail? | Comment          | Action (if required) | Issue addressed<br>comment (if applicable) |
| Has a model report/interim<br>handover report been<br>provided?   | Pass           | Report provided. |                      |                                            |
| Has a model log been provided?                                    | Pass           | Log provided     |                      |                                            |
| Is the file naming and structure clear and logical?               | Pass           | Yes              |                      |                                            |
| Have check files been provided?                                   | Pass           | Yes              |                      |                                            |
| Have sufficient comments<br>been provided within the<br>1D model? | Pass           | Yes              |                      |                                            |

#### **10. Concluding Remarks**

#### **10.1 Suitability of modelling approach**

The reviewed linked Flood Modeller-TUFLOW model was suitable for use in the original flood risk study, however changes may be required in order to utilise the model for the proposed high flow study. The 2D domain grid size should be reduced along with other recommendations below.

**10.2 Key findings and recommendations** 

For the purposes of the proposed High Flow study, the model will need to be run with flows below the 50% AEP event. As the 50% AEP event is the lowest order event provided with the reviewed copy of the model, the following comments reflect model performance under these conditions.

Some of the more fundamental issues with the model are to do with the linkages between the 1D and 2D domains. The maximum flood extent for the 50% AEP event is shown in Figure 8 and Figure 9 of the Appendix. There are large areas of out of bank flow, particularly on the Lower Torne, which consequently means that some improvements outlined below are required for the model to be acceptable for use during the 50% AEP event and below. Moreover, as shown in Figure 10, there are instances of poor convergence throughout the 50% AEP event simulation. The model may not include enough detail to accurately represent flows below the 50% AEP event. This will be especially true of channels within the 2D domain, where shallow flows are unlikely to be captured by the coarse grid resolution.

Furthermore, there are several issues with the model that need to be addressed before it is used for the High Flow Study.

The model was previously run with the same timestep for the 1D and 2D domains. The 1D model timestep should be  $\frac{1}{2}$  or  $\frac{1}{4}$  of the 2D model timestep. Reducing the 1D timestep will aid both 1D model convergence and reduce flow oscillations across the 1D/2D boundaries. The 1D timestep would also have to be reduced further in line with any reduction in grid size.

Reducing the grid size will improve model representation of smaller channels within the 2D domain. However, stability issues within the 2D model may occur as result, as variations in topography will be represented in greater detail. The current pumping arrangement, where the pumps are linked to the 2D domain, will be improved with a reduced grid size, as the pumps could be represented with a single cell covering the drainage channel, rather than a 15m grid cell.

There is poor convergence throughout the model, which is exacerbated by long chainages between 1D model nodes and the relatively large timestep. Without the survey for the full model domain, schematisation of structures within the full 1D model cannot be verified, and neither can structure dimensions or bank levels.

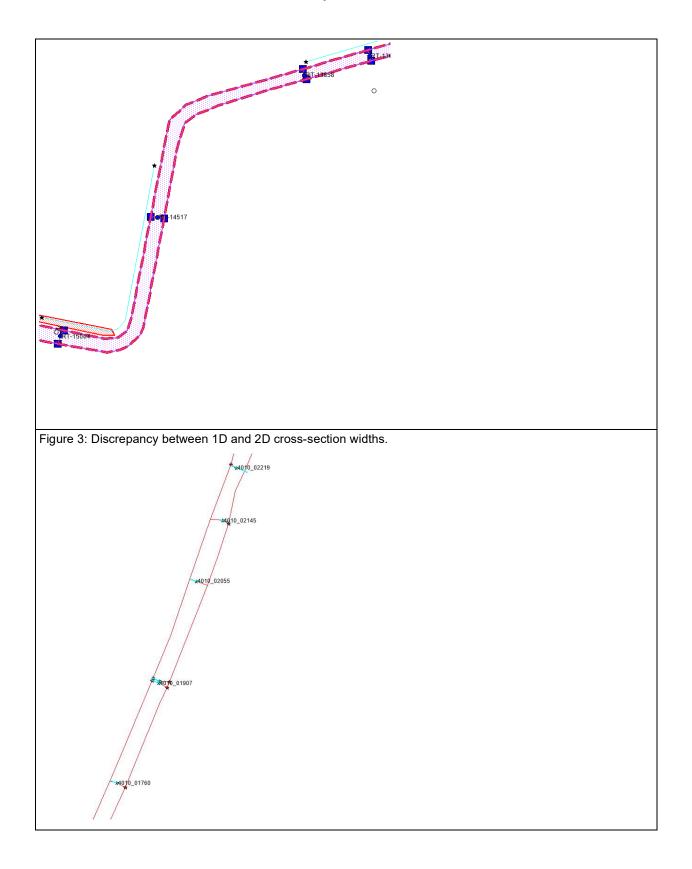
Flow transfer between the 1D and 2D model domains operates poorly, as highlighted by the high Form Loss Coefficient values within the HX link files and the use of Boundary Viscosity values. Reduction in timestep and grid size is likely to improve flow transfer between domains, however the model may still struggle when out of bank flow occurs.

Glasswalling occurs upstream of model node DGND\_23073, located to the west of Armthorpe. The 2D domain needs to be extended to prevent this. However, glasswalling only occurs during events greater than the 3.33% AEP event and therefore will not impact model performance during lower order events.

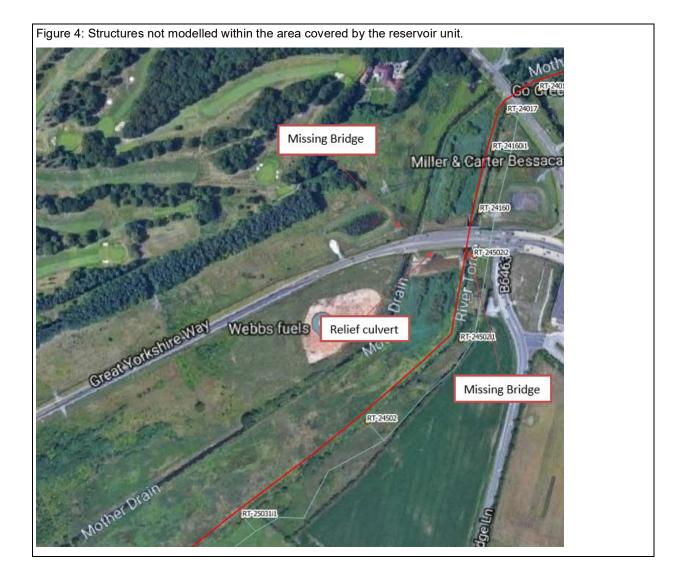
Discrepancies occur between the 1D and 2D cross-section widths throughout the model, which should be corrected for future model runs. Either the 2D sections should be updated to match the 1D sections, or the 1D cross-sections should be extended via LiDAR to tie in with the channel extent within the 2D domain.



Abstractions and logical rules have been used to represent pumps, rather than specific FMP pump units. If implemented correctly, the use of abstraction units will not impact model results. However, as a result of the current model setup, discrete representation of pump curves is not utilised.


There are a number of missing structures within the model with no explanation for their exclusion; these structures should be added to the model, however further survey would then be required to capture structure dimensions. Missing structures, that were not included in the supplied survey data, could impact results even at low flows.

Spill units are not present at all structures within the 1D model. These should be added either in 1D or spills to the 2D with a smaller grid size.

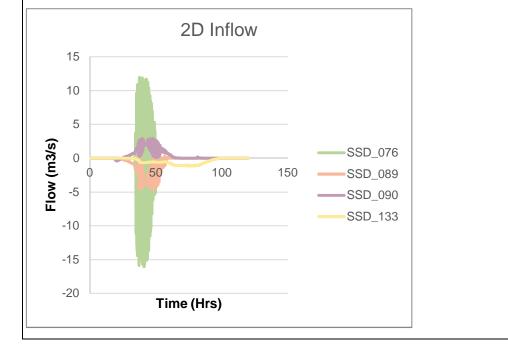

| 11. Model audit signoff           |                 |
|-----------------------------------|-----------------|
| Model audit signed off by         | Sam Burrows     |
| Model audit approved for issue by | Richard Karooni |

| endix C -                                                                             | Surve            | y Index                           |                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------|------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Survey                                                                                | Date             | Supplier                          | Other Comments                                                                                                                                                                                          |
| Interlock<br>(upstream<br>sections of North<br>Soak Drain and<br>South Soak<br>Drain) | March<br>2015    | Interlock                         |                                                                                                                                                                                                         |
| North Soak Drain                                                                      | 2014             | Maltby                            |                                                                                                                                                                                                         |
| South Soak<br>Drain                                                                   | 2014             | Maltby                            |                                                                                                                                                                                                         |
| South Staffs                                                                          | 2015             | StafSurv Land<br>Surveyors        | Includes:<br>Candy Farm<br>Hawood Sewage Dyke<br>River Torne<br>South Engine Drain<br>Tunnel Pits<br>Quality of this survey is<br>considered poor due as outline<br>in Memo3, November 2015,<br>Capita. |
| Auckley Gauging<br>Station                                                            | December<br>2012 | Graham Walker of<br>Tower Surveys |                                                                                                                                                                                                         |
| River Torne                                                                           | April 2006       | Cartographical Surveys<br>Limited |                                                                                                                                                                                                         |
| River Torne and<br>Three Rivers                                                       | 2016             | Central Surveys Limited           | Undertaken as part of this<br>commission                                                                                                                                                                |

### CAPITA | AECOM



## CAPITA | AECOM




#### CAPITA | AECOM

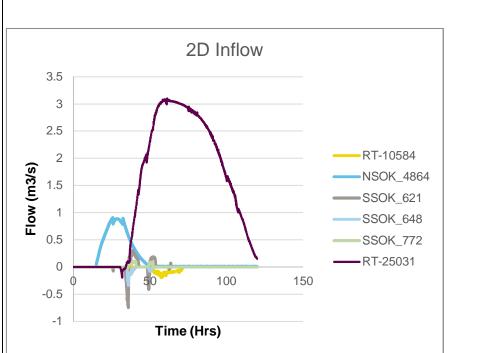
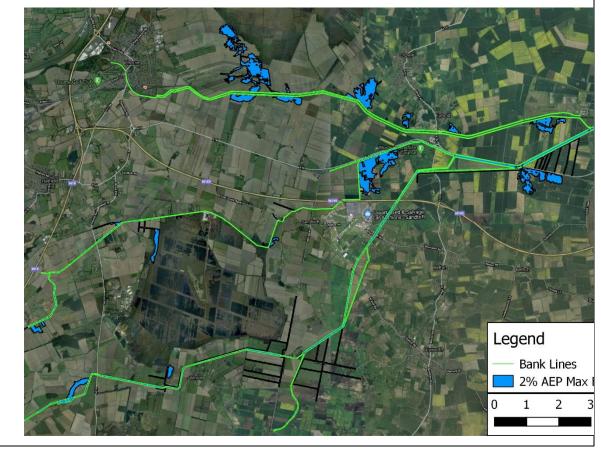
Figure 5: Glass-walling during the 0.1% AEP event. The first instance of Glass-walling in this location occurs during the 3.3% AEP Event.

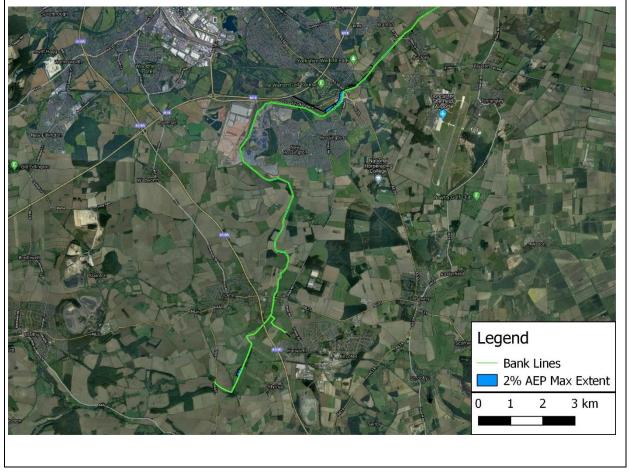


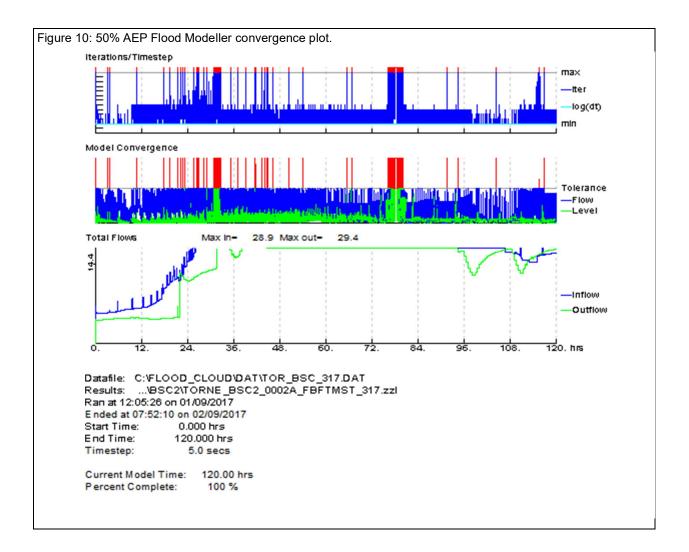
Figure 6: Flow fluctuations at the 1D and 2D domain boundaries between nodes SSD\_076 and SSD\_133 During the 0.1% AEP event.



#### CAPITA | AECOM



Figure 7: Flow fluctuations at the 1D and 2D domain boundaries at notable other locations within the model. During the 0.1% AEP event.


Figure 8: Lower Torne: 50% AEP flood extent and bank lines demonstrating areas where out of bank flooding occurs.



### CAPITA | AECOM

Figure 9: Upper Torne: 50% AEP flood extent and bank lines demonstrating areas where out of bank flooding occurs.





